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We study a new class of unconventional critical phenomena that is characterized by singularities only
in dynamical quantities and has no thermodynamic signatures. One example of such a transition is the
recently proposed many-body localization-delocalization transition, in which transport coefficients vanish
at a critical temperature with no singularities in thermodynamic observables. Describing this purely
dynamical quantum criticality is technically challenging as understanding the finite-temperature dynamics
necessarily requires averaging over a large number of matrix elements between many-body eigenstates.
Here, we develop a real-space renormalization group method for excited states that allows us to overcome
this challenge in a large class of models. We characterize a specific example: the 1 D disordered transverse-
field Ising model with generic interactions. While thermodynamic phase transitions are generally forbidden
in this model, using the real-space renormalization group method for excited states we find a finite-
temperature dynamical transition between two localized phases. The transition is characterized by
nonanalyticities in the low-frequency heat conductivity and in the long-time (dynamic) spin correlation
function. The latter is a consequence of an up-down spin symmetry that results in the appearance of an
Edwards-Anderson-like order parameter in one of the localized phases.
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I. INTRODUCTION

Our ability to describe emergent behavior in many-body
systems relies, to a large extent, on the universality of
critical phenomena associated with phase transitions and
spontaneous symmetry breaking. Spontaneous symmetry
breaking plays an important role even in disordered
systems. For example, the spin-glass transition in classical
magnets with random interactions follows this paradigm: as
temperature drops, a specific frozen magnetization pattern
that breaks an Ising symmetry emerges [1,2]. In one
dimension, however, there are strong arguments, which
forbid spontaneous symmetry breaking and, more gener-
ally, thermodynamic phase transitions from occurring at
any nonvanishing temperature [3,4].

Do these arguments rule out the observation of critical
phenomena in one-dimensional systems at nonvanishing
temperature? A recent theoretical work, which generalizes
the phenomenon of Anderson localization [5] to interacting
many-body systems, suggests otherwise [6,7]. Its intriguing
prediction is that an isolated many-body system subject to
strong disorder can undergo a phase transition, from a state
with strictly zero (thermal) conductivity at low temperature
to a metallic phase above a critical temperature. This
transition has only dynamicalmanifestations and no thermo-
dynamic ones, and is, in this sense, a many-body extension
of the mobility edge [8] in the Anderson localization
transition in 3 D. A similar many-body transition was also
suggested to exist in the 1 D bosonic case [9], at infinite
temperatures as a function of disorder strength [10–12], and
in quasiperiodic systems without disorder [13]. Very little,
however, is known about the universality of such transitions.
In this paper, we uncover a wider class of unconventional

critical phenomena, whose existence was hinted by
the many-body localization transition example. By
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investigating a random spin chain with generic interactions,
we find and characterize another instance of this new class of
transitions that exhibit nonanalytic dynamical behavior as a
function of temperature but lack any strictly thermodynamic
signatures. The transition stems from the structure of the
many-body eigenstates, which decidedly changes aswe tune
the extensive many-body energy [14]. On one side of the
transition (the paramagnetic side) the eigenstates consist of
most spins aligned or antialigned with the random local
field, while on the other side (the glass side) spins show a
pattern of frozen magnetization that breaks a Z2 symmetry
[see Figs. 1(a) and 1(b)]. The magnetization pattern is
random, however, and varies from eigenstate to eigenstate
as if each is a classical spin-glass ground state of a different
disorder realization. The signatures of the phases and phase
transition appear not in a single state, but rather in a large
portion of the many-body Hilbert space. Therefore, we coin
the term Hilbert-glass transition (HGT) to describe this type
of dynamical quantum criticality. The properties of the HGT
are summarized in the generic phase diagram, Fig. 1(c).
The challenges for analyzing the HGT are clear: a

complete knowledge of the properties of an entire excita-
tion spectrum—wave functions and energies alike—is
necessary. Previous efforts to characterize quantum
dynamical transitions, such as the many-body localization
transition, relied on exact diagonalization (ED) of small
systems [10,12,16–22]. Here, we pursue an alternative
approach based on the strong disorder real-space renorm-
alization group (RSRG) method [23–28] and its extensions
to unitary time evolution [29]. We generalize the method to
deal with arbitrary-energy excitations, hence, the acronym
RSRG-X. The RSRG-X allows us to investigate the

dynamics of an arbitrary-temperature thermal state of
strongly disordered systems containing thousands of sites,
i.e., accessing systems 2 orders of magnitude larger than
what exact diagonalization can access.
Unlike the many-body localization transition, the tran-

sition we describe occurs between two localized phases,
which, therefore, cannot thermalize on their own [30–32].
Nonetheless, there are physical settings in which it is
meaningful to discuss thermal response functions and
temperature-tuned transitions in these systems. First,
one can imagine preparing the system in equilibrium by
connecting it to an external bath, which is adiabatically
disconnected before the start of the response measurement.
Alternatively, the system could be weakly coupled to a
thermal bath at all times. In the second case there is a time
scale, set by the bath coupling strength, beyond which the
bath dominates the dynamics. The strong-disorder fixed
point that we describe would provide a faithful description
of the dynamical behavior on shorter time scales.
The model we investigate with the RSRG-X is the

generalized quantum Ising model

HhJJ0 ¼ −X
i

ðJiσxi σxiþ1 þ hiσ
z
i þ J0iσ

z
iσ

z
iþ1Þ: (1)

Without the last J0 term, Eq. (1) represents the usual
transverse-field Ising model (TFIM), which was the first
arena in which real-space renormalization group was used
to elucidate the novel universal properties of phase tran-
sition dominated by strong disorder [25,27]. In particular,
the RSRG analysis yields the infinite randomness energy-
length scaling logð1=EÞ ∼ l1=2, in contrast to the E ∼ l−z
scaling in conventional critical systems.

(a)
(c)

(b)

FIG. 1. (a) Schematic representation of a typical eigenstate in the paramagnetic (local-field-dominated) phase: the local spins are
largely aligned (i) or antialigned (ii) with the local fields; rare clusters can still be present (iii). (b) Hilbert-glass (cluster-dominated)
eigenstate: local spins form magnetic clusters that often contain domain walls; rare isolated spins can still be present. (c) Schematic
phase diagram of the Hilbert-glass transition (HGT) in the tuning parameter–temperature plane. The diagram shows the HGT line
separating the paramagnetic (local-field-dominated) and the Hilbert-glass (cluster-dominated) phases terminating in a zero-temperature
quantum critical point (QCP). The behavior of equilibrium thermodynamic observables at finite temperatures is governed by the QCP in
the region of critical fluctuations [15]. While equilibrium thermodynamic observables have no singularities in the phase diagram, with
the exception of the zero-temperature QCP, dynamical observables show singular behavior along the HGT line.
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The TFIM makes a natural starting point for investigat-
ing dynamical critical points in strongly disordered sys-
tems. The TFIM, Eq. (1), however, can be mapped to a free
fermion theory, making its dynamics fundamentally equiv-
alent to that of a certain class of single-particle Anderson
localization (with particle-hole symmetry). We avoid this
problem by adding the J0 interaction term, which preserves
the Z2 symmetry, while making the model intrinsically
interacting. It has been shown that the dynamics in the
many-body localized phase, i.e., in the presence of
interactions, can be different than in the noninteracting
case [20–22,29,33].
The paper is organized as follows. In Sec. II, we develop

the RSRG-X procedure and consider the flows it produces.
The flows reveal the evolution of the many-body eigenstate
structure as temperature is varied, which allows us to
identify the dynamical phase transition and construct the
phase diagram. We find that the temperature-tuned tran-
sition is controlled by an infinite-randomness critical point,
with the same scaling properties as the zero-temperature
quantum phase transition [25]. In Secs. III and IV, we
examine two dynamical observables: the low-frequency
spin autocorrelation function (and an associated Edwards-
Anderson-type order parameter) and the frequency-
dependent thermal conductivity. Using the RSRG-X, we
find that in the vicinity of the critical temperature, both
observables show scaling behavior consistent with the
infinite-randomness critical point. The scaling behavior
becomes nonanalytic in the infinite system-size limit.
Finally, we discuss the implications of our results in Sec. V.

II. DYNAMICAL PHASE DIAGRAM
OF THE hJJ0 MODEL

Our task is to develop a renormalization group procedure
suited for describing the excited states of the weakly

interacting hJJ0 model. Our approach is based on the core
ideas of the RSRG methods developed for the ground state
behavior of random magnets [23–26,28], and for the TFIM,
in particular [27]. In the ground state methods, at each
RSRG step we diagonalize the strongest local term of the
Hamiltonian [Eq. (1)] and fix the corresponding subsystem
in the ground eigenstate of that term. We generate effective
couplings between the subsystem and its neighboring spins
through second-order perturbation theory, allowing only
virtual departures from the chosen ground state of the
strong term. In the TFIM, when the nearest-neighbor
x-x interaction is dominant, the RSRG steps lead to the
formation of a macroscopic ferromagnetic cluster that
breaks the Ising symmetry. On the other hand, when the
transverse field is dominant, it pins most local spins to the
þz direction. The addition of weak interactions, J0i ≪ Ji,
hi, results in a shift of the critical point but cannot affect the
universal zero temperature properties of the TFIM.

A. RSRG-X

The crucial difference between our RSRG-X method and
the ground state RSRG methods has to do with the choice
of the local eigenstates at each RG step. Instead of retaining
only the lowest energy states at each RG step, we can
choose either the low-energy or the high-energy manifold
of the local term. The two manifolds are separated by a
large gap, which controls the perturbation theory with
which we generate the effective couplings. Thus, each
RSRG-X step corresponds to a binary branching of a tree,
as illustrated in Fig. 2(a), where the leaves of the tree
correspond to the actual many-body spectrum, Fig. 2(b).
Implementing the RSRG-X on the hJJ0 model requires

two types of RG decimation steps: site and bond decima-
tions. Consider the nth RSRG-X step. If the largest gap in
the system is due to a field h2 [see Fig. 2(c)], the site could

(a) (b) (c) (d)

FIG. 2. (a) The RSRG-X tree for a six-site Ising chain. The leaves of the tree correspond to the many-body eigenstates of the spin
chain. (b) The corresponding eigenspectrum found by exact diagonalization. (c),(d) RSRG-X rules for site (c) and bond (d) decimation
in the hJJ0 model. In the site decimation rule, a local magnetic field (h2) is the dominant coupling; thus, the corresponding local spin is
either aligned (ground state) or antialigned (excited state) with it. Eliminating h2, we obtain a new set of couplings ~h1, ~J1, ~J1

0, and ~h3 to
second order (see Appendix B for details). In the bond decimation rule, J2 is the dominant coupling, corresponding to the neighboring
spins being either aligned (ground state) or antialigned (excited state, i.e., a domain wall) along the x axis.
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be eliminated by letting spin 2 be either mostly aligned
(cn ¼ þ1) or mostly antialigned (cn ¼ −1) with the local
field. Second-order perturbation theory induces an effective
Ising coupling between sites 1 and 3: ~J → cnJ1J2=h2.
Additionally, J0 couplings shift the local fields ~h1ð3Þ →
h1ð3Þ þ cnJ01ð2Þ. The significance of these shifts is that

subsequent RSRG-X steps depend on the history of
branching cn’s at all higher energy scales. The history
dependence is a feature of the interacting model and would
not arise in the case J0i ¼ 0. If the largest gap is due to a
bond J2 [see Fig. 2(d)], the two sites 2 and 3 form a cluster
that is either ferromagnetic (cn ¼ þ1) or antiferromagnetic
(cn ¼ −1). The rules for cluster formation also follow from
second-order perturbation theory. See Appendix A for a
detailed derivation of the RSRG-X framework using
Schrieffer-Wolff transformations and Appendix B for the
application of the framework to the hJJ0 model. Because of
our choice of the initial distributions, throughout the
RSRG-X flow all J0 values are small compared to the
nearby J and h values, and, therefore, we do not implement
a J0 elimination step. Once we have eliminated the largest
term in the Hamiltonian, we reduce the scale of the largest
gap, and then seek the next largest gap, until all degrees of
freedom in the chain are eliminated.
Obtaining the entire many-body spectrum requires the

construction of all branches of the tree, which is an
exponentially hard task. We, therefore, perform thermal
sampling of typical eigenstates using the Monte Carlo
method. In our procedure, Monte Carlo states correspond to
the many-body eigenstates, which we describe via a
sequence of branching choices b ¼ fc1; c2;…; cLg going
from the root to a leaf of the tree, where L is the number of
sites in the chain. To obtain a new Monte Carlo state b0, we
start at the leaf of the tree, go up the tree a random number
of nodes, e.g., m, and flip cL−m → −cL−m. Next, we
calculate the energy change of the many-body state due
to the flip of cm, by performing the RSRG-X steps from m
to L, and accept or reject the new state b0 according to
METROPOLIS [34] (see Appendix C for details of our
implementation of the numerics).
A possible concern regarding the RSRG-X method is

that it fails to correctly account for resonant coupling
between nearly degenerate but distinct branches, which
could result in delocalization. Reference [29] has argued
that, in the presence of strong disorder, these resonances are
not strong enough to lift the near degeneracy of the
eigenstates; hence, our system always remains localized.

B. RSRG-X flows

The dynamical phase diagram of the hJJ0 model derives
from the flow of the full distributions of coupling constants
h, J, and J0. We can, however, characterize the flow by
tracking just two parameters: C ¼ ⟦havg½ln jhj� −
avg½ln jJj�iTh⟧ and D ¼ ⟦hvar½log jhj� þ var½log jJj�iTh⟧,

where h� � �iTh and ⟦� � �⟧ represent thermal and disorder
averaging. Because J0 is irrelevant in the RG sense, we do
not explicitly characterize the flow of the J0 distribution.
C measures the relative strength of h and J distributions:
C > 0 indicates that h’s are dominant and the flow is
towards the paramagnetic phase while C < 0 indicates that
J’s are dominant and the flow is towards the Hilbert glass.
D measures the disorder strength, which always grows
upon coarse graining. In the J0 ¼ 0 case, the ratio δ ¼ C=D
remains almost constant throughout the RG flow [27], and,
hence, we use the initial value of δI as a tuning parameter.
A peculiar property of the interaction-free TFIM

(i.e., J0i ¼ 0) is that the absolute values of the effective
couplings following any decimation are insensitive to the
choice of final state (i.e., independent of cn’s). Therefore,
the fate of the RSRG-X flow is solely determined by
δI . Hence, the model experiences a dynamical transition at
a fixed critical value of δI independent of temperature:
δI > 0 results in h-dominated flows towards the para-
magnet while δI < 0 results in J-dominated flows towards
the Hilbert glass.
When interactions are added, temperature starts playing

an important role because gaps produced by decimation
steps are no longer independent of the choice of eigenstate.
Thermal averaging biases decimation steps towards low
or high energies, when β ¼ 1=T is positive or negative,
respectively. This leads to a temperature-driven dynamical
transition, which is the focus of this work. The transition
is encoded in the flows shown in Fig. 3(a): fixing δI, we
observe that the inverse temperature β tunes whether the
flow is towards the Hilbert glass or the paramagnet.

C. Dynamical phase diagram

The flows obtained from the RSRG-X method reveal a
dynamical phase diagram of the hJJ0 model. In Fig. 3(b) we
display several cross sections of the phase diagram in the
space of detuning versus inverse temperature for various
values of the interaction strength. We describe the strength
of the interactions by the parameter ΔJ0, which measures
the width of the J0i distribution; ΔJ0 > 0 (ΔJ0 < 0) corre-
sponds to the initial distribution with all J0i > 0 (J0i < 0). As
ΔJ0 (and, hence, typical J0) decreases, the sigmoid phase
transition curve narrows, becoming vertical at the non-
interacting point J0 ¼ 0 and finally mirroring itself for
negative values of ΔJ0 .
The shape of the phase diagram can be understood

by noting the effect of the site decimation RG rule on the
initial distributions (we always use Ji > 0, hi > 0). When
ΔJ0 > 0, J0 increases h on neighboring sites in the excited
state branches and reduces it in the low-energy branches.
Tuning the temperature changes the branching ratios,
which effectively alters the tuning parameter δI. Hence,
we expect the shape of the transition line to be
δI ≈ C0ΔJ0 tanhðEchar=TcÞ, where Tc is the critical temper-
ature, Echar is the characteristic energy scale describing
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the initial J and h distributions, and C0 is a constant related
to the shape of the initial J0 distribution. With the
exception of a small offset, this shape is indeed observed
in Fig. 3(b).
The offset can be understood from the infinite temper-

ature limit: β → 0 brings about an equal superposition of all
branches, which washes away any J0 effects. The remaining
J02 effects, associated with the flow of hlog hi, displace the
transition line from the origin:

δI;cðβ → 0Þ ¼ C0EcharβcΔJ0 þ C2Δ2
J0 ; (2)

where C2 is also constant.

III. DYNAMICAL SPIN CORRELATIONS
AND THE ORDER PARAMETER

Armed with the RSRG-X method, we now characterize
the two dynamical phases and the phase transition between
them. In the Hilbert-glass phase, the many-body eigenstates
tend to contain an infinite cluster that is produced by bond
decimations. We can crudely think of these eigenstates as
having a random sequence of fixed values of σx on the
different sites belonging to the infinite cluster. Thus, each
eigenstate breaks the Z2 symmetry of the Ising model. Of
course, different eigenstates, even very close in energy,
typically have completely different spin configurations.
A natural signature of the cluster phase is the dynamic

spin autocorrelation function

⟦γðtÞ⟧≡ ⟦
X
n

e−En=T

Z
hψnσ

x
i ðtÞσxi ð0Þiψn⟧: (3)

For an infinite system, in the cluster phase we expect
this correlator to saturate: limt→∞⟦γðtÞ⟧ → f, where
f ¼ smax=L is the ratio of the number of sites participating

in the largest cluster over the bare size of the chain [35].
Alternatively, the glass order parameter introduced by
Edwards and Anderson (EA) can capture this kind of static
eigenstate order and, moreover, survive thermal averaging

mEA ≡ ⟦
X
n

e−En=T

Z
jhψnσ

x
i iψnj2⟧: (4)

It is important to note that, although the EA order parameter
offers a static signature of the phase, it is not a thermo-
dynamic observable [36] and, hence, does not entail a
thermodynamic singularity.
To quantify the transition, we use RSRG-X to directly

measure the fraction of the system occupied by the largest
cluster smax=L. Figure 3(c) shows the evolution of the
largest cluster fraction across the phase transition, as we
tune the temperature. As the system size increases, the
transition becomes sharper, approaching the L → ∞
asymptote indicated by the dashed line. Indeed, this notion
can be made concrete using a finite-size scaling hypothesis,

smax ¼ Lϕ=2f½ðβ − βcÞ1=νL�; (5)

to successfully collapse the smax data [see inset of Fig. 3(c)].
To obtain this hypothesis, we use the intuition that temper-
ature (β) tuning is equivalent to δI tuning combined with
two zero-temperature results: (1) correlation length critical
exponent ν ¼ 2 and (2) at criticality smax ∼ Lϕ=2 (where ϕ
is the golden ratio) [26].

IV. LOCALIZATION AND
HEAT CONDUCTIVITY

Transport measurements are an important experimental
tool that could be used for the detection of dynamical phase
transitions. Here, we present the first calculation of heat

L

(a) (b) (c)

FIG. 3. (a) Renormalization group flows in the C-D plane, where C measures whether local fields or bonds are stronger while D
measures the strength of disorder. Tuning β results in RSRG-X flows towards the Hilbert-glass phase, the quantum critical point, and the
paramagnetic phase (PM), as indicated by arrows. (The initial value of the tuning parameter δ and the width of the initial J0 distribution
ΔJ0 is held fixed; see text.) (b) Phase diagram of the hJJ0 model in the δ-β plane for several values of ΔJ0 . (c) Size of the largest cluster
smax as a function of β for several values of the system size L. The transition becomes sharper and sharper as L increases. The inset shows
a finite-size scaling collapse of the same data. (Error bars indicate uncertainty due to disorder averaging; uncertainty due to Monte Carlo
sampling is always smaller.)
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transport using RSRG methods. We focus on the heat
transport since the energy current is the only locally
conserved current in the hJJ0 model. It is important to note
that both the Hilbert glass and the paramagnetic phases are
many-body localized. They do not thermalize by them-
selves and feature strictly vanishing dc heat conductivity.
Nevertheless, it is interesting to characterize these phases
by their ac transport in the low-frequency limit.
The calculation of the heat conductivity for the hJJ0 chain

is a potent demonstration of the RSRG-X’s strength. Using
detailed knowledge of the local decimation steps leading to
each branch in the many-body state tree, we can construct
the Kubo integral (see Appendix D), which yields the real
part of the conductivity:

κðωÞ ¼ 1

iωL

X
i;j

Z
0

−∞
dte−iωth½jiðtÞ; jjð0Þ�iTh: (6)

Here, jiðtÞ ¼ ½Pi−1
k¼1 Hi;H� is the energy current operator

andHk the Hamiltonian pertaining to site k and the bond k,

kþ 1. Plotting the low-frequency heat conductivity as a
function of β [see Fig. 4(a)], we observe a cusplike feature
signaling the onset of the Hilbert-glass transition.
To understand the origin of this feature, and how it

becomes sharper as ω → 0, we consider the scaling of
κðωÞ. In the noninteracting case, subsequent RSRG-X steps
are independent of the preceding steps, and, hence, we can
obtain (see Appendix D)

κðωÞ ∼ ωα: (7)

At criticality, α ¼ 3, which is the engineering dimension of
κðωÞ. As we tune away from criticality, we observe the
appearance of an anomalous dimension α ∼ 3þ constjδIj
(up to logarithmic corrections; see Appendix D). As J0 is an
irrelevant operator, we expect this scaling to persist in the
presence of J0. Furthermore, using the equivalence of β and
δI tuning, we hypothesize that α ∼ 3þ constjβ − βcj when
we tune across the transition using temperature.
We test our scaling hypothesis in two ways. First, we plot

κ for a small fixed ω as a function of β on semilog axes [see
inset of Fig. 4(a)]. We observe essentially linear behavior
away from the transition that is consistent with the
hypothesis. Second, in Fig. 4(b), we plot κ½ω� as a function
of ω for several values of temperature. κ½ω� displays
nonuniversal behavior at high frequencies, which becomes
a power law at low frequencies, and is cut off by the system
size at very low frequencies. As we tune β towards the
transition from either side, we observe that the power-law
exponent α decreases, reaching its lowest value of 3.3 at the
critical point [see inset of Fig. 4(b)]. Thus, up to loga-
rithmic corrections that likely account for the deviation
away from the engineering value α ¼ 3 in our 2000 site
spin chain, we find that our numerical results
are consistent with the expected critical scaling at the
transition.

V. CONCLUSIONS

We have explored the notion of a dynamical finite-
temperature transition by investigating a concrete model:
the hJJ0 model. This investigation is made possible by the
development of the RSRG-X, which we also describe in
this paper. Although notions of a dynamical finite-
temperature phase transition have appeared in the literature
before, we offer a detailed description of a specific example
of this type of transition.
Specifically, in the thermodynamic sense, the hJJ0 model

has a 0þ and a 0− temperature quantum phase transition.
Away from these two zero-temperature phase transitions,
the model displays no singularities in any of its thermo-
dynamic observables. However, connecting this pair of
quantum critical points, we find the HGT line, associated
with singular behavior in dynamical observables including
dynamical spin autocorrelations and heat conductivity.
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FIG. 4. (a) Low-frequency heat conductivity plotted as a
function of temperature. At the phase transition, the system
becomes least localized, which is associated with a cusp in the
heat conductivity. Inset: Same data plotted on a log-linear scale
supporting the form κ ∼ e−constjβ−βcj. (b) Heat conductivity plotted
as a function of frequency for five different temperatures. The
low-frequency heat conductivity displays power-law scaling with
frequency κðωÞ ∼ ωα. Inset: α as a function of β (see text). [In all
cases, δI ¼ −0.555 and ΔJ0 ¼ −0.2. Error bars indicate uncer-
tainty due to disorder averaging; uncertainty due to Monte Carlo
sampling is always smaller. Dashed lines in (b) indicate the region
being fitted for the inset.]
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We, therefore, add a new type of universality to the lore of
critical phenomena.
Finally, we note that the RSRG-X method could find

applications in describing many-body eigenstates, espe-
cially localized eigenstates, in other models both in 1 D and
in higher dimensions.
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APPENDIX A: RSRG-X GENERAL FRAMEWORK

Our results rely on the extension of the real-space
renormalization group to obtain and sample the excited
spectrum of a 1 D problem. The method, which we refer to
as RSRG-X, follows closely the ground-state-relevant
constructions in Refs. [23–27]. In both cases, we iteratively
eliminate the strongest local pieces of the Hamiltonian
and construct the many-body state as an approximate tensor
product of eigenstates of the strong terms. New low-energy
terms arise during the elimination process, and they are
calculated within second-order perturbation theory via a
Schrieffer-Wolff transformation. The method concludes
when all degrees of freedom are eliminated, or when the
Hamiltonian consists only of mutually commuting terms.
We describe a single iteration step of the RSRG-X

method. Our analysis assumes local Hamiltonians of the
following form:

H ¼
X
i

Hi=2; (A1)

where the terms with an integer index pertain to a site, and
the terms with a half-integer index pertain to bonds, and

have a nontrivial effect on the tensor product of the two
Hilbert spaces of the appropriate two neighboring sites. The
first task in the RSRG-X elimination step is to separately
solve the local Hamiltonians Hi=2 and find the term Hm=2
with the largest energy gap in its spectrum.
Next, we concentrate on the three pieces Hm=2;ðm�1Þ=2 ¼

Hðm−1Þ=2 þHm=2 þHðmþ1Þ=2 and partially solve for the
many-body ground state using a Schrieffer-Wolff trans-
formation. We assume that the largest gap separates the
energies of two subspaces of the domain ofHm; we denote
them with the letters a and b, and also define Pa and Pb as
projections onto them. For convenience, we rewrite the
three-term Hamiltonian in the following way:

Hm=2;ðm�1Þ=2 ¼ H0 þ V: (A2)

H0 encodes the largest gap we identified and ignores
all the degeneracy-breaking effects within the high- and
low-energy subspaces. Without loss of generality, we write
H0 as

H0 ¼
λ

2

�
Ia 0

0 −Ib
�
; (A3)

where λ is the size of the largest local gap, and Ia and Ib are
two identity matrices with dimensions corresponding to the
dimension of the subspaces a and b. Our goal is to find a
unitary transformation eiS, such that

½eiSðH0 þ VÞe−iS; H0� ¼ 0; (A4)

i.e., that eliminates the pieces in V that mix the subspaces
a and b. We perform this task perturbatively, expanding
S ¼ Sð0Þ þ Sð1Þ þ Sð2Þ þ � � � in powers of V.
To facilitate the task, we introduce the notation that Pα is

a projection onto subspace α ∈ fa; bg, Pᾱ is the projection
onto the complementary subspace, ð−1Þa ¼ 1, and ð−1Þb ¼
−1. Sð0Þ ¼ 0 since H0 does not connect the two subspaces.
Sð1Þ is found by solving Pαð½iSð1Þ; H0� þ VÞPᾱ ¼ 0, which
yields

Sð1Þ ¼ 1

iλ

X
α

ð−1Þα
iλ

PαVPᾱ: (A5)

We note that, due to the structure of H0,
½iSð1Þ; H0� þ

P
αPαVPᾱ ¼ 0. Using Sð1Þ, we can find

the effective Hamiltonian, for the two subspaces, up to
second order:

Heff ¼ eiSðH0 þ VÞe−iS −H0 ≈
X
α¼a;b

PαðV þ ½iSð1Þ; V�

− 1

2
fðSð1ÞÞ2; H0g þ Sð1ÞH0Sð1ÞÞPα; (A6)

where ff; gg represents the anticommutator fgþ gf.
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Ifweare interested in thecorrections to thewave functions,
we need to know the unitary transformation eiS up to
second order. Sð2Þ is found by solving Pαð½iSð2Þ; H0�þ
½iSð1Þ; V� − 1

2
fðSð1ÞÞ2; H0g þ Sð1ÞH0Sð1ÞÞPᾱ ¼ 0, which

yields

Sð2Þ ¼ 1

iλ2
X
α

PαVðPα − PᾱÞVPᾱ: (A7)

To make the RSRG-X method work, the Schrieffer-
Wolff perturbation theory must converge. We infer from the
above forms that a necessary condition is that the largest
eigenvalue must be smaller in absolute value than λ:
jjVjj ≪ λ. This should also be sufficient in most physical
cases, but we do not attempt to pursue a proof of this
notion, but rather rely on small-size numerics to confirm
the validity of the method.

APPENDIX B: APPLICATION
TO THE hJJ0 MODEL

The hJJ0 model naturally fits the mold of the RSRG-X
model, just as the TFIM has become the ubiquitous
example for the ground state RSRG method. Following
the convention of Eq. (1), we write the site and bond terms,
respectively, as

Hi ¼ −hiσzi ; Hiþ1=2 ¼ −Jiσxi σxiþ1 − J0iσ
z
iσ

z
iþ1: (B1)

We concentrate on the case in which J0 is small and,
therefore, can be treated perturbatively. In this case, the
largest gap in the chain may arise either due to a site
Hamiltonian, i.e., a large field hi, or a bond Hamiltonian,
i.e., a large Ising term Ji. For notational simplicity, we
assume that the largest coupling occurs on site i ¼ 2, and
we refer to Figs. 2(c) and 2(d) for the definition of the
notation. Applying the Schrieffer-Wolff transformation, we
find the site dominant rule to be

~h1 → h1 þ cJ10; ~h3 → h3 þ cJ20; (B2)

~J1 → c
J1J2
h2

; ~J1
0 → 0; (B3)

λ → c
�
h2 þ

J21 þ J22
2h2

�
; (B4)

and the bond dominant rule to be

~h1 → h1 þ c
h2J10

J2
; ~hc → J20 þ c

h2h3
J2

;

~h4 → h4 þ c
h3J30

J2
; (B5)

~J1 → cJ1; ~Jc → J3; (B6)

~J1
0 → c

h3J10

J2
; ~Jc

0 → c
h2J30

J2
; (B7)

λ → c
�
J2 þ

h22 þ h23 þ ðJ10Þ2 þ ðJ30Þ2
2J2

�
: (B8)

Here, c ¼ �1 indicates the choice of the local Hilbert space
(tree branch) and λ is the shift of the energy eigenvalue.
The most important thing in the RSRG-X procedure is

that no relevant new terms are produced, and the decima-
tion step could repeat itself until all degrees of freedom in
the chain are accounted for.

APPENDIX C: NUMERICS

The RSRG-X procedure was performed numerically on
random spin chains with length L from 500 to 2000 spins.
For each realization of disorder, we performed 5 × L equili-
bration Monte Carlo steps, followed by 2 × ð105–106Þ) data
collection Monte Carlo steps. The initial distributions for Ji,
hi, and Ji0 were selected to be uniform distributions with the
following ranges:

P½J� ¼ Uð0.3; 1 − sÞ; P½h� ¼ Uð0.3; 1þ sÞ;
P½J0� ¼ Uð0;ΔJ0 Þ; (C1)

where U½a; b� indicates the uniform distribution that ranges
from a to b, s is the initial shift of the distribution (which we
translate into the initial value of the tuning parameter δI), and
ΔJ0 corresponds to the width of the initial J0 distribution. We
note that, while we only used positive-definite initial dis-
tributions of J and h, we looked at both positive-definite
(ΔJ0 > 0) and negative-definite (ΔJ0 < 0) initial distribu-
tions of J0.

APPENDIX D: DERIVATION OF THE
HEAT CONDUCTIVITY

To find the heat current operator, we apply the relation
ji ¼ ½Pi

k¼1 Hi;H� to the TFIM model and obtain
ji ¼ −2iJihiþ1σ

x
i σ

y
iþ1. Here, we do not include J0 contri-

butions because J0 is an irrelevant operator that will not
affect the low-frequency thermal conductivity. In order to
compute the heat current operator at a given RG step, we
use the renormalized Hamiltonian in the commutation
relation. We note that using the Schrieffer-Wolff trans-
formation on the heat current operator as we run the RG
yields exactly the same result as the direct calculation using
the renormalized Hamiltonian because the heat current
operator is directly tied to the Hamiltonian.
To compute the thermal conductivity, we follow

Ref. [28] and write the Kubo formula [Eq. (6)] in terms
of an explicit trace over many-body eigenstates:
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κðωÞ ¼ π

ωZL

X
m;n

δðωþ Em − EnÞe−βEm

× ð1 − e−βωÞjhnj
X
i

jijmij2; (D1)

where Z is the partition function. To evaluate κ using
Monte Carlo methods, we sample over the states jmi. To
determine En and the matrix element jhmjPijijnij, we
assume that the most important contribution comes
from the local Hamiltonian that is being decimated at
the scale ω. That is, if we are decimating the bond Jk, then
En ¼ Em − ω ≈ Em − 2Jk and jhmjPijijnij ≈ 2Jkhkþ1.
Similarly, if we are decimating the site hk, En ¼ Em −
2hk and jhmjPijijnij ≈ 2Jk−1hk.
In the noninteracting case, we can evaluate κ explicitly,

as the partition function becomes a product of partition
functions of the individual RG steps. Thus, we can
explicitly write down the heat conductivity

κðωÞ ¼ 1

ω
nðωÞPðω;ωÞ

Z
ω

0

Rðω0;ωÞð2ωω0Þ2dω tanh

�
ω

T

�

þ ðP↔RÞ; (D2)

where nðωÞ is the fraction of the sites that survive at the
scale ω and Pð·;ωÞ [Rð·;ωÞ] is the distribution of jJj’s
[jhj’s] at scale ω. Using the critical and off-critical
distributions from Ref. [[27]], we find

κðωÞ ∼
�
ω3þ2jδj ω < T

ω2þ2jδj ω > T:
(D3)

We observe that the exponent at criticality can be obtained
from the engineering dimensions using the following facts:
the dimensionality of the heat current operator ½jkðωÞ�∼
ω2, the distribution functions ½Pð·;ωÞ� ¼ ½Rð·;ωÞ� ¼ ω−1,
and remembering that tanhðωTÞ contributes a power of ω in
the “hydrodynamic” regime ω ≪ T. The first logarithmic
correction to this result is logð1=ωÞ−4, where two powers of
the logarithm come from the density of states, one power

comes from the J distribution, and one power from the h
distribution.

APPENDIX E: BENCHMARKING

Here, we benchmark our RSRG-X method against
numerical and analytic solutions of free-fermion models
and against exact diagonalization calculations on small
hJJ0 chains. Before starting, we note that the RSRG-X
method is only asymptotically exact: as one performs
RSRG-X steps and flows towards stronger disorder, the
method becomes more accurate. Consequently, for the case
of weak disorder, one can compare scaling properties, but
direct comparisons of objects like many-body spectra are
expected to work only for the case of strong disorder.
First, we look at exactly solvable spin chains and make a
comparison of scaling properties obtained from RSRG-X
with those obtained from exact diagonalization and ana-
lytics. We then move on to the nonintegrable hJJ0 spin
chains and show that, in the limit of strong disorder, the
RSRG-X becomes exact.
We begin by looking at the single-particle spectrum of

long hJ spin chains. In particular, we are interested in the
low-energy part of this spectrum as it is responsible for the
low-frequency dynamical properties of the system such as
the ac heat conductivity and the dynamic spin-correlation
function. Generically, the effective couplings generated
in each RSRG-X step depend on the branching choice.
However, in the absence of interactions (J0 ¼ 0), the
magnitude of the generated couplings becomes indepen-
dent of the branching choice. Therefore, in the noninter-
acting case, we can associate each branching choice with a
quasiparticle with the energy that corresponds to the
splitting between the two choices. Eqs. (B4) and (B8).
On the other hand, the exact single-particle excitation
spectrum can also be obtained by converting the hJ model
Hamiltonian into the free-fermion form

H¼
X
i

Jiðc†i c†iþ1þc†i ciþ1þH:c:Þþhið1−2c†i c
†
iþ1Þ (E1)

and finding the corresponding eigenvalues numerically.
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RSRG-X and exact diagonalization (ED). (b) Comparison of the distribution of quasiparticle energies obtained using RSRG-X and ED
for the hJ model. The data were obtained from 50 disorder realizations of 1000 spin chains at criticality.
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To compare the single-particle RSRG-X spectrum with
the exact one, we run the two methods on spin chains
of 1000 spins. For the initial disorder distributions, we use
flat distributions PðJiÞ ¼ θðJiÞθð1 − JiÞ and PðhiÞ ¼
θðhiÞθð1 − hiÞ. Using identical distributions for the hi’s
and Ji’s ensures that the spin chain is critical and, thus, least
local, which provides the most stringent test of the RSRG-
X. In Fig. 5(a), we compare the average single-particle
spectrum, for a collection of 50 disorder realizations,
computed using the two different methods. We observe
that there is some deviation between the two spectra at
intermediate energies, but the low-energy excitations look
quite similar.
To quantify the similarities between the single-particle

spectra obtained using RSRG-X and exact diagonalization,
we bin the eigenvalues obtained from the 50 disorder
realizations and plot their probability distribution PðϵÞ [see
Fig. 5(b)]. At low frequencies, we observe that the two
methods obtain a nearly identical form of PðϵÞ ∼ ϵα−1 (with
α → 0 at criticality). The mismatch between RSRG-X and
ED is a consequence of the errors made by the RSRG-X in

the initial part of the flow, before strong disorder is reached.
The existence of the mismatch indicates that nonuniversal
properties like Tc may not be accurately computed by
RSRG-X. However, the fact that we obtain the correct
low-frequency scaling form using the RSRG-X methods
indicates that it should provide a good description of the
universal low-frequency properties.
Next, we move to benchmarking RSRG-X applied to

nonintegrable spin chains. In this case, the only reliable
method at our disposal is ED. Since EDworks only for very
small systems, it cannot be used for investigating scaling
properties. Instead, we focus on the more limited goal of
showing that RSRG-X becomes asymptotically exact as we
approach the strong disorder limit. Tomake the comparison,
we focus on the many-body eigenspectra and the overlap
of eigenfunctions. To set up the comparison, we must
choose how to simulate strong disorder. We choose to use
power-law initial distributions of the form PðJÞ ∼ J1=a−1,
PðhÞ ∼ h1=b−1, where the constants a and b control the
disorder strength (increasinga andb corresponds to stronger
disorder). To ensures that either J or h but not J0 is the largest
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local coupling, we pick J0i from a uniform distribution
with the range ½ð0–0.2ÞmaxfJi; hi; hiþ1g�. To systematically
observe the influence of the disorder, we use three values of
disorder strength: weak (a ¼ b ¼ 1), medium (a ¼ b ¼ 4),
and strong (a ¼ b ¼ 7).
We compute the full many-body eigenspectra and the

corresponding eigenfunctions for 10 site chains with weak,
medium, and strong disorder using ED and RSRG-X.
Comparing the many-body eigenspectra, Figs. 6(a)–6(c),
we see that the spectra obtained by ED and RSRG-X look
similar. Zooming in on the middle part of the spectrum,
Figs. 6(d)–6(f), we observe that for weak disorder there is
some difference in the ED and the RSRG-X spectrum;
however, as the disorder strength increases, the ED and
RSRG-X spectra match better and better. We also compare
the overlap of the eigenfunctions computed using RSRG-X
with those obtained using ED. In particular, for each
RSRG-X eigenfunction ψ i, we compute the overlap with
the best matching ED eigenfunction ϕj (i.e., we maximize
hψ ijϕji2 over j’s). We plot the resulting overlaps in
Figs. 6(g)–6(i). We observe that even in the case of weak
disorder, we find significant overlap, showing that RSRG-
X is performing a good job of capturing the qualitative
features of the eigenfunctions. As we crank up the disorder,
we find that the overlap becomes extremely good for
medium disorder and essentially perfect for strong disorder.
In order to quantify the quality of the eigenfunctions,

we compute the overlap for 50 disorder realizations. For
each disorder realization, we obtain the average overlap for
each RSRG-X eigenfunction 1

N

P
i maxj½hψ ijϕji2�, and bin

the results. In addition, as a null hypothesis, we take pairs
of independent disorder realizations and compute the
overlap between ED eigenstates of these pairs. The result-
ing histograms are plotted in Fig. 7. The histograms show
that even for weak disorder we obtain significantly better
overlap between ED and RSRG-X eigenfunctions, as
compared to the null hypothesis. Moreover, the overlap
becomes essentially perfect as the disorder strength is
cranked up.

Here, we benchmark the RSRG-X method. In particular,
we show by comparing the RSRG-X method with exact
diagonalization that RSRG-X becomes essentially exact in
the asymptotic limit of strong disorder. The strong disorder
limit is precisely the regime that is needed for under-
standing the many-body localized state and its universal,
low-frequency properties. Surprisingly, we also find that
the RSRG-X can capture the essential features of the many-
body eigenstates even at weak disorder, thus showing that it
has some applicability even outside of the scaling regime
that it was designed for.
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