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The universal critical behavior of the driven-dissipative nonequilibrium Bose-Einstein condensation
transition is investigated employing the field-theoretical renormalization group method. Such criticality
may be realized in broad ranges of driven open systems on the interface of quantum optics and many-body
physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and
dissipative Gross-Pitaevski equation corresponding to a complex-valued Landau-Ginzburg functional,
which captures the near critical nonequilibrium dynamics, and generalizes model A for classical
relaxational dynamics with nonconserved order parameter. We confirm and further develop the physical
picture previously established by means of a functional renormalization group study of this system.
Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical
exponents at the condensation transition to lowest nontrivial order in the dimensional ϵ expansion about the
upper critical dimension dc ¼ 4 and establish the emergence of a novel universal scaling exponent
associated with the nonequilibrium drive. We also discuss the corresponding situation for a conserved order
parameter field, i.e., (sub)diffusive model B with complex coefficients.
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I. INTRODUCTION

Experimental systems that are characterized by a strong
coupling of light to a large number of matter degrees of
freedom [1] hold the potential of developing into labora-
tories for nonequilibrium statistical mechanics, where phase
transitions among stationary states far away from thermo-
dynamic equilibrium could be studied. Instances of such
systems have recently been demonstrated in a variety of
contexts: In ensembles of ultracold atoms, Bose-Einstein
condensates placed in optical cavities have allowed one to
achieve strong light-matter coupling and led to the realiza-
tion of open Dicke models [2,3]. The corresponding phase
transition has been studied in real time, including the
determination of the associated critical exponent [4]. In
systems of trapped ions [5], Ising models with variable-
range interactions of a few hundred quantum spins have
been created [6]. Other platforms, which hold the promise of
being developed into true many-body systems by scaling up
the number of presently existing elementary building blocks

in the near future, are provided by arrays of microcavities
[7–10] and also optomechanical setups [11–13].
Genuine many-body ensembles in the above class are

furthermore realized in the context of pumped semicon-
ductor quantum wells in optical cavities [14]. Here,
nonequilibrium Bose-Einstein condensation of exciton-
polaritons has been achieved [15–17]—the effective
bosonic degrees of freedom result from a strong hybridi-
zation of cavity light and excitonic matter states [1,18,19].
All of these systems exhibit the crucial ingredients for

nontrivial critical scaling behavior at a continuous
nonequilibrium phase transition. This triggers broader
theoretical questions on the actual nature and possible
universality classes of such nonequilibrium critical points.
At first sight, invoking the concept of universality, implying
a huge “loss of memory” on details of the microscopic
physics, it may seem questionable whether the microscopic
nonequilibrium conditions will result in any physically
observable consequences at the macroscopic level at all. In
particular, for equilibrium dynamical critical behavior,
there exists a well-developed theoretical framework based
on the seminal work of Hohenberg and Halperin (HH)
[20] (and other authors), who classified various types of
dynamical critical behavior into diverse equilibrium
dynamical universality classes, known as models A to J,
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depending on the conserved or nonconserved nature of the
order parameter itself, and on its dynamical couplings to
other slow conserved modes.
However, there are two key ingredients, shared by the

systems described above, that place these many-body
ensembles apart from equilibrium systems and may, in
fact, cause novel universal physical features. First, they are
strongly driven by external fields, such as coherent electro-
magnetic radiation provided by lasers, and undergo a
cascade of internal relaxation mechanisms [1]. This non-
equilibrium drive and balancing dissipation adds to the
Hamiltonian dynamics and causes both reversible
(coherent) and irreversible (dissipative) dynamics to appear
on an equal footing, albeit originating from physically
distinct and independent mechanisms. In turn, this induces
manifest violations of the detailed-balance conditions
characteristic of a many-body system in thermal equilib-
rium. Indeed, these drive-induced nonequilibrium pertur-
bations transcend mere violations of the Einstein relations
(or fluctuation-dissipation theorem) that in equilibrium
connect relaxation coefficients with associated thermal
noise strengths: Such perturbations have been found to
generically become irrelevant in the vicinity of a second-
order phase transition (for a concise overview, see
Ref. [21]). Second, these systems are characterized by
the absence of the conservation of particle number. This is
due to the admixture of light to the matter constituents,
which opens up strong loss channels for the effective hybrid
light-matter degrees of freedom, in turn making it necessary
to counterpoise these losses by continuous pumping in
order to achieve stable stationary states.
Deciding whether or not these ingredients indeed cause

universal behavior distinct from equilibrium motivates—
and, in fact, necessitates—a thorough theoretical analysis of
the nature of criticality in such nonequilibrium quantum
systems. A key representative of potential nonequilibrium
criticality is provided by the driven-dissipative Bose-
Einstein condensation transition, relevant to the experiments
with exciton-polariton condensates described above. For
such systems, indeed, a new independent critical exponent
associated with the nonequilibrium drive has recently been
identified within a functional renormalization group (RG)
approach [22,23]. This exponent describes universal
decoherence at long distances, and is observable, e.g., in
the momentum- and frequency-resolved single-particle
response, as probed in homodyne detections of exciton-
polariton systems [24]. Furthermore, an effective thermal-
ization mechanism for the low-frequency distribution
function has been found, reflected in an emergent symmetry
at the (classical, equilibrium) Wilson-Fisher fixed point.
In this work, we employ the field-theoretical RG [25–28]

in a perturbative dimensional ϵ expansion for a comple-
mentary study of driven Bose-Einstein criticality. Here,
ϵ ¼ 4 − d measures the distance from the upper critical
dimension dc ¼ 4 and serves as the effective small

parameter in the perturbation series. In this framework,
we confirm and further develop the physical picture
obtained previously within the functional RG approach.
Both our perturbative two-loop and the nonperturbative
functional RG analyses [22,23] are based on an effective
long-wavelength description in terms of a noisy Gross-
Pitaevskii equation with complex coefficients [29–33],
which in turn constitutes a variant of the time-dependent
complex Ginzburg-Landau equation for a two-component
order parameter field [34]. Such complex stochastic differ-
ential equations have also found extensive applications in
the modeling of spontaneous structure formation in non-
equilibrium systems [35,36]. Remarkably, these comprise
coupled nonlinear oscillators subject to external noise near a
Hopf bifurcation instability [37], and even spatially
extended evolutionary game theory and the dynamics of
cyclically competing populations [38].
We present a concise account of the main results of this

work in Sec. II. The remainder of this paper is organized as
follows: In Sec. III, we explain the microscopic model
based on a stochastic Gross-Pitaevskii equation with
complex coefficients and introduce the equivalent dynami-
cal response functional integral as appropriate for a
subsequent diagrammatic evaluation. We also discuss the
relationship of our model with model E that governs the
equilibrium critical dynamics of planar ferromagnets and
the normal-to-superfluid phase transition. Section IV com-
prises the bulk of this work. It contains an explanation of
the renormalization scheme employed to deal with the
emergent ultraviolet divergences and details how the
critical scaling properties in the infrared region may
subsequently be obtained from solutions of the associated
RG flow equations. Finally, Sec. V offers a summary and
concluding remarks, and the Appendix provides more
technical details.

II. KEY RESULTS AND PHYSICAL PICTURE

Generalized dynamic scaling forms.—Near the continu-
ous condensation transition for driven-dissipative boson
system, we derive generalized scaling laws for the dynamic
response and correlation functions at wave vector q and
frequency ω:

χðq;ω; τÞ−1 ∝ jqj2−ηð1þ iajqjη−ηcÞ

× χ̂

�
ω

jqjzð1þ iajqjη−ηcÞ ; jqjξ
�−1

; (1)

Cðq;ω; τÞ ∝ jqj−2−zþη0Ĉ

�
ω

jqjz ; jqjξ; ajqj
η−ηc
�
; (2)

where a is a nonuniversal constant, and the correlation
length diverges as ξ ∝ jτj−ν as the critical point is
approached, τ ∝ T − Tc → 0. Here, ν, η, and z represent
the standard equilibrium static and dynamical critical
exponents, while ηc and η0 constitute novel scaling
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exponents induced by the nonequilibrium drive and asso-
ciated potential violation of detailed balance.
The origin of these new scaling exponents is immedi-

ately transparent from the description of the problem in
terms of a Janssen–De Dominicis (or Martin-Siggia-Rose)
functional integral [39–41]: Owing to the competition of
coherent and dissipative dynamics in the driven problem,
two independent mass scales appear, as compared to a
single one in the closely related, purely relaxational model
A in equilibrium critical dynamics. This causes a more
complex critical scenario akin to a bicritical point. In
addition, the fluctuation-dissipation theorem that relates
the dynamic response with the correlation function in
thermal equilibrium (for which η0 ¼ η are hence identical)
is, in general, violated. Indeed, there arise new ultraviolet
divergences, specifically for two couplings that are mar-
ginal at the Gaussian fixed point.
Asymptotic thermalization.—We establish that the

renormalization group flow, already to one-loop order,
drives the system towards an effectively equilibrium fixed
point, where detailed balance is satisfied. The fluctuation-
dissipation theorem then implies that

η0 ¼ η (3)

holds exactly for the Fisher exponents that characterize the
anomalous algebraic spatial decay of the order parameter
dynamic response [Eq. (1)] and correlation [Eq. (2)]
functions at criticality.
The analysis of the two-loop RG flow equations fur-

thermore yields that the asymptotic fixed point values of all
nonequilibrium coupling parameters induced by the exter-
nal drive vanish. Consequently, the static critical exponents
are precisely those of the equilibrium Oð2Þ-symmetric
Ginzburg-Landau-Wilson Hamiltonian (XY model),
namely,

ν ¼ 1

2
þ ϵ

10
þOðϵ2Þ; (4)

η ¼ ϵ2

50
þOðϵ3Þ; (5)

to lowest nontrivial order in the dimensional ϵ expansion,
and the associated dynamic critical exponent is the standard
one for the Oð2Þ-symmetric model A that describes
the purely relaxational kinetics of a nonconserved two-
component order parameter field [40],

z ¼ 2þ cη; c ¼ 6 ln
4

3
− 1þOðϵÞ: (6)

Thus, the system’s asymptotic long-wavelength and low-
frequency properties become effectively thermalized; see
also Ref. [37]. Yet, a novel universal scaling exponent
appears in the subleading scaling behavior, see Eqs. (1) and
(2), which originates from the driven-dissipative setup [34].

Novel drive exponent.—Despite the fact that the system
approaches an effectively equilibrium RG fixed point, one
of the marginal couplings induces a novel and independent
(but subleading) scaling exponent that captures the fadeout
of coherent quantum fluctuations relative to their thermal,
dissipative counterparts. We compute the new drive expo-
nent to second order in the loop expansion, i.e., to order ϵ2:

ηc ¼ c0η; c0 ¼ −
�
4 ln

4

3
− 1

�
þOðϵÞ: (7)

Equation (7) is one of the central results of this paper.
Together with the asymptotic thermalization, these key
findings corroborate the earlier functional RG study of
Refs. [22,23]. They also underscore the well-known
remarkable stability of model A with respect to nonequili-
brium perturbations [42–44].
Hierarchical structure of nonequilibrium criticality.—In

this way, we confirm the hierarchical structure of the
model’s critical behavior in the following sense: The static
critical behavior is characterized by the Oð2Þ universality
class, described by the rotationally invariant Ginzburg-
Landau-Wilson Hamiltonian for a two-component order
parameter field. In equilibrium dynamical criticality, the
static properties are supplemented—but not modified—by
the dynamical critical exponent, e.g., Eq. (6) for model A.
Yet here, the nonequilibrium conditions give rise to the new
and independent scaling exponent [Eq. (7)]. We thus
establish the following pattern: While the nonequilibrium
drive modifies neither the universalOð2Þ static nor even the
dynamical critical behavior of model A, it still adds novel
universal scaling features. This situation is reminiscent of
(but different from) the emergence of a new critical
exponent in model A associated with the nonequilibrium
relaxation following a sudden temperature quench from
random initial conditions to the critical point [45,46].
Relation to equilibrium dynamic criticality.—We elabo-

rate on the relation of the driven Bose-Einstein condensation
to its equilibrium counterpart, which is described bymodel E
in the terminology of HH. The hydrodynamic conservation
laws relevant for the latter model have two crucial conse-
quences, which set it apart fromour nonequilibrium situation.
First, the dynamical critical exponent is modified due to the
existence of a new relevant reversible coupling to a diffusive
mode and fixed by rotational invariance in order parameter
space to z ¼ d=2 (in the strong dynamic scaling regime),
quite distinct, therefore, from our result for the relaxational
dynamical critical exponent coinciding with model A.
Second, these conservation laws exclude the addition of a
second mass scale to the problem and, in consequence, there
emerges no counterpart of the drive exponent in equilibrium
Bose-Einstein condensation criticality.
Intriguingly, the additional drive exponent is absent for a

model B version (in the HH classification) of the complex
Ginzburg-Landau equation. Instead of the purely relaxa-
tional kinetics of a nonconserved order parameter, in this

PERTURBATIVE FIELD-THEORETICAL … PHYS. REV. X 4, 021010 (2014)

021010-3



situation a diffusive relaxation for a conserved order
parameter field is implemented. Thermalization along with
the conservation law and ensuing structure of the nonlinear
relaxation vertices now imply the exact scaling laws η0 ¼ η
[Eq. (3)]:

z ¼ 4 − η; (8)

see Ref. [40]. In addition, we establish the identity

ηc ¼ ηþOðϵ3Þ; (9)

at least to two-loop order.
Theoretical approach and renormalization scheme.—

The perturbative field-theoretical RG approach [25–28]
provides a well-established tool for the quantitative charac-
terization of critical behavior close to the upper critical
dimension dc ¼ 4; more precisely, it is perturbatively con-
trolled in the dimensional parameter ϵ ¼ 4 − d. In equilib-
rium it has, moreover, been demonstrated that the structure
of the RG flow equations and the ensuing universality
classes remain robust even in extensions down to three
dimensions. In this paper, wework at lowest nontrivial order
in ϵ, i.e., to OðϵÞ for, e.g., the correlation length exponent ν
and the fixed-point value of the nonlinear coupling u, but to
order ϵ2 for the Fisher, dynamic, and drive exponents, whose
anomalous scaling dimensions require a calculation at the
two-loop level. A key advantage of this approach in the
context of nonequilibrium criticality is the possibility of a
direct and quantitative comparison of our findings with the
well-known results for equilibrium dynamical criticality
displayed by the phenomenological models of HH [20],
which have not yet been comprehensively studied in a
functional RG framework (except for Refs. [47–49]).
We remark that the field-theoretical RG approach differs

conceptually from the functional RG based on Wetterich’s
equation [50]: The latter constitutes an exact reformulation of
a given functional integral in terms of a functional differential
equation, in this way, at least in principle, addressing the full
many-body problem [51–55]. Critical behavior can then be
studied by a suitable fine-tuning of parameters. In contrast,
the field-theoretical RG focuses immediately on the critical
surface of the problem, in this way isolating the universal
critical behavior from the outset (see, e.g., Refs. [25–28], and
for the application to dynamic critical phenomena,
Refs. [34,40,56–59]).While, therefore, nonuniversal aspects
of the problem are projected out, it provides a perhaps more
fundamental understanding of the emergence of scaling
properties and, moreover, allows us to obtain explicit
analytical results for the critical exponents, cf. Eqs. (4)–(7).
In short, by means of the field-theoretical RG approach,

we provide complementary strong evidence that the
microscopic nonequilibrium character bears observable
consequences up to the largest distance and time scales
in driven-dissipative Bose-Einstein condensation.

III. MODEL

A. Dissipative Gross-Pitaevskii equation with noise

Driven-dissipative Bose-Einstein condensation in
exciton-polariton systems is properly described by a
noisy dissipative Gross-Pitaevskii equation with complex
coefficients [29–33]:

i∂tψðx; tÞ ¼ ½−ðA − iDÞ∇2 − μþ iχ

þ ðλ − iκÞjψðx; tÞj2�ψðx; tÞ þ ζðx; tÞ: (10)

It basically coincides with the time-dependent complex
Ginzburg-Landau equation, which has been prominently
employed to describe pattern formation in nonequilibrium
systems, typically, however, in the deterministic limit
without noise [35,36]. A stochastic variant has been
analyzed in the context of coupled anharmonic oscillators
[37]. Here, the complex bosonic field ψ describes the
polariton degrees of freedom. The complex coefficients
have clear physical meanings; in particular, χ ¼ ðγp − γlÞ=
2 is the net gain, i.e., the balance of the incoherent pump
rate γp and the local single-particle loss rate γl. The positive
parameters κ and λ represent the two-body loss and
interaction strength, respectively, while A ¼ 1=2meff
relates to the effective mass of the polaritons. Typically,
this equation is not presented with an explicit diffusion
coefficient D, but rather with a frequency-dependent pump
term ∼η∂tψ added to the left-hand side of the equa-
tion [60,61]. The form [Eq. (10)] is then recovered upon
division by 1 − iη, i.e., with D ¼ Aη and subleading
corrections to the other coefficients, which are complex
to begin with. We emphasize that, due to the freedom of
normalizing the time derivative term as above in the
equation of motion, this model accurately captures
the physics close to the phase transition, since it describes
the most general low-frequency dynamics in a systematic
derivative expansion that incorporates all relevant cou-
plings (in the sense of the RG) in dimensions d > 2.
Finally, the noise described by the fluctuating complex
variable ζ is taken to be Gaussian, white, and Markovian,
and, hence, is fully characterized by the correlators

hζ�ðx; tÞi ¼ hζðx; tÞi ¼ 0;

hζ�ðx; tÞζðx0; t0Þi ¼ γδðx − x0Þδðt − t0Þ;
hζ�ðx; tÞζ�ðx0; t0Þi ¼ hζðx; tÞζðx0; t0Þi ¼ 0: (11)

Physical stability requires A, D, λ, and κ to be positive.
The parameter χ is negative in the disordered phase, where
the global Uð1Þ gauge symmetry [or Oð2Þ rotational
symmetry in the complex plane] is not spontaneously
broken. Our calculations will be carried out in this regime,
i.e., we approach the phase transition from the disordered
side, in contrast to the nonperturbative RG analysis in
Refs. [22,23]. For increasing pump rate γp, the gain χ
eventually turns positive and the system undergoes a
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continuous, driven Bose condensation transition: The
instability occurring for a state with vanishing polariton
field expectation value is cured by the expression of a
polariton condensate hψðx; tÞi ≠ 0. The parameter μ, which
effectively assumes the role of a chemical potential, is fixed
by the requirement of stationarity; see below. The Langevin
equation [Eq. (10)] can be formally derived from a micro-
scopic description in terms of a quantum master equation
(see, e.g., Ref. [62]) upon employing canonical power
counting in the vicinity of the critical point [22,23].
For the analysis of the critical behavior, it is useful to

introduce the following ratios (and sign conventions):

r¼− χ

D
; r0 ¼− μ

D
; u0 ¼ 6κ

D
; rK ¼ A

D
; rU ¼ λ

κ
:

(12)

The relaxation rate D may be small on the microscopic
scales of actual experiments, but it plays a key role for the
dominantly diffusive dynamics in the vicinity of the phase
transition, as will be confirmed in the subsequent calcu-
lation. Therefore, it is useful to express all external control
parameters relative to D. The quantities rK and rU are
dimensionless, giving the ratio of real and imaginary parts
of the couplings in Eq. (10) and, therefore, describing the
relative strength of coherent versus dissipative dynamics. In
these units, Eq. (10) takes the form

∂tψðx; tÞ ¼ −D
�
rþ ir0 − ð1þ irKÞ∇2

þ u0

6
ð1þ irUÞjψðx; tÞj2

�
ψðx; tÞ þ ξðx; tÞ

(13)

¼ −D δH̄½ψ �
δψ�ðx; tÞ þ ξðx; tÞ; (14)

with the stochastic noise ξðx; tÞ ¼ −iζðx; tÞ governed by
the same correlations [Eq. (11)] as ζ. Formally, as indicated
in Eq. (14), this describes the relaxational kinetics of model
A with a nonconserved order parameter, however, with a
non-Hermitean effective “Hamiltonian”:

H̄½ψ � ¼
Z

ddx

�
ðrþ ir0Þjψðx; tÞj2 þ ð1þ irKÞj∇ψðx; tÞj2

þ u0

12
ð1þ irUÞjψðx; tÞj4

�
: (15)

The complex coefficients in Eq. (15) reflect the presence of
the nonequilibrium drive. The theory becomes critical
(massless) when r, r0 → 0 (more precisely, the renormal-
ized counterparts of these parameters τ, τ0 → 0) simulta-
neously. We remark that Ref. [37] addressed the distinct
physical situation where the uncoupled oscillation fre-
quency r0 was held fixed. The calculation was then
performed in a rotating reference frame, which formally
amounts to setting r0 ¼ 0 in our analysis.

B. Field theory representation

The nonlinear partial differential equation [Eq. (10)
or (13)] represents a classical stochastic evolution,
which is readily mapped into an equivalent Janssen–De
Dominicis (or Martin-Siggia-Rose) functional integral
representation [39–41]; for detailed explanations, see,
e.g., Refs. [56,58,59,63]. This formulation renders it
amenable to straightforward perturbative expansions
with respect to the nonlinear coupling u0, the use of
diagrammatic techniques, and subsequent implementation
of the field-theoretical dynamical RG. The Janssen–De
Dominicis response functional corresponding to Eq. (14)
with noise correlations [Eq. (11)] reads

A½ ~ψ ;ψ � ¼
Z

dtddx

�
~ψ�ðx; tÞ

�
∂tψðx; tÞ þD

δH̄½ψ �
δψ�ðx; tÞ

�
þ H:c: − γ

2
j ~ψðx; tÞj2

�

¼
Z

dtddx

�
~ψ�ðx; tÞð∂t þD½rþ ir0 − ð1þ irKÞ∇2�Þψðx; tÞ þ ~ψðx; tÞð∂t þD½r − ir0 − ð1 − irKÞ∇2�Þψ�ðx; tÞ

þD
u0

6
ð1þ irUÞ ~ψ�ðx; tÞjψðx; tÞj2ψðx; tÞ þD

u0

6
ð1 − irUÞ ~ψðx; tÞjψðx; tÞj2ψ�ðx; tÞ − γ

2
j ~ψðx; tÞj2

�
: (16)

It provides the statistical weight P½ψ � ∝ R D½i ~ψ �e−A½ ~ψ ;ψ � for the stochastic process encoded in the Langevin equation
[Eq. (13)] for ψðx; tÞ. The associated generating function for the dynamic correlation functions and cumulants becomes

Z½~j; j� ¼ he
R

ddx
R

dt½~j�ðx;tÞ ~ψðx;tÞþj�ðx;tÞψðx;tÞ�i ¼
Z

D½i ~ψ �
Z

D½ψ �e−A½ ~ψ ;ψ �þ
R

ddx
R

dt½~j�ðx;tÞ ~ψðx;tÞþj�ðx;tÞψðx;tÞ�: (17)

We note that Z½~j ¼ 0; j ¼ 0� ¼ 1 carries no information, in stark contrast to the partition function in thermal equilibrium.
The perturbative expansion proceeds around the Gaussian action (u0 ¼ 0). With the Fourier transform

convention
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ψðx; tÞ ¼
Z

dω
2π

ddq
ð2πÞd e

iðqx−ωtÞψðq;ωÞ; (18)

and analogously for the response field ~ψðx; tÞ, the
Gaussian action reads, in frequency-momentum space,

A0½ ~ψ ;ψ �

¼
Z

dω
2π

ddq
ð2πÞd ½ ~ψ

�ðq;ωÞ;ψ�ðq;ωÞ�Aðq;ωÞ
�

~ψðq;ωÞ
ψðq;ωÞ

�
;

(19)

with the Hermitian harmonic coupling matrix

Aðq;ωÞ ¼
� −γ=2 −iωþDRðqÞ
iωþDR�ðqÞ 0

�
; (20)

where RðqÞ ¼ rþ ir0 þ ð1þ irKÞq2. Inversion of the
2 × 2 matrix yields the bare advanced and retarded
response propagators as well as the correlation propa-
gator; explicitly, these read:

G0
~ψψ�ðq;ωÞ ¼ 1

iωþD½r − ir0 þ ð1 − irKÞq2� ;

G0
~ψ�ψðq;ωÞ ¼

1

−iωþD½rþ ir0 þ ð1þ irKÞq2�
¼ G0�

~ψψ� ðq;ωÞ;
G0

ψ�ψðq;ωÞ ¼
γ

2
G0

~ψψ� ðq;ωÞG0
~ψ�ψðq;ωÞ ¼

γ

2
jG0

~ψ�ψ ðq;ωÞj2:
(21)

These expressions can be written in scaling form,

G0
~ψ�ψðq;ωÞ−1 ¼ Dq2

�
1þ irK þ rþ ir0

q2
− iω
Dq2

�
;

G0
ψ�ψ ðq;ωÞ ¼

γ

2D2q4

×

��
1þ r

q2

�
2

þ
�
rK þ r0

q2
− ω

Dq2

�
2
�−1

:

(22)

One may set up the diagrammatic perturbation expansion
either with these three propopagators or, equivalently,
with just the two response propagators in Eq. (21) and
the two-point noise vertex Γ0

~ψ� ~ψ ¼ γ=2, in addition to the

nonlinear four-point vertices − 1
2
Γ0

~ψ�ψψψ� ¼ −Du0
6
ð1 −

irUÞ and − 1
2
Γ0

~ψψ�ψ�ψ ¼ −Du0
6
ð1þ irUÞ (computed at

symmetrized incoming external wave vectors). The
graphical representations for these elements of the
perturbation series are depicted and explained in Fig. 1.

C. Relationship with equilibrium critical
dynamics models

It is instructive to rewrite the stochastic differential
equation (13) in terms of the coupled real fields S1 ¼
Reψ and S2 ¼ Imψ , collected into a two-component

vector field ~Sðx; tÞ:

∂tSαðx; tÞ ¼ −D
��

r − ∇2 þ u0

6
~Sðx; tÞ2

�
Sαðx; tÞ−

X
β

ϵαβ

�
r0 − rK∇2 þ rU

u0

6
~Sðx; tÞ2

�
Sβðx; tÞ

�
þ ηαðx; tÞ (23)

¼ Frel
α ½~S�ðx; tÞ þ Frev

α ½~S�ðx; tÞ þ ηαðx; tÞ; (24)

where α, β ¼ 1, 2, and ϵαβ represents the antisymmetric unit tensor in two dimensions (i.e., ϵ12 ¼ −ϵ21 ¼ 1, ϵ11 ¼ ϵ22 ¼ 0).
The noise correlators [Eq. (11)] imply, for η1 ¼ Reξ and η2 ¼ Imξ,

=

=

(a)

(b)

ω 0
~*ψ  ψ

ω
= 0qq ,,

ψ ψ~ *

q

-q

(c)
==

6

,G,G

u u

( )ωq ( )ωq

γ / 2
6

)ri+1(D)ri-1(D u u .

FIG. 1. Elements of the diagrammatic perturbation expansion. (a) Bare retarded and advanced propagators [Eq. (21)], where the
arrows reflect the causal temporal flow from ψ to ~ψ fields, while the perpendicular bars indicate complex conjugation, (b) two-point
noise vertex, and (c) four-point relaxation vertices (note that vertex functions are depicted with truncated external legs).
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hηαðx; tÞi ¼ 0;

hηαðx; tÞηβðx0; t0Þi ¼
γ

2
δαβδðx − x0Þδðt − t0Þ: (25)

In Eq. (24), the systematic forces in the Langevin
equations have been decomposed into the dissipative,
relaxational term

Frel
α ½~S�ðx; tÞ ¼ −D δH½~S�

δSαðx; tÞ
; (26)

with the standard Oð2Þ-symmetric Ginzburg-Landau-
Wilson Hamiltonian

H½~S� ¼
Z

ddx
�
r
2
~SðxÞ2 þ 1

2
½∇~SðxÞ�2 þ u0

4!
~SðxÞ4

�
; (27)

and the reversible contribution

Frev
α ½~S�ðx; tÞ ¼ D

X
β

ϵαβ
δH0½~S�
δSβðx; tÞ

; (28)

with a second Ginzburg-Landau-Wilson Hamiltonian

H0½~S� ¼
Z

ddx

�
r0

2
~SðxÞ2 þ rK

2
½∇~SðxÞ�2 þ rU

u0

4!
~SðxÞ4

�
:

(29)

In the mean-field approximation, we merely need to
simultaneously minimize both H and H0 to obtain possible
stationary configurations. For the temperaturelike control
parameter r > 0 (net gain χ < 0), the only homogeneous
state is ~S ¼ 0, or ψ ¼ 0, describing the disordered phase,
i.e., the absence of a Bose-Einstein condensate. For r < 0
(χ > 0), on the other hand, we encounter the ordered
phase with finite condensate fraction, namely, from min-
imizing H with a constant j~Sj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6jrj=u0p ¼ ffiffiffiffiffiffiffiffi
χ=κ

p ¼ jψ j.
Minimizing the effective Hamiltonian H0 yields the second
condition j~Sj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6jr0j=rUu0
p ¼ ffiffiffiffiffiffiffiffi

μ=λ
p ¼ jψ j, whence con-

sistency requires that indeed r0 ¼ rUr. The chemical
potential then adjusts itself to μ ¼ λjψ j2. In effect, this
leaves r as the sole control parameter for the condensation
transition.
We now consider the following two special cases. (i) For

parameters r0 ¼ rK ¼ rU ¼ 0, H0 vanishes, whence
we recover the Oð2Þ-symmetric model A for purely relaxa-
tional critical dynamics towards thermal equilibrium, if we
impose Einstein’s relation (or rescale the fields appropriately)

γ ¼ 4DkBT; (30)

with an effective temperature T. We later employ this
parametrization also in a strictly nonequilibrium setting (with
Boltzmann’s constant set to kB ¼ 1). A distinct scaling
behavior of the noise strength γ and the relaxation rate D,

and hence the temperature T, indicates a violation of detailed
balance.
(ii) For r0 ¼ rUr, rK ¼ rU ≠ 0,H0 ¼ rKH, one arrives at

an effective equilibrium dynamics with reversible term

Frev
α ½~S�ðx; tÞ ¼ DrK

X
β

ϵαβ
δH½~S�

δSβðx; tÞ
: (31)

Its antisymmetry ensures that the associated reversible
probability current remains divergence-free in the space
of dynamical variables Sα. This special situation has been
analyzed in Ref. [34].
Intriguingly, this kinetics resembles the critical dynamics

of model E for a nonconserved two-component order
parameter field (e.g., the in-plane magnetization fluctua-
tions for an XY ferromagnet), reversibly coupled to a
conserved scalar field M (corresponding to the z compo-
nent of the magnetization in a planar ferromagnet;
cf. Refs. [20,59]). Here, however, M ∝ DrK is spatially
uniform and stationary. We remark in passing that the
dynamic critical exponent of the equilibrium model E is
fixed by the fact that the conserved field M generates
rotations in order parameter space. Under the assumption of
strong dynamic scaling, i.e., proportional divergent time
scales for the critical modes and the conserved quantity, one
obtains z ¼ d=2 exactly in dimensions d ≤ 4. Indeed, this
constitutes a crucial difference between the equilibrium and
the driven models: The uniform magnetization in the driven
case does not scale, whereas the slowly varying magneti-
zation field in the equilibrium case does. This distinction
causes the dynamic critical exponent in the driven and
equilibrium cases to differ markedly.
Adding an external field term to the Hamiltonian,

H½~h� ¼ H½~S� − R ddx~hðxÞ · ~SðxÞ, yields in this special case
(ii) the dynamic susceptibilities

χαβðx − x0; t − t0Þ ¼ δhSαðx; tÞi
δhβðx0; t0Þ (32)

¼ D

�
Sαðx; tÞ

�
~Sβðx0; t0Þ þ rK

X
γ

ϵβγ ~Sγðx0; t0Þ
�	

;

where ~S1=2 represent the (real) Martin-Siggia-Rose
response fields associated with S1=2. For the original
complex fields, these components combine to

χðx − x0; t − t0Þ ¼ χ11 þ χ22 − iðχ12 − χ21Þ
¼ Dð1þ irKÞhψðx; tÞ ~ψ�ðx0; t0Þi; (33)

since the effective Onsager coefficient is Dð1þ irKÞ. As
the system is in thermal equilibrium, the fluctuation-
dissipation theorem relates the dynamic response with
the correlation function
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Cðx − x0; t − t0Þ ¼ hψ�ðx; tÞψðx0; t0Þi (34)

through

kBTχðx; tÞ ¼ −ΘðtÞ∂tCðx; tÞ; (35)

or, equivalently, in Fourier space

Cðq;ωÞ ¼ 2kBT
ω

Im χðq;ωÞ: (36)

For both special situations (i) and (ii), and with Eq. (30),
the scaling forms [Eq. (22)] for the retarded response
propagator and dynamical correlation functions reduce to

G0
~ψ�ψðq;ωÞ−1 ¼ Dq2ð1þ irKÞ

�
1þ r

q2
− iω
Dq2ð1þ irKÞ

�
;

G0
ψ�ψðq;ωÞ ¼

2kBT
Dq4ð1þ r=q2Þ2

×

�
1þ

�
rK − ω

Dq2ð1þ r=q2Þ
�

2
�−1

:

(37)

With Eqs. (33) and (34), i.e., χðq;ωÞ ¼
Dð1þ irKÞG ~ψ�ψ ðq;ωÞ and Cðq;ωÞ ¼Gψ�ψ ðq;ωÞ,
Eq. (37) satisfies the fluctuation-dissipation theorem
[Eq. (36)]. Fourier transformation to the time domain
yields explicitly

G0
~ψ�ψðq; tÞ ¼ ΘðtÞe−Dð1þirKÞðrþq2Þt;

G0
ψ�ψðq; tÞ ¼

kBT
rþ q2

e−Dð1þirKÞðrþq2Þjtj; (38)

which likewise fulfill Eq. (35).

IV. RENORMALIZATION AND CRITICAL
EXPONENTS

A. Renormalization scheme for ultraviolet divergences

The perturbation expansion is most conveniently carried
out for the one-particle irreducible vertex functions, since
redundancies are thus eliminated in the calculations. The
generating functional for the vertex functions is related to
its counterpart [Eq. (17)] for the connected correlation
functions (cumulants) in the standard manner through a
Legendre transformation [25–27,59]. Here, we merely list
the explicit relationships between the two-point vertex
functions and cumulants in Fourier space,

Γ ~ψψ� ðq;ωÞ ¼ G ~ψ�ψðq;ωÞ−1
¼ G0

~ψ�ψðq;ωÞ−1 − Σ ~ψ�ψ ðq;ωÞ; (39)

where the second expression originates from Dyson’s
equation with the associated self-energy Σ; furthermore,

Γ ~ψ� ~ψ ðq;ωÞ ¼ − Gψ�ψ ðq;ωÞ
G ~ψ�ψ ðq;ωÞG ~ψψ� ðq;ωÞ ; (40)

and similarly for the four-point functions, etc.
In the field-theoretical version of the renormalization

group approach to critical phenomena [25–28,56,57,59],
one sends all UV cutoffs originating from the short-
distance physics to infinity. At and above the upper critical
dimension (here, dc ¼ 4), UV divergences appear in the
perturbation expansion that are absorbed into appropriately
defined renormalized parameters. In the vicinity of a RG
fixed point, where scale invariance ensues, one may then
infer the desired IR scaling properties of the theory from its
UV behavior, which is perturbatively accessible, provided
one ensures to work outside the IR-singular critical region
(which here is defined by r, r0 → 0 in the unrenormalized
theory along with q, ω → 0). The field theory action
[Eq. (16)] entails UV divergences for the vertex functions
Γ ~ψψ� , Γ ~ψ ~ψ� , and Γ ~ψψ�ψ�ψ . The propagator self-energy Σ ~ψ�ψ
contains quadratic UV divergences (at dc ¼ 4) that first
need to be additively renormalized. Physically, this corre-
sponds to a fluctuation-induced downward shift of the
critical point (pump rate), τ ¼ r − rc, and, of course,
the subsequent characterization of the critical behavior
needs to address the vicinity of the true phase transition
point at τ ¼ 0; i.e., rc is determined from the condition
Γ ~ψψ� ðq ¼ 0;ω ¼ 0Þ ¼ 0 at r ¼ rc.
The remaining logarithmic UV divergences are then

multiplicatively absorbed into renormalization factors for
which we choose the following conventions: We define the
renormalized counterpart to the two-point vertex function
[Eq. (39)] as

ΓR
~ψψ� ðq;ωÞ ¼ ZΓ ~ψψ� ðq;ωÞ: (41)

The complex renormalization constant Z then follows from
the singular part of its frequency derivative,

Z−1 ¼ i∂ωΓ ~ψψ� ðq ¼ 0;ωÞjsingω¼0; (42)

evaluated at the normalization point τ ¼ μ2 with arbitrary
momentum scale μ, but manifestly outside the IR-singular
critical regime. Next, we introduce dimensionless renor-
malized counterparts to the parameters defined in Eqs. (12)
and (30) via multiplicative renormalization with real Z
factors:

τR ¼ Zττμ
−2; u0R ¼ Zu0u0Adμ

d−4; TR ¼ ZTT;

DR ¼ ZDD; rKR ¼ ZrKrK; rUR ¼ ZrUrU: (43)

Here, Ad ¼ Γð3 − d=2Þ=2d−1πd=2 denotes a geometric
factor, where ΓðxÞ indicates Euler’s Gamma function.
Note that independent renormalization constants ZT ,

ZrK , and ZrU arise only in a genuine nonequilibrium setting;
the equilibrium theory can be fully renormalized through a
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real Z along with Zτ, ZD, and Zu0 . Indeed, the fluctuation-
dissipation theorem [Eq. (35) or (36)] in conjunction with
Eq. (40) and the definitions of Eqs. (41) and (43) implies
that

Z−1 ¼ ZDZT (44)

must hold in thermal equilibrium. An independent ZT
factor means that the effective temperature becomes scale
dependent in the driven nonequilibrium system. In contrast,
the relation [Eq. (44)] reflects the partition invariance of
temperature in the renormalization group language: all
arbitrary system partitions must be in equilibrium with each
other. Its origin can be traced back to a specific equilibrium
symmetry of the response functional [23,59].
The renormalization constants will be determined

perturbatively to lowest nontrivial order in the non-
linear coupling u0, namely, first ZD and ZrK from

∂q2Γ ~ψψ� ðq;ω ¼ 0Þjsingq¼0, subsequently, Zτ and ZrU from
∂τΓ ~ψψ�ðq¼0;ω¼0Þjsing, ZT from Γ ~ψ ~ψ�ðq¼0;ω¼0Þjsing,
and finally, Zu0 and again ZrU (as an independent check)
from Γ ~ψψ�ψ�ψðfqi ¼ 0g; fωi ¼ 0gÞjsing. We employ dimen-
sional regularization to compute the associated wave vector
integrals, whence logarithmic divergences formally appear
as simple poles in ϵ ¼ 4 − d. We apply the convenient
minimal subtraction scheme, whereupon only these 1=ϵ
poles and their residua are incorporated into the Z fac-
tors [25,27].

B. Renormalization group equation
and RG flow functions

The renormalization group equation exploits the fact that
the unrenormalized quantities do not depend on the
arbitrary momentum renormalization scale μ. Translated
to renormalized correlation or vertex functions, it relates
their properties at different momentum (or length, time)
scales, and thus provides the desired link between the
theory in the ultraviolet, where perturbative computations
can safely be carried out, and the physically interesting
infrared region governed by nontrivial critical singularities
[25–28,59]. Denoting the set of model parameters as
fpg ¼ fD; τ; T; rK; rUg, and introducing u ¼ u0T, which
turns out to be the proper effective nonlinear coupling in

the perturbation series, one obtains, for example, for the
two-point vertex function

0¼μ∂μΓ ~ψψ� ðq;ω;fpg;uÞ¼μ∂μ½Z−1ΓR
~ψψ�ðq;ω;fpRg;uRÞ�

¼
�
μ∂μ−ζþ

X
p

γppR∂pR
þβu∂uR

�
ΓR

~ψψ� ðq;ω;fpRg;uRÞ:

(45)

Here, we have defined Wilson’s flow functions

ζ ¼ μ∂μ lnZ; γp ¼ μ∂μ ln ðpR=pÞ; (46)

note that ζ is complex, and the RG beta function

βu ¼ μ∂μuR ¼ uR½d − 4þ μ∂μ ln ðZu0ZTÞ�: (47)

The partial differential equation (45) is readily solved by
the method of characteristics μ → μl, which leads to
decoupled first-order ordinary differential flow equations
for the running parameters and the coupling

l
d ~pðlÞ
dl

¼ ~pðlÞγpðlÞ; ~pð1Þ ¼ pR;

l
d ~uðlÞ
dl

¼ βuðlÞ; ~uð1Þ ¼ uR: (48)

The infrared limit is attained as l → 0. Near an infrared-
stable RG fixed point given by the zero of the beta function
[Eq. (47)], i.e., βuðu�Þ ¼ 0 with ∂uRβuju� > 0, the model
becomes scale invariant. The solutions of the flow equa-
tions for the running couplings then become simple power
laws ~pðlÞ ≈ pRlγ�P , with the anomalous scaling dimensions
γ�P ¼ γPðu�Þ. Since all perturbative contributions to the
vertex and correlation functions consist of integrals over
products of Gaussian propagators and vertices, we observe
that the renormalized two-point function takes the form
ΓR

~ψψ� ðq;ω;fpRg;uRÞ¼DRμ
2 ~Γðq2ð1þirKRÞ=μ2;ω=ðDRμ

2Þ;
τRð1þirURÞ;uRÞ, cf. Eq. (22). One thus finally arrives at
the asymptotic solution of the RG equation (45) near a fixed
point u�:

ΓR
~ψψ�ðq;ω; fpRg; uRÞ ≈DRμ

2l2−ζðu�Þþγ�D ~Γ
�
q2ð1þ irKRl

γ�rK Þ
μ2l2

;
ω

DRμ
2l2þγ�D

; τRlγ�τ ð1þ irURl
γ�rU Þ; u�

�
: (49)

One may similarly proceed for any other vertex function or, e.g., the dynamical correlation function:

GR
ψ�ψðq;ω; fpRg; uRÞ ≈

TR

DRμ
4
l−4þ2Reζðu�Þþγ�T−γ�D ~C

�
q2

μ2l2
;

ω

DRμ
2l2þγ�D

; τRlγ�τ ; rKRl
γ�rK ; rURl

γ�rU ; u�
�
: (50)
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C. Renormalization and scaling to one-loop order

We now carry out the explicit perturbational analysis of
the fluctuation corrections to first order in u, represented
through Feynman diagrams with a single closed propagator
loop. For the two-point vertex function Γ ~ψψ� ðq;ωÞ, the
corresponding one-particle irreducible graphs are shown in
Fig. 2. The loop diagram represents the lowest-order
contribution to the associated self-energy −Σ ~ψ�ψ ðq;ωÞ;
see Eq. (39). The ensuing analytic expression is explicitly

Γ ~ψψ� ðq;ωÞ ≈ −iωþD½rþ ir0 þ ð1þ irKÞq2�

− 1

3
Dγu0ð1þ irUÞ

Z
∞

−∞
dν
2π

Z
ddk
ð2πÞd

1

−iνþD½rþ ir0 þ ð1þ irKÞk2�
1

iνþD½r − ir0 þ ð1 − irKÞk2� : (51)

Uponperforming the internal frequency integral viaCauchy’s
theorem, the integrand simplifies considerably. Setting γ ¼
4DT (henceforth we employ units where Boltzmann’s
constant kB ¼ 1), r0 ¼ rUr, and u ¼ u0T, one arrives at

Γ ~ψψ� ðq;ωÞ ¼ −iωþD

�
rð1þ irUÞ þ ð1þ irKÞq2

þ 2

3
uð1þ irUÞ

Z
k

1

rþ k2
þOðu2Þ

�
; (52)

where, with Sd ¼ 1=2d−1πd=2Γðd=2Þ,
Z
k
fðk2Þ ¼

Z
ddk
ð2πÞd fðk

2Þ ¼ Sd

Z
∞

0

dkkd−1fðk2Þ: (53)

As outlined in Sec. IVA, we first determine the fluc-
tuation-induced shift of the critical point (additive renorm-
alization) through the criticality condition Γ ~ψψ� ðq ¼ 0;
ω ¼ 0Þ ¼ 0 at the true critical point r ¼ rc ¼ OðuÞ.
Equation (52) yields

rcðuÞ ¼ − 2

3
u
Z
k

1

rc þ k2
þOðu2Þ ≈ − 2

3
u
Z
k

1

k2
þOðu2Þ;

(54)

which is negative and represents a downward shift of the
critical point: fluctuations suppress spontaneous long-range
order. By means of Eq. (A2), one arrives at a self-consistent
equation for jrcj, which to this order is solved by

rcðuÞ ≈ −
�

4Adu
3ðd − 2Þð4 − dÞ

�
2=ð4−dÞ

: (55)

Notice that rcðuÞ diverges upon approaching the lower
critical dimension dlc ¼ 2, correctly indicating that the
critical point is driven towards zero and there emerges no
truly long-range order with spatially homogeneous con-
densate (in fact, an isotropic driven-dissipative Bose gas in

two dimensions cannot even support quasi-long-range
order, see Ref. [64]). Furthermore, both nonequilibrium
parameters rK and rU have dropped out: Eq. (54) represents
just the equilibrium critical point shift. Indeed, since the
fluctuation loop in Eq. (52) is proportional to the factor
1þ irU, we may define the true distances from the critical
point τ ¼ r − rc and τ0 ¼ rUðr − rcÞ ¼ rUτ, which vanish
simultaneously as r → rcðuÞ, even when fluctuation
effects are included (to first order), thus preserving the
basic mean-field scenario.
In terms of τ, since rc ¼ OðuÞ, one can now rewrite

Eq. (52) to this order:

Γ ~ψψ� ðq;ωÞ ¼ −iωþDð1þ irKÞq2

þDτð1þ irUÞ
�
1 − 2

3
u
Z
k

1

k2ðτ þ k2Þ
�

þOðu2Þ: (56)

Just as in thermal equilibrium, the UV singularities con-
tained in the wave vector integral can be entirely absorbed
into a multiplicative renormalization of the parameter τ, see
Eq. (43):

Zτ ¼ 1 − 2

3
u
Z
k

1

k2ðτ þ k2Þ

¼ 1 − 4uAdμ
d−4

3ðd − 2Þð4 − dÞ þOðu2Þ

→ 1 − 2uAdμ
−ϵ

3ϵ
þOðu2; ϵ0Þ; (57)

where we have used Eq. (A3), and in the final step applied
the minimal subtraction scheme, wherein only the 1=ϵ pole
and its residuum at the upper critical dimension dc are
included in the renormalization constant Zτ. Since in
addition there exists no one-loop correction to the noise
vertex, see Fig. 4, i.e., Γ ~ψ� ~ψ ðq;ωÞ ¼ −2DT þOðu2Þ, we
infer that to this order

u
q q

k k
q

+

FIG. 2. One-loop propagator renormalization. The loop
diagram depicts the first-order correction to the self-energy or
two-point vertex function Γ ~ψψ� ðq;ωÞ.
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Z ¼ ZT ¼ ZD ¼ ZrK ¼ ZrU ¼ 1þOðu2Þ: (58)

The associated Wilson RG flow functions [Eq. (46)]
and anomalous dimensions all vanish in the one-loop
approximation,

ζ ¼ γT ¼ γD ¼ γrK ¼ γrU ¼ 0þOðu2RÞ; (59)

and the sole nontrivial RG flow function to first order
in uR is

γτ ¼ −2þ 2

3
uR þOðu2RÞ: (60)

In order to compute the beta function [Eq. (47)] for the
nonlinear coupling u and obtain the RG fixed points, we
require the renormalization of the four-point vertex func-
tion Γ ~ψψ�ψ�ψ . Its tree and one-loop contributions are
depicted in Fig. 3. Carrying out the internal frequency
integrals and combining the three one-loop contributions,
one finally arrives at

Γ ~ψψ�ψ�ψ ðfq=2g;fω=2gÞ

¼D
1

3
u0ð1þ irUÞ

�
1− 1

3
uð1þ irUÞ

×
Z
k

1

rþ k2
1

− iω
2Dþ rþ ir0 þ ð1þ irKÞðq

2

2
− q ·kþ k2Þ

−
4

3
u
Z
k

1

ðrþ k2Þ2 þOðu2Þ
�
: (61)

To this order in u, we may replace r with τ in the integrals,
and r0 ¼ rUr with τ0 ¼ rUτ, and evaluate at the normali-
zation point τ ¼ μ2 (τR ¼ 1, safely outside the IR-singular
region), with q ¼ 0, ω ¼ 0. By means of Eqs. (A3) and
(A4), we obtain in minimal subtraction:

Γ ~ψψ�ψ�ψ ðf0g; f0gÞjsing

¼ D
1

3
u0ð1þ irUÞ

×

�
1 − 1þ irU

1þ irK

uAdμ
−ϵ

3ϵ
− 4uAdμ

−ϵ
3ϵ

þOðu2; ϵ0Þ
�
:

(62)

Separating out the real and imaginary parts yields the
renormalization constants

Zu0 ¼ 1þ ðrU − rKÞ2
1þ r2K

uAdμ
−ϵ

3ϵ
− 5uAdμ

−ϵ
3ϵ

þOðu2; ϵ0Þ;

ZrU ¼ 1 − ðrU − rKÞð1þ r2UÞ
rUð1þ r2KÞ

uAdμ
−ϵ

3ϵ
þOðu2; ϵ0Þ: (63)

Note that consistency with the one-loop analysis of the
propagator self-energy that led to ZrU ¼ 1þOðu2Þ
demands that r�U ¼ r�K at the stable RG fixed point.
With ZT ¼ 1þOðu2Þ, the RG beta function [Eq. (47)]

becomes

βu ¼ uR

�
−ϵþ 5

3
uR − Δ2

R

3ð1þ r2KRÞ
uR þOðu2RÞ

�
; (64)

where ΔR ¼ rUR − rKR. For d > dc ¼ 4 (ϵ < 0), its only
stable zero is the Gaussian fixed point u�0 ¼ 0 (with
∂uβuju�

0
¼0 ¼ −ϵ), which implies mean-field scaling expo-

nents ν ¼ 1=2, η ¼ 0, z ¼ 2, and also ηc ¼ 0 ¼ η0. At the
upper critical dimension, the RG flow tends to zero only
slowly, inducing logarithmic corrections to the mean-field
power laws. In dimensions d < 4, a nontrivial fixed point
emerges:

u� ¼ 3ð1þ r2KRÞ
5ð1þ r2KRÞ − Δ2

R
ϵþOðϵ2Þ (65)

(provided the denominator is positive). It depends para-
metrically on rKR and the difference ΔR, and leads to non-
Gaussian critical exponents. We next study the RG beta
function associated withΔR. Since γrK ¼ 0, we obtain from
Eq. (63)

βΔ ¼ μ∂μΔR ¼ rURγrU − rKRγrK

¼ ΔR

�
1þ 2rKRΔR þ Δ2

R

1þ r2KR

�
uR
3
þOðu2RÞ: (66)

At the Gaussian fixed point u�0 ¼ 0, any constant values of
rKR and rUR are allowed. For d < 4, at the nontrivial,
positive, and stable fixed point [Eq. (65)], the only real
zero of Eq. (66) is indeed Δ� ¼ 0, whence, as anticipated,
r�U ¼ r�K , and the RG fixed point becomes independent
of rK:

Δ� ¼ 0; u� ¼ 3

5
ϵþOðϵ2Þ: (67)

u

q

q +

q

q
2

2

2

2
q
2

u

u

2

2

2

k

q

q

q

q−k
+ q

2

2

2
q
2

q

q

k k
u

u
+

kk

q
2

q

q

2

2

2k
k

k

q

FIG. 3. One-loop renormalization of the relaxation vertex. One-particle irreducible diagrams contributing to the four-point vertex
function Γ ~ψψ�ψ�ψ ðfq=2g; fω=2gÞ.
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This is just the equilibrium XY model fixed point for the
Oð2Þ-symmetric Ginzburg-Landau-Wilson Hamiltonian.
We note that the stability matrix eigenvalues at the infra-
red-stable RG fixed point [Eq. (67)] are ∂uRβujΔ�¼0;u� ¼ ϵ
and ∂ΔR

βΔjΔ�¼0;u� ¼ ϵ=5. Therefore, the RG flow will
typically first approach the nonequilibrium fixed line
[Eq. (65)], and subsequently tend towards the equilibrium
fixed point ΔR → 0 along this critical surface. At this point,
the system has already become effectively thermalized and
is described by the special case (ii) discussed in Sec. III C;
thus, Eq. (44) holds, albeit trivially to one-loop order,
see Eq. (58).
With the one-loop results [Eq. (59)], the solutions

[Eqs. (49) and (50)] of the RG equations for the inverse
response propagator and the dynamical correlation function
simplify drastically at the one-loop equilibrium fixed point.
According to Eq. (37) and applying the matching condition
l ¼ jqj=μ, they reduce to the following scaling laws for the
dynamical susceptibility:

χRðq;ω; fpRg; uRÞ−1
¼ D−1

R ΓR
~ψψ� ðq;ω; fpRg; uRÞ

≈ jqj2ð1þ irKRÞΓ̂
�

ω

DRjqj2ð1þ irKRÞ
;

τR
jq=μj1=ν

�
; (68)

where we have omitted fixed, constant arguments and
identified the inverse correlation length exponent

ν−1 ¼ −γ�τ ¼ 2 − 2

5
ϵþOðϵ2Þ; (69)

and for the dynamical correlation function,

GR
ψ�ψ ðq;ω; fpRg; uRÞ

≈
TR

DRjqj4
Ĉ

�
ω

DRjqj2
;

τR
jq=μj1=ν ; rKR

�
: (70)

These expressions imply that η ¼ 0þOðϵ2Þ ¼ ηc ¼ η0 and
z ¼ 2þOðϵ2Þ to one-loop order.

D. Two-loop analysis and renormalization

In order to obtain nontrivial dynamic critical and drive
exponents, we need to proceed to the next order in the
perturbational and dimensional ϵ expansion. The two-point
noise vertex is only renormalized to two-loop order, as
shown in Fig. 4. Carrying out both internal frequency
integrals associated with the closed propagator loops, one
arrives to second order in the nonlinear coupling u at

Γ ~ψ� ~ψ ðq;ωÞ ¼ −2DT

"
1þ 2

9
u2ð1þ r2UÞ

Z
k

1

rþ k2

Z
p

1

rþ p2

1

rþ ðq − k − pÞ2

× Re
1

−iω
D þ 3rþ ir0 þ ð1 − irKÞðq − k − pÞ2 þ ð1þ irKÞðk2 þ p2Þ þOðu3Þ

#
: (71)

Setting r0 ¼ rUr, and replacing r ¼ τ þOðuÞ in the integrands, we find

Γ ~ψ� ~ψð0; 0Þ ¼ −2DT

�
1þ 2

9
u2ð1þ r2UÞReIdðτ; rK; rUÞ þOðu3Þ

�
; (72)

with the nested wave vector integral

Idðτ; rK; rUÞ ¼
Z
k

1

τ þ k2

Z
p

1

τ þ p2

1

τ þ ðkþ pÞ2
1

2τ þ ð1þ irUÞτ þ 2ðk2 þ p2Þ þ 2ð1 − irKÞk · p
: (73)

Evaluating this integral at the normalization point τ ¼ μ2 and isolating its UV divergences in the form of 1=ϵ poles then
yields the Z factor product (in minimal subtraction)

ZDZT ¼ 1þ 2

9
u2ð1þ r2UÞReIdðμ2; rK; rUÞjsing þOðu3Þ: (74)
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FIG. 4. Two-loop renormalization of the noise vertex: There is
no fluctuation correction to first order in u; the two-loop graph
represents the lowest-order contribution to the vertex function
Γ ~ψ� ~ψ ðq;ωÞ.
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The two-loop Feynman graphs contributing to the
retarded response propagator self-energy or vertex function
Γ ~ψψ� ðq;ωÞ are depicted in Fig. 5. The first two closed
diagrams (on the left-hand side) yield contributions that are
independent of the external wave vector q and frequency ω
and combine to

−D 4

9
u2ð1þ irUÞ

Z
k

1

rþ k2

Z
p

1

ðrþ p2Þ2 : (75)

The two graphs to the right, with the wave vectors
distributed as indicated in Fig. 5, yield, after internal
frequency integration,

−D
2

9
u2ð1þ irUÞ

Z
k

1

rþ k2

Z
p

1

rþ p2

�
1 − irU

−iω
D þ 3rþ ir0 þ ð1 − irKÞðq − k − pÞ2 þ ð1þ irKÞðk2 þ p2Þ

þ 2ð1þ irUÞ
−iω
D þ 3rþ ir0 þ ð1þ irKÞ½p2 þ ðq − k − pÞ2� þ ð1 − irKÞk2

�
: (76)

Symmetrizing with respect to the internal wave vectors k↔p↔q − k − p simplifies this expression markedly, and the sum
of Eqs. (52), (75), and (76) can be written as

Γ ~ψψ�ðq;ωÞ ¼ −iωþD

�
rð1þ irUÞ þ ð1þ irKÞq2 þ 2

3
uð1þ irUÞ

Z
k

1

rþ k2

�
1 − 2

3
u
Z
p

1

ðrþ p2Þ2
�

−
2

9
u2ð1þ irUÞ

Z
k

1

rþ k2

Z
p

1

rþ p2

1

rþ ðq − k − pÞ2

×

�
1 −

−iω
D − iðrU − rKÞ½ðq − k − pÞ2 − k2 − p2�

−iω
D þ 3rþ ir0 þ ð1 − irKÞðq − k − pÞ2 þ ð1þ irKÞðk2 þ p2Þ

�
þOðu3Þ

�
: (77)

For vanishing external wave vector and frequency, we obtain, with r0 ¼ rUr,

Γ ~ψψ�ð0; 0Þ
Dð1þ irUÞ

¼ rþ 2

3
u
Z
k

1

rþ k2

�
1 − 2

3
u
Z
p

1

ðrþ p2Þ2
�
−
2

9
u2
Z
k

1

rþ k2

Z
p

1

rþ p2

1

rþ ðkþ pÞ2

×

�
1þ 2iðrU − rKÞk · p

2rþ ð1þ irUÞrþ 2ðk2 þ p2Þ þ 2ð1 − irKÞk · p

�
þOðu3Þ: (78)

At the stable RG fixed point [Eq. (67)], with r�U ¼ r�K , the
right-hand side of Eq. (78) reduces to the standard two-loop
additive and multiplicative temperature renormalizations
for the mass parameter r. The fluctuation-induced Tc shift,
as well as the renormalization constant Zτ and hence the
correlation length exponent ν, remain identical to those of
the XY model or Oð2Þ-symmetric model A in thermal
equilibrium to this order. The remaining multiplicative

renormalization factors follow from the frequency and
wave vector derivatives of Eq. (77) at the normalization
point τ ¼ rþOðuÞ ¼ μ2: According to Eq. (42),

Z−1 ¼ 1þ 2

9
u2ð1þ irKÞIdðμ2; rK; rU ¼ rKÞjsing þOðu3Þ;

(79)

+q

q
k

u

u

+ u
kk

k

k

k

u
k k+k−q

+
u

u q

k

k k
k

k

k

u
u

k

qq q
qq

k

k

k k
q+k−k

FIG. 5. Two-loop one-particle-irreducible Feynman diagrams contributing to the propagator self-energy or two-point vertex function
Γ ~ψψ� ðq;ωÞ. The two graphs on the right induce nonclassical values for the exponents η, z, ηc, and η0.
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whence, subsequently, ZD and ZrK can be determined from the singular contributions to

∂q2Γ ~ψψ� ðq;ω ¼ 0Þjsingq¼0 ¼ Z−1ZDDð1þ iZrKrKÞ ¼ Dð1þ irKÞ
�
1 − 2

9
u2∂q2Ddðμ2;qÞjsingq¼0 þOðu3Þ

�
; (80)

where

Ddðτ;qÞ ¼
Z
k

1

τ þ k2

Z
p

1

τ þ p2

1

τ þ ðq − k − pÞ2 : (81)

The ultraviolet singularities to be captured in ZrK encode a novel scaling exponent that describes the weight and fadeout of
coherent quantum fluctuations relative to their thermal, dissipative counterparts.
Appendix A 1 details how the UV-singular part is extracted from this nested wave vector integral in the form of a simple

1=ϵ pole and its residuum, applying dimensional regularization with minimal subtraction. Thus, Eq. (80) yields, with
Eq. (A9),

Z−1ZDð1þ iZrKrKÞ ¼ ð1þ irKÞ
�
1þ u2A2

dμ
−2ϵ

36ϵ
þOðu3; ϵ0Þ

�
: (82)

The evaluation of the integral [Eq. (73)], detailed in Appendixes A 1 and A 2, gives

ReZ−1 ¼ 1þ u2A2
dμ

−2ϵ
36ϵ

"
3þ r2K
1þ r2K

ln
16

9þ r2K
− 1 − r2K
1þ r2K

ln ð1þ r2KÞ þ
4rK

1þ r2K

�
arctan rK − arctan

rK
3

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðsk þ 1Þ

r
LðrKÞ

#

þOðu3Þ; (83)

ImZ−1 ¼ u2A2
dμ

−2ϵ
36ϵ

"
2rK

1þ r2K
ln

16

ð9þ r2KÞð1þ r2KÞ
− 2

1− r2K
1þ r2K

arctan rK þ 2
3þ r2K
1þ r2K

arctan
rK
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðsK − 1Þ

r
LðrKÞ

#
þOðu3Þ;

(84)

where sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

9
r2K

q
, and the logarithmic function LðrKÞ is given in Eq. (A16). Finally, at the infrared-stable fixed point,

where r�U ¼ r�K ,

ZDZT ¼ 1þ u2A2
dμ

−2ϵ
36ϵ

�
3 ln

16

9þ r2K
− ln ð1þ r2KÞ þ 2rK

�
arctan rK þ arctan

rK
3

�
þ

ffiffiffi
3

2

r
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sK þ 1

p
þ rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sK − 1

p
ÞLðrKÞ

�
þOðu3Þ: (85)

Carefully separating the real and imaginary parts in Eq. (82) and inserting Eqs. (83), (84) allows us to compute the
desired renormalization constants to two-loop order:

ZrK ¼ 1 − u2A2
dμ

−2ϵ
36ϵ

"
2 ln

16

ð9 þ r2KÞð1 þ r2KÞ
− 2

1 − r2K
rK

arctan rK þ 2
3 þ r2K
rK

arctan
rK
3

þ 1 þ r2K
rK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðsK − 1Þ

r
LðrKÞ

#

þ Oðu3Þ; (86)

and

ZD ¼ 1 − u2A2
dμ

−2ϵ
36ϵ

�
−1þ 3 − r2K

1þ r2K
ln

16

9þ r2K
− 1 − 3r2K

1þ r2K
ln ð1þ r2KÞ þ 2rK

�
3 − r2K
1þ r2K

arctan rK − 5þ r2K
1þ r2K

arctan
rK
3

�

þ
ffiffiffi
3

2

r
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sK þ 1

p − rK
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sK − 1

p
ÞLðrKÞ

�
þOðu3Þ; (87)
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and finally, Eq. (85) gives, with Eq. (87),

ZT ¼ 1− u2A2
dμ

−2ϵ
36ϵ

�
1− 2

3þ r2K
1þ r2K

ln
16

9þ r2K
þ 2

1− r2K
1þ r2K

ln ð1þ r2KÞ− 8rK
1þ r2K

arctan
2rK

3þ r2K
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðsK þ 1Þ

p
LðrKÞ

�
þOðu3Þ:

(88)

E. Scaling and critical exponents to order ϵ2

In order to explore possible fixed points, we compute the RG beta function for the nonequilibrium parameter rK, using
Eqs. (43) and (86):

βrK ¼ μ∂μrKR ¼ rKRγrK ¼ u2R
9

�
rKR ln

16

ð9þ r2KRÞð1þ r2KRÞ
þ 2ð1þ r2KRÞ arctan rKR − ð3þ r2KRÞ arctan

2rKR
3þ r2KR

þ 1

2
ð1þ r2KRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðsKR − 1Þ

r
LðrKRÞ

�
þOðu3RÞ: (89)

At the equilibrium fixed point r�K ¼ 0, we have ∂rKRβrK jr�K¼0 ¼ 2
9
ln 4

3
u2R > 0, whence it is infrared stable. Indeed, as shown

in Fig. 6, βrK ðrKRÞ is a monotonically growing function of the renormalized nonequilibrium parameter rKR, and r�K ¼ 0 is
its only zero. Setting rKR ¼ 0, Wilson’s flow functions [Eq. (46)], readily derived from Eqs. (83), (84), (86), (87), and (88),
simplify drastically:

ζ¼ u2R
18

6 ln
4

3
þOðu3RÞ; γrK ¼

u2R
18

4 ln
4

3
þOðu3RÞ; γD¼ u2R

18

�
6 ln

4

3
−1

�
þOðu3RÞ; γT ¼−u2R

18

�
12 ln

4

3
−1

�
þOðu3RÞ:

(90)

Once the system has reached a thermalized state, which here happens already at the one-loop level, the exact equilibrium
relation [Eq. (44)] enforces the identity

ζ þ γD þ γT ¼ 0; (91)

with a real ζ, which is, in fact, satisfied by the explicit two-loop results [Eq. (90)].
Again employing the matching condition l ¼ jqj=μ to the RG equation solutions [Eqs. (49) and (50)], the universal

scaling forms [Eqs. (68) and (70)] now become generalized to

χRðq;ω;fpRg;uRÞ−1¼D−1
R ΓR

~ψψ� ðq;ω;fpRg;uRÞ≈μηjqj2−ηð1þirKRjq=μjη−ηcÞΓ̂
�

ω

DRμ
2−zjqjzð1þirKRjq=μjη−ηcÞ

;
τR

jq=μj1=ν
�
;

(92)

GR
ψ�ψðq;ω; fpRg; uRÞ ≈

TR

DRμ
2−zþη0 jqj−2−zþη0Ĉ

�
ω

DRμ
2−zjqjz ;

τR
jq=μj1=ν ; rKRjq=μj

η−ηc
�
; (93)

see Eqs. (1) and (2), which are valid in the vicinity of the critical point. Here, we have identified the set of universal scaling
exponents as

ν−1 ¼ −γ�τ ; z ¼ 2þ γ�D; η ¼ ζðu�Þ − γ�D; ηc ¼ ζðu�Þ − γ�D − γ�rK ; η0 ¼ 2Reζðu�Þ þ γ�T: (94)

Note that η − ηc ¼ γ�rK is determined by the anomalous scaling dimension of the nonequilibrium parameter rKR.
Since z − 2, η, ηc, and η0 all vanish to first order in the nonlinear coupling, we only need to insert the stable one-loop
equilibrium fixed point value [Eq. (67)] to finally recover the standard equilibrium model A critical exponents [Eqs. (5) and
(6)] to two-loop order:
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η ¼ u�2

18
þOðu�3Þ ¼ ϵ2

50
þOðϵ3Þ;

z ¼ 2þ u�2

18

�
6 ln

4

3
− 1

�
þOðu�3Þ

¼ 2þ ϵ2

50

�
6 ln

4

3
− 1

�
þOðϵ3Þ: (95)

Since the system has reached an equilibrium fixed point
and is effectively thermalized, the identity [Eq. (91)]
immediately implies the exact scaling relation

η0 ¼ ζðu�Þ − γ�D ¼ η; (96)

reflecting the emergence of detailed balance and the
ensuing fluctuation-dissipation theorem. This leaves us
with a single new nonequilibrium drive scaling exponent

ηc ¼ −u�2

18

�
4 ln

4

3
− 1

�
þOðu�3Þ

¼ − ϵ2

50

�
4 ln

4

3
− 1

�
þOðϵ3Þ: (97)

If we (daringly) set ϵ ¼ 1, we find the critical ex-
ponents ν ≈ 0.625 (to one-loop order), η ¼ η0 ≈ 0.02,
z ≈ 2þ 0.72609η ≈ 2.01452, and ηc ≈ −0.15073η ≈
−0.0030146. For comparison, the numerical values found
in d ¼ 3 dimensions by means of the nonperturbative RG
approach in Refs. [22,23] are ν ≈ 0.716, η ≈ 0.039,
z ≈ 2.121, and ηc ≈ −0.223. The two-loop values thus
apparently still underestimate the fluctuation corrections
in three dimensions.

F. Observability of the drive exponent

The fact that the drive exponent appears in the scaling
form of the single-particle dynamical response makes it
accessible to experimental observation [22,23]. In particu-
lar, the imaginary part of the dynamical response is probed
in radio frequency spectroscopy in ultracold atoms [65] or

homodyne detection for exciton-polariton systems [24]
(in the latter, the real part is also available separately).
For probe frequency ω, the scaling form [Eq. (1)] implies,
for the response at criticality,

χðq;ωÞ ≈ 1

jqj2−η−z
1

−iðω=D − ajqjzþη−ηcÞ þ jqjz ; (98)

which demonstrates different critical wave vector scaling
for the peak position ω0 ∼ jqjzþη−ηc and peak width ∼jqjz.

G. Complex model B dynamics

We conclude our field-theoretical approach with a brief
RG analysis of a variant of the Langevin equation (14)
with conserved order parameter dynamics, i.e., off-critical
diffusive relaxation (model B):

∂tψðx; tÞ ¼ D∇2
δH̄½ψ �

δψ�ðx; tÞ þ ξðx; tÞ; (99)

with the non-Hermitean Hamiltonian Eq. (15), and the
noise correlations

hξ�ðx; tÞi ¼ hξðx; tÞi ¼ 0;

hξ�ðx; tÞξðx0; t0Þi ¼ −γ∇2δðx − x0Þδðt − t0Þ;
hξ�ðx; tÞξ�ðx0; t0Þi ¼ hξðx; tÞξðx0; t0Þi ¼ 0; (100)

with γ ¼ 4DT, such that the standard Oð2Þ-symmetric
equilibrium model B critical dynamics is incorporated as
the special case with r0 ¼ rK ¼ rU ¼ 0. When these
parameters are nonzero, we have a conserved complex
Ginzburg-Landau equation, or a driven, nonequilibrium
version of the noisy Cahn-Hilliard equation with complex
coefficients.
As a consequence of the conserved dynamics, both the

Onsager relaxation coefficient in Eq. (99) and the noise
correlator strength [Eq. (100)] now carry an additional
Laplacian operator. This increases the mean-field dynamic
critical exponent to z ¼ 4 and generates an external wave
vector factor q2 attached to the outgoing legs in the
nonlinear relaxation vertices depicted in Fig. 1(c).
Therefore, one has to all orders in the perturbation
expansion

Γ ~ψψ� ðq ¼ 0;ωÞ ¼ −iω;
∂q2Γ ~ψ ~ψ� ðq;ω ¼ 0Þjq¼0 ¼ −2DT: (101)

Since these vertex functions carry no UV singularities,
thus, Z ¼ 1 and ZT ¼ Z−1

D , which imply the exact results

ζ ¼ 0; γT ¼ −γD: (102)

Note that these model B relations represent a special case of
the general equilibrium condition [Eq. (91)]. In addition,
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FIG. 6. Two-loop RG beta function 9βRK
=u2R as a function of

the renormalized nonequilibrium parameter rKR, Eq. (89).
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according to Eq. (82), Z ¼ 1 enforces to two-loop order
that ZrK ¼ 1þOðu3Þ, whence γrK ¼ 0þOðu3RÞ.
For the dynamical susceptibility χðq;ωÞ ¼

Dq2Γ ~ψψ�ðq;ωÞ−1 and correlation function Cðq;ωÞ ¼
Gψ�ψðq;ωÞ, one is led again to the scaling laws
[Eqs. (1) and (2)]:

χRðq;ω; fpRg; uRÞ−1
¼ ðDRq2Þ−1ΓR

~ψψ�ðq;ω; fpRg; uRÞ
≈ μηjqj2−ηð1þ irKRjq=μjη−ηcÞ

× Γ̂
�

ω

DRμ
4−zjqjzð1þ irKRjq=μjη−ηcÞ

;
τR

jq=μj1=ν
�
;

(103)

GR
ψ�ψðq;ω; fpRg; uRÞ

≈
TR

DRμ
4−zþη0 jqj−2−zþη0

× Ĉ
�

ω

DRμ
4−zjqjz ;

τR
jq=μj1=ν ; rKRjq=μj

η−ηc
�
: (104)

Here, the static critical exponents ν ¼ −1=γ�τ and η ¼ −γ�D
are identical to the values [Eqs. (5) and (69)] computed in
Secs. IV C and IV E. In contrast to its model A counterpart,
however, we now have within the two-loop approximation

ηc ¼ ηþOðϵ3Þ ¼ ϵ2

50
þOðϵ3Þ: (105)

Yet, Eq. (102) implies, for the complex nonequilibrium
model B, that to all orders in perturbation theory

z ¼ 4þ γ�D ¼ 4 − η; η0 ¼ γ�T ¼ η: (106)

The dynamic critical exponent thus assumes its standard
equilibrium value, as for the driven-dissipative extension of
model A. In addition, η0 ¼ η is confirmed exactly here, as
opposed to the situation in model A, and to Eq. (102), for
which we can establish this identity up to only Oðϵ3Þ
corrections. This shows that, unlike the driven-dissipative
extension of model A, no independent critical behavior is
found for an analogous extension of model B, at least to
two-loop order.

V. CONCLUSION AND OUTLOOK

We obtain a detailed picture of the driven-dissipative
Bose condensation transition using the well-developed
framework of the perturbative field-theoretical dynamic
renormalization group, in this way complementing a
previous functional renormalization group study [22,23].
In particular, we trace back the existence of a new,
independent critical exponent to additional UV divergences
without counterpart in the critical theory for the equilibrium
Bose condensation transition, and obtain its analytical

value at two-loop order in the dimensional ϵ expansion.
This exponent is present in the scaling form of the dynamic
single-particle response of the system, and in its two-point
correlation functions, and witnesses nonequilibrium con-
ditions at the largest distances in the problem. We fur-
thermore explicitly confirm the asymptotic thermalization
scenario in the renormalization group flow for this system,
as in Ref. [37], demonstrating the stability of the equilib-
rium fixed point, along with the construction of the
corresponding dynamical scaling forms and calculation
of the associated critical exponents.
The perturbative field-theoretic approach offers the

possibility for a direct comparison of the results for
nonequilibrium systems with well-studied counterparts in
thermodynamic equilibrium. This makes it a valuable tool
for future investigations of critical driven-dissipative quan-
tum systems, working towards the ultimate goal of a
systematic classification of nonequilibrium dynamic criti-
cality to a similar maturity level as has been achieved in
thermodynamic equilibrium. In the present context, first
steps include the exploration of different internal sym-
metries, such as general OðnÞ rotation invariance, or the
inclusion of explicit coherent pumping processes. They
also comprise an investigation of universal aspects of the
dynamics following a parameter quench, such as the
determination of the initial slip exponent and critical aging
[45,46] in driven-dissipative systems. It remains to be seen
whether this approach can also be leveraged to situations
where criticality and genuine quantum effects come into
play simultaneously.
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APPENDIX A: INTEGRALS AND
TECHNICAL DETAILS

1. Dimensionally regularized integrals

In this Appendix, we provide a list of wave vector
integrals, of the form of Eq. (53), evaluated in dimensional
regularization [25–28,59]. The UV divergences at dc ¼ 4
become manifest as simple poles in ϵ ¼ 4 − d. The basic
dimensionally regularized integral is

Z
ddk
ð2πÞd

1

ðτ þ 2q · kþ k2Þs ¼
Γðs − d=2Þ
ð4πÞd=2ΓðsÞ

1

ðτ − q2Þs−d=2 :
(A1)

This immediately gives the wave vector integrals required
for the one-loop analysis, with Ad ¼ Γð3 − d=2Þ=2d−1πd=2:
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Z
k

1

τ þ k2
¼ − 2Ad

ðd − 2Þð4 − dÞ τ
−1þd=2; (A2)

Z
k

1

ðτ þ k2Þðτ0 þ k2Þ ¼
2Ad

ðd − 2Þð4 − dÞ
τ−1þd=2 − τ0−1þd=2

τ − τ0
(A3)

Z
k

1

ðτ þ k2Þ2 ¼
Ad

4 − d
τ−2þd=2: (A4)

In order to evaluate the nested wave vector integrals appearing in the two-loop calculation, Feynman’s parametrization is
very useful:

1

ArBs ¼
Γðrþ sÞ
ΓðrÞΓðsÞ

Z
1

0

xr−1ð1 − xÞs−1
½xAþ ð1 − xÞB�rþs dx: (A5)

We first extract the UV-singular part of the two-loop integral [Eq. (81)], a standard textbook computation [59]. Feynman’s
parametrization and the p integration by means of Eq. (A1) yield

Ddðτ;qÞ ¼
Z

1

0

dx
Z
k

1

τ þ k2

Z
p

1

½τ þ xðq − kÞ2 − 2xðq − kÞ · pþ p2�2

¼ Γð2 − d=2Þ
ð4πÞd=2

Z
1

0

dx
Z
k

1

τ þ k2
1

½τ þ xð1 − xÞðq − kÞ2�2−d=2 : (A6)

Applying Eq. (A5) once more, the k integral can be performed:

Ddðτ;qÞ ¼
Γð3 − d=2Þ
ð4πÞd=2

Z
1

0

dx

½xð1 − xÞ�2−d=2
Z

1

0

dy
Z
k

y1−d=2

½τð y
xð1−xÞ þ 1 − yÞ þ yq2 − 2yq · kþ k2�3−d=2

¼ Γð3 − dÞ
ð4πÞd

Z
1

0

dx

½xð1 − xÞ�2−d=2
Z

1

0

y1−d=2dy
½τð y

xð1−xÞ þ 1 − yÞ þ yð1 − yÞq2�3−d : (A7)

Therefore, one obtains in d ¼ 4 − ϵ dimensions

∂q2Ddðτ;qÞjq¼0 ¼ − Γð1þ ϵÞ
Γð1þ ϵ=2Þ2

A2
dτ

−ϵ
4ϵ

Z
1

0

dx

½xð1 − xÞ�ϵ=2
Z

1

0

dyy−ϵ=2ð1 − yÞ
�

y
xð1 − xÞ þ 1 − y

�−ϵ
: (A8)

Noting that Γð1þ ϵÞ=Γð1þ ϵ=2Þ2 ¼ 1þOðϵ2Þ, and that the parameter integrals are regular in the limit ϵ → 0, one finally
isolates the 1=ϵ pole and its residuum:

∂q2Ddðμ2;qÞjsingq¼0 ¼ −A2
dμ

−2ϵ
4ϵ

Z
1

0

ð1 − yÞdy ¼ −A2
dμ

−2ϵ
8ϵ

: (A9)

For the integral [Eq. (73)], we proceed similarly: Feynman’s parametrization leads to

Idðτ;rK;rUÞ¼
Z

1

0

dx
Z

1

0

dyy
Z
k

1

τþk2

Z
p

1

ðτ½1þ1
2
ð1−yÞð1þ irUÞ�þðxyþ1−yÞk2þ2½xyþ1

2
ð1−yÞð1− irKÞ�k ·pþp2Þ3

¼Γð3−d=2Þ
2ð4πÞd=2

Z
1

0

dx
Z

1

0

dyy

×
Z
k

1

τþk2
1

ðτ½1þ1
2
ð1−yÞð1þ irUÞ�þfxy½1−xy−ð1−yÞð1− irKÞ�þð1−yÞ½1−1

4
ð1−yÞð1− irKÞ2�gk2Þ3−d=2

;

(A10)
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after performing the p integral by means of Eq. (A1). Employing Eq. (A5) once more and subsequently carrying out the k
integral gives

Idðτ;rK;rUÞ

¼Γð4−dÞτd−4
2ð4πÞd=2

Z
1

0

dx
Z

1

0

dy
y

fxð1−xÞy2þxyð1−yÞirKþ 1
4
ð1−yÞ½3þyþð1−yÞr2K�þ2ð1−yÞirKg3−d=2

×
Z

1

0

dz
z2−d=2

ð1−zþ z½3−yþð1−yÞirU�=f2xð1−xÞy2þ 1
2
ð1−yÞ½3þyþð1−yÞr2K�þ2ð1−yÞ½xyþ 1

2
ð1−yÞirK�irKgÞ4−d

:

(A11)

Evaluated in d ¼ 4 − ϵ dimensions, the z parameter integral is just 1þOðϵ2Þ, whence Eq. (A11) reduces to

Idðμ2; rKÞjsing ¼
A2
dμ

−2ϵ
2ϵ

Z
1

0

dx
Z

1

0

dy
y

4xð1− xÞy2 þ ð1− yÞ½3þ yþ ð1− yÞr2K� þ 2ð1− yÞð2xyþ 1− yÞirK
; (A12)

which remarkably comes out independent of the parameter rU.

2. Complex parameter integral

The integration over x in Eq. (A12) is elementary and gives

Idðμ2; rKÞjsing ¼
A2
dμ

−2ϵ
8ϵ

Z
1

0

dy
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 2yþ 2ð1 − yÞirK
p

× ln

 
−yþ ð1 − yÞirK − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 2yþ 2ð1 − yÞirK
p

−yþ ð1 − yÞirK þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2yþ 2ð1 − yÞirK

p yþ ð1 − yÞirK þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 2yþ 2ð1 − yÞirK

p
yþ ð1 − yÞirK − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 − 2yþ 2ð1 − yÞirK
p

!
: (A13)

After substitution to the new integration variable z2 ¼ 3 − 2yþ 2ð1 − yÞ~r, where ~r ¼ irK is treated as an arbitrary
parameter, the integral becomes

Idðμ2; rKÞjsing ¼
A2
dμ

−2ϵ
8ϵð1þ ~rÞ

Z ffiffiffiffiffiffiffiffi
3þ2~r

p

1

dz

�
2 ln

zþ 1

z − 1
þ ln

3 − z
3þ z

þ ln
3þ ~r − ð1 − ~rÞz
3þ ~rþ ð1 − ~rÞz

�
: (A14)

Evaluating these again elementary integrals, and returning to irK through analytic continuation into the complex plane, one
at last arrives at

Idðμ2; rKÞjsing ¼
A2
dμ

−2ϵ
8ϵð1þ irKÞ

�
2
3 − irK
1 − irK

ln
4

3 − irK
− 2

1þ irK
1 − irK

lnð1þ irKÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2irK

p
LðrKÞ

�
; (A15)

with the logarithm of three products of complex ratios

LðrKÞ ¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2irK

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2irK

p − 1

3 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2irK

p
3þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2irK
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2irK

p þ irKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2irK

p − irK

�

¼ 1

2
ln

�
1þ 3sK þ ffiffiffi

6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sK þ 1
p

1þ 3sK − ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sK þ 1

p 3þ sK − ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sK þ 1

p

3þ sK þ ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sK þ 1

p 3sK þ r2K þ ffiffiffi
6

p
rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sK − 1

p

3sK þ r2K − ffiffiffi
6

p
rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sK − 1

p
�
; (A16)

where sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

9
r2K

q
. Note that the complex phases remarkably cancel in Eq. (A16), leaving a real expression;

furthermore, Lð0Þ ¼ 0. We specifically require
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ð1þ r2KÞReIdðμ2; rKÞjsing ¼
A2
dμ

−2ϵ
8ϵ

�
3 ln

16

9þ r2K
− ln ð1þ r2KÞ þ 2rK

�
arctan rK þ arctan

rK
3

�

þ
ffiffiffi
3

2

r
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sK þ 1

p
þ rK

ffiffiffiffiffiffiffiffiffiffiffiffiffi
sK − 1

p
ÞLðrKÞ

�
; (A17)

and

ð1þ irKÞIdðμ2; rKÞjsing

¼ A2
dμ

−2ϵ
8ϵ

"
3þ r2K
1þ r2K

ln
16

9þ r2K
− 1 − r2K
1þ r2K

ln ð1þ r2KÞ þ
4rK

1þ r2K

�
arctan rK − arctan

rK
3

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðsk þ 1Þ

r
LðrKÞ

#

þ i
A2
dμ

−2ϵ
8ϵ

"
2rK

1þ r2K
ln

16

ð9þ r2KÞð1þ r2KÞ
− 2

1 − r2K
1þ r2K

arctan rK þ 2
3þ r2K
1þ r2K

arctan
rK
3
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
ðsK − 1Þ

r
LðrKÞ

#
: (A18)
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