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A fundamental question in many-body physics is how closed quantum systems reach equilibrium.
We address this question experimentally and theoretically in an ultracold large-spin Fermi gas where
we find a complex interplay between internal and motional degrees of freedom. The fermions are initially
prepared far from equilibrium with only a few spin states occupied. The subsequent dynamics leading to
redistribution among all spin states is observed experimentally and simulated theoretically using a kinetic
Boltzmann equation with full spin coherence. The latter is derived microscopically and provides good
agreement with experimental data without any free parameters. We identify several collisional processes
that occur on different time scales. By varying density and magnetic field, we control the relaxation
dynamics and are able to continuously tune the character of a subset of spin states from an open to a closed
system.
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I. INTRODUCTION

The relaxation of closed quantum systems toward
equilibrium is a fundamental problem in many-body
physics. It is particularly challenging to fully understand
this macroscopic process on the basis of microscopic
properties [1–4]. Here, ultracold atomic quantum gases
provide an exceptional experimental platform due to the
nearly perfect isolation from their environment and the
excellent control on a microscopic level. In particular,
the possibility to prepare well-defined states far from
equilibrium, as well as widely tunable Hamiltonians, has
recently attracted a lot of attention; e.g., prethermalization
[5–7], relaxation in strongly interacting lattice systems
[8–12], and the interplay between thermal and condensate
fractions of multicomponent bosons have been studied [13].
Spinor quantum gases are of particular interest since the

spin offers an additional degree of freedom, giving rise to
complex dynamics involving different relaxation processes

on different time scales. Ultracold bosonic quantum gases
have been intensively studied and exhibit a rich variety of
effects such as texture formation and spin dynamics in
spinor Bose-Einstein condensates (BECs) [14–18], which
can be well described theoretically using a multicomponent
Gross-Pitaevskii equation [19–21]. Recently, collective
spin dynamics was also observed in a thermal Bose gas
[22]. Fermions, in contrast, are governed by Pauli blocking
and reveal a different behavior. So far, most experiments
studied spin-1=2 fermions, e.g., the BEC-BCS crossover
[23,24], thermodynamic and transport properties [25,26],
collective excitations [27,28], and magnetic ordering
[29–32]. Spin-related phenomena in multicomponent
Fermi gases (F > 1=2) have only recently been inves-
tigated, in the context of spin-mixing dynamics on indi-
vidual sites of an optical lattice [33] or collective coherent
excitations in a trapped system [34–36]. The latter has been
proven to be well described within a Boltzmann equation.
The question of how a large-spin fermionic many-body
system reaches an equilibrium state via relaxation involving
spin and spatial degrees of freedom has not been addressed.
In this paper, we study the relaxation dynamics of a

trapped fermionic quantum gas of 40K atoms with a large
spin of F ¼ 9=2. Starting from an initial mixture with only
a few spin states occupied, we observe a rich relaxation
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dynamics that leads to a redistribution of the atoms among
all available spin states. We study the intermediate regime
between the collisionless and the hydrodynamic limits. In
the collisionless limit, interactions are weak and can be
taken into account on a mean-field level, while the hydro-
dynamic limit is characterized by stronger interactions that
ensure local equilibrium. The dynamics in this intermediate
regime is governed by different processes on very different
time scales. We identify these processes by deriving a
Boltzmann equation from the microscopic Hamiltonian of
the large-spin system. This approach describes the time
evolution of the system on the level of single particles in
contact with the bath of the many-body system [37,38],
which corresponds to the intuitive expectation that the
system acts as a bath for its own subsystems.
We present a detailed comparison between numerical

simulations and experimental data and find good agree-
ment. Our analysis includes the dependence of the relax-
ation on density as well as on magnetic field. Whereas a
higher density enhances the spin relaxation, we find a
suppression of spin-changing processes at large magnetic
fields due to the quadratic Zeeman shift. The latter effect
can be used to control the loss of particles from the
subsystem defined by the initially occupied spin compo-
nents into the initially empty spin states. Generally, we
observe that the relaxation within a subset of spin states,
driven by incoherent spin-conserving collisions, happens
on a much faster time scale than the redistribution among
the spin components due to spin-changing incoherent
collisions. The reason is that the spin-changing collisions
are driven by the relatively small part of the interactions that
breaks the SUð10Þ symmetry between the spin states. Thus,
we encounter a situation similar to prethermalization [7],
where first a prethermal state is reached, approximately
conserving the initial occupations of the single spin states,
before the redistribution among all spin states due to slight

symmetry breaking sets in. This separation of time scales
also allows us to monitor the increase of (effective)
temperature within the subsystem of the initially populated
spin states, as it is caused by dissipation into empty spin
states.

II. RELAXATION PROCESSES IN A
LARGE-SPIN SYSTEM

We perform measurements in a quantum degenerate gas
of fermionic 40K, which has total spin of F ¼ 9=2 in its
hyperfine ground state, yielding ten spin states
m ¼ −9=2;…;þ9=2, as depicted in Fig. 1(a). We prepare
an atomic sample with two spin states occupied (see
Appendix A 1 for details), confined in a spin-independent
dipole trap. Because of the broken SUðNÞ symmetry in 40K
resulting from spin-dependent scattering lengths, spin-
changing collisions can occur. A microscopic collision
process is depicted in Fig. 1(b): Two particles collide
and exchange both spin m and momentum k:
ðjm1; k1i þ jm2; k2i → jm0

1; k
0
1i þ jm0

2; k
0
2iÞ. The total spin

S, the total magnetization M ¼ m1 þm2, as well as the
total momentum k1 þ k2 have to be conserved in this
process. As a particular fermionic feature, the Pauli
exclusion principle has to be obeyed, i.e., m1 ≠ m2 and
m0

1 ≠ m0
2. The interplay between the differential quadratic

Zeeman energy ∝ m2
1 þm2

2 −m02
1 −m02

2 and the interaction
energy determines whether spin-changing collisions are
likely or suppressed. In the presence of spin-changing
collisions, the atoms will, in general, relax into a steady
state with a population in all ten spin states. Hence,
preparation of an initial nonequilibrium state with only a
few spin states populated will lead to complex dynamics, in
which more and more spin states are gradually occupied
[see Fig. 1(c)]. How the system relaxes toward a steady
state is a compelling question.

( )

FIG. 1. Schematic description of the relaxation process in a large-spin Fermi gas involving spin and spatial degrees of freedom. (a) The
ten spin states of 40K. (b) A typical spin-changing collision in the center-of-mass frame and another collision forbidden by the Pauli
exclusion principle. (c) Top: Initially, all atoms are prepared in a binary spin mixture m ¼ �1=2. Spin-changing collisions distribute
atoms among all other spin states until an approximately balanced population is reached. The Fermi energies for each two-component
subsystem are lower than the initial Fermi energy. Bottom: Time evolution of the spatial density for each spin component.
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In Fig. 2, we show exemplarily an experimentally
obtained time evolution of the spin occupations in our
system. Here, the initial spin configuration is a super-
position of all ten spin states created by rotating a mixture
of the statesm ¼ �1=2 using rf pulses [36]. We can clearly
identify three different processes occurring on three differ-
ent time scales: (i) We observe coherent spin-changing
oscillations with a periodicity on the order of a hundred
milliseconds. (ii) These oscillations are damped with a rate
on the order of several hundreds of milliseconds. (iii) We
also observe a slow redistribution among the ten spin states
on a much longer time scale on the order of tens of seconds.
In the following, we derive a Boltzmann equation that

reproduces the experimentally observed effects and enables
us to distinguish which scattering processes are responsible
for each effect. We show that the coherent oscillations
(i) are a mean-field effect driven by forward scattering,
where fk1; k2g ¼ fk01; k02g. Their damping (ii) is dominated
by spin-conserving nonforward collisions fk1; k2g ≠
fk01; k02g and fm1; m2g ¼ fm0

1; m
0
2g that lead to a momen-

tum redistribution within the Fermi sea without changing
the spin configuration. The long-term redistribution (iii) is
governed by nonforward spin-changing collisions that
change the momentum distribution within the Fermi sea
as well as the spin configuration fk1; k2g ≠ fk01; k02g
and fm1; m2g ≠ fm0

1; m
0
2g.

The above-mentioned Boltzmann equation includes
all these collision processes and captures the nonequili-
brium dynamics in a general fashion, applicable to
trapped weakly interacting gases with arbitrary spin. In

this approach, the single-particle dynamics is treated as
an open system in contact with the environment repre-
sented by all the other particles. An approach for deriving
a Boltzmann equation was applied successfully to the
description of spin dynamics in liquid hydrogen and
helium [39–45] and later in spin-1=2 Fermi gases [46,47].
In this paper, we generalize this approach to one- and
three-dimensional systems with large spin, accounting for
the quadratic Zeeman effect (QZE). In general, a kinetic
equation or Boltzmann equation is used to describe the
time evolution of the single-particle density matrix ρ̂. It
has the form

d
dt

ρ̂ −
1

iℏ
½ρ̂; Ĥ0� ¼ Icoll½ρ̂�: (1)

Here, Ĥ0 denotes the single-particle Hamiltonian

Ĥ0 ¼
p̂2

2M
þ 1

2
Mω2x̂2 þQŜ2z ; (2)

which contains the kinetic energy, the harmonic trapping
potential, and the quadratic Zeeman splitting Q induced
by a homogeneous magnetic field. The term Icoll½ρ̂� on
the right-hand side of Eq. (1) is called the collision
term and is derived from two-particle contact interac-
tion. Because of total spin conservation, collisions are
best described in the basis of total spin jS;Mi ¼P

m1;m2
jm1; m2ihm1m2jSMi with the short notation

for Clebsch-Gordan coefficients hm1m2jSMi≡
hF;m1;F;m2jS;Mi that we use throughout this paper.
In general, scattering in each channel of total spin S
depends on a different s-wave scattering length aS.
Because of antisymmetrization of the total wave function,
s-wave scattering with odd S is forbidden. Thus, for 40K,
there are five different scattering lengths present for
S ¼ 0, 2, 4, 6, 8 [33]. In each collision channel defined
by jS;Mi, particles interact with a contact interaction of
strength g3DS ¼ ð4πℏ2=MÞaS, which is used in all 3D
calculations. We also consider a 1D system, in which the
motion in two transversal directions is frozen out
completely by a tight trapping potential (characterized
by radial frequencies ωx;y) such that the effective
1D contact-interaction parameter is given by g1DS ¼
2ℏ ffiffiffiffiffiffiffiffiffiffiffi

ωyωz
p aS (see Appendix A 1 for details). The notation

gS ≡ g1DS for this quantity is used throughout this paper.
In 40K, the aS range from 120 to 170 Bohr radii.
We obtain an explicit expression for the collision term in

Eq. (1) using the method originally developed by Lhuillier
and Laloë [43,44,46] for transport properties in helium. In
this approach, collisions are treated as single “atomic
beam” experiments, where the colliding particles are
assumed to be uncorrelated before and after a collision,
reminiscent of Boltzmann’s original molecular chaos
hypothesis, but the scattering process itself is treated on
a full quantum level. This approximation is valid for dilute

FIG. 2. (a) Measurement of damped spin oscillations and
(b) subsequent relaxation toward equilibrium, observed in a
3D fermionic quantum gas with large spin. Depicted is the time
evolution of the relative populations of all spin components �m,
starting from an initial superposition of all ten spin states. For the
exact experimental configuration, see Appendix A 1. Solid lines
are guides to the eye. Note the three time scales of (i) the spin
oscillations, (ii) their damping, and (iii) the subsequent relaxation
of the total system. The redistribution among all spin states occurs
on a time scale of 10 s. The magnetic field is B ¼ 0.17 G, particle
number N ¼ 4.9 × 105, and temperature T=TF ¼ 0.22.
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gases where the mean time between collisions is long and
the particle number is large. In this regime, binary colli-
sions can be described by the T-matrix, which connects the
two-body density matrices before and after a collision.
Subsequently, the description is reduced to a single-
particle level by tracing out the second particle, similar
to tracing out a thermal bath in studies of collisional
decoherence [37,38].
We calculate the kinetic equation (1) in its phase-space

representation, where the single-particle density matrix
ρmnðx; x0Þ is expressed by the Wigner function

Wmnðx; pÞ ¼
Z

dy
2πℏ

eipy=ℏρmn

�
xþ y

2
; x −

y
2

�
: (3)

Note that we perform the transformation only with respect
to the spatial degrees of freedom. With respect to spin,
denoted by the indices, it retains the form of a single-
particle density matrix. The derivation is carried out in
detail in Sec. IV and involves a semiclassical gradient
expansion of the Wigner function in position and momen-
tum space, leading to an equation in matrix form given by

d
dt

Wðx; pÞ þ ∂0Wðx; pÞ þ i
ℏ
½QS2z þ VMFðxÞ;Wðx; pÞ�

−
1

2
f∂xVMFðxÞ; ∂pWðx; pÞg ¼ Icollðx; pÞ; (4)

where the collision integral reads

Icollmn ðx;pÞ¼−
M
ℏ2

X
abl

�Z
q2>ϵ1

dq
~Umalbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2þΔmlab

p Wanðx;pÞWblðx;p−qÞþ
Z
q2>ϵ2

dq
~Unalbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2þΔnlab

p Wmaðx;pÞWlbðx;p−qÞ
�

þM
ℏ2

X
abcdl

Z
q2>ϵ3

dq
UmalbUncldffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þΔmnlabcd

p Wac

�
x;p−

1

2
ðq−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þΔmnlabcd

q
Þ
�
Wbd

�
x;p−

1

2
ðqþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þΔmnlabcd

q
Þ
�
:

(5)

Here, we define the coupling constants

Uacbd ¼
X
S;M

gShabjSMihSMjcdi; (6)

~Uacbd ¼
X
S;M

g2ShabjSMihSMjcdi (7)

and denote energy shifts induced by the quadratic Zeeman
splitting asΔabcd¼4MQða2þb2−c2−d2Þ andΔmnlabcd¼
2MQðm2þn2þ2l2−a2−b2−c2−d2Þ. The infrared
cutoffs are given by ϵ1 ¼ ðMUmalb=ℏÞ − Δmlab, ϵ2 ¼
ðMUnalb=ℏÞ − Δnlab, and ϵ3 ¼ MUnalb=2ℏðUmalbþ
UncldÞ − Δmnlabcd.
Equation (4) contains several terms, each describing a

different dynamical process. The free particle motion in the
trap is described by ∂0 ¼ p=M∂x −Mω2

xx∂p. The leading
interaction term appears in the commutator ½·; ·�. The
commutator drives coherent spin dynamics through the
interplay of the quadratic Zeeman effect and a spin-
dependent mean-field potential resulting from forward
scattering:

VMF
mn ðxÞ ¼ 2

X
ab

UmnabNabðxÞ; (8)

a function of the densityNðxÞ ¼ R
dpWðx; pÞ. In our large-

spin system, described by several scattering lengths aS, it is
helpful to decompose the mean-field potential [Eq. (8)] into
two contributions. The first contribution is symmetric with
respect to all N spin states and proportional to the mean

scattering length. It conserves the occupations of the
different spin components. The second term contains that
part of the interactions that breaks the SUðNÞ symmetry
between the spin states and describes spin-changing proc-
esses. It depends on differences of scattering lengths only
and is, thus, typically much smaller than the symmetric
term. The commutator in Eq. (4) vanishes unless the
Wigner function possesses off-diagonal elements indicating
spin coherence. Moreover, the symmetric spin-conserving
mean-field interactions can only contribute if the Wigner
function describes an inhomogeneous spin state.
The mean-field potential also appears in the anticom-

mutator f·; ·g. This term results from the subleading order
of the semiclassical gradient expansion (where the spin-
independent trapping potential also appears) and it is
generally smaller than the commutator. It describes spin-
dependent forces that modify the kinetics in the trap.
The collision integral [Eq. (5)] describes effects beyond

the mean field that result from nonforward scattering and
generates a dynamics that appears incoherent on the level of
a single-particle description. It is quadratic in the scattering
lengths. Again, we have to distinguish between SUðNÞ-
symmetric spin-conserving collision processes on the one
hand and spin-changing collisions on the other. The latter
processes are described by those terms for which the
quadratic Zeeman shifts Δ are nonzero and they are much
smaller than the former, since they depend only on the
relatively small differences between the scattering lengths.
The 1D equation (4) allows for a numerical treatment

with standard methods. An exemplary result is depicted in
Fig. 3 and shows the relaxation dynamics starting from the
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same initial superposition as in Fig. 2, but in a 1D setup.
The comparisonof the two figures allowsus to assign eachof
the three different processes visible to one of the terms in the
Boltzmann equation: (i) The coherent oscillations are driven
by the commutator inEq. (4),which is linear in differences of
scattering lengths and describes forward collisions. (ii) The
damping of coherent phenomena arises from the spin-
conserving part of the collision integral [Eq. (5)], which is
quadratic in the scattering lengths. We have checked that
spatial dephasing is not responsible, as it is suppressedby the
dynamically induced long-range nature of mean-field inter-
actions induced by the rapid particle motion in the trap
[36,48]. (iii) The long-term relaxation originates from
the spin-changing nonforward collisions in the collision
term, quadratic in differences of scattering lengths. Spin-
conserving forward scattering does not play a role in the
dynamics; it onlyhasanoticeableeffect if spatial symmetry is
broken by a magnetic field gradient, as in studies of spin
waves [28,35,46], which is not the case in our setup. The
anticommutator in Eq. (4) leads to a mean-field-driven
correction to the trapping potential that is, however, negli-
gible in the experiments considered here.
The collision integral [Eq. (5)] enables us to determine

whether our system is in the collisionless, hydrodynamic, or
intermediate regime. The average collision time in the 3D
setup is τ3D ∼ ð4πa2npvÞ−1, with the relevant scattering
length a, peak density np and velocity v ¼ maxðvT; vFÞ,
wherevT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=M
p

denotes the thermalvelocityandvF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EF=M

p
the Fermi velocity. It ranges from approximately

10 to 50ms for spin-conserving collisions and approximately
1 to 5 s in the spin-changing case. Compared to the average

trapping frequency of ω̄ ¼ ðωxωyωzÞ1=3 ≈ 2π × 58 Hz,
we obtain values for ω̄τ3D between 3.5 and 17 for the
spin-conserving collisions and between 350 and 1700
in the spin-changing case. The lowest and highest values
of ω̄τ3D are reached for the lowest and highest densities
shown in Fig. 5, respectively. Hence, we may approach the
hydrodynamic regime, where the collision rate is larger
than ω̄ and local equilibrium can be established. On the
other hand, our systembecomes almost collisionless regard-
ing the spin-changing collisions. Generally, we are in an
intermediate regime. In the 1D case, collision times τ1D ∼
ðnpωyωza2=vÞ−1 are on the order of 1 and 110 ms, respec-
tively, meaning that ωτ1D ∼ 0.6 and ωτ1D ∼ 60, concerning
spin-conserving and spin-changing collisions, respectively.
Hence, with respect to the former, the system would be
hydrodynamic. However, it is still in an intermediate regime
regarding the redistributionofparticlesamong thespinstates
driven by spin-changing collisions.

III. DISSIPATIVE REDISTRIBUTION
OF SPIN OCCUPATIONS

In the following,we focuson the long-termspin relaxation
shown in Figs. 2(b) and 3, while recent experiments have
studied spin oscillations and their damping [36]. In order to
restrict the dynamics to this process, we initially prepare a
spin mixture consisting of only the spin states m ¼ �1=2
without coherences. In this case, the coherent oscillations
drivenby thecommutator inEq. (4)areabsentand theWigner
functionWmn remains diagonal at all times. In the following,
we investigate theoretically and experimentally this spin-
relaxation dynamics in 3Daswell as 1D systems. For a direct
comparison between theory and experiment, we realize a 1D
system employing a deep 2D optical lattice, which confines
the atoms into tight elongated tubes [8,49], as described in
Appendix A 1. As shown in Fig. 4(a), the system gradually
occupies all spin states and evolves toward a state of almost
equal spin populations on a time scale of milliseconds. As a
key result, we can well reproduce the experimentally
observed dynamics using the full 1D Boltzmann equation
without free parameters.
For harmonically trapped 3D systems, where all trap

frequencies are about equal, we derive the full 3D version
of Eq. (4) as well [see Eq. (28) in Sec. IV]. However,
numerical simulations of this equation are too demanding
numerically. Nevertheless, the trap-induced motion of the
particles is considerably faster than mean-field or relaxation
dynamics, which averages the spatial dependence of the
interaction via dynamically created long-range interactions.
The Wigner function then approximately separates into a
product Wmnðx; p; tÞ ≈MmnðtÞ · f0ðx; pÞ [22,36,48].
The spatial part is assumed to be time independent and
given by the initial equilibrium distribution f0ðx; pÞ ¼
½expð 1

kBT
½ p2
2M þ 1

2
Mðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ − μ�Þ þ 1�−1. We
substitute this expression into the 3D kinetic equation (28)
with the appropriate collision term. Hence, for negligible
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FIG. 3. Numerical simulation of coherent oscillations,
damping, and relaxation in the 1D case. The initial spin
configuration is the same as in Fig. 2. The axial trapping
frequency is ωx ¼ 2π × 84 Hz, and radial frequencies are
ωy;z ¼ 2π × 47 kHz, particle number N ¼ 100 per tube at
temperature T=TF ¼ 0.2, and magnetic field B ¼ 1.5 G. As in
Fig. 2, we observe three time scales related to oscillations,
damping, and relaxation.

RELAXATION DYNAMICS OF AN ISOLATED LARGE-SPIN … PHYS. REV. X 4, 021011 (2014)

021011-5



magnetic fields, we find an equation for the matrix MmnðtÞ
given by

d
dt

Mmn ¼ −λ
X
abcd

Tabcd
mn MacMbd; (9)

where

Tabcd
mn ¼ M

4πℏ4

�
~U0
mabdδnc þ ~U0

ncbdδma −
X
l

U0
malbU

0
ncld

�

and

λ ¼ 1

N

Z
dr

Z
dp

Z
dqjqjf0ðr; pÞf0ðr; p − qÞ: (10)

The 3D coupling constants are given by

U0
acbd ¼

4πℏ2

M

X
S;M

aShabjSMihSMjcdi (11)

and

~U0
acbd ¼

16π2ℏ4

M2

X
S;M

a2ShabjSMihSMjcdi: (12)

Note that in the 1D case, the single-mode approxi-
mation has a similar form given by Tabcd

mn ¼
M
ℏ2 ð ~Umabdδnc þ ~Uncbdδma −

P
lUmalbUncldÞ.

For both single-mode approximations, the quadratic
Zeeman shift has been neglected in the above equations,
which are thus valid for small magnetic fields only (see
Appendix G for full equations). In Fig. 4, we compare
results from a single-mode approximation with experi-
ments in a harmonically trapped Fermi gas yielding a
surprisingly good agreement without free parameters. Note
the qualitatively comparable behavior on different time
scales of milliseconds for 1D and seconds for 3D. On the
contrary, the damping of the coherent spin oscillations
visible in Figs. 2(a) and 3 is not described by this approach.
The latter results from the assumption for the single-mode
approximation that it completely neglects the multimode
character of the fermionic many-body system and thus
cannot account for spatial redistribution via lateral scatter-
ing events.
The high degree of control over all crucial parameters

allows for a detailed investigation of the spin redistrib-
ution. To obtain further insight into the relaxation
mechanisms, we measure the relaxation dynamics (as
exemplarily shown in Fig. 4) for different densities while
keeping T=TF constant. With higher density, the collision
rate increases and the relaxation process accelerates, as
shown in Fig. 5. The measured rates correspond to the
redistribution of the initially populated components m ¼
�1=2 into m ¼ �3=2, �5=2 and are well reproduced
using the single-mode approximation [Eq. (9)]. The rate
of spin-changing collisions increases with increasing
density, in accordance with the density dependence of
the integral λ [Eq. (10)].
As a second important parameter of the system, we

investigate the influence of the magnetic field on the
relaxation process. As the Zeeman energy of an atom pair
changes during a spin-changing collision, a strong
magnetic field suppresses this process by increasing
the energy difference between the initial and final spin
configurations. In Fig. 6(a), we depict the experimentally
obtained populations of the spin components after 2 s
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FIG. 4. Comparison of spin relaxation for 1D and 3D. The
initial spin configuration is a mixture of m ¼ �1=2. (a) Exper-
imental data in a 1D geometry (circles) compared to numerical
results (lines) from the 1D Boltzmann equation (4) and (dots)
from a 1D version of the single-mode approximation [Eq. (9)].
The axial trapping frequency is ωx ¼ 2π × 84 Hz, and radial
frequencies are ωy;z ¼ 2π × 47 kHz, particle number N ¼ 100
per tube at temperature T=TF ¼ 0.2, and magnetic field
B ¼ 0.12 G. Inset: The system approaches a steady state for
longer times. (b) Experimental data (circles) in a 3D configura-
tion compared to calculations (lines) in the single-mode approxi-
mation [Eq. (9)] ~ω ¼ 2π × ð33; 33; 137Þ Hz, N ¼ 1.3 × 105, and
T=TF ¼ 0.15 at B ¼ 0.34 G.
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as a function of the magnetic field strength (see
Appendix A 2 for details) and compare them to single-
mode [Fig. 6(a)] and 1D calculations [Fig. 6(b)] after
2 ms. In both cases, the general behavior is very similar
and shows a suppression of spin-changing collisions for
large magnetic fields. Spin configurations with high
values of jmj are energetically significantly separated
from the initially populated m ¼ �1=2 and are only
occupied at very low field strengths. By changing
the magnetic field, we can thus tune the magnitude of
spin-changing collisions relative to the unaffected spin-
conserving collisions up to a complete suppression.
Hence, one can regard the m ¼ �1=2 subsystem as a
dissipative two-component Fermi gas with a tunable loss
mechanism.
We have further investigated the time evolution of the

temperature of this subsystem exposed to losses induced by
these spin- and momentum-changing collisions. We com-
pare two experiments: On the one hand, we perform an
experiment at a high magnetic field (B ¼ 7.6 G), where
spin-changing collisions are suppressed. On the other hand,
we perform a second experiment at a low magnetic field
(B ¼ 0.12 G) with strong spin relaxation.
In both cases, the system is in the hydrodynamic limit

with respect to external degrees of freedom due to the
comparatively large spin-conserving interactions. Hence,
we make the assumption that at each time, the subsystems
are close to an intermediate equilibrium state with a well-
defined temperature. On the other hand, spin-changing
collisions are at least 2 orders of magnitude weaker and
very slowly change the particle number in each subsystem.
This situation is reminiscent of prethermalization: First, a
“prethermal” state is reached under the assumption of

conserved quantities that on a much longer time scale
are actually not fully conserved due to a “slightly broken”
symmetry, leading eventually to full thermalization [7].
Here, the role of the nearly conserved quantities is played
by the occupation numbers of the ten spin states, which
change only on a very long time scale. We measure the time
evolution of the temperature of the initially populated m ¼
�1=2 components and compare the temperatures for both
cases described above. For large magnetic fields, we
observe a small heating rate, which we mainly attribute
to inelastic photon scattering. However, at low magnetic
fields, the heating rate is significantly increased. In
Fig. 7(a), we plot the temperature difference to extract
the heating contributions solely generated by spin-changing
collisions. This additional increase in temperature is due to
hole creation in the Fermi sea [50] by scattering into the
unoccupied spin states. We initially prepare a very cold
two-component Fermi sea, with only a few unoccupied
trap levels below the Fermi energy. Losses through
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FIG. 5. Density dependence of the spin-relaxation rate in 3D,
with an initial mixture of atoms inm ¼ �1=2. The spin-changing
rate is obtained by fitting the solution of coupled rate equations to
experimental (points) and theoretical (lines) data. Theoretical
values are obtained using the single-mode approximation Eq. (9).
The magnetic field is B ¼ 0.11 G. We experimentally tune the
density by changing the particle number, keeping the temperature
constant at T=TF ¼ 0.26.

FIG. 6. Dependence of spin relaxation on magnetic field.
(a) Experimental data, obtained from a 3D experiment (circles)
and theoretical results from a single-mode approach (lines). Spin
populations are measured after 2 s. (b) Spin populations after
2 ms, as obtained from full 1D simulations. The inset sketches
how the interplay of the differential QZE and Fermi energy
determines the probabilities for lateral spin-changing collisions.
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spin-changing collisions “perforate” this Fermi sea with
holes, such that the experimentally obtained temperature
increases. Numerical simulations using the Boltzmann
equation (4) confirm the experimentally observed heating
induced by redistribution [see Fig. 7(b)].

IV. MICROSCOPIC DERIVATION OF A
LARGE-SPIN BOLTZMANN EQUATION

In this section, we describe the derivation of the 1D
Boltzmann equation (4) in more detail. The reader not
immediately interested in the details may skip this section
and proceed directly to the conclusions. We follow previous
work on the theoretical description of spin-polarized
systems of H or He [43], called the Lhuillier-Laloë trans-
port equation. We extend it to describe a 1D system with
large spin, several scattering channels, and a quadratic
Zeeman effect. We consider this approach to be suitable for

our purpose for a couple of reasons. The entire equation is
derived from a microscopic collisional approach, so the
collision term is not based on phenomenological assump-
tions. We avoid the use of a relaxation-time approximation,
widely used to describe damping in bosonic and fermionic
systems [51–53], where the collision term is approximated
by Icoll½W� ¼ ðWeq −WÞ=τ, with a relaxation time τ. The
reason is that for a multicomponent system, determining
the equilibrium state Weq is very challenging. Also, due to
the interplay of many different scattering lengths, we
expect not one but many different relaxation times for
each spin component. Our approach allows us to better
understand the relaxation process itself, rather than merely
its effect on other processes. Furthermore, from a technical
point of view, our approach remains quadratic in the
Wigner function, so it can be numerically simulated using
the same standard techniques as the collisionless case
[28,47,48].
The idea behind the approach of Lhuillier and Laloë is to

interpret the collision integral as the change rate of the state
of a single particle ρ̂ → ρ̂0 due to binary collisions

Icoll ¼
ρ̂0 − ρ̂

Δt
: (13)

Here, Δt is the elapsed time interval, which is short
compared to any relevant macroscopic dynamics of the
system but nevertheless is longer than the duration of a
single collision, which is thus considered to be effectively
instantaneous. This quantity will drop out and not appear in
the final kinetic equation. Therefore, we treat collisions in
the asymptotic limit, where they are described by the
Heisenberg S-matrix. It relates the two-body density matrix
of both scattering particles before a collision ρ̂ð1; 2Þ with
the one after a collision ρ̂ð1; 2Þ0. Here, (1,2) label the
quantum numbers of particles 1 and 2 in first quantization.
We obtain

ρ̂ð1; 2Þ0 ¼ Ŝ ρ̂ð1; 2ÞŜ†: (14)

In order to arrive at a single-particle description, we trace
out particle 2 later. We next assume that particles involved
in a collision are uncorrelated ρ̂ð1; 2Þ ¼ ρ̂ð1Þ ⊗ ρ̂ð2Þ, both
before and after the collision, an assumption justified for a
system with a large number of particles. This assumption,
in fact, corresponds to Boltzmann’s original molecular
chaos hypothesis (Stosszahlansatz). For the desired single-
particle density matrices before and after a collision, we
obtain

ρ̂ð1Þ ¼ 1

2
Tr2fð1 − PexÞρ̂ð1Þ ⊗ ρ̂ð2Þð1 − PexÞg; (15)

ρ̂0ð1Þ ¼ 1

2
Tr2fð1 − PexÞŜ ρ̂ð1Þ ⊗ ρ̂ð2ÞŜ†ð1 − PexÞg;

(16)
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FIG. 7. Temperature increase due to spin redistribution.
(a) Time evolution of the temperature difference between a
closed (high magnetic field at B ¼ 7.6 G) and a maximally open
system (low magnetic field at B ¼ 0.12 G). The shaded area
serves as a guide to the eye. The particle number is N ¼ 3.9 ×
105 at an initial temperature T ¼ 0.24TF ¼ 65 nK. (b) Results
from a simulation of the 1D equation (4) at magnetic fields B ¼
0.1 G and B ¼ 8 G. The method used to obtain the temperature is
discussed in Appendix H.
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where we account for the indistinguishability of particles,
with the operator Pex exchanging the quantum numbers of
particles 1 and 2. Because of fermionic statistics, it comes
with a minus sign. This ansatz yields the following
expression for the collision integral:

Îcoll ≈
1

Δt
Tr2

�
1 − Pexffiffiffi

2
p ½Ŝ ρ̂ð1Þ ⊗ ρ̂ð2ÞŜ†

− ρ̂ð1Þ ⊗ ρ̂ð2Þ� 1 − Pexffiffiffi
2

p
�
: (17)

The S-matrix is related to the T-matrix via Ŝ ¼ 1 − 2πiT̂
such that Eq. (17) becomes

Îcoll ≈
2π

Δt
Tr2

�
1 − Pexffiffiffi

2
p ½iT̂ ρ̂ð1Þ ⊗ ρ̂ð2Þ − iρ̂ð1Þ ⊗ ρ̂ð2ÞT̂ †

þ 2πT̂ ρ̂ð1Þ ⊗ ρ̂ð2ÞT̂ †� 1 − Pexffiffiffi
2

p
�
: (18)

This expression then has to be evaluated in the phase-space
representation. Before performing the trace operation, we
compute the two-body Wigner transform of the expression
in braces in Eq. (18), which we demonstrate in detail in
Appendix B, as well as the subsequent trace, shown in
Appendix C. In the course of these calculations, we require
the elements of the S-matrix. In the center-of-mass system,
they are given by

h1∶ k; a; 2∶ −k; bjT̂ j1∶ k0; c; 2∶ − k0; di
¼ −2πiδðϵk − ϵk0 þQabcdÞ

× h1∶ a; 2∶ bjT̂ðk; k0Þj1∶ c; 2∶ di; (19)

where k, k0 denote the incoming and outgoing wave vectors
of the particles and m, n; m0, n0 denote the incoming and
outgoing spins, respectively. The delta function assures
energy conservation, ϵk ¼ ℏ2k2=2μ denotes kinetic energy
with reduced mass μ ¼ M=2, and Qabcd ≡Qða2 þ b2 −
c2 − d2Þ denotes the shift in the quadratic Zeeman energy
induced by a spin-changing collision. The on-shell
T-matrix T̂ðk; k0Þ depends formally on the relative wave
vectors k, k0, but for our case of s-wave scattering, the
dependence is only on the modulus. As they are related by
energy conservation jk0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þQabcd

p
, the dependence

is effectively only on k or k0. The QZE shift vanishes for
spin-conserving collisions; hence, it is absent in the spin-
1=2 case and has the effect that scattering processes with a
large Qabcd are suppressed because the T-matrix decays
approximately 1=jk0j for large jk0j. For 40K, the splitting is
given by the quadratic part of the Breit-Rabi formula [54]
Q ¼ −ð2μ2BðgJ − gIÞ2B2Þ=93aHFS, with the Bohr magneton
μB, nuclear and electronic g factors gI and gJ, and hyperfine
structure coefficient aHFS [55].

To account for the spin-dependent interactions, we
separate the T-matrix into channels of total spin S and
magnetization M and obtain elements

h1∶ a; 2∶ bjT̂ðk; k0Þj1∶ c; 2∶ di≡ Tabcdðk; k0Þ
¼

X
SM

TSðk; k0ÞhabjSMihSMjcdi: (20)

For a 1D system, the expression for a T-matrix in the
channel with a coupling constant gS is

TSðk; k0Þ ¼
1

2π

ik0 2ℏ
2

M

1 − ik0 2ℏ
2

MgS

: (21)

In each scattering channel, we perform a low-energy
expansion in the coupling constant gS → 0 up to second
order, to maintain the unitarity of the S-matrix. Since for the
1D case, the expansion in powers of gS is accompanied
by factors of ðk0Þ−1, we artificially create a singularity
in the imaginary part of the T-matrix in this procedure. We
remedy this problem by choosing a cutoff jk0j < MgS=2ℏ2,
which is the distance between 0 and the maximum of
the imaginary part of the T-matrix (see Appendix D for
more details). This step is unnecessary in the 3D case
discussed by Lhuillier and Laloë [43,44,46]. The result is
then given by

TSðk; k0Þ ≈
gS
2π

−

8>><
>>:

0 if jk0j < MgS
2ℏ2

iMg2S
4πℏ2k0

þ � � � if jk0j ≥ MgS
2ℏ2

(22)

or, respectively,

Tabcdðk; k0Þ≈
Uacbd

2π
−

8>><
>>:

0 if jk0j <MUacbd

2ℏ2

iM ~Uacbd

4πℏ2k0
þ � � � if jk0j ≥MUacbd

2ℏ2
:

(23)

The leading terms linear in gS correspond to forward
scattering, the quadratic terms to backward (lateral in
higher dimensions) scattering processes.
The expansion of the T-matrix is performed in addition

to a semiclassical gradient expansion of the Wigner
function (see Appendix E for details) to first order in the
linear terms and to zero order in the quadratic expressions.
During this procedure, we encounter squares of delta
functions whose interpretation is described in
Appendix F. Finally, we obtain a collisional integral,
consisting of three parts
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Icollmn ðx; pÞ ¼ IMF
mn ðx; pÞ þ ITmnðx; pÞ þ IT

2

mnðx; pÞ; (24)

where IMF is linear in aS and contains the forward-
scattering part of collisions leading to phase shifts

IMF
mn ðx;pÞ ¼ −

i
ℏ

X
l

½VMF
nl ðxÞWmlðx;pÞ−Wlmðx;pÞVMF

ln ðxÞ�

þ 1

2

X
l

f∂xVMF
nl ðxÞ∂pWmlðx;pÞ

þ ∂pWlmðx;pÞ∂xVMF
ln ðxÞg: (25)

It coincides with the interaction term obtained from the
treatment of the same problem on a simpler mean-field
level [28,48]. Because of its effect as a nonlinear
modification of the trap and magnetic field, in
Eq. (4), we have separated this term from the collisional
integral and added it to the free motion of the par-
ticles in the external fields. The quadratic terms that
form Eq. (5) contain backward scattering, including
momentum exchange between particles. They appear
as dissipation on the single-particle level and are
given by

ITmnðx;pÞ ¼ −
M
ℏ2

X
abl

�Z
q2>ϵ1

dq
~Umalbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þΔmlab

p Wanðx; pÞWblðx;p− qÞ þ
Z
q2>ϵ2

dq
~Unalbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þΔnlab

p Wmaðx; pÞWlbðx;p− qÞ
�
;

(26)

IT
2

mnðx;pÞ ¼
M
ℏ2

X
abcdl

Z
q2>ϵ3

dq
UmalbUncldffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þΔmnlabcd

p Wac

�
x;p−

1

2
ðq−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þΔmnlabcd

q
Þ
�
Wbd

�
x;p−

1

2
ðqþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þΔmnlabcd

q
Þ
�
:

(27)

The integration domain cutoffs around q ¼ 0, coming from Eq. (23), are given by ϵ1 ¼ ðMUmalb=ℏÞ − Δmlab,
ϵ2 ¼ ðMUnalb=ℏÞ − Δnlab, and ϵ3 ¼ MUnalb=2ℏðUmalb þUncldÞ − Δmnlabcd. The corresponding result for a full 3D
calculation (see Ref. [46] for the case of spin 1=2) reads

d
dt
Wmnðr;pÞ þ

�
p
M

·∇r −Mðω2
xx;ω2

yy;ω2
zzÞ ·∇p þ

iQ
ℏ
ðn2 −m2Þ

�
Wmnðr;pÞ þ

i
ℏ

X
l

½VMF
nl ðrÞWmlðr;pÞ−Wlmðr;pÞVMF

ln ðrÞ�

−
1

2

X
l

f∇rVMF
nl ðrÞ ·∇pWmlðr;pÞ þ∇pWlmðr;pÞ ·∇rVMF

ln ðrÞg ¼ Icollmn ðr;pÞ: (28)

The mean-field potential is given by VMF
mn ðrÞ ¼ 2

R
dp

P
abU

0
mnabWabðr; pÞ, and the collision term reads

Icollmn ðr; pÞ ¼ −
M

4πℏ4

Z
dq

�X
abc

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δmcab

q
~U0
macbWanðr; pÞWbcðr; p − qÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δabnc

q
~U0
anbcWmaðr; pÞWcbðr; p − qÞ�

−
1

2π

Z
dΩ

X
abcdl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δmnlabcd

q
U0

malbU
0
ncldWac

�
r; p −

1

2
ðq − p0Þ

�
Wbd

�
r; p −

1

2
ðqþ p0Þ

��
; (29)

where p0 ¼ eΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δmnlabcd

p
and eΩ denotes the unit

vector corresponding to the solid angle dΩ.
A physical interpretation of this expression can be

obtained by looking at the origin of the individual terms.
The upper two lines of Eq. (29) originate from the
second order of the expansion of the T-matrix
[Eq. (23)], describing the intensity shift in the forward-
scattered wave [43,46], while the first order only describes
a phase shift and appears in the mean-field terms in
Eq. (28). The bottom line of Eq. (29) contains all lateral
scattering processes, hence the explicit angular depend-
ence. In our formalism, the coupling constants U and ~U
include all particle indistinguishability and exchange

contributions, which are discussed in greater detail
in Ref. [43].

V. CONCLUSION

We have presented a novel approach to study relaxation
dynamics in a closed quantum system, exploiting the
unique properties of a large-spin Fermi sea. For this system,
we have derived a multicomponent kinetic equation with-
out phenomenological assumptions or prior knowledge of
the equilibrium state. As a key result, we find that this
approach is well suited for the quantitative description of
weakly interacting fermionic many-body systems with
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large spin. Both the comparison of numerical simulations
with full spatial resolution to a 1D experiment as well as the
comparison of a simplified single-mode approximation to a
3D experiment yield a very good agreement without free
parameters. We identify different collisional processes on
different time scales and identify spin relaxation as the
slowest dynamical process of the system. A variation of
the density and the geometry of the system changes the
respective spin-relaxation rates by several orders of mag-
nitude, ranging from a few milliseconds to several seconds.
By tuning the magnetic field, we can precisely control the
coupling strengths of individual collision channels,
allowing us to tune the character of a subsystem of two
spin components within the large-spin Fermi sea contin-
uously from an open to a closed system. The spin relaxation
manifests itself in a perforation of the Fermi sea accom-
panied with a temperature increase.
Our results broaden the understanding of many-body

relaxation dynamics. In particular, the fermionic character
of the system underlines its model character for various
systems in nature. The possibility to individually monitor
different spin components allows us to employ the large-
spin Fermi sea for novel studies of decoherence and
relaxation processes in quantum many-body systems.
Furthermore, spin-relaxation dynamics might play an
important role for proposed fermionic large-spin phenom-
ena, e.g., quantum-chromodynamic-like color superfluidity
or large-spin texture formation.
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APPENDIX A: EXPERIMENTAL DETAILS

1. Preparation

We sympathetically cool spin-polarized 40K atoms in the
state jF ¼ 9=2; m ¼ 9=2idown to a temperature of typically
0.1TF in a magnetic trap, using bosonic 87Rb as a buffer gas.
Subsequently, we transfer the atoms into a crossed circular-
elliptical optical dipole trap operated at a wavelength of
λ ¼ 812 nm. Using radio-frequency (rf) pulses and rf
sweeps, we create a spin mixture that we evaporate to
quantum degeneracy by lowering the power of the dipole
trap exponentially in 2 s. We typically realize samples with
particle numbers of the order of N ∼ 105 at temperatures of
T ¼ 0.1TF–0.2TF. After the evaporation, we compress the

trap again to avoid particle loss during the experi-
ments, realizing typical trapping frequencies of ~ω ¼
2π × ð33; 33; 137Þ Hz.Byvarying the evaporation sequence
and including additional waiting times, we can control the
initial temperature and particle number independently in the
same trap geometry. Thereby, we can modify the density
while keeping T=TF approximately constant. Typically, a
balancedmixtureof atoms in spin statesm ¼ �1=2 is usedas
the initial state throughout this paper. To study the spin-
changing dynamics, we switch the magnetic field to low
values. In Fig. 2, in addition, a coherent superposition of
several spin states is prepared by applying subsequently a rf
pulseat lowmagnetic fieldcorresponding toa spin rotationof
θ ¼ 0.44 (see Ref. [36] for more details). The 1D configu-
rationused inFig.4(a) is realizedbyadiabatically rampingup
a 2D optical square lattice over 150ms. The lattice is created
by two orthogonal retroreflected laser beams at wavelength
λ ¼ 1030 nm with a 1=e2 radius of 200 μm detuned with
respect to each other by several tens ofmegahertz. The lattice
depth is25Erecoil, withErecoil¼ℏ2k2L=2M, wherekL ¼ 2π=λ.
This optical potential creates an array of 1D tubes, where a
single tube can be described as a harmonically trapped
system with frequencies ωx¼2π×84Hz and ωy;z ¼ 2π×
47 kHz. With a particle number of N ≈ 100 and EF ¼
2πℏ × 37 kHz, the radial trapping frequencies fulfill
ℏωy;z > EF, and at a temperature kBT ¼ 0.2EF, we can
neglect a possible population of excited radialmodes; hence,
we create a true 1D system. The extension of the radial
ground state is around 1378 Bohr radii and thus 1 order of
magnitude larger than the scattering lengths [33]. We
thus neglect the possibility of a confinement-induced reso-
nance [56] and use the effective coupling constants
g1DS ¼ 2ℏ ffiffiffiffiffiffiffiffiffiffiffi

ωyωz
p aS.

2. Measurement

The relative populations of spin components are mea-
sured as follows: We release the atoms from the trap in an
inhomogeneous magnetic field to separate the spin com-
ponents during a time-of-flight expansion of typically
18.5 ms. We count the number of atoms in each spin
component with resonant absorption imaging. For com-
parison, we measure the total number of particles as well as
the temperature independently without the Stern-Gerlach
field to avoid distortions of the particle cloud during the
time of flight. The numbers given in this paper correspond
to the initial temperature and particle number. In Fig. 7(a),
in order to extract the change in temperature over time, we
determine the temperature only in one spin component,
circumventing deviations associated with the imbalance of
the spin mixture. For instance, to measure the temperature
in m ¼ 1=2, we apply a sequence of linearly polarized
microwave pulses with a duration of 50 μs to transfer all
significantly occupied spin components m ≠ 1=2 into the
F ¼ 7=2 hyperfine manifold of 40K. In the other hyperfine
manifold, the atoms are not resonant with the detection
light and are thus obscured during the absorption imaging
process.
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APPENDIX B: TWO-BODY WIGNER TRANSFORM

Because the T-matrix depends only on the relative wave vectors, we evaluate Eq. (18) in the center-of-mass frame. We
introduce the notation

R ¼ 1

2
ðx1 þ x2Þ; r ¼ x1 − x2; P ¼ p1 þ p2; p ¼ 1

2
ðp1 − p2Þ (B1)

to denote the center of mass and relative positions and momenta versus the coordinates of particles 1 and 2 denoted by
subscripts. We denote by WðT;T2Þ the two-body Wigner transform of the part of Eq. (18) linear in the T-matrix
2πi 1−P

exffiffi
2

p ½T̂ ρ̂ð1Þ ⊗ ρ̂ð2Þ − ρ̂ð1Þ ⊗ ρ̂ð2ÞT̂ †� 1−Pexffiffi
2

p and the quadratic part 4π2 1−Pexffiffi
2

p ½T̂ ρ̂ð1Þ ⊗ ρ̂ð2ÞT̂ †� 1−Pexffiffi
2

p , respectively. We

obtain

WT
ijmnðr; R; p; PÞ ¼

−i
2πℏ2

Z
dK

Z
dκeiKReiκr

D
Kþ; kþ; i; mj 1 − Pexffiffiffi

2
p T̂ ρ̂ð1Þ ⊗ ρ̂ð2Þ 1 − Pexffiffiffi

2
p jK−; k−; j; n

E
þ H:c:; (B2)

WT2

ijmnðr; R; p; PÞ ¼
1

ℏ2

Z
dK

Z
dκeiKReiκr

D
Kþ; kþ; i; mj 1 − Pexffiffiffi

2
p T̂ ρ̂ð1Þ ⊗ ρ̂ð2ÞT̂ † 1 − Pexffiffiffi

2
p jK−; k−; j; n

E
; (B3)

where we introduce the wave vectors K� ¼ P
ℏ � K

2
and k� ¼ p

ℏ � κ
2
. We insert two complete basesR

dK1

R
dk1

P
abjK1; k1; a; bihK1; k1; a; bj and

R
dK2

R
dk2

P
cdjK2; k2; c; dihK2; k2; c; dj to the left and right of the

tensor product of density matrices. The dependence of the T-matrix on the relative wave vector only makes the integration
over K1;2 trivial. We substitute from Eq. (19) the expression

hK1; k1; a; bjT̂ jK2; k2; c; di ¼ δðϵk1 − ϵk2 þQabcdÞTabcdðk1; k2Þ (B4)

for the elements of the T-matrix into the above expressions and obtain

WT
ijmnðr; R;p;PÞ ¼

−i
2πℏ2

Z
dK

Z
dκ

Z
dk1

Z
dk2eiKReiκr

X
abcd

D
Kþ; kþ; i;mj1−Pexffiffiffi

2
p T̂ jKþ; k1; a; b

E

× hKþ; k1; a; bjρ̂ð1Þ⊗ ρ̂ð2ÞjK−; k2; c; di
D
K−; k2; c; dj

1−Pexffiffiffi
2

p jK−; k−; j; n
E
þH:c:

¼ −i
4πℏ2

Z
dK

Z
dκ

Z
dk1

Z
dk2eiKReiκr

X
abcd

δðϵkþ − ϵk1 þQimabÞ½δðk2 − k−Þδcjδdn − δðk2 þ k−Þδncδjd�

× ½Timabðkþ; k1Þ− Tmiabð−kþ; k1Þ�hKþ; k1; a; bjρ̂ð1Þ ⊗ ρ̂ð2ÞjK−; k2; c; di þH:c: (B5)

for the linear term and

WT2

ijmnðr;R;p;PÞ¼
1

2ℏ2

Z
dK

Z
dκ

Z
dk1

Z
dk2eiKReiκr

X
abcd

δðϵkþ − ϵk1 þQimabÞδðϵk2 − ϵk− þQcdjnÞ

× ½Timabðkþ;k1Þ−Tmiabð−kþ;k1Þ�½T�
jncdðk−;k2Þ−T�

njcdð−k−;k2Þ�hKþ;k1;a;bjρ̂ð1Þ⊗ ρ̂ð2ÞjK−;k2;c;di
(B6)

for the term quadratic in the T-matrix. The elements of the tensor product of density matrices are obtained from the Wigner
functions by an inverse Wigner transform

hKþ; k1; a; bjρ̂ð1Þ ⊗ ρ̂ð2ÞjK−; k2; c; di ¼ ℏ2

Z
dR0

Z
dr0e−iKR0

eiðk2−k1Þr0

×Wac

�
R0 þ r0

2
;
Pþ ℏk1 þ ℏk2

2

�
Wbd

�
R0 −

r0

2
;
P − ℏk1 − k2

2

�
; (B7)

and we substitute this expression into the collision term. We substitute this expression into the collision term, which yields a
delta function

R
dKeiKðR−R0Þ ¼ 2πδðR − R0Þ, and after carrying out the integration over K and R0, we obtain
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WT
ijmnðr; R; p; PÞ ¼

−i
2

Z
dκ

Z
dk1

Z
dk2

Z
dr0eiκreiðk2−k1Þr0

X
abcd

½δðk2 − k−Þδcjδdn − δðk2 þ k−Þδncδjd�

× δðϵkþ − ϵk1 þQimabÞ½Timabðkþ; k1Þ − Tmiabð−kþ; k1Þ�Wac

�
Rþ r0

2
;
Pþ ℏk1 þ ℏk2

2

�

×Wbd

�
R −

r0

2
;
P − ℏk1 − ℏk2

2

�
þ H:c: (B8)

and

WT2

ijmnðr; R; p; PÞ ¼ π

Z
dκ

Z
dk1

Z
dk2

Z
dr0eiκreiðk2−k1Þr0

X
abcd

δðϵkþ − ϵk1 þQimabÞδðϵk2 − ϵk− þQcdjnÞ

× ½Timabðkþ; k1Þ − Tmiabð−kþ; k1Þ�½T�
jncdðk−; k2Þ − T�

lncdð−k−; k2Þ�Wac

�
Rþ r0

2
;
Pþ ℏk1 þ ℏk2

2

�

×Wbd

�
R −

r0

2
;
P − ℏk1 − ℏk2

2

�
: (B9)

APPENDIX C: TRACE OVER SECOND
PARTICLE

In order to trace out particle 2 as described in Eq. (18),
we return from the center-of-mass frame to the lab frame by
substituting Eqs. (B1) back into Eq. (B9). The trace over

particle 2 means performing the operation IðT;T
2Þ

ij ðx1; p1Þ ¼
1
Δt

R
dx2

R
dp2

P
mnδmnW

ðT;T2Þ
ijmn ðr; R; p; PÞ on each term.

Introducing the notations q ¼ 2ℏk, p0
1 ¼ p1 − ðq − ℏðk1þ

k1Þ=2Þ, and p0
2 ¼ p1 − ðqþ ℏðk1 þ k2Þ=2Þ, we arrive at

the following expressions for the collision term:

ITijðx1; p1Þ ¼
−i
2Δt

Z
dκ

Z
dk1

Z
dk2

Z
dr0

Z
dr

Z
dqeiκreiðk2−k1Þr0

X
abcdl

δðϵkþ − ϵk1 þQilabÞ½δðk2 − k−Þδcjδdl

− δðk2 þ k−Þδlcδjd�½Tilabðkþ; k1Þ − Tliabð−kþ; k1Þ�Wac

�
x1 −

r − r0

2
; p0

1

�
Wbd

�
x1 −

rþ r0

2
; p0

2

�
þ H:c:

(C1)
and

IT
2

ij ðx1; p1Þ ¼
π

Δt

Z
dκ

Z
dk1

Z
dk2

Z
dr0

Z
dr

Z
dqeiκreiðk2−k1Þr0

X
abcdl

δðϵkþ − ϵk1 þQilabÞδðϵk2 − ϵk−

þQcdjlÞ½Tilabðkþ; k1Þ − Tliabð−kþ; k1Þ�½T�
jlcdðk−; k2Þ

− T�
ljcdð−k−; k2Þ�Wac

�
x1 −

r − r0

2
; p0

1

�
Wbd

�
x1 −

rþ r0

2
; p0

2

�
: (C2)

APPENDIX D: ONE-DIMENSIONAL
LARGE-SPIN T-MATRIX

In the one-dimensional two-body scattering problem
in the center-of-mass frame with Hamiltonian H ¼
ð−ℏ2=2μÞðd2=dx2Þ þ gSδðxÞ, the wave function is
ψðxÞ ¼ eikx þ fk0eik

0jxj, from which follows fk0 ¼ −1=
ð1 − iℏ2k0=μgSÞ for the scattering amplitude. The scat-
tered wave function ψ scðk0Þ ¼ fk0eik

0jxj and the T-matrix
are related through the Green’s function ψ scðk0Þ ¼
Gðk; k0ÞTðk0; kÞ, which in 1D is given by

GðxÞ ¼ 2μ

ℏ2

Z
dk0

eik
0x

k2 þ k02 þ i0þ
¼ 2π

iμ
ℏ2k

eikjxj; (D1)

such that

TSðk; k0Þ ¼
1

2π

ik0 2ℏ
2

M

1 − ik0 2ℏ2MgS

: (D2)

In the presence of a quadratic Zeeman shift Q, there is a
difference in modulus of incoming and outgoing wave

RELAXATION DYNAMICS OF AN ISOLATED LARGE-SPIN … PHYS. REV. X 4, 021011 (2014)

021011-13



vectors jk0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þQ

p
. Here and throughout this paper, if

the argument of the square root becomes negative for a
negative Q, the T-matrix vanishes and with it the entire
collision term.
A problem absent in the 3D case is encountered during

the low-energy expansion of Eq. (D2). The imaginary part
of the T-matrix is given by

ImTSðk; k0Þ ¼
1

2π

k0 2ℏ
2

M

1þ k024ℏ4
M2g2S

; (D3)

and an expansion in powers of gS produces a singularity for
k0 ¼ 0, since

ImTSðk; k0Þ ¼
1

2π

g2SM
2ℏ2k0

þ � � � : (D4)

This singularity is artificial, and we use a cutoff to
circumvent it. We choose the cutoff to be the maximum
of ImT at k0 ¼ MgS=2ℏ2, as depicted in Fig. 8. So, we use
the expression

TSðk; k0Þ ≈
gS
2π

−

8>><
>>:

0 if jk0j < MgS
2ℏ2

iMg2S
4πℏ2k0

þ � � � if jk0j ≥ MgS
2ℏ2

(D5)

to expand the T-matrix.

APPENDIX E: SEMICLASSICAL
GRADIENT EXPANSION

In order to further simplify the expressions (C2),
we assume the Wigner function to vary only slowly in
space compared to single-particle wave functions. This

assumption means that local contributions to the collision
term dominate, and we perform a Taylor expansion for the
spatial coordinate

Wij

�
x1 −

r� r0

2
; p

�

¼ Wijðx1; pÞ −
r� r0

2
∂x1Wijðx1; pÞ þ � � � ; (E1)

therefore, the expansion of the product of Wigner functions
in Eq. (C2) reads

Wac

�
x1 −

r − r0

2
; p0

1

�
Wbd

�
x1 −

rþ r0

2
; p0

2

�

¼ Wacðx1; p0
1ÞWbdðx1; p0

2Þ
−
r
2
∂x1 ½Wacðx1; p0

1ÞWbdðx1; p0
2Þ�

þ r0

2
Wbdðx1; p0

2Þ∂x1Wacðx1; p0
1Þ

−
r0

2
Wacðx1; p0

1Þ∂x1Wbdðx1; p0
2Þ þ � � � : (E2)

Together with the expansion of the T-matrix above, we must
be careful to expand the collision term in two small
parameters in a meaningful way. One small parameter is
the coupling constant proportional to the s-wave scattering
length. The other one is related to the gradient expansion.
Its magnitude is determined by the Fermi or thermal wave-
length compared to the variation of the Wigner function
determinedby the system size. Tomaintain theunitarity of the
S-matrix, we expand the T-matrix to second order. We
thereby obtain terms linear in aS from ITijðx; pÞ and quadratic
terms from ITijðx; pÞ and IT

2

ij ðx; pÞ. We expand the terms
linear in aS up to first order in gradients and the terms
quadratic in aS to zero order, keeping only the local term,
which amounts to a semiclassical approximation of the
theory. In this case, we substituteWacðx1 − ððr − r0Þ=2Þ; p0

1Þ
Wbdðx1 − ððrþ r0Þ=2Þ; p0

2Þ ≈ Wacðx1; p0
1ÞWbdðx1; p0

2Þ into
Eq. (C2), which means that further delta functionsR
dr0eiðk2−k1Þr0 ¼ 2πδðk2 − k1Þ and

R
dreiκr ¼ 2πδðκÞ

appear. We introduce renamed variables k� → k, k1 → k0,
x1,p1 → x,p, andp� ≡ p − ℏðk� k0Þ; the local parts of the
collision integral become

ITijðx; pÞ ¼
−i2π
Δt

Z
dq

Z
dk0

X
abcdl

δðϵk − ϵk0 þQilabÞ

× ½δðk − k0Þδjcδld − δðkþ k0Þδlcδjd�

×

�
Uialb −

iM ~Uialb

ℏ2k0

�
Wacðx; p−ÞWbdðx; pþÞ

þ H:c: (E3)

and

FIG. 8. Comparison of the imaginary part of the T-matrix
[Eq. (D3)] (red line and region) with the expansion [Eq. (D4)]
(green line and region) for a small coupling constant gS. To avoid
the singularity at k0 ¼ 0, we choose TS ¼ 0 inside the region
jk0j ≤ MgS=2ℏ2 indicated by the black line. The wave vector is
scaled in terms of the trapping frequency ktrap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mω=ℏ

p
.
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IT
2

ij ðx; pÞ ¼
2π

Δt

Z
dq

Z
dk0

X
abcdl

δðϵk − ϵk0 þQilabÞ

× δðϵk0 − ϵk þQcdjlÞUialbUjcldWacðx; p−Þ
×Wbdðx; pþÞ: (E4)

APPENDIX F: SQUARES AND PRODUCTS OF
DELTA FUNCTIONS

In scattering theory, the square of a delta function
of energy appears frequently, when terms quadratic in
the T-matrix are involved. This term can be approximated
as a well-known interpretation of this is ½δðEÞ�2 ≈
ðΔt=2πℏÞδðEÞ, where Δt denotes the elapsed time interval,
which is quasi-infinite when compared to the duration of a
single scattering event but nevertheless short compared to
other relevant dynamics, like relaxation or the trapping
period. This approximation is obtained by using the Fourier
representation of the delta function

δðEÞ ¼ 1

2πℏ

Z
dteði=ℏÞEt; (F1)

such that

½δðEÞ�2 ¼ δðEÞ 1

2πℏ

Z
dteði=ℏÞEt

¼ δðEÞ 1

2πℏ

Z
dt ≈ δðEÞ 1

2πℏ

Z
Δt
dt ¼ Δt

2πℏ
δðEÞ:
(F2)

The same procedure can also be applied to products of the
form δðϵk − ϵk0 Þδðk − k0Þ since

δ

�
ℏ2k2

2μ
−
ℏ2k02

2μ

�
δðk − k0Þ

¼ μ

ℏ2jk0j δðjkj − jk0jÞδðjkj − jk0jÞδsgnðkÞ;sgnðk0Þ

¼ ℏ2jk0j
μ

δsgnðkÞ;sgnðk0Þ

�
δ

�
ℏ2k2

2μ
−
ℏ2k02

2μ

��
2

≈
ℏjk0jΔt
2πμ

δsgnðkÞ;sgnðk0Þδ
�
ℏ2k2

2μ
−
ℏ2k02

2μ

�

¼ Δt
2πℏ

δðk − k0Þ: (F3)

We modify this approximation to take into account the shift
Q in the quadratic Zeeman energy after a spin-changing
collision. In our calculations, two situations appear. In the
first, coming from Eq. (F3), there is only one shift and we
must be careful that only the delta function with the shift
comes from a T-matrix where we can approximate the
integration area with the interval Δt:

δðϵk − ϵk0 Þδðϵk − ϵk0 þQÞ

≈ δðϵk − ϵk0 Þ
1

2πℏ

Z
Δt
dteði=ℏÞðϵk−ϵk0þQÞt

¼ δðϵk − ϵk0 Þ
1

2πℏ

Z
Δt
dteði=ℏÞQt

¼ Δt
2πℏ

δðϵk − ϵk0 Þsinc
�
QΔt
2ℏ

�
: (F4)

In the second case, both delta functions originate from the
energy conservation of the T-matrix

δðϵk − ϵk0 þQ1Þδðϵk − ϵk0 þQ2Þ ¼
1

ð2πℏÞ2
Z
Δt
dt

Z
Δt
dt0eði=ℏÞðϵk−ϵk0þQ1Þteði=ℏÞðϵk−ϵk0þQ2Þt0

¼ 1

ð2πℏÞ2
Z
Δt
dt

Z
Δt
dt0eði=ℏÞ½ðϵk−ϵk0 Þðtþt0ÞþQ1tþQ2t0�

¼ 2

ð2πℏÞ2
Z
Δt
du

Z
Δt
du0eði=ℏÞðϵk−ϵk0 ÞueðiQ1=2ℏÞðu−u0ÞeðiQ2=2ℏÞðuþu0Þ

¼ 2

ð2πℏÞ2
Z
Δt
du

Z
Δt
du0eði=ℏÞ½ϵk−ϵk0þðQ1þQ2=2Þ�ueði=2ℏÞðQ2−Q1Þu0

≈
Δt
2πℏ

δ

�
ϵk − ϵk0 þ

1

2
ðQ1 þQ2Þ

�
sinc

�
Q2 −Q1

2ℏ
Δt

�
: (F5)

The time interval Δt that appears in front cancels with the one introduced at the beginning [Eq. (18)], and
for the sinc function, we assume it to be small such that sinc → 1.

APPENDIX G: SINGLE-MODE APPROXIMATION WITH THE QZE AND IN 1D

Taking the quadratic Zeeman effect into account, the expressions for the single-mode approximation [Eq. (9)] become
slightly more complicated. The equation of motion is now given by
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d
dt

Mmn ¼ −
M

4πℏ4

�X
abl

ðλ0ð1Þmlab
~U0
malbManMbl þ λ0ð1Þnlab

~U0
nalbMmaMlbÞ −

X
abcdl

λ0ð2ÞmnlabcdU
0
malbU

0
ncldMacMbd

�
; (G1)

where the two now separate integrals λð1;2Þ are spin dependent and given by

λ0ð1Þabcd ¼
1

N

Z
dr

Z
dp

Z
dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δabcd

q
f0ðr; pÞf0ðr; p − qÞ (G2)

and

λ0ð2Þmnlabcd ¼
1

N

Z
dr

Z
dp

Z
dq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ Δmnlabcd

q
f0ðr; pÞf0ðr; p − qÞ. (G3)

The single-mode approximation can also be applied to the 1D system, from the Boltzmann equation (4). Equation (G1)
changes to

d
dt

Mmn ¼ −
M
ℏ2

�X
abl

ðλð1Þmlab
~UmalbManMbl þ λð1Þnlab

~UnalbMmaMlbÞ −
X
abcdl

λð2ÞmnlabcdUmalbUncldMacMbd

�
; (G4)

and the other expressions become

λð1Þabcd ¼
1

N

Z
dx

Z
dp

Z
q2>ϵ1;2

dq
f0ðr; pÞf0ðr; p − qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ Δabcd

p
(G5)

and

λð2Þmnlabcd ¼
1

N

Z
dx

Z
dp

Z
q2>ϵ3

dq
f0ðr; pÞf0ðr; p − qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ Δmnlabcd

p ;

(G6)

respectively, where the infrared cutoff described in
Appendix D must be employed. The equilibrium distribu-
tion is given by

f0ðx; pÞ ¼
�
exp

�
1

kBT

�
p2

2M
þ 1

2
Mω2x2 − μ

��
þ 1

�−1
:

(G7)

A comparison of 1D single-mode results with the full 1D
Boltzmann equation shows good agreement for pure spin
relaxation, as shown in Fig. 4.
A further inclusion of the coherent oscillations described

by the commutator in Eq. (4) into the single-mode equation
shows that while the oscillations themselves are reproduced
with high accuracy [36], the damping of coherent oscil-
lations such as in Fig. 3 is not captured well. We attribute
this feature to the fact that damping is driven by the much
stronger spin-conserving collisions and affects more
strongly the individual phase-space distributions of the
spin states, which are taken to be constant in time in the
single-mode approximation. Thus, we consider it necessary
to use the full 1D Boltzmann in these cases.

APPENDIX H: CONCEPT OF TEMPERATURE
IN FIG. 7

Under the assumptions stated at the end of Sec. III, we
extract a temperature from our 1D numerical simulations as
follows. At each time, we have the full Wigner function
available and can compare the Wigner function of, e.g., the
m ¼ 1=2 component Wð1=2Þð1=2Þðx; p; tÞ≡Wðx; p; tÞ to a
noninteracting equilibrium distribution f0ðx; pÞ [Eq. (G7)].
This distribution is determined by particle number

N ¼
Z

dx
Z

dpf0ðx; pÞ (H1)

and trap energy
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FIG. 9. Overlap between a noninteracting equilibrium distri-
bution [Eq. (G7)] and the Wigner function during the simulations
performed to obtain the temperatures in Fig. 7(b).
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E ¼
Z

dx
Z

dp

�
p2

2M
þ 1

2
Mω2x2

�
f0ðx; pÞ (H2)

but also equivalently by temperature and chemical poten-
tial. Hence, we calculate at each time the particle number
and trap energy of Wðx; p; tÞ and generate a Fermi
distribution f0ðx; p; tÞ ¼ f0½NðtÞ; EðtÞ� ¼ f0½μðtÞ; TðtÞ�
with the same values for N and E. The temperature of
this distribution is plotted in Fig. 7(b) as an estimate for the
temperature of W. The overlap between this equilibrium
distribution and the Wigner function

RðtÞ ¼
R
dx

R
dpf0ðx; p; tÞWð1=2Þð1=2Þðx; p; tÞR

dx
R
dpWð1=2Þð1=2Þðx; p; tÞWð1=2Þð1=2Þðx; p; tÞ

(H3)

is plotted in Fig. 9 and for the times we consider maintains
sufficiently large values.
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