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We use femtosecond optical spectroscopy to systematically measure the primary energy relaxation rate
Γ1 of photoexcited carriers in cuprate and pnictide superconductors. We find that Γ1 increases
monotonically with increased negative strain in the crystallographic a axis. Generally, the Bardeen-
Shockley deformation potential theorem and, specifically, pressure-induced Raman shifts reported in the
literature suggest that increased negative strain enhances electron-phonon coupling, which implies that
the observed direct correspondence between a and Γ1 is consistent with the canonical assignment of Γ1 to
the electron-phonon interaction. The well-known nonmonotonic dependence of the superconducting
critical temperature Tc on the a-axis strain is also reflected in a systematic dependence Tc on Γ1, with a
distinct maximum at intermediate values (∼16 ps−1 at room temperature). The empirical nonmonotonic
systematic variation of Tc with the strength of the electron-phonon interaction provides us with unique
insight into the role of electron-phonon interaction in relation to the mechanism of high-Tc super-
conductivity as a crossover phenomenon.
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The deformation potential theorem [1] has been very
successful in rationalizing and quantifying the strength of
the electron-phonon interaction (EPI) in relation to charge
carrier scattering and mobility in semiconductors [2,3], thus
rapidly leading to an understanding of charge carrier
dynamics and opening the way to modern semiconductor
technology. Subsequently, it has been shown that the
formalism is not limited to semiconductors, but can be
extrapolated to both metals and insulators [4]. Strain on the
structure caused by external pressure or doping may result
in significant changes of the EPI, leading to changes in

functional properties over and above those caused by the
changes of density of doped charges.
In both the cuprate and pnictide families of super-

conductors, the interatomic distance has been discussed
as a quantitative parameter [5–7] in addition to the doping
level x that is systematically correlated with the super-
conducting critical temperature Tc. Although this was
pointed out in cuprates long ago and is obviously of
primary relevance to the superconducting mechanism, there
is not even an elementary understanding of the origin of the
peculiar nonmonotonic variation of Tc on the lattice
constant that is ubiquitously observed. Here, we present
systematic measurements of electron energy relaxation in
the normal state of different high-Tc superconductors to
show that in both cuprate and pnictide superconductors the
primary electron energy relaxation rate Γ1 is directly
correlated with the length a of the crystallographic a axis,
which in turn depends on the structure, the type of dopant
atoms, and the doping level x. The dependence of the
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deformation potential on the lattice constant rationalizes
how the EPI strength increases with increasing negative
strain in the a axis. Using established models that relate Γ1

to the EPI, we make the connection between the EPI and Tc

for the first time. From the observed characteristic variation
of Tc on the EPI, we can reach important conclusions
regarding the relevance of EPI to the superconducting
mechanism in the context of strong correlations.
Following the proposal [8] and demonstration [9] of the

use of femtosecond optical pump-probe spectroscopy to
investigate the EPI in classical superconductors, we use an
ultrashort laser pulse (the pump) to create a nonequilibrium
electron distribution. The electron energy relaxation is
probed by a second, weaker probe pulse, which detects
the transient change in the reflectivity ΔR=R. This method
has been shown to yield a more reliable measure of the EPI
strength [9–14] than the measurement of phonon linewidths
by Raman or neutron scattering, which are often compro-
mised by inhomogeneous broadening and probe only a
limited selection of phonons.
Although the technique is experimentally well estab-

lished, some precautions need to be taken to obtain
quantitatively accurate data on Γ1. In order to disentangle
the various relaxation pathways in high-Tc superconductors
and determine their time constants τi ¼ 1=Γi, we use
several different probe wavelengths. Since the τi depend
on the sample temperature [see Eq. (1)], and additional
processes appear in the presence of low-temperature order
[15], we measure all samples at the same temperature—
300 K—well above the temperature where any low-
temperature ordering might take place. We avoid nonlinear,
intensity-dependent relaxation processes and sample heat-
ing or degradation by keeping the pump pulse fluence
below 20 μJ cm−2. Most importantly, to provide the neces-
sary time resolution and sensitivity, we built a system that
gives tunable pump and probe wavelengths ranging
from 500 to 700 nm with sub-30-fs overall time resolution.
Sub-25-fs pump pulses with a repetition rate of 250 kHz are
provided by a noncollinear optical parametric amplifier
tuned to a center wavelength of 535 nm (see the
Supplemental Material [16] for a detailed description).
Probe pulses are provided by a white light continuum
generated in 2.5-mm-thick sapphire. Adequate time reso-
lution is ensured via spectral filtering of the chirped probe
pulses [17,18]. In several of the samples investigated here,
this allowed the identification of previously unresolved
relaxation processes.
The sample growth and doping is described elsewhere

[19–24]. Samples are glued to a copper support using GE
varnish. When needed, samples are cleaved to obtain a
reflecting surface with low scattering. The reflectivity and
the relative spectral weight of the signal components may
vary across the surface, but the relaxation times do not. To
eliminate the influence of the sample thickness, we used
only samples much thicker than 100 μm, while our

experiment probes a surface layer typically ∼100 nm,
depending on the material. The superconducting critical
temperature Tc (see Table I) was determined by measuring
the temperature dependence of the ac magnetic suscep-
tibility using a superconducting quantum interference
device magnetometer.
A representative data set on the transient reflectivity of

the selected compounds at room temperature is shown in
Fig. 1. (The complete data are reported in the Supplemental
Material [16].) To extract the relaxation times, we fit the
data using single- or double-exponential decays and a
Gaussian function for the instrumental response. (See the
Supplemental Material [16] on the time resolution of the
used setup and its implications for the accuracy of short τ1
values.) Oscillatory components are modeled using the
same generation term as the main signal, leaving amplitude,
frequency, phase, and damping time as the fit parameters.
We measure all samples over a range of different wave-
lengths and in both orthogonal polarizations. Although we
let all fit parameters vary freely between different wave-
lengths, for each sample, the best fits yield the same
relaxation times within 10%–20%. From this observation,
we conclude that at different wavelengths we are measuring
the same relaxation processes but with different spectral
weights.
From the fits, we find that the primary (fastest) relaxation

rate Γ1 ranges from 3 to 25 ps−1 (i.e., relaxation time τ1
between 40 and 330 fs, Table I), independent of probe
wavelength and sample orientation with respect to the
probe polarization. For the cuprates, we also identify a
slower relaxation component τ2. Some of the transient
reflectivity signals show strong coherent phonon

TABLE I. Stoichiometries, superconducting critical temper-
atures, and electron-phonon relaxation times and rates of the
investigated samples. For each compound family, we calculated
error margins (standard deviation over the obtained fit parame-
ters) for the sample with the highest number of measured
time traces.

Sample Tc ðKÞ τe-ph (fs) 1=τe-ph ðps−1Þ
BaFe2As2 0 300 3.3
BaðFe0.975Co0.025Þ2As2 0 330 3.0
BaðFe0.949Co0.051Þ2As2 20 320 3.1
BaðFe0.93Co0.07Þ2As2 23 300 3.3
BaðFe0.89Co0.11Þ2As2 10 300 3.3

SmFeAsO0.8F0.2 49 190 5.3

YBa2Cu3O6.5 63 72 14
YBa2Cu3O6.9 90 77 13

HgBa2CuO4.1 98 62 16

Bi2Sr2CaCu2O8.14 80 49 20

La1.9Sr0.1CuO4 30 42 24
La1.85Sr0.15CuO4 38 45 22
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oscillations [25], which are subtracted in the analysis. The
τ1 values for YBa2Cu3O6þx, Bi2Sr2CaCu2O8.14, and the
pnictides agree well with room-temperature data from
the literature [10–13], while for HgBaCa2CuO4.1, they
are resolved for the first time. For La2−xSrxCuO4, our
recent results obtained with much higher pump intensity
[14] are confirmed by the present low-intensity data.
In Fig. 2, we plot the primary relaxation rate Γ1 as a

function of the crystallographic a axis of pnictides and
cuprates. All data points for cuprates, including differently
doped samples, fit to a straight line, where Γ1 decreases
with increasing a. Defining the a-axis strain εa ¼ Δa=a0,
with the equilibrium value [6] a0 ¼ 3.94 Ǻ, this means that
higher negative strain in the Cu-O planes leads to faster

electron energy relaxation. For a given cuprate, a is not
determined only by the type of compound, but also varies
significantly with doping, by 0.1 Ǻ over the whole super-
conducting range of the phase diagram [5]. This translates
into a doping-dependent relaxation rate, as our data for
YBa2Cu3O6þx and La2−xSrxCuO4 at different doping
levels confirm, and is in agreement with previous data
[11] on Bi2Sr2CaCu2O8þx. On the other hand [26], a in the
pnictide BaðFe1−xCoxÞ2Se2 is nearly doping independent,
changing by less than 0.002 Ǻ. Remarkably, for all
measured BaðFe1−xCoxÞ2Se2 samples, which cover a wide
range of doping levels, the measured Γ1 values show almost
no variation. Hence, Γ1 depends on a, but not on the doped
carrier density.
Given the consensus in the literature in attributing

the ultrafast response Γ1 to the electron energy relaxation
[10–14,27–29], we proceed to discuss the relaxation
mechanism. The electron-phonon relaxation rate 1=τe-ph
can be related to the EPI strength expressed as the second
moment λhω2i of the Eliashberg spectral function [8,30]:

1

τe-ph
¼ B

λhω2i
T

; (1)

where T is the temperature and B is a constant. Depending
on whether one assumes the electron-electron relaxation to
be much faster than the electron-phonon relaxation [8] or
not [30], T is either the electronic temperature Te or the
lattice temperature TL, respectively. In the present experi-
ments, we use a very low laser excitation fluence, in which
case Te ∼ TL. The models above assume coupling between
two baths: the hot electrons and the phonons whose
coupling is characterized by the Eliashberg spectral func-
tion. One may also include more specific bosonic excita-
tions in such models to emphasize a particular interaction
[11,27–29]. However, this does not have significant bearing
in the current discussion, since we are discussing only the
dominant relaxation rate. The electron energy relaxes
towards the bath that has the largest heat capacity; the
lattice is the obvious candidate [31]. Recent microscopic
calculations within the driven t-J-Holstein model suggest
that, under certain conditions, rapid energy transfer to spin
degrees of freedom can occur [32], but considering the
relaxation dynamics, only the relaxation of a highly excited
charge carrier through Holstein phonons has been inves-
tigated thus far [33]. A detailed discussion of the assign-
ment of Γ1 to the EPI and the choice of the proportionality
constant B is given in the Supplemental Material [16].
The EPI strength is often described by a dimensionless

parameter λ (the zero-order moment of the Eliashberg
spectral function) rather than λhω2i. To calculate λ from
λhω2i, one would need to know the complete q-and ω-
dependent Eliashberg spectral function. As a crude
approximation, λhω2i is often simply divided by the square
of an effective phonon frequency ω�. Commonly used

FIG. 1. Transient differential reflection at 295 K for different
(near) optimally doped superconducting compounds. Thin solid
lines are fits. Please refer to the Supplemental Material ([16],
Figs. S8–S19) for different doping levels and sample orientations.
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values are 40 meV for cuprates [21,29] and 25 meV for
pnictides [28]. Using these values, we estimate λ ∼ 0.3–0.5
for cuprates and λ ∼ 0.2–0.3 for pnictides. This estimate
agrees well with λ obtained from angle-resolved photo-
emission [34,35], neutron scattering [36–38], and tunneling
[39] spectroscopy.
Generally, the effective electron-phonon coupling λ is

proportional to the square of the energy E1, defined via the
deformation potential [1,40] δU ¼ E1Δ, which gives the
energy shift of the conduction band edge as a function of
the strain Δ. For a small variation of a (for the cuprates
Δa=a ∼ 3%), we may expand around the equilibrium value
a0 to first order:

λ � ðaÞ ≈ γ½E1ða0Þ þ
∂E1

∂a ða − a0Þ�
2

≈ λ � ða0Þ þ ~γ
∂E1

∂a ða − a0Þ: (2)

The linear relation between λ and a above justifies the fit
of Γ1ðaÞ in Fig. 2. Using a simple estimate for
E1 ≈ ℏ2=3ma2, where m is the electron mass, ∂E1=∂a is
negative, in agreement with the negative slope of the
experimentally obtained Γ1ðaÞ.
In addition to the increase of λ with decreasing a, the

phonon frequencies observed by Raman spectroscopy also
increase [41,42]. Both effects lead to an increase of the
relaxation rate (see next paragraph). The observed blue-
shifts of the phonon bands by a few percent per picometer
of contraction of a are consistent in both sign and
magnitude with the observed increase of Γ1.
In both cuprates and pnictides, it has been proposed that

Tc is determined by two parameters: the doping level x and
the length a of the crystallographic a axis [5–7], or,

equivalently, some related structural parameter, such as
the Cu-O in-plane bond length or the anion height in the
pnictides. In the cuprates, superconductivity occurs when
structure, doping-induced strain, or pressure-induced strain
compresses a well below its equilibrium value [5,6] (in a
cubic lattice) of a ¼ 3.94 Ǻ, with a maximum Tc at
a ¼ 3.84 Ǻ́ [Fig. 3(a)]. The direct correspondence between
a and Γ1 shown in Fig. 2 suggests that, equivalently to a, Γ1

can be used as a second parameter that determines Tc [see
Fig. 3(b)]. TcðRÞ systematically follows an arc with a
distinct maximum around K ∼ 16 ps−1. For the cuprates, a
and consequently Γ1 depend on the doping levels, while for

FIG. 2. Primary electron energy relaxation rate Γ of pnictides
and cuprates as a function of the a-axis length. Large symbols are
at or close to optimal doping, open symbols at other doping
levels. Dashed lines are linear fits. The inset is a zoom into the
region of the five different BaðFe0.975Co0.025Þ2As2 samples,
which have very similar a and Γ values.

FIG. 3. (a) Critical temperature for cuprates as a function of the
a axis [2 times the in-plane Cu-O distance as published in Ref. [5]
(refer to the caption of Fig. 6 of Ref. [5] for the numbering of the
compounds)]. Full symbols are our samples at or close to optimal
doping (same symbol and color coding as Fig. 2), open circles are
from Ref. [5], line is a fit to a Lorentzian as a guide to the eye.
(b) The superconducting transition temperature Tc as a function
of the primary relaxation rate Γ1. To plot the top axis, we used
Eq. (1) with [30] B ¼ 3h=2πkB. Full symbols indicate (almost)
optimally doped samples, open symbols other doping levels.
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BaðFe1−xCoxÞ2Se2 the two parameters are practically
independent. The femtosecond pump-probe experiment,
thus, directly yields a parameter—Γ1—that is uniquely
related to Tc.
Allen’s proposition [8] that Γ1 be proportional to the EPI

and the Bardeen-Shockley deformation potential theorem
[1] that relates the EPI to strain on the a axis together
suggest a correspondence between a and the EPI, which we
verified experimentally. Relating Tc to the EPI rather than
to a can give us better insight into the applicability of
different mechanisms of superconductivity. BCS theory,
and by extension Eliashberg theory, predicts a monoton-
ically increasing Tc with increasing λ, which is contrary to
the systematics we observe. On the other hand, in bare
strongly correlated electron models, such as the Hubbard
model and the t-J model, the tunneling t decreases with
increasing distance, but the dependence of Tc on t is not
clear. Until now, the dependence of other interactions, such
as spin fluctuations, on the a parameter has not been
studied, but it is possible that these may have an—as yet
undetermined—effect on Tc.
The observed nonmonotonic behavior strongly suggests

a crossover phenomenon. Thus, competing interactions
need to be considered, such as the crossover from weak
coupling (BCS-like) to strong coupling [43] as a function of
λ. An alternative approach includes strong correlations via
the Coulomb interaction into an EPI model within the
strong coupling approach [44]. In other words, the cross-
over behavior also highlights the necessity of the interplay
of competing ground states [20] for achieving high Tc’s. In
any case, the EPI is clearly involved in a very unconven-
tional way [45]. Indeed, the systematic, large, yet strongly
unconventional isotope effect departing strongly from BCS
behavior observed across the compounds corroborates this
notion [46,47]. Although the present data and analysis
presented in Fig. 3 do not identify the mechanism, they
emphasize a role for unconventional electron-lattice effects
and give a stringent verification criterion for any hopeful
high-Tc superconductivity theory [48,49].
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