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Surface impedance is an important concept in classical wave systems such as photonic crystals (PCs).
For example, the condition of an interface state formation in the interfacial region of two different
one-dimensional PCs is simplyZSL þ ZSR ¼ 0, where ZSLðZSRÞis the surface impedance of the semi-
infinite PC on the left-hand (right-hand) side of the interface. Here, we also show a rigorous relation
between the surface impedance of a one-dimensional PC and its bulk properties through the geometrical
(Zak) phases of the bulk bands, which can be used to determine the existence or nonexistence of interface
states at the interface of the two PCs in a particular band gap. Our results hold for any PCs with inversion
symmetry, independent of the frequency of the gap and the symmetry point where the gap lies in the
Brillouin zone. Our results provide new insights into the relationship between surface scattering properties,
the bulk band properties, and the formation of interface states, which in turn can enable the design of
systems with interface states in a rational manner.
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I. INTRODUCTION

Impedance is a very important and useful concept in
wave physics because it is the parameter that governs how a
wave is scattered or reflected when it encounters an
interface. As such, it characterizes how a material couples
with waves coming from outside. On the other hand, the
bulk band structure characterizes how waves can travel
inside a periodic system. These quantities should be related
in some way. We establish that, for a periodic multilayer
film, commonly referred to as 1D photonic crystals, the
surface impedance is related to the Zak phase [1] of the
bulk bands. As the existence of interface states is deter-
mined by the surface impedance, this means that the
existence of localized states at an interface is determined
by the geometric phases of the bulk crystals. It is well
known that interface states can exist in a quantum system
when the topological properties of two semi-infinite sys-
tems on each side of the interface are different [2–5].
A famous example is the Su-Schrieffer-Heeger (SSH) model
for polyacetylene [6–8]. In such systems, it was shown that
an interface state exists when the Zak phase of the occupied
band on one side of the chain is different from that on the
other side, which can be obtained through gap inversion
[9–11]. The purpose of this work is to find a general

connection between the existence of an interface state in a
photonic system and the bulk band topological properties as
well as the surface impedances of the two systems on
each side of the boundary. The analog between photonic
systems and quantum systems was discussed recently
[12–15]. Based on this analog, the Zak phase can also be
defined in photonic crystals (PCs). For 1D binary PCs, we
find a rigorous relation that relates the existence of an
interface state to the sum of all Zak phases below the gap on
either side of the interface. This relation holds for any 1D
PCs with inversion symmetry, including those with graded
refractive indices. Similar to the “bulk-edge correspon-
dence” found in topological insulators [2–4], the “bulk-
interface correspondence” found here provides not only a
tool to determine the existence of interface states in a
photonic system but also the possibility of designing a
photonic system with interface states appearing in a set of
prescribed gaps.

II. RESULTS

A. Impedances and Zak phases of 1D photonic
crystals and their relationship

Let us consider a dielectric AB layered structure as
shown in Fig. 1(a). A plane wave from free-space incidents
normally on the semi-infinite 1D PC on the right and the
reflection coefficient of the electric field Ex is given by rR.
When the frequency of the incident wave is inside the band
gap of this system, the incident wave will be totally
reflected, and we have rR ¼ eiϕR , where ϕR is the reflection
phase. We define a surface impedance ZSR of the semi-
infinite PC as the ratio of the total electric field to the total
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magnetic field on the right-hand side of the boundary, i.e.,
ZSR ¼ Exðz ¼ 0þÞ=Hyðz ¼ 0þÞ, where z ¼ 0 defines the
boundary. The impedance ZSR and the reflection coefficient
rR are related by

ZSR ¼ 1þ rR
1 − rR

Z0; (1)

where Z0 is the vacuum impedance. Inside a band gap,
ZSR is a pure imaginary number and we can write
ZSR=Z0 ≡ iςR, where ςR is a real number. The reflection
phase can hence be expressed as ϕR ¼ π − 2 arctanðςRÞ.
Let us now put another PC on the left of the interface,
and we denote the impedance and the reflection phase of
the left PC by ZSL and the reflection coefficient rL. The
condition for the presence of an interface state is simply
ZSR þ ZSL ¼ 0. According to Eq. (1), this condition
implies that ð1þ rRÞ=ð1 − rRÞ þ ð1þ rLÞ=ð1 − rLÞ ¼ 0,
which is equivalent to rRrL ¼ 1 or ϕRþϕL¼2mπðm∈ℕÞ.
A simple way to obtain an interface state is to construct a
system in which the surface impedances on the two sides
are opposite in sign. A similar condition has been reported
for 2D PCs [16,17]. But the question is then, how can we
design or control the value of the surface impedance? We
show that the sign of the surface impedance for frequencies
inside a band gap is, in fact, determined by the geometrical
phase of the bulk bands. In the following, we derive a
rigorous relation between the surface impedance and the
Zak phase of the PC.
The band structure of a dielectric binary PC shown in

Fig. 1(a) can be obtained from the following relation [18]:

cosðqΛÞ ¼ cos kada cos kbdb

− 1

2

�
za
zb

þ zb
za

�
sin kada sin kbdb; (2)

where ki ¼ ωni=c, ni ¼ ffiffiffiffiffiffiffiffi
μiεi

p
, zi ¼

ffiffiffiffiffiffiffiffiffiffi
μi=εi

p
, (i ¼ a or b);

da, db, and Λ ¼ da þ db are the widths of slabs A and B
and the unit cell, respectively; and q is the Bloch wave
vector. Here, c denotes the wave speed in vacuum,εa, εb,
μa, and μb are the relative permittivity and permeability of
slabs A and B, respectively. The band structure for the
parameters εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and
db ¼ 0.6Λ is shown in Fig. 1(b). For convenience of
discussion, we have numbered the pass bands and band
gaps, independent of whether a gap is closed or not. It is
easy to show that the midgap positions (or the crossing
points when two bands meet) of the PC are at ωm ¼
mπc=ðnada þ nbdbÞ (see Appendix A). For each isolated
(no crossing) band n, we define the Zak phase as
[12–14,19]

θZakn ¼
Z

π=Λ

−π=Λ

�
i
Z

unit cell

dzεðzÞu�n;qðzÞ∂qun;qðzÞ
�
dq; (3)

where i
R
unit celldzεðzÞu�n;qðzÞ∂qun;qðzÞ is the Berry connec-

tion, εðzÞ denotes the dielectric function, and un;qðzÞ is the
periodic-in-cell part of the Bloch electric field eigenfunc-
tion of a state on the nth band with wave vector q, i.e.,
Ex;n;qðzÞ ¼ un;qðzÞ expðiqzÞ. For the case of a binary PC,
the function un;qðzÞ can be obtained analytically from the
transfer-matrix method [18] (see Appendix B). The 1D
system with inversion symmetry always has two inversion
centers and the Zak phase is quantized at either 0 or π if the
origin is chosen to be one of the inversion center [1]. If the
Zak phase equals 0ðπÞ relative to one inversion center, it
must be πð0Þ relative to the other inversion center. Without
loss of generality, we choose the center of slab A as the
origin for calculating Zak phases. If the surface of the semi-
infinite PC is also chosen at the same origin, i.e., the center
of slab A, we find a rigorous relation between the surface
impedance of the PC in the nth gap, i.e., ZðnÞ

S =Z0 ¼ iςðnÞ,
and the sum of Zak phases of all the isolated bands below
the nth gap [Appendix D, Eq. (D12)]. This relationship
relates the surface scattering properties and the topological
properties of bulk dispersion. It can predict the existence of
an interface state in a band gap and determine the location
of the interface state if it exists. In addition, if we are only
interested in knowing whether such a state exists in a gap,
we only need to know the sign of ςðnÞ on each side. The sign
of ςðnÞ has the following simple expression:

sgn½ςðnÞ� ¼ ð−1Þnð−1Þl exp
�
i
Xn−1
m¼0

θZakm

�
; (4)

where the integer l is the number of crossing points under
the nth gap [in Fig. 1(b), the crossing point is at the 7th

F
re

qu
en

cy
(ω

Λ
/2

πc
)

qΛ/(2π)

0

0

0

π

π

1

2

3

4

5

6

7

1

r

B

(a) (b)
8

1

2

3

4

5

6

7

0
B BA A

z

x

FIG. 1. (a) Plane wave incidents normally on an AB layered
structure. The reflection coefficient of the electric field is given by
r. The yellow dashed line marks the unit cell we consider. (b) The
band structure of the PC (solid black curve) with parameters
given by εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and db ¼ 0.6Λ,
where Λ is the length of the unit cell. The magenta strip represents
the gap with ς > 0, while the cyan strip represents the gap with
ς < 0. The Zak phase of each individual band is labeled in green,
and the numbers of the bands and gaps are listed with red and
blue labels, respectively.
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band gap]. The Zak phase of the lowest 0th band is
determined by the sign of ½1 − εaμb=ðεbμaÞ�, i.e.,

expðiθZak0 Þ ¼ sgn½1 − εaμb=ðεbμaÞ� (5)

(see Appendixes C and D).
We calculate the Zak phase of each isolated band (band

1–5) in Fig. 1(b) using Eq. (3). These Zak phases are shown
with green letters in Fig. 1(b). According to Eq. (4), we
obtain sgn½ς� in each gap. They are marked by magenta
when ς > 0 and cyan when ς < 0.

B. Changing the sign of impedance by passing a
topological transition point

To have a guaranteed existence of an interface state, one
needs to make sure that surface impedance on the left and
right half-space is of opposite sign at one common gap
frequency. One possible way (but not the only way) is to
“tune the system parameters across a topological transition
point,” as elaborated below. To demonstrate this idea, we
simply tune the parameter εa used in Fig. 1(b) from 3.8 to
4.2 and keep μa ¼ μb ¼ εb ¼ 1 unchanged. In the mean-
time, we also vary da and db in such a way as to keep
nada þ nbdb unchanged so that all of the midgap positions
do not alter. In Figs. 2(b) and 2(c), we show the band
structures of two PCs from the 4th gap to the 8th gap:
Fig. 2(b) shows “PC1” with εa ¼ 3.8, εb ¼ μa ¼ μb ¼ 1,
da ¼ 0.42Λ, and db ¼ 0.58Λ, and Fig. 2(c) shows “PC2”

with εa ¼ 4.2, εb ¼ μa ¼ μb ¼ 1, da ¼ 0.38Λ, and
db ¼ 0.62Λ. It is interesting to see that Zak phases of
all the bands below the 6th gap remain unchanged during
the variation of εa, but the Zak phases of bands 6 and 7 in
these two PCs switch with a corresponding sign change in
the surface impedance in the 7th gap. When the value of εa
is increased from 3.8, the size of the 7th gap reduces and the
crossing of band 6 and band 7 occurs when εa ¼ 4, at
which gap 7 is closed, as shown in Fig. 1(b). When the
value of εa is further increased, the gap opens again and is
accompanied by a change of sign in the surface impedance
as well as a switch of the Zak phase in bands 6 and 7. This
represents a topological phase transition, which occurs
when two bands cross each other. Thus, by constructing an
interface with PC1 on one side and PC2 on the other side,
we should see an interface state inside gap 7. This is
verified in our numerical study of the transmission spec-
trum of a system consisting of a slab of PC1 (with 10 unit
cells) on one side and a slab of PC2 (with 10 unit cells) on
the other side embedded in vacuum. Figure 2(a) clearly
shows a resonance transmission due to an interface state
around ω ¼ 5πc=Λ in gap 7. Such a topological phase
transition represents a classical analog of the SSH model in
electronic systems [6–8] although impedance is not usually
considered in electrons.
The above example is a manifestation of a topological

phase transition arising from band crossing in photonic
systems. It should be pointed out that the occurrence of the
band crossing shown in Fig. 1(b) is by no means accidental.
It can be shown rigorously (see Appendix A) that if the
ratio of the optical paths in two slabs of a PC is a rational
number, namely, α ¼ nada=ðnbdbÞ ¼ m1=m2 ∈ ℚ, where
m1, m2 ∈ ℕþ, then band m1 þm2 and band m1 þm2 − 1
will cross at the frequency ωm1þm2

¼ðm1þm2Þπc=
ðnadaþnbdbÞ. At this frequency, sinkada ¼ sinkbdb ¼ 0,
cosðkbdbÞ ¼ ð−1Þlm2 , and cosðkadaÞ ¼ ð−1Þlm1 , where
l ∈ ℕþ, so cosðqΛÞ ¼ ð−1Þlðm1þm2Þ and the gap m1 þm2

will close at the center or boundary of the Brillouin zone
(BZ) depending on whether lðm1 þm2Þ is even or odd. It is
easy to see that, if the ðm1 þm2Þth gap is closed, so are all
other gaps that are integer multiples ofm1 þm2. In fact, the
above condition is also a necessary condition for two bands
to cross (see Appendix A).
The origin of the topological phase transition shown in

Fig. 2 is directly related to a special set of frequencies ~ω
given by sinðnbdb ~ω=cÞ ¼ 0. It can be shown rigorously
(see Appendix B) that if one of the ~ω appears inside a band,
the Zak phase of the band must be π. Otherwise, it is zero.
This rule applies to all bands except the 0th band, for which
the Zak phase is determined by the sign of function
½1 − εaμb=ðεbμaÞ� (see Appendixes C and D). For the case
of Fig. 2(b), ~ω appears in band 7, whereas for Fig. 2(c), ~ω
appears in band 6. Thus, the value of ~ω decreases as εa is
increased. For the entire band 6 of Fig. 2(b) and band 7 of
Fig. 2(c), the function sinðnbdbω=cÞ does not change sign.
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FIG. 2. (a) The transmission spectrum of a system composed of
10 unit cells of PC1 on the left-hand side and 10 unit cells
of PC2 on the right-hand side in vacuum. The parameters of PC1
are given by εa ¼ 3.8, εb ¼ μa ¼ μb ¼ 1, da ¼ 0.42Λ, and
db ¼ 0.58Λ, and the parameters of PC2 are given by εa ¼ 4.2,
εb ¼ μa ¼ εb ¼ 1, da ¼ 0.38Λ, and db ¼ 0.62Λ, where Λ is the
unit length of the PCs. (b),(c) The band structure (solid black
curve) of PC1 and PC2. In both (b) and (c), the magenta strip
represents the gap with ς > 0, while the cyan strip represents the
gap with ς < 0, and the Zak phase of each individual band is also
labeled in (b) and (c) in green. We note that if the gaps of the PCs
on either side of the interface carry the same sign of ς, there is no
interface state. If the sign of ς is opposite, there must be an
interface state (e.g., at a reduced frequency unit of 2.5).
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The variation of ~ωwith respect to εa can be seen as follows.
In Fig. 1(b) (εa ¼ 4), the frequency at which two bands
meet in gap 7 is ω7 ¼ 5πc=Λ [see Fig. 1(b)], which is also
the frequency where sinðnbdbω7=cÞ ¼ 0, i.e., ~ω ¼ ω7.
When εa is decreased from 4, say [Fig. 2(b)], we need
to increase the value of da in order to keep nada þ nbdb
unchanged. Thus, the value of nbdb is reduced accordingly,
which in turn implies ~ω > ω7. On the other hand, if εa is
increased from 4, say [Fig. 2(c)], we have ~ω < ω7. Here,
we have used the fact that ~ω will always appear in a pass
band. This can be seen from Eq. (2) because the absolute
value of the rhs of the equation at ~ω is always less than or
equal to unity.

C. Relationship between the Zak phase and the
symmetry properties of the edge states

We give a physical interpretation of the Zak phase in an
isolated band by using the symmetries of the two edge
states at the two symmetry points of the Brillouin zone. As
we have seen, the topological property of the band structure
changes every time when a band crossing occurs as α≡
nada=ðnbdbÞ passing through a rational number, and the
change can be seen from the changes in the symmetries of
the edge states. As an example, let us focus on the 6th and
7th bands in Figs. 2(b) and 2(c), in which the Zak phases
change by π when εa is increased from 3.8 to 4.2. These
two bands are highlighted in Figs. 3(a) and 3(b) with the
band edges marked by red letters. The corresonding Zak
phases are shown in green. The difference in the Zak phase
of each band can be understood by examing the symmetry
of the absolute value of electric distribution jEn;qðzÞj of the
two edge states in the band. The black curves in Figs. 3(c),
3(e), and 3(g) show the functions jEn;qðzÞj in a unit cell in
arbitrary units for the three edge states of PC1 at points L,
M, and N. The black curves in Figs. 3(d), 3(f), and 3(h)
correspond to the points P, Q, and R of PC2. Here, we use
the important result from Kohn [20] and Zak [1] for 1D
systems with inversion symmetry, which, when generalized
to a photonic system, states that the Zak phase of the nth
band is zero if either jEn;q¼0ðz¼0Þj¼jEn;q¼π=aðz¼0Þj¼0

or jEn;q¼0ðz ¼ 0Þj ≠ 0; jEn;q¼π=aðz ¼ 0Þj ≠ 0. Otherwise,
it is π. The blue dashed lines in Figs. 3(c)–3(h) indicate the
position of the origin (z ¼ 0), which is the center of slab A.
According to this rule, it is easy to see from Figs. 3(e)
and 3(g) that the Zak phase of the 6th band of PC1 is zero as
the wave functions of the pointsM and N are both nonzero
at the origin, whereas the value changes to π in PC2
because the wave function at point Q becomes zero after
band crossing. For the same reason, the Zak phase of the
7th band in PC2 is also changed after band crossing. The
band inversion can also be seen from the switching of two
edge states across the gap. For example, the wave functions
at points L and Q have nealy the same distribution, i.e., the
wave functions are both zero at the origin and with larger
amplitudes in slab B, whereas for points M and P the

absolute values of the wave functions are both at maximum
at the origin and their amplitudes are nearly the same in slab
A and slab B. However, the wave functions at points N and
R are nearly the same, not affected by the band crossing.
This is also true for points K andO. Thus, it is precisely the
switching of two edges states at gap 7 that gives rise to
different Zak phases in PC1 and PC2 for both bands 6 and
7. Similar behavior has been reported in the electronic
system [9–11].

D. Relationship between the sign of impedance and the
symmetry properties of the edge states

The sign of the imaginary part of the surface impedance,
i.e., ς, can also be related to the symmetries of the two edge
states. It is well known that the amplitude of the wave
function of the band-edge states at the origin (z ¼ 0) is
either zero or maximum [21] as is also shown in Fig. 3 (see
a proof in Appendix C). For convenience, we name the
wave function with zero amplitude at the origin as A
(antisymmetric) state and the other as S (symmetric) state.
For the A state, the electric field is zero at the boundary of
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FIG. 3. (a) The band dispersion of the PC with parameters
εa ¼ 3.8, εb ¼ μa ¼ μb ¼ 1, da ¼ 0.42Λ, and db ¼ 0.58Λ.
(b) The band dispersion of the PC with parameters εa ¼ 4.2,
εb ¼ μa ¼ μb ¼ 1, da ¼ 0.38Λ, and db ¼ 0.62Λ, where Λ is the
unit length of PCs. The Zak phase of each band in (a) and (b) is
shown in green. (c)–(h) The absolute value of the electric field
EðzÞ (black solid line) of the band-edge state as a function of
position z. Six band-edge states, L, P,M,Q, N, R, indicated with
solid red circles in (a) and (b), are shown in (c)–(h), respectively.
The region of slab A isð0; daÞ, the left is slab B, and the blue
dashed lines mark the center of slab A.
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the PC, which is equivalent to a perfect electric conductor-
like boundary condition, while the electric field is maxi-
mum at the boundary for the S state, which gives a perfect
magnetic conductor-like boundary condition. Since two
edge states across a gap are orthogonal, they always belong
to different symmetries. With this definition, as can be
easily seen from Figs. 3(c)–3(h), points L and Q belong to
type A, whereas points P,M,N, and R belong to type S. If a
reflection measurement is done at the frequency of the type-
A state, we must have r ¼ −1, corresponding to a reflection
phase ϕ ¼ π. On the other hand, if the measurement is done
at the frequency of the type-S state, we have r ¼ 1 and
ϕ ¼ 0 or 2π. From the relation ϕ ¼ π − 2 arctanðςÞ, it can
be shown that, for a gap with state A at the lower edge, the
function ς has a value 0 at the lower edge and decreases
monotonically to −∞ as the upper edge is approached. For
a gap with state S at the lower edge, the function ς
decreases monotonically from ∞ to 0 as the upper edge
is approached (see Appendix D). Thus, the sign of ς in a
gap is determined solely by the type of state at the lower
edge (or upper edge, since these two states are orthogonal)
of the gap, and if two states at the lower edges of the
common gap belong to different types, an interface state
must exist inside the gap.

E. Existence of interface states

As we mentioned earlier, the occurrence of band cross-
ing at a particular gap (say, the nth gap) appears simulta-
neously for all gaps that are integer multiples of the nth
gap. However, we emphasize that “gap inversion” is just
one way, but not the only way, to achieve an interface state.
As an example, we consider a system consisting of 10 unit
cells of “PC3” (εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ,
and db ¼ 0.65Λ) on the left and 10 unit cells of “PC4”
(μb ¼ 6, εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ) on
the right embedded in vacuum. The corresponding band
structures are shown in Figs. 4(b) and 4(c) for PC3 and
PC4, respectively. There are six overlapping gaps in the
frequency range in which we are interested. The trans-
mission spectrum of the system is shown in Fig. 4(a). We
find three interface states in gaps 1, 2, and 5. The existence
of interface states in these gaps is not due to band
inversion. However, their existence can still be predicted
by Eq. (4). To demonstrate this, we calculate the Zak phase
of each isolated band in PC3 and PC4 using Eq. (3). The
results are shown in Figs. 4(b) and 4(c) with green letters.
The sign of the imaginary part of the surface impedance,
i.e.,sgn½ς�, of each gap can now be obtained from Eq. (4).
As before, we mark the ς > 0 gaps with magenta and the
ς < 0 gaps with cyan. According to the condition of an
interface state, i.e., ςL þ ςR ¼ 0, the interface states exist
only in gaps 1, 2, and 5 in which ςL and ςR have different
signs. This is consistent with the result of the transmission
study shown in Fig. 4(a).

F. Generalization to other waves

Finally, we want to stress that the results obtained above
for PCs also hold for other one-dimensional systems with
inversion symmetry, such as acoustic waves. Because of
inversion symmetry, the wave functions at two edges of an
isolated band can be either symmetric with a maximum
amplitude or antisymmetric with zero amplitude. Thus, the
symmetry properties of these two edge states determine
the Zak phase of the band. From Eq. (4), the sign of the
imaginary part of the surface impedance ς can be deter-
mined. An interface state can then be created by construct-
ing an interface from two semi-infinite systems with
opposite signs in ς. The validity of Eq. (4) is also not
limited to the binary layer structure considered in this work.
In fact, Eq. (4) also holds when the relative permittivity and
permeability are continuously varying functions of position
as long as the inversion symmetry is kept, and the lattice
constants of the left and right periodic systems do not need
to be equal. Examples are given in Appendix E.
We mention that the electric field is taken as the scalar

field in this work. If the magnetic field is chosen as the
scalar field, Eq. (4) still holds. The sign of the imaginary
part of the surface impedance is an intrinsic property of the
PC and should not depend on the choice of field. The Zak
phase of an isolated band also remains unchanged because
it depends on the symmetry properties of two edge states of
the band. The change of field from electric to magnetic
changes the symmetry properties of both edge states and,
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FIG. 4. (a) The transmission spectrum of the system composed
of 10 unit cells of PC3 on the left-hand side and 10 unit cells of
PC4 on the right-hand side in vacuum. The parameters of PC3 are
given by εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and
db ¼ 0.65Λ, and the parameters of PC4 are given by μb ¼ 6,
εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ, where Λ is the
unit length of the PCs. (b),(c) The band structure (solid black
curve) of PC3 and PC4. In both (b) and (c), the magenta strip
represents the gap with ς > 0, while the cyan strip represents the
gap with ς < 0, and the Zak phase of each individual band is also
labeled in (b) and (c) in green. Whenever two gaps with different
character (different sign of ς) have a common region, there will be
an interface state.
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therefore, keeps the Zak phase unchanged. However, the
Zak phase of the 0th band will change sign, but the outcome
will be the same because the effect will be canceled by the
change of the factor ð−1Þn to ð−1Þnþ1 in Eq. (4).

III. CONCLUSION

In summary, we show that, due to the inversion sym-
metry, which is inherent in the system we are considering,
the two band-edge states of any band gap have to be either
symmetric or antisymmetric with respect to the chosen
origin. If one band-edge state (say, the upper one) is
symmetric, the other must be antisymmetric, and vice
versa. The sign of the imaginary part of the impedance
inside a band gap is determined by the parity of the band-
edge states. As the frequency is increased from zero to the
higher bands, more and more electric field oscillations
appear within a unit cell. As a consequence, the parity of
the eigenstate at the center or boundary of the Brillouin
zone changes as we move up the bands. Our main result,
i.e., Eq. (4), provides a simple and yet deterministic way to
calculate the symmetry of two edge states of any particular
band gap, and this is obtained by keeping track of the
symmetries of all other band-edge states below the gap. We
note, in particular, that the geometric Zak phase of a band
tells us how the parity changes within that particular pass
band. As the surface impedance determines the existence of
interface states at the boundary of PCs, the existence of
the interface states can be determined by the bulk band
geometric phases. This correspondence between surface
impedance and bulk band properties gives us a determin-
istic recipe to design systems with interface states.
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APPENDIX A: BANDS CROSSING CONDITION

In the Appendixes, we give some mathematical details
mentioned in the main text. We then give several additional
examples in support of the statements made in the
main text.
We consider a dielectric AB layered structure with the

relative permittivity, relative permeability, refractive index,
relative impedance, and width given by εa, εb, μa, μb, na,
nb, za, zb, da, and db respectively, where ni ¼ ffiffiffiffi

εi
p ffiffiffiffi

μi
p

,
zi ¼ ffiffiffiffi

μi
p

=
ffiffiffiffi
εi

p
, with i ¼ a, b. The unit cell length is Λ ¼

da þ db and the relative permittivity and permeability
of the slabs are positive and nondispersive. We employ
several ancillary parameters α¼nada=ðnbdbÞ, γ ¼ ðnadaþ
nbdbÞω=c, and τ ¼ ðza=zb þ zb=zaÞ=2. These parameters
have the following physical meaning: α is the ratio of the
optical path in slabs A and B, γ is the phase delay in a unit
cell, and τ reflects the impedance mismatch between slabs

A and B and is always larger than 1 when the impedances of
slab A and slab B are not the same.
Here, we prove that, when za ≠ zb, the necessary and

sufficient condition for two bands to cross (either at zone
center or zone boundary) is given by α ¼ nada=ðnbdbÞ,
which is a rational number, i.e., α ¼ m1=m2, where
m1, m2 ∈ ℕþ.
Sufficient condition.—The band dispersion relation of

the dielectric AB layered structure is given by [18]

cosðqΛÞ ¼ cos kada cos kbdb

− 1

2

�
za
zb

þ zb
za

�
sin kada sin kbdb; (A1)

where ki ¼ ωni=c (i ¼ a or b) and q is the Bloch wave
vector. When sinkbdb ¼ 0, the absolute value of the rhs of
Eq. (A1) is smaller than or equal to 1, which is the
frequency at which sinkbdb ¼ 0 must be in the pass band.
At ω ¼ lm2πc=ðnbdbÞ, where l ∈ ℕþ, sinkbdb ¼ 0,
cosðkbdbÞ ¼ ð−1Þlm2 , and cosðkadaÞ ¼ ð−1Þlm1 , so we
have cosðqΛÞ ¼ ð−1Þlðm1þm2Þ. We get q ¼ 0 when lðm1 þ
m2Þ is even, while we get q ¼ �π=Λ when lðm1 þm2Þ is
odd. Near these frequencies, i.e., ω ¼ lm2πc=ðnbdbÞ ¼
lm1πc=ðnadaÞ, the band has linear dispersion. To prove
this, we choose l ¼ 1 [where ω ¼ m2πc=ðnbdbÞ] as an
example; the other cases could be proved following the
same process. Whenm1 þm2 is even, the degeneracy band
point is ðq0;ω0Þ¼½0;m2πc=ðnbdbÞ�. Suppose that ðq1;ω1Þ
is another band point near ðq0;ω0Þ, then jq1 − qj, jω1 − ω0j
are small numbers. Keeping to the lowest order of expan-
sion of Eq. (A1), we have

jq1 − q0j ¼
ffiffiffiffiffiffi
C1

p
jω1 − ω0j=c; (A2)

where

C1 ¼
�
ðnadaÞ2 þ ðnbdbÞ2 þ

�
za
zb

þ zb
za

�
nbdbnada

�
=Λ2:

(A3)

When m1 þm2 is odd, it can also be shown that
jq1 − q0j ¼

ffiffiffiffiffiffi
C1

p jω1 − ω0j=c, where C1 is same as before.
So when α ¼ m1=m2, bands will cross at frequency points
ω ¼ lm2πc=ðnbdbÞ with linear dispersion.
Necessary condition.—It is easy to prove that the cross

points of two bands could occur only at the boundary or the
center of the BZ for 1D PC cases. If two bands cross at
points other than the center or boundary of the BZ, then for
frequency near the cross point, by the continuity of band
dispersion, each frequency would have four corresponding
Bloch vectors q. This is not possible because the rhs of
Eq. (A1) is completely determined by the frequency and is
single valued, so there can be at most two values of q for
each frequency. As defined previously, γ ≡ ðnadaþ
nbdbÞω=c, τ≡ 1

2
ðza=zb þ zb=zaÞ, and τ > 1, when
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za ≠ zb. The rhs of Eq. (A1) can be written as cos γ−
ðτ − 1Þ sin kada sin kbdb. If kada þ kbdb ¼ ð2m − 1Þπ,
where m ∈ ℕþ, then cos γ ¼ −1 and sinkadasinkbdb≥0,
so the rhs of Eq. (A1) is less than or equal to −1.
If γ ¼ 2mπ, where m ∈ ℕþ, then cos γ ¼ 1 and
sin kada sin kbdb ≤ 0, so the rhs of Eq. (A1) is larger than
or equal to 1. In short, if one frequency satisfies the
condition γ ¼ mπ, where m ∈ ℕþ, then it must be in the
band gap if two bands do not cross. If two bands cross at
γ ¼ mπ, then sin kada ¼ 0 and sin kbdb ¼ 0 simultane-
ously, so kada=kbdb ¼ m1π=m2π ¼ m1=m2, where
m1,m2 ∈ ℕþ. In other words, ωm ¼ mπc=ðnada þ nbdbÞ
labels the midgap positions (or the crossing points when
two bands meet) of the PC. Following the same idea, we
can also prove that ωm ¼ ðmþ 1=2Þπc=ðnada þ nbdbÞ
labels the midband positions.

APPENDIX B: ZAK PHASE OF EACH BAND

In this appendix, we show that if one isolated band
(excluding the 0th band) contains the frequency point ~ω at
which sinð ~ωnbdb=cÞ ¼ 0, then the Zak phase of this band
must be π (if we set the origin of the system at the center
of sla A).
Proof.—The Zak phases of isolated bands depend on

the choice of origin. We choose the origin to be at the
center of slab A. To prove this assertion, we adapt the
standard transfer-matrix method described in Ref. [18].
The eigenvector of the transfer matrix of the unit cell under
consideration is ½t12; expðiqΛÞ − t11�T , where t11, t12 are
coefficients in the transfer matrix for one unit cell and only
depend on ω, and are defined as

t11 ¼ expðikadaÞ
�
cos kbdb þ

i
2

�
za
zb

þ zb
za

�
sin kbdb

�
;

(B1)

t12 ¼ expð−ikadaÞ
�
i
2

�
za
zb

− zb
za

�
sin kbdb

�
: (B2)

With this eigenvector, the eigenelectric field along the
x direction and the magnetic field along the y direction in
slab A are given by

ExðzÞ ¼ t12 exp½ikaðzþ da=2Þ�
þ ½expðiqΛÞ − t11� exp½−ikaðzþ da=2Þ�; (B3)

HyðzÞ ¼
ka
ωμa

ft12 exp½ikaðzþ da=2Þ�

− ½expðiqΛÞ − t11� exp½−ikaðzþ da=2Þ�g; (B4)

where t12, expðiqΛÞ − t11 are, respectively, the coefficients
of forward wave and backward wave in slab A. The electric
field and magnetic field in slab B are given by

ExðzÞ ¼ s11 exp½ikbðzþ da=2Þ�
þ s12 exp½−ikbðzþ da=2Þ�; (B5)

HyðzÞ ¼
kb
ωμb

fs11 exp½ikbðzþ da=2Þ�

− s12 exp½−ikbðzþ da=2Þ�g; (B6)

where s11, s12 are, respectively, the coefficients of the
forward wave and the backward wave in slab B, and the
relationship between t11, t12, s11, s12 is given by

�
eikbda e−ikbda
eikbda −e−ikbda

��
s11
s12

�
¼

�
eikada e−ikada

zb
za
eikada − zb

za
e−ikada

�

×

�
t12

expðiqΛÞ − t11

�
:

(B7)

The mathematical details can be found in Ref. [18]. Here,
we adopt some changes in notation. Knowing the eigenfield
distribution, the Zak phase of each band can be further
calculated with Eq. (3) in the main text. With periodic
gauge, Eqs. (B2)–(B6) define the gauge for calculating the
Zak phase. Below, we use this chosen gauge to prove the
statement made at the beginning of this section.
We show that t12 and expðiqΛÞ − t11 equal to zero

simultaneously at the frequency point ~ω at which
sinð ~ωnbdb=cÞ ¼ 0, with either q > 0 or q < 0. It is obvious
that when sinðkbdbÞ ¼ 0, t12 ¼ 0, and the only possible
solution for t12 ¼ 0 is also sinðkbdbÞ ¼ 0, when za ≠ zb
(necessary condition). Combining Eq. (A1) with the
condition sinðkbdbÞ ¼ 0, we have

cos½qΛ� ¼ cos γ; (B8)

where γ ≡ kada þ kbdb is the phase delay in each unit cell
as defined before. When γ ∈ ð2mπ; ð2mþ 1ÞπÞ with
m ∈ ℕ, sin½qΛ� ¼ sin γ for q > 0. When γ ∈ ðð2m − 1Þπ;
2mπÞ where m ∈ ℕ, sin½qΛ� ¼ sin γ for q < 0. For points
on the band, Eq. (A1) is automatically satisfied, so
expðiqΛÞ − t11 is a pure imaginary number. And when
sin½qΛ� ¼ sin γ, Im½expðiqΛÞ − t11� ¼ 0. So here we could
conclude that t12 and expðiqΛÞ − t11 are equal to 0
simultaneously at the frequency point where sinkbdb ¼ 0
with either q > 0 or q < 0.
Suppose t12 and expðiqΛÞ − t11 are equal to 0 at ðq0;ω0Þ

simultaneously; thus, ω0nbdb=c ¼ mπ, m ∈ ℕ. And
ðq1;ω1Þ is another point on the band near ðq0;ω0Þ, then
ω1nbdb=c −mπ ¼ δ, where δ is a small number.
Expanding t12 and expðiqΛÞ − t11 around ðq0;ω0Þ and
keep to the lowest order of δ, we have
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t12 ¼ expð−ikadaÞ
�
i
2

�
za
zb

− zb
za

���
ð−1ÞmδþO3ðδÞ

�
;

(B9)

expðiqΛÞ − t11 ∝ O2ðδÞ: (B10)

Since the electric field is a linear combination of t12 and
expðiqΛÞ − t11, it will change sign near ðq0;ω0Þ, i.e.,

junq0þi ¼ −junq0−i; (B11)

where jun;qi is the normalized periodic part of the field in a
cell eigenvector at ðω; qÞ of the nth band and Xþð−Þ
represents approaching X from the positive (negative)
direction.
At other band points except ðq0;ω0Þ, jun;qi is a con-

tinuous function of q. Since the inversion center is chosen
at the origin, the system is invariant under the space
inversion. Following the same argument as stated before,
we find

En;qðzÞ ¼ En;−qð−zÞ: (B12)

With Ex;n;qðzÞ ¼ un;qðzÞ expðiqzÞ, we have

un;qðzÞ ¼ un;−qð−zÞ: (B13)

Since jun;qi is the periodic part of the wave function, the
integration in Imhun;qj∂qjun;qi is performed from −Λ=2 to
Λ=2. Thus, Imhun;qj∂qjun;qi is an odd function of q; in
other words,

Im½hun;qj∂qjun;qi þ hun;−qj∂qjun;−qi� ¼ 0. (B14)

If t12 and expðiqΛÞ − t11 do not equal 0 simultaneously on
one band, then with the chosen gauge, jun;qi is a continuous
function of q. Thus, Eq. (B12) is applied all over that band
and the Zak phase is 0. Otherwise, if t12 and expðiqΛÞ − t11
equal 0 simultaneously at ðq0;ω0Þ, then jun;qi is discon-
tinuous at ðq0;ω0Þ, and the Zak phase of this band is
given by

γn ¼ −Im lim
δq→0

�� Zq0−δq

−π=Λ
þ

Zπ=Λ

q0þδq

dq

�
hun;qj∂qjun;qi

þ lnhun;q0þδqjun;q0−δqi
�
¼ π: (B15)

The above proof can easily be extended to the case when
the system is dispersive [12–14].

APPENDIX C: EIGENSTATE AT THE
BAND EDGE

In this appendix, we prove that the electric field at the
inversion center for a band-edge state should be zero or
maximum. There are two inversion centers in this system,
namely, the center of slab A and slab B. Without loss of
generality, we choose the center of slab A as the inversion
center. At the center of slab A, according to Eqs. (B3)
and (B4),

Ex ¼ ζEft12 expðikadaÞ þ ½expðiqΛÞ − t11�g; (C1)

Hy ¼ ζHft12 expðikadaÞ − ½expðiqΛÞ − t11�g; (C2)

where ζE and ζH are some complex constants. For an
arbitrary state ðω; qÞ on the band, t12 expðikadaÞ and
expðiqΛÞ − t11 are pure imaginary numbers. At band
edges, cosðqΛÞ ¼ �1, sinðqΛÞ ¼ 0. After some mathemat-
ics, we could arrive at

f rhs of Eq. ðA1Þg2 þ fIm½expðiqΛÞ − t11�g2
¼ 1þ fIm½t12 expðikadaÞ�g2; (C3)

then

t12 expðikadaÞ ¼ �½expðiqΛÞ − t11�: (C4)

From Eq. (C4), it is easy to find that either the electric field
or the magnetic field should be 0 at the center of slab A. So
there are only two types of states at the band edges. For the
type-A (antisymmetry) state, Exðz ¼ 0Þ ¼ 0. For the type-
S (symmetry) state, Exðz ¼ 0Þ ≠ 0, Hyðz ¼ 0Þ ¼ 0; the
electric field is at the maximum value inside slab A.
Now we go further to find out whether the A or the S state

is at the lower or upper edge of the nth gap. The sign
of the function sinðωnbdb=cÞ depends on the number of
zeros it crosses in the frequency range ð0;ωÞ, so to get
sgnðsin kbdbÞ, we only need to count the number of zero
points of sin kbdb. As proved before, if the frequency ~ω at
which sin kbdb ¼ 0 is on an isolated band, then this band
has Zak phase π; otherwise, ~ω is at the crossing point of two
bands since ~ω is always on the pass band. Thus, for a
frequency ω inside the nth gap,

sgn

�
sin

ω

c
nbdb

�
¼ ð−1Þl exp

�
i
Xn−1
m¼1

θZakm

�
; (C5)

where l ∈ ℕ is the number of band crossing points under
the nth gap, and the second term on the rhs of Eq. (C5) is a
summation of the Zak phase below this gap. We then define

χ ¼ sgnð1 − εaμb=εbμaÞ (C6)

according to Eq. (B2):

MENG XIAO, Z. Q. ZHANG, AND C. T. CHAN PHYS. REV. X 4, 021017 (2014)

021017-8



sgnfIm½t12 expðikadaÞ�g ¼ ð−1Þl exp
�
i
Xn−1
m¼1

θZakm

�
χ:

(C7)

With Eq. (B1), it is easy to get, for the band-edge states,

Im½expðiqΛÞ− t11�¼−½sinðγÞþðτ−1Þcoskada sinkbdb�:
(C8)

At γ ¼ ð2nþ 1=2Þπ, where n ∈ ℕ, sinðγÞ ¼ 1,
cos kada sin kbdb ¼ cos2ðkadaÞ ≥ 0; at γ ¼ ð2nþ 3=2Þπ,
where n ∈ ℕ, sinðγÞ ¼ −1, cos kada sin kbdb ¼−cos2ðkadaÞ ≤ 0. Thus, at γ ¼ ðnþ 1=2Þπ, where n ∈ ℕ,

sgn½sinðγÞ þ ðτ − 1Þ cos kada sin kbdb� ¼ sgn½sinðγÞ�:
(C9)

From Eq. (C3), it is easy to get that, for states on the band,

½sinðγÞ þ ðτ − 1Þ cos kada sin kbdb�2
¼ ðτ2 − 1Þsin2kbdb þ 1 − cosðqΛÞ ≥ 0. (C10)

The equality is achieved at the point where two bands cross;
thus, ½sinðγÞ þ ðτ − 1Þ cos kada sin kbdb� does not change
sign on the isolated pass band. sinðγÞ changes sign only
inside the band gap (or at the crossing point of two bands)
and the frequency at which γ ¼ ðnþ 1=2Þπ must be in the
pass band, so Eq. (C9) is also true for band-edge states. As
γ ¼ nπðn ∈ ℕþÞ gives the midgap position of the nth gap,
for the edge state below the nth gap,

sgnfIm½expðiqΛÞ − t11�g ¼ −sgn½sinðγÞ� ¼ ð−1Þn;
(C11)

for the edge state above the nth gap,

sgnfIm½expðiqΛÞ − t11�g ¼ ð−1Þnþ1: (C12)

Therefore, if ð−1Þnð−1Þl expðiPn−1
m¼1 θ

Zak
m Þχ ¼ 1, then

the edge state below the nth gap is an S state, and
above the nth gap is the A state; otherwise, if
ð−1Þnð−1Þl expðiPn−1

m¼1 θ
Zak
m Þχ ¼ −1, then the state below

the nth gap is an A state, and above the nth gap is an S state.
In Fig. 5, we give an example to illustrate the relation

between the edge state and the Zak phase. The band
structure (solid black line) of a particular PC with param-
eters given by εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and
db ¼ 0.6Λ is plotted in Fig. 5. The rule specified in
Appendix B gives the Zak phase of each isolated band,
as shown in green. We labeled the type-A edge states with
solid purple circles and the S state with yellow circles. As in
Fig. 1(b), sgn½ς� ¼ sgn½ImðZsÞ� is marked by magenta
when ς > 0 and cyan when ς < 0. We point out three
important features of Fig. 5: (i) The state must change from

ðSÞ to ðAÞ or from ðAÞ to ðSÞ when passing through a band
gap, (ii) the upper and lower edge states of a band are of the
same type if the Zak phase of this band is 0, otherwise it is
π, and (iii) sgn½ς� of each gap is related to the edge state
bounding this gap. If the ðAÞ state is at the lower edge and
the ðSÞ state is at the upper edge, then ς < 0; otherwise, if
the ðSÞ state is at the lower edge and the ðAÞ states is at the
upper edge, ς > 0. This will be proved in Appendix D.

APPENDIX D: BULK BAND AND SIGN OF
REFLECTION PHASE

In this appendix, we show that

sgnðϕnÞ ¼ ð−1Þnð−1Þl exp
�
i
Xn−1
m¼1

θZakm

�
χ; (D1)

where ϕn is the reflection phase of the nth gap (as
defined below).
We consider a plane wave Ei ¼ E0eikz being incident on

the PC from vacuum as shown in Fig. 1(a), and the reflected
wave is Er ¼ rE0e−ikz. The field inside the gap at z ¼ 0þ is
given by

Ex ¼ t12 expðikada=2Þ þ ½expðiqΛÞ − t11� expð−ikada=2Þ;
(D2)

Hy ¼
ka
ωμa

ft12 expðikada=2Þ

− ½expðiqΛÞ − t11� expð−ikada=2Þg: (D3)

A state S state

π

π

0

0

0

qΛ/(2π)

F
re

qu
en

cy
(ω

Λ
/2

πc
)

FIG. 5. The band structure (solid black line) of the PC with
parameters given by εa ¼ 4, μa ¼ εb ¼ μb ¼ 1, da ¼ 0.4Λ, and
db ¼ 0.6Λ.The light magenta strip represents the gap with ς > 0,
while the cyan strip represents the gap with ς < 0, the Zak phase
of each individual band is labeled in green. The solid purple circle
is the A (antisymmetric) state (Eeigen ¼ 0 at the center of slab A)
at the band edge, and the solid yellow circle is the S (symmetric)
state (Eeigen ≠ 0 at the center of slab A).
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Matching the boundary condition, we have

1þ r
1 − r

¼ za
t12 expðikadaÞ þ ½expðiqΛÞ − t11�
t12 expðikadaÞ − ½expðiqΛÞ − t11�

: (D4)

From Eq. (D4), we calculate the reflection phase delay
inside the gap. As an example, in Fig. 6, we give the
reflection phase delay inside the first gap of PC3 (εb ¼ 3.5,
εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and db ¼ 0.65Λ) for light
incident from vacuum (black line). The reflection phase
increases monotonically from −π to 0 with increasing
frequency. As a comparison, we also give the reflection
phase calculated directly using the transfer matrix for a slab
consisting of a finite number of unit cells of PC3. The solid
blue line is for a slab with 5 unit cells and the solid red line
is for a slab with 10 unit cells of PC3. As the number of unit
cells increases, the reflection phase converges to the one
given by Eq. (D4), which is derived for a semi-infinite PC.
For frequency inside the nth gap (including band-edge

states),

qΛ ¼ nπ þ iK18; (D5)

where K > 0 and describes the decay length inside the gap.

jt12 expðikadaÞj2 − jIm½expðiqΛÞ − t11�j2
¼ cosh2ðKÞ − 1 ≥ 0; (D6)

and the equality is achieved only at the band edge. From
Eq. (B2), we know t12 expðikadaÞ is a pure imaginary
number, so

sgnImft12 expðikadaÞ � ½expðiqΛÞ − t11�g

¼ sgnIm½t12 expðikadaÞ� ¼ ð−1Þl exp
�
i
Xn−1
m¼1

θZakm

�
χ:

(D7)

Inside the nth gap,

Re½expðiqΛÞ − t11� ¼ ð−1Þnþ1 sinhK: (D8)

So,

1þ r
1 − r

¼ za
ð−1Þnð−1Þl expðiPn−1

m¼1 θ
Zak
m ÞχΛþ þ i

ð−1Þnð−1Þl expðiPn−1
m¼1 θ

Zak
m ÞχΛ− − i

; (D9)

where

λ� ¼ jt12 expðikadaÞ � iIm½expðiqΛÞ − t11�j= sinhK > 0.

(D10)

Inside the nth gap, r ¼ eiϕn , where ϕn (the subscript n
labels the gap) is a function of frequency. Thus
ð1þ rÞ=ð1 − rÞ ¼ i cotðϕn=2Þ, a pure imaginary number,
which means the rhs of Eq. (D9) is also pure imaginary.
After some mathematical works, we can prove λþλ− ¼ 1
and

Im

�
za

ð−1Þnð−1Þl expðiPn−1
m¼1 θ

Zak
m Þχλþ þ i

ð−1Þnð−1Þl expðiPn−1
m¼1 θ

Zak
m Þχλ− − i

�

¼ sgn

�
ð−1Þnð−1Þl exp

�
i
Xn−1
m¼1

θZakm

�
χ

�
zaλþ: (D11)

So if the reflection phase is limited to ½−π; π� and from the
relation ϕn ¼ π − 2 arctanðςnÞ (here we shift ϕn back to be
inside ½−π; π�), then

sgn½ςn� ¼ sgnðϕnÞ ¼ ð−1Þnð−1Þl exp
�
i
Xn−1
m¼1

θZakm

�
χ:

(D12)

It is easy to show that Im½expðiqΛÞ − t11� is a monotonic
function inside the nth gap. As λþλ− ¼ 1, and the differ-
ence between λþ, λ− is Im½expðiqΛÞ − t11�; thus, λþ is a
monotonic function inside the nth gap. Combining
Eqs. (D9) and (D11), we that find ϕn is also a monotonic
function. As we already proved, the edge state must be an A
state or an S state. When A is present, r ¼ −1 and ϕ ¼ �π;
when S is present, r ¼ 1 and ϕ ¼ 0. With Eq. (D11) and the
reflection phase at the band edge, we further conclude that
ϕn is a monotonic increasing function of frequency. From
the relation ϕn ¼ π − 2 arctanðςnÞ, it is straight forward to
show that ςn is a monotonic decreasing function of

FIG. 6. The reflection phase of PC3 in vacuum inside the first
band gap. The parameters of PC3 are given by εb ¼ 3.5,
εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and db ¼ 0.65Λ. The solid blue
line and the solid red line are calculated with the transfer matrix
directly and for 5 and 10 unit cells of PC3, respectively. The open
black circle is calculated with the Eq. (D4). It is clear that, as the
unit number increase, the reflection phase converges to the one
calculated with the Eq. (D4).
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frequency from ∞ to 0 or from 0 to −∞ depending on the
sign of ςn.
In the main text, we argue that, once sgnς of the left

and right PCs are different inside the common band gap,
there must be an interface state; here, we give another
example. In Fig. 7(b), we choose the 2nd common band gap
in Fig. 4 as an example. The solid black, red, and blue lines
show the imaginary parts of relative impedances of PC3,
PC4, and the sum of those two, respectively, inside the 2nd
common band gap. The solid black and red lines are both
monotonic decreasing functions of frequency, and their
sum must also be a monotonic decreasing function of
frequency from positive to negative. Thus, there must exist
some frequency point at which the blue line crosses 0,
corresponding to an interface state, as shown in Fig. 7(a),
where resonant transmission is observed inside the
common band gap.

APPENDIX E: EXTENSION OF EQ. (4)

In this appendix, we show that Eq. (4) is still valid when
the relative permittivity and permeability are continuously
varying functions, and the lattice constants of the left and
right periodic systems do not need to be equal.
For an interface state to exist, we only need two over-

lapped gaps with different signs of ς ¼ Im½ZS=Z0� and we
do not care about the “origin” of the gap (e.g., gap number

or the lattice constants of PCs of the left or right periodic
system). In Fig. 8, we give an example to illustrate this
point. We consider a system consisting of 7 unit cells of
PC5 (εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.7Λ, and
db ¼ 1.3Λ) on the left and 14 unit cells of PC4 on the
right embedded in vacuum. The parameters of PC4 are the

Im
(Z

S
/Z

0)
(a)

(b)

|t
|

Frequency (ωΛ/2πc)

PC3
PC4
Sum

FIG. 7. (a) The transmission spectrum of the system composed
of 10 unit cells of PC3 on the left-hand side and 10 unit cells of
PC4 on the right-hand side in vacuum. The parameters of PC3 are
given by εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.35Λ, and
db ¼ 0.65Λ, and the parameters of PC4 are given by μb ¼ 6,
εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ, where Λ is the
unit length of PCs. (b) The imaginary part of relative surface
impedance (divided by the impedance of vacuum) of PC3 (solid
black line), PC4 (solid red line), and the sum of the two (solid
blue line) inside the common gap region. The green dashed lines
are for illustration only; the position where the blue line crosses 0
corresponds to an interface state between two PCs.
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FIG. 8. (a) The transmission spectrum of the system con-
structed with 7 unit cells of PC5 on the left-hand side and 14 unit
cells of PC4 on the right-hand side in vacuum. The parameters of
PC5 are given by εb ¼ 3.5, εa ¼ μa ¼ μb ¼ 1, da ¼ 0.7Λ, and
db ¼ 1.3Λ, which just doubles the length of PC3; the parameters
of PC4 are given by μb ¼ 6, εa ¼ μa ¼ εb ¼ 1, da ¼ 0.6Λ, and
db ¼ 0.4Λ. (b),(c) The band structure (solid black curve) of PC5
and PC4. In both (b) and (c), the magenta strip represents the gap
with ς > 0, while the cyan strip represents the gap with ς < 0,
and the Zak phase of each individual band is also labeled in (b)
and (c) in green.

π

ππ

0

qΛ/(2π) qΛ/(2π)|t |

F
re

qu
en

cy
 (

ω
Λ

/2
πc

)

(a) (b) (c)

FIG. 9. (a) The transmission spectrum of the system con-
structed with 20 unit cells of PC6 on the left-hand side and 10 unit
cells of PC7 on the right-hand side in vacuum, where the
parameters of PC6 are given by εr ¼ 12þ 6 sin½2πðz=Λþ
1=4Þ�, μr ¼ 1, and the parameters of PC7 are given by
εr ¼ 12þ 5 sin½2πðz=Λ− 1=4Þ� þ 5 sin½4πðz=Λþ 1=8Þ�, μr ¼ 1.
The boundary between PC6 and PC7 is now set at z ¼ 0. (b),
(c) The band structure (solid black line) of PC6 and PC7. In both
(b) and (c), the magenta strip represents the gap with ς > 0, while
the cyan strip represents the gap with ς < 0, and the Zak phase of
each individual band is also labeled in (b) and (c) in green.
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same as that in the main text; i.e., μb ¼ 6, εa ¼ μa ¼
εb ¼ 1, da ¼ 0.6Λ, and db ¼ 0.4Λ. Note here that we just
double the length of da and db of PC3, so that the lattice
constant of PC5 is twice that of PC4. According to the
scaling law, the Zak phase of each isolated band would not
change, as labeled in Figs. 8(b) and 8(c) in green. Using
Eq. (4), we get sgn½ς�, which is also labeled with magenta
(ς > 0) or cyan (ς < 0) in Figs. 8(b) and 8(c). Though now
the gap numbers of PCs from the left-hand and right-
hand sides of the common gap region are different, the rule
still applies, because whenever two gaps with different
color have common frequency region, there must be an
interface state.
Equation (4) also applies when the dielectric function

is a continuous function of z. In Fig. 9, we consider a
system that consists of 20 unit cells of PC6 (εr ¼
12þ 6 sin½2πðz=Λþ 1=4Þ�, μr ¼ 1) on the left-hand side
and 10 unit cells of PC7 [εr¼12þ5sin½2πðz=Λ−1=4Þ�þ
5sin½4πðz=Λþ1=8Þ�, μr ¼ 1] on the right-hand side
embedded in vacuum. The transmission spectrum of the
system is given in Fig. 9(a), where the boundary between
two PCs is set at z ¼ 0. The band structures (solid black
line) of PC6 and PC7 are given in Figs. 9(b) and 9(c),
respectively. We calculate the Zak phase of each band
numerically with Eq. (3) and label them in green, then
sgn½ς� of each gap is also shown in magenta (ς > 0) or cyan
(ς < 0) in Figs. 9(b) and 9(c). It is clear that Eq. (4) could
still predict the existence or absence of the interface state in
this case.
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