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Resonant behavior involving spin-orbit entangled states occurs for spin transport along a narrow channel
defined in a two-dimensional electron gas, including an apparent rapid relaxation of the spin polarization
for special values of the channel width and applied magnetic field (so-called ballistic spin resonance).
A fully quantum-mechanical theory for transport using multiple subbands of the one-dimensional system
provides the dependence of the spin density on the applied magnetic field and channel width and position
along the channel. We show how the spatially nonoscillating part of the spin density vanishes when the
Zeeman energy matches the subband energy splittings. The resonance phenomenon persists in the presence
of disorder.
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I. INTRODUCTION

The properties of spin transport in small nonmagnetic
structures determine whether it is favorable to scale down
certain semiconductor spintronic devices [1–6] to the
nanoscale. Spin-orbit (SO) fields, originating from a
material’s electronic structure [7], govern spin-transport
phenomena in most nonmagnetic materials. These SO
fields in nonmagnetic semiconductors cause a carrier’s
spin to precess around an axis with a rate that depends
strongly on that carrier’s momentum, an effect that pro-
duces coherent spin precession even during diffusive
transport [8–10]. The spin of each carrier also dephases
relative to other carriers with different momenta; as the
carriers scatter from one momentum state to another, this
dephasing results in decoherence through randomization of
the carrier momentum [7,11–13]. Confinement of the
carrier wave function to a smaller region, or application
of a magnetic field [14,15], can quench the carrier
momentum along one or more axes, reducing the random
character of the SO field. Thus confinement of carriers in a
semiconductor into a one-dimensional channel was pre-
dicted to lengthen the spin coherence time [16–19]. These
longer spin coherence times even occur for channels much
wider than the mean-free path [20], due to an interplay
between the SO field and disorder in the confined geometry
[21,22] that yields long-lived spin spirals [21–24]. An in-
plane magnetic field can also modify the effect of the SO
field and lengthen the spin coherence time [23,25]. With
both confinement and in-plane magnetic fields present,

however, an apparent reduction in the spin coherence
length has been observed [26]. Reference [26] introduced
a semiclassical model, further expanded upon in Ref. [27],
suggesting that when the carrier transit time was similar to
the spin precession time, a so-called ballistic spin resonance
(BSR) would reduce the spin coherence length.
Here the phenomenon of ballistic spin resonance is

placed on more solid theoretical ground using a quan-
tum-mechanical microscopic theory of spin transport in a
channel within which multiple subbands are occupied. The
feature identified as BSR in Ref. [26] originates from
coupling, via the SO interaction, between pairs of subbands
that differ in both spin and orbital quantum numbers,
yielding coherent precession of a “pseudospin.” The
magnetic-field dependence of the resulting propagating
spin polarization is calculated assuming the spins are
injected into the channel uniformly across the width of
the channel. The pseudospin precession then yields spatial
oscillations of the spin polarization as the distance along
the channel from the injection location increases, and a
transverse spin texture with no net transverse spin polari-
zation. In Ref. [26], the detector was insensitive to the
transverse spin polarization, and was set a fixed distance
from the injection point; for such a geometry, the BSR
phenomenon manifests as an apparent reduction of the spin
coherence length. We consider the effect of disorder on the
propagation and find that the predicted features of spin
transport in a narrow channel are robust. Greater spatial
resolution in the spin detection process would allow the
oscillations to be directly imaged, and could permit them
to be used in processing spin information within a small
semiconductor device, or guiding it along a controllable
pathway within a semiconductor chip.
This paper first treats, in Sec. II, the essential qualitative

features of the BSR phenomenon in the clean limit, based
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on a two-subband toy model that illustrates the key
features: pseudospin precession, spin polarization oscilla-
tion, and transverse spin texture. These results are then
placed on a firm footing in Sec. III for the general case of
multiple transverse subbands, and comparison is made with
the results of Ref. [26]. The effect of disorder on these
phenomena is analyzed in Sec. IV, and the key features are
found to be robust. Some comments about other effects,
such as the nature of the spin injection at a quantum point
contact, are made in concluding remarks in the final
section, Sec. V. Some useful relations relevant for the
boundary conditions, including spin injection and detec-
tion, are derived in the Appendix.

II. QUALITATIVE PICTURE OF
BALLISTIC SPIN RESONANCE

Figure 1 is a schematic of Ref. [26]. A channel in a two-
dimensional electron gas has widthW in the ẑ direction and
extends along the x̂ direction. The external applied mag-
netic field is oriented along ẑ so that spins polarized along ẑ
are injected and detected by two quantum point contacts
(QPC) located at xs and xd.
A simple two-subband model with dispersion relations

shown in Fig. 2(a) illustrates the essential aspects of the
variation of spin density with distance. The two subbands
are labeled 1 and 2. The doubly degenerate spin states
associated with each subband are split by the Zeeman
interaction with a magnetic field oriented along the ẑ
direction. Once the SO interaction is added, subband 1
with spin-down is coupled to subband 2 with spin-up. This
results in two eigenstates, shown in Fig. 2(b), with different
energies (upper and lower) that consist of a mixture of up
and down spins and the two subband states (orbital
motion). When a spin density is injected into the system
at the Fermi energy EF, instead of going into unoccupied
pure spin eigenstates at the Fermi energy, that spin must
occupy linear superpositions of the two mixed eigenstates,
shown in Fig. 2(b), which propagate with different wave
vectors kþ and k− down the channel, as shown. The beating

of these wave vectors gives rise to a spatial oscillation of
spin density.
Consider Fig. 2 in more detail. Without spin-orbit

interaction, but with a Zeeman interaction, states in the
waveguide are of the form

ψZ
k;n;s ¼ eikxϕnðzÞjsi; (1)

where the index n enumerates subbands of transverse
quantization and σzjsi ¼ sjsi, with s ¼ �1 corresponding
to spin-up j↑i or spin-down j↓i spin polarization. Here we
consider only the two subbands n ¼ 1, 2. The energies of
Zeeman-split states, Eq. (1), can be written as

EZ
k;n;s ¼

ℏ2k2

2m
þ ϵZn;s; (2)

where the first term is the kinetic energy of motion along
the channel, and the second term

ϵZn;s ¼ ϵn − s
EZ

2
(3)

includes the energy of transverse quantization ϵn and the
Zeeman energy −sEZ=2. The negative sign in Eq. (3)
corresponds to a negative g factor, and the spin splitting
is related to the magnetic field B in a standard way,
EZ ¼ jgjμBB. The two Zeeman-split subbands are shown
in Fig. 2(a).
The states relevant to dc transport have energies close

to the Fermi level. Hence, we determine the Fermi wave
vectors of the states at the Fermi energy EF, shown in
Fig. 2(a), by solving EF ¼ EZ

k;n;s. The pair of adjacent

FIG. 1. Schematic representation of the experimental setup of
Ref. [26]. A quasi-one-dimensional channel of width W is
defined by confinement of a two-dimensional electron gas in the
xz plane. The in-plane magnetic field is applied in the ẑ direction.
xs and xd denote the location of the source and drain of spin
polarization along the channel.
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FIG. 2. The effect of SO coupling illustrated for two
subbands (1 and 2) with different lateral orbital wave
functions. (a) Without SO the in-plane magnetic field splits
each subband into spin-up and spin-down subbands separated
by the Zeeman energy EZ. At the resonance condition,
Eq. (21), the spin-down states of subband 1 coincide with
the spin-up states of subband 2. (b) With SO these states mix,
and the SO-coupling-induced mixing is strongest exactly at
the resonance condition, where jαj ¼ jβj ¼ 1=

ffiffiffi
2

p
.
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subbands ψZ
k;1;↓ and ψZ

k;2;↑ is critical for the BSR. For these
two subbands, the Fermi wave vectors k1 and k2 are

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2

ðEF − ϵZ1;↓Þ
r

(4)

and

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2

ðEF − ϵZ2;↑Þ
r

; (5)

with the energy ϵZn;s introduced in Eq. (3).

A. Subband mixing by SO coupling

We now consider the effect of the SO coupling on the
states [Eq. (1)] and energies [Eqs. (2) and (3)] within the
degenerate perturbation theory applicable if the typical SO
interaction energy is smaller than intersubband separation.
Specifically, we focus on a SO coupling of the form

HSO ¼ α−pzσx: (6)

More general spin-orbit terms in the Hamiltonian will be
discussed in later sections of the paper. Under the condition
of BSR, the states ψZ

k;2;↑ and ψZ
k;1;↓ are near degeneracy at

each k and are coupled by this SO coupling because the
matrix element h2;↑jα−pzσxj1;↓i ¼ iδSO=2 is, in general,
nonzero (here δSO is real). The spectrum and eigenstates
are found by diagonalizing the projection H2 of the full
Hamiltonian onto the subspace spanned by these two states,

H2ðkÞ ¼
ℏ2k2

2m
−
�
EZ=2 − ϵ2 −iδSO=2
iδSO=2 −EZ=2 − ϵ1

�
: (7)

The eigenstates, obtained by a straightforward diagonal-
ization of Eq. (7), are denoted by ψSOþ and ψSO

− at a given
wave vector k, and are linear combinations of the states
defined in Eq. (1) [see Fig. 2(b)],

jψSO
k;þi ¼ αjψZ

k;2;↑i þ βjψZ
k;1;↓i;

jψSO
k;−i ¼ β�jψZ

k;2;↑i − α�jψZ
k;1;↓i; (8)

where

α ¼ i cosðθ=2Þ; β ¼ − sinðθ=2Þ: (9)

The angle θ parametrizes the matrix, Eq. (7), through

cos θ ¼ EZ − ΔEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEZ − ΔEÞ2 þ ðδSOÞ2

p ;

sin θ ¼ δSOffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEZ − ΔEÞ2 þ ðδSOÞ2

p ; (10)

where the intersubband splitting in the absence of SO
interaction is ΔE ¼ ϵ2 − ϵ1. The energies of the eigenstates
in Eq. (8) are

ESO
k;� ¼ ℏ2k2

2m
þ ϵSO� ;

ϵSO� ¼ 1

2
ðϵ1 þ ϵ2Þ∓ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEZ − ΔEÞ2 þ ðδSOÞ2

q
: (11)

The band splitting

ϵSO− − ϵSOþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEZ − ΔEÞ2 þ ðδSOÞ2

q
(12)

is nonzero, even when the bands overlap in the absence of
SO coupling, EZ ¼ ΔE; see Fig. 2(b). Equations (8)–(11)
specify the mixing effect of the SO coupling on the adjacent
subbands shown schematically in Fig. 2.
The Fermi wave vectors k� of the two subbands with the

dispersion relations of Eq. (11), shown in Fig. 2(b), satisfy
EF ¼ ESO

k�;�, and are

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
ℏ2

ðEF − ϵSO� Þ
r

: (13)

B. Spatial dependence of spin polarization
along the channel

Now we follow the spatial evolution of the states injected
into the channel at xs at the Fermi level, as shown in Fig. 1.
The spinor wave function of the injected electron jΨiinj is a
superposition of the eigenstates given by Eq. (8). We can
write this spinor as

jΨiinj ¼ cþjψSO
kþ;þi þ c−jψSO

k−;−i; (14)

where the Fermi wave vectors of the two SO split states are
given by Eq. (13) [see Fig. 2(b)]. If the injected spin is
polarized along the z direction, the coefficients c� are, up to
an overall phase factor, cþ ¼ α� and c− ¼ β, where α
and β are defined in Eqs. (9) and (10). The spin polari-
zation ~szðx; zÞ ¼ hΨjσzjΨi can be written using the explicit
expressions in Eqs. (1), (8), and (14) as follows:

~szðx; zÞ ¼ ½jαj2 − jβj2�½jαj2ϕ2
1ðzÞ − jβj2ϕ2

2ðzÞ�
þ 2jαj2jβj2½ϕ2

1ðzÞ
þ ϕ2

2ðzÞ� cos ½ðkþ − k−Þðx − xsÞ�: (15)

The spin polarization per unit length,

szðxÞ ¼
Z

dz~szðx; zÞ; (16)

which is obtained from Eqs. (9) and (15), reduces to a
simple expression that illustrates many of the key features
of BSR:
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szðx; BÞ ¼ cos2θ þ sin2θ cos ½ðkþ − k−Þðx − xsÞ�: (17)

We refer to the part of szðx; BÞ that does not oscillate with x
as the conserved part of the spin density. The oscillation of
the spin density is a result of the spatial beating of the two
wave functions jψSO

k�;�i, which propagate along the wave-
guide with phases exp½ik�ðx − xsÞ�.
A key feature of BSR, which produces the apparent

reduction in spin coherence length, is that the conserved
part of the spin density vanishes when the level separation
equals the Zeeman splitting, ΔE ¼ EZ. Furthermore, when
many bands cross the Fermi level or when there is
intersubband scattering there will be many sinusoidal
contributions to the spin density like those in Eq. (17),
but associated with differing wave vector differences,
kþ − k−. When added together these will tend to cancel
one another. As a result, when the resonance condition
ΔE ¼ EZ holds, not only will the constant (conserved) part
of the spin density vanish, but also the oscillating (non-
conserved) part will be small. Therefore, the total spin
density will be small at resonance.
The above picture of the BSR, based on a separation of

conserved and nonconserved parts (constant and oscillatory
in space, respectively), can be illustrated by writing the
effective Hamiltonian, Eq. (7) in the form

H2ðkÞ ¼
�
ℏ2k2

2m
þ ϵ1 þ ϵ2

2

�
−
1

2
jgμBjBeff · τ; (18)

where τx;y;z are pseudospin Pauli matrices. The effective
field points in the direction ê ¼ ð0; sin θ; cos θÞ and the
spins precess about this field as they propagate down the
channel.
The effective field in the y direction,

Beff;y ¼ hnþ 1;↑jα−pzσxjn;↓i; (19)

arises from SO matrix elements between states of differing
spin and orbital quantum numbers (in the absence of SO).
The effective magnetic field in the z direction accounts for
the energy splitting between adjacent modes arising both
from confinement (ΔE) and from the Zeeman interaction
with the actual external field Bz,

Beff;z ¼ Bz − ΔE=ðgμBÞ: (20)

BSR then occurs when Beff;z ¼ 0, corresponding to

gjμBjBz ≡ EZ ¼ ΔE; (21)

and the effective field lies entirely along the ŷ axis, so spins
in the z direction have no nonprecessing part, as schemati-
cally indicated in Fig. 3. For square-well confinement, only
a few modes near cutoff can be in resonance for a given
external field B; for parabolic confinement, adjacent modes
at B ¼ 0 are all separated by a single energy ℏω ¼ ΔE, so

that all pairs go into resonance for the same magnetic field.
Equation (21) is the same condition for resonance as that
cited in Ref. [26].
We note that the pseudospin precession around the

effective field Beff is not equivalent to spin precession.
More precisely, the absence of a net spin precession is
clearly indicated by the result that sx;yðx; BÞ ¼ 0 every-
where along the channel. Despite no net spin precession,
however, there is a definite spin texture evident transverse
to the channel, for

~sxðx; z; BÞ ∝ sin½ðkþ − k−Þðx − xsÞ�ϕ1ðzÞϕ2ðzÞ; (22)

which is obtained similarly to Eq. (15). This transverse spin
texture is missing in the theory of Refs. [26],[27].
In the next section, we derive a general expression for the

spin density for multiple occupied subbands in the channel.
The expressions we obtain are exact provided the spin-orbit
Hamiltonian has the form of Eq. (6), and provided there is
neither scattering nor electron-electron interaction; Eq. (17)
is a special case of this expression. We further compare
spin densities for parabolic and square-well confining
potentials.

III. THEORY OF SPIN POLARIZATION
TRANSPORT IN A QUASI-ONE-DIMENSIONAL

CHANNEL

We now generalize to the case where multiple subbands
are occupied, and derive a generalization of Eq. (17). Let
the rate of the spin injection per unit length be FðxÞ. Then
the stationary polarization is given by

szðx; BÞ ¼ −i
Z

dq
2π

eiqx½∂ωχðq;ωÞχ−1ðqÞ�j
ω→i0

FðqÞ:
(23)

FIG. 3. The injected spin polarization s0 is directed along the
external in-plane magnetic field B∥ẑ; see Fig. 1. The effective
magnetic field Beff determines the pseudospin precession
after injection. The z component of Beff , Eq. (20), vanishes at
the resonance condition, Eq. (21). At resonance, the pseu-
dospin dynamics is a pure precession with a frequency contro-
lled by the SO coupling matrix element, ðgμB=ℏÞjBeff j ¼
ð1=ℏÞjhnþ 1;↑jαpzσxjn;↓ij. Off resonance, a finite component
of injected spin (∝ cos θ) is conserved and is represented by an
x-independent part in Eq. (17).
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Equation (23) relates the spin density to the Fourier image
of the injection rate FðqÞ via the retarded correlation
function

χðq;ωÞ ¼ −i
Z

∞

0

dt
Z

dxe−iqxþiωth½ŝzðx; tÞ; ŝzð0; 0Þ�i
(24)

of the spin density operator,

ŝzðxÞ ¼
1

2

Z þ∞

−∞
dz½ψ†

↑ðx; zÞψ↑ðx; zÞ − ψ†
↓ðx; zÞψ↓ðx; zÞ�;

(25)

where ψ†
↑;↓ðx; zÞ is the second quantized creation operator

and the spin quantization axis ẑ coincides with the direction
of the in-plane magnetic field, which is perpendicular to the
channel, as shown in Fig. 1. Equation (23) is derived in the
Appendix, and its limitations are discussed in Sec. V.
We apply Eq. (23) to noninteracting electrons in a clean

wire with parabolic or square-well confinement, with the
Hamiltonian

H ¼ p2
x þ p2

z

2m
þ VcðzÞ −

1

2
EZσz þHSO: (26)

Here VcðzÞ is the lateral confinement potential, EZ is the
Zeeman splitting, and HSO ¼ α−pzσx þ αþpxσz is the SO
interaction term with αþ;ð−Þ equal to the sum (difference) of
the Rashba [28,29] and Dresselhaus [30] coefficients. As
the term with αþ is proportional to σz, it does not couple
subbands with opposite spin direction along ẑ; its effect is
entirely to provide a kx-dependent shift of the Zeeman
energy. Therefore, to simplify the calculations presented
here, we neglect the effect of this term and set αþ ¼ 0. We
consider the effect of nonzero αþ in Sec. IV C.
Without SO coupling, the eigenstates of the

Hamiltonian, Eq. (26), can be denoted by their wave vector
along the channel k, their spin s (up or down) in the z
direction across the channel, and the natural mode numbers
m arising from confinement, as in the previous section:

hx; zjψZ
k;m;si ¼ eikxϕk;mðzÞjsi ¼ eikxϕmðzÞjsi: (27)

The eigenstates with SO coupling can be expanded in terms
of these uncoupled states as

jψSO
k;n;γi ¼

X
m;s

An;γ
m;sðk; BÞjψZ

k;m;si (28)

(γ ¼ �1), with corresponding energies given by

ESO
k;n;γ ¼

ℏ2k2

2m
þ ϵSOk;n;γ: (29)

If αþ ¼ 0, the expansion coefficients An;γ
m;sðk; BÞ do not

depend on the momentum k and the energies ϵSOk;n;γ do not

depend on k, so ϵSOk;n;γ ¼ ϵSOn;γ . The SO states can then be
written as

jψSO
k;n;γi ¼ eikxjn; γi:

We stress that the eigenstates jψSO
k;n;γi in Eq. (28) are

superpositions of Zeeman states with different subband
index m and spin index s but with the same wave vector k.
Note that from here on the superscript SO will be dropped
since all energies and wave functions will be those
including spin-orbit interactions. Thus, the quantized ener-
gies of transverse modes listed in Eq. (29) are simply ϵn;γ
and

Ek;n;γ ¼
ℏ2k2

2m
þ ϵn;γ: (30)

The retarded susceptibility is given in terms of the
eigenstates and energies of the coupled Hamiltonian by

χðq;ωÞ ¼ −1
2π

X
n;γ;n0;γ0

jhn; γjσzjn0; γ0ij2

×
Z

dk
fðEk;n;γÞ − fðEkþq;n0;γ0 Þ

ωþ i0þ ϵn;γ − ϵn0;γ0 − ðℏ2
2mÞð2kqþ q2Þ :

(31)

The zero temperature Fermi function is fðϵÞ ¼ Θðμ − ϵÞ,
where Θ is the Heaviside function and μ is the chemical
potential. The integration over k can be performed ana-
lytically. The static susceptibility is then

χsðqÞ ¼ m
πℏ2q

X
n;γ;n0;γ0

jhn; γjσzjn0; γ0ij2

× log
jqþ ðkn;γ þ kn0;γ0 Þj
jq − ðkn;γ þ kn0;γ0 Þj

: (32)

When q → 0,

χsðq ¼ 0Þ ¼ 2m
πℏ2

X
n;γ;n0;γ0

jhn; γjσzjn0; γ0ij2
kn;γ þ kn0;γ0

; (33)

where

kn;γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2m=ℏ2Þðμ − ϵn;γÞ

q
(34)

are the wave numbers for propagation along the wire
corresponding to k� in Sec. II. The sum over modes is
restricted to those with real kn;γ .
To compute the spin density, we also need the frequency

derivative of the susceptibility. The integrals here can also
be computed with the result
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∂ωχðq;ωþ iδÞjω¼0 ¼
i2m2

ℏ3

X
n;γ;n0;γ0

jhn; γjσzjn0; γ0ij2 ×
�
δðqþ kn;γ − kn0;γ0 Þ

2kn;γkn0;γ0
þ δðqþ kn;γ þ kn0;γ0 Þ
2kn0;γ0 ðkn;γ þ kn0;γ0 Þ

þ δðq − kn;γ − kn0;γ0 Þ
2kn0;γ0 ðkn;γ þ kn0;γ0 Þ

�
:

(35)

Finally, we arrive at a fairly simple, yet exact, result for the
spin density using Eqs. (23), (32), and (35),

sðxÞ ¼ s0
m2

2πℏ3

×
X

n;γ;n0;γ0

jhn; γjσzjn0; γ0ij2 cos½ðkn;γ − kn0;γ0 Þðx− x0Þ�
χsðkn;γ − kn0;γ0 Þðkn;γkn0;γ0 Þ

:

(36)

For a source located at x ¼ x0, we take
FðqÞ ¼ s0 expð−iqx0Þ. In practice, the matrix elements
are only large when ðn; γÞ is “near” ðn0; γ0Þ and the SO
splitting is small so that kn;γ − kn0;γ0 is small. Then no major
error is incurred if in the static susceptibility we set
kn;γ − kn0;γ0 ¼ 0. It should be noted, too, that in going from
Eq. (23) to Eq. (36), we made use of the fact that the
static susceptibility diverges (logarithmically) when
q ¼ �ðkn;γ þ kn0;γ0 Þ for any pair ðn; γÞ and ðn0; γ0Þ, so that
the corresponding δ functions in the derivative of χ do not
contribute to the spin density. This result for the spin
density is exact, depending only on the assumptions that the
wire is clean, the particles interact only with the confining
potential, spin-orbit field, and magnetic field, and αþ ¼ 0.
Diagonal terms in the double sum over states give a
contribution to the spin density independent of the distance
x − x0, while off-diagonal contributions provide a sum of
sinusoidal contributions with spatial beat frequencies
kn;γ − kn0;γ0 .
The result for the spin density cited at the outset can

now be obtained for parabolic confinement with VðzÞ ¼
mω2z2=2. Then the only nonzero matrix elements of σz in
the SO basis are

jhn; γjσzjn; γij2 ¼ cos2θn ¼
�
EZ − ℏω

Δn

�
2

(37)

and

jhn; γjσzjn;−γij2 ¼ sin2θn ¼
�
δSOn
Δn

�
2

; (38)

where the SO splitting is given by

δSOn ¼ α−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þmω=ℏ

p
(39)

and the level splitting by

Δn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðδSOn Þ2 þ ðEZ − ℏωÞ2

q
: (40)

The simplicity of the result for parabolic confinement
occurs in part because the momentum operator for the
harmonic oscillator has matrix elements only between
adjacent non-SO-coupled states.
For parabolic confinement, we then find

szðx; BÞ ¼
s0

2
P

nv
−1
n

X
n

v−2n

�
cos2θn

þ sin2θn cos

�
2π

ln
ðx − xsÞ

��
; (41)

where the sum runs over pairs of propagating modes, and
2πl−1n ¼ ðkn;1 − kn;−1Þ is 2π times the inverse spin preces-
sion length of an electron in the nth modes. kn1 and kn;−1
have been replaced with ðkn;1 þ kn;−1Þ=2 ¼ mvn=ℏ except
in the term oscillating with x − xs. The result for a single
mode is Eq. (17). For other confining potentials, such as an
infinite square well, eigenstates and energies can be found
by diagonalizing a matrix with dimensions only slightly
larger than the number of propagating modes.
The dependence of the off-diagonal matrix elements on

the magnetic field is shown in Fig. 4. For parabolic
confinement, modes at B ¼ 0 without SO splitting are
equally spaced in energy; for a square well, the energy
levels are spaced proportionally to 2nþ 1, where n is the
mode number. Ballistic spin resonance for a mode (spin)
pair occurs when the Zeeman splitting is equal to the B ¼ 0
splitting. Thus, in the parabolic case, all modes can become
resonant, as indicated by the black diamonds in the left-
hand panel of Fig. 4. In the square-well case, it is not
possible for all modes to become resonant for a single value
of B. Furthermore, in the square well, modes that become
resonant, but are located far away from the chemical
potential μ, produce small effects on the spin polarization
versus B curves (see Fig. 5); the dominant features of the
spin resonance are determined by the spin-split mode pair
with energies closest to μ, i.e., the modes with the smallest
kn;γ . These modes make the largest contribution to the spin
density.
The essence of the BSR is that the effective field

becomes orthogonal to the injected spin polarization;
i.e., cos θn ¼ 0. Any phase randomization (randomization
of the kn;γ) will then cause decay of the polarization away
from the injector. The behavior of the spin density without
phase randomization is shown as a function of B and as a
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function of x in Fig. 5, for parabolic and square-well
confinement. The shape of the resonance dip in Figs. 5(a)
and 5(b) depends on the nature of the confining potential. It
also depends on how close the modes are to cutoff, i.e., on
how small the kn;γ become. In these figures, we plot sz in a
range of B so that the uppermost modes are bounded away
from cutoff. The impedance for injecting spins at the cutoff
condition for a propagating mode must vanish, in analogy
with total internal reflection in optics. The depth of the
resonant dip depends on distance from the injection
location x − xs as is shown in Figs. 5(c) and 5(d). For
both confinements, sz versus x seems to be a sum of a small
number of oscillating terms, indicating that only a few
modes contribute to the resonant dips in Figs. 5(a) and 5(b).
This has been verified (but is not shown here) by simply
calculating sz using only the two modes closest to cutoff.
The inset in Fig. 5 shows s versus B having two minima.

The parameters have been chosen to mimic Fig. 2(b) of
Ref. [26]. The first minimum comes from the condition
gjμBjB ¼ Emþ1 − Em ¼ ΔEm. In the case of parabolic
confinement, only neighboring levels are coupled by the
SO interaction. In the case of square-well confinement, SO
interactions can couple modes of the form (now the indices
refer to states not coupled by SO) jm; si, with modes
jmþ ð2nþ 1Þ;−si for any integer n. For example, with
n ¼ 0, ΔEm;1 ¼ E0ð2mþ 1Þ ≈ E0ð2mÞ, while for n ¼ 1,

ΔEm;3 ¼ E0ð6mþ 9Þ ≈ E0ð6mÞ ¼ 3ΔEm;1:

Hence, the corresponding values of Bresonance are in the ratio
of 3=1, as noted by Frolov et al. [26].
Figure 6 illustrates the effect of changing the chemical po-

tential μ or, equivalently, the Fermi velocity vF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
.

For square-well confinement, En¼ℏ2π2=ð2mW2Þn2, where
W is the width of the well. For large n, the resonance
magnetic field is determined by

gμBBresonance ∝ 2n ∝ vF: (42)

The locations of the minima in Fig. 6 are roughly propor-
tional to vF, as expected from the argument here. In the right-
hand panel of Fig. 6, we multiply each curve in the left-hand
panel by a function found by fitting the data for Bext

x found in
Fig. 1(c) of Ref. [26]. In their experiment, the rate of spin
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FIG. 4. Ratio of adjacent energy level splitting due to SO
interaction to the total energy level splitting for pairs of
propagating modes, R ¼ jhn; γjŝzjn;−γij2=ðjhn; γjŝzjn; γij2þ
jhn; γjŝzjn;−γij2Þ. Parameters are chosen so that Bresonant ¼
7 T and so that there are 20 propagating modes,
W ¼ 1.15 μm. In the parabolic case, R is just sin2θn. The left-
hand panel shows R for parabolic confinement; the right-hand
panel shows R for square-well confinement. B ¼ 3 T (solid
red line), B ¼ 6 T (dashed blue line), and B ¼ 7 T
(dotted black line).
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FIG. 5. The stationary spin polarization sz as a function of
the magnetic field B for (a) parabolic and (b) square-well
lateral confinement. In all computations, α− ¼ 2 × 10−13 eVm,
and the width of the injection aperture is 0.5 μm. The effective
mass is m ¼ 0.067me, and the g factor is −0.44. The distance
from the source, x − xs, is 20 μm in (a) and (b). For
square-well confinement, the width of the well W in (b) and (d)
is 1.15 μm The inset in (b) shows s versus B when W ¼ 3 μm
and x ¼ 6.7 μm, as in Ref. [26]. Except for the inset, the
number of propagating modes (including spin) in all panels is
40. In the inset there are 105 propagating modes. Panels (c) and (d)
show the dependence of the spin polarization on distance
from the source for the parabolic and square-well lateral confine-
ment, respectively. B ¼ 3 T (solid red line), B ¼ 6 T (dashed
blue line), and B ¼ 7 T (dotted black line). The parameters
used for parabolic confinement are μ¼ 3.65meV, ℏω ¼
0.1785 meV, so that the magnetic field at the minimum is 7.0 T.
For square-well confinement, μ ¼ 1.86 meV, whereas in the
inset it is 1.765 meV. Parameters have been chosen to mimic
those of Ref. [26].
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injection s0 depends on the magnetic field. This is propor-
tional to the data sx when the external field is in the x
direction, since in this case precession should not play a role
in the observed spin (x) density. If we assume that s0ðBÞ is in
fact independent of the direction of B, then we can use s0ðBÞ
to model spin-z injection. The curves in the right-hand panel
of Fig. 6 are qualitatively similar to the curves in Fig. 2(b)
of Ref. [26].

IV. EFFECT OF DISORDER

The analysis in the previous section neglected the effect
of disorder, which could disturb the spin-orbit entangle-
ment upon which the resonant phenomena depend. To
evaluate the role of the disorder in Ref. [26], the typical
mean-free path l and disorder-induced level broadening
ℏ=τ should be compared to other length and energy scales
in the experiment. At a mobility of 4.5 × 106 cm2=Vs, l ∼
20 μm and ℏ=τ ∼ 0.04 K. The typical SO splitting is an
order of magnitude larger, δSO ∼ 0.4 K, with the SO length
lSO ¼ 2πℏvF=δSO ∼ 11.3 μm. This definition of lSO is
consistent with Eqs. (39) and (41). The subband separation
is ΔE ∼ 1.5 K, and thus, the separate bands are well
resolved (ΔE ≫ ℏ=τ). flSO;Wg ≪ l, so the disorder broad-
ening is the smallest energy scale in the problem and should
not play a significant role in Ref. [26]. The remaining
length scale, the source-to-drain separation, is comparable
to l, and the diffusive nature of transport may lead to
quantitative (but not qualitative) changes, as we argue
below.
The basic physical picture described by the two-subband

model of Sec. II also applies to the case of a disordered
channel. The injected spin can be thought of as having
conserved and nonconserved (precessing) parts, as in
Fig. 3. The conserved part diffuses along the channel
rather than propagates ballistically at long distances. If the
source-to-drain separation jxs − xdj ≫ l, the steady-state
spin polarization scales with the separation between the
source and the drain located at x ¼ xs and x ¼ xd; see
Fig. 1. It can be explicitly obtained either by Eq. (23) or by
the direct solution of the diffusion equation with both
source and drain. Both methods are shown in the Appendix
to produce the same steady-state polarization profile.
The physical picture of the diffusion of the conserved
polarization is supported by a microscopic analysis in
Secs. IVA and IV B.
These arguments apply if the disorder conserves not just

the spin, but also the pseudospin of a state. The condition
for preserving the pseudospin is that the disorder potential
does not mix the states jn; γi defined in Eq. (28) with
opposite γ’s. We show below that this condition is satisfied
for a generic scattering potential.
The nonconserved part of an injected polarization

oscillates on a scale ≲lSO away from the source (see
Fig. 5, where the oscillation scale is about 5 μm). Weak
disorder with ℏ=τ ≪ δSO is ineffective at experimentally

relevant distances from the source, jx − xsj≲ l. Therefore,
the oscillations survive this weak disorder. The conserved
part of polarization can even be enhanced by weak disorder,
provided jxs − xdj≳ l. In Ref. [26], jxs − xdj≃ l, and this
enhancement is not pronounced. However, making the
injector-to-detector separation larger may increase the mag-
nitude of the disorder-driven enhancement of the conserved
part of the polarization.
If either the detector is placed close to the node of spin

oscillations shown in Figs. 5(c) and 5(d) or the oscillations
are smeared out due to the finite size of the injector and
detector, the measured signal is determined by the con-
served part of the injected spin. Thus, beyond the distance
lSO from the source, the B dependence of a detected spin
polarization is chiefly determined by the depolarization
factor (cos2θ) of Eq. (37). Neglecting the variation of θ over
bands,

szðx; BÞ ∝ cos2θ ≈ 1 −
ðδSOÞ2

ðEz − ℏωÞ2 þ ðδSOÞ2 : (43)

The spin polarization above drops to zero when B − Bres
vanishes, with the spin polarization following a Lorentzian
curve with a scale of variation of δSO ∼ 0.4 K, which
translates into a width of the resonance in magnetic field
∼2.3 T. The experimental data confirm this estimate.
We support these general statements with a microscopic

analysis for the case of strong disorder, l ≪ lSO, in Sec. IVA
and the case of weak disorder, l ≫ lSO, in Sec. IVB. In both
cases, the polarization follows Eq. (43) at distances exceed-
ing minflSO;

ffiffiffiffiffiffiffiffi
lSOl

p g, at which point the nonconserved part
of polarization drops. For l ≫ lSO, the polarization decay
is ballisticlike, and for l ≪ lSO, the polarization follows
Hanle-like relaxation [31–33].

A. Spin polarization in the presence
of strong disorder, W ≪ l ≪ lSO

In this section, we derive expressions for spin-correlation
functions in the presence of the disorder with the mean-free
path larger than the channel width but smaller than the
SO length. We then use these correlation functions to obtain
the result Eq. (43). The quasiclassical approximation is
justified provided kFW, kFl ≫ 1. The former condition is
equivalent to having many propagating modes. In addition,
we assume that the individual modes are well resolved,
W ≪ l.
Since the details of the disorder potential V impðrÞ are not

essential, we assume it to be Gaussian, with the simplest
form of the correlation function,

hV impðrÞV impðr0Þi ¼ Vðz1ÞVðz2Þδðx − x0Þ: (44)

Finally, we simplify the analysis by neglecting the
dispersion in angles θn of the effective magnetic field;
i.e., we set θn ≡ θ. This assumption is strictly satisfied at
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the BSR for a parabolic confinement potential, θn ¼ π=2.
It is also satisfied off the resonance when all θn ≈ 0.
In general, a weak dispersion of angles θn is expected to
cause D’yakonov-Perel’–like relaxation.
We start with the consideration of the Green’s function in

the self-consistent Born approximation; see Fig. 7. At each
Fermi point we linearize the dispersion relation and
introduce left- and right-moving species, labeled by the
index r ¼ �1. We are looking for a Green’s function in the
form

Ĝn;γ;rðϵ; pÞ ¼ jn; γihn; γjGn;γ;rðϵ; pÞ; (45)

where the ballistic eigenstates jn; γi are introduced in
Eq. (28).

Gn;γ;rðϵ; pÞ ¼
1

ϵ − rvnp − γΔn=2þ iℏ=2τn
; (46)

where Δn is the band splitting, Eq. (40), and vn is the
Fermi velocity of the nth band. The rate τ−1n is determined
below within the self-consistent Born approximation using
the correlation function Eq. (44). The self-consistency
condition is presented graphically in Fig. 7(a). In the case
of well-resolved bands, kFl ≫ 1 or, equivalently,
ΔEτ=ℏ ≫ 1, Green’s function Eq. (46) is diagonal in the
band index n. Indeed, the self-energy diagram presented in
Fig. 7(b) is smaller than the leading contribution shown in
Fig. 7(a) by a factor of ΔEτ ≫ 1. This justifies labeling
of Green’s function by a single band index n. We, there-
fore, retain only contributions to the self-energy shown
in Fig. 7(a). The self-consistency condition represented
graphically in Fig. 7(a) with the correlation function
Eq. (44) reads

1

2τγn
¼ Im

Z
dp0

2π

X
n0;γ0;r0

jVγγ0
n;n0 j2Gn0;γ0;r0 ðiϵm; pþ p0Þ; (47)

where the disorder matrix elements are

Vγγ0
n;n0 ¼ hn; γjVðzÞjn0γ0i: (48)

With the explicit expressions for the ballistic eigenstates of
the main text and using the fact that the potential does not
flip the spin, we write

Vþþ
n;n0 ¼ sin

θn
2
sin

θn0

2
Vnþ1;n0þ1 þ cos

θn
2
cos

θn0

2
Vn;n0 ;

V−−
n;n0 ¼ cos

θn
2
cos

θn0

2
Vnþ1;n0þ1 þ sin

θn
2
sin

θn0

2
Vn;n0 ;

Vþ−
n;n0 ¼ −i sin

θn
2
cos

θn0

2
Vnþ1;n0þ1 þ i cos

θn
2
sin

θn0

2
Vn;n0 ;

V−þ
n;n0 ¼ i cos

θn
2
sin

θn0

2
Vnþ1;n0þ1 − i sin

θn
2
cos

θn0

2
Vn;n0 ;

(49)

where

Vn;n0 ¼
Z

dzϕnðzÞVðzÞϕn0 ðzÞ: (50)

Because of the large number of propagating modes,
Vnþ1;n0þ1 ≈ Vn;n0 . And since we assumed θn ≈ θ, Eq. (49)
simplifies to

Vþþ
n;n0 ¼ V−−

n;n0 ¼ Vn;n0 ; Vþ−
n;n0 ¼ Vþ−

n;n0 ¼ 0: (51)

With Eq. (51), evaluation of Eq. (47) is straightforward,
with the result

ℏ
2τn

¼
X
n0

V2
n;n0

ℏvn0
; (52)

where the sum runs over the propagating modes. One can
check that the self-energy is diagonal in the band index.
This follows from the cancellation of γ0 ¼ �1 contributions
for the of-diagonal part of the self-energy matrix.
Therefore, the assumption of self-energy being diagonal
in both n and γ indices is shown to be self-consistent. This
situation is very similar to the case of a constant Zeeman
field, where the form of Eq. (46) is known to hold.
Next, we consider collective density dynamics by

analyzing the two-particle correlation functions. Similar
to the theory of disordered Fermi liquids [34], the spin-
correlation function can be decomposed as a sum of a static
and a dynamic part, χ ¼ χs þ χd. The static part χs contains
contributions to the particle-hole ladder diagrams, Fig. 7, in
which the upper and lower Green’s functions in Figs. 7(c)
and 7(d) are either both retarded or both advanced. The χs is

(a)

(c)

(d)

(b)

FIG. 7. The diagrammatic representation of (a) the self-
consistent self-energy, Eq. (47), (b) an example of a subleading
in ðΔEτÞ−1 contribution. (c),(d) The Dyson equation, Eq. (53),
satisfied by a scattering amplitude Γþþ

n;n0 and Γþ−
n;n0 , respectively.

Solid arrowed lines denote Green’s functions. The dashed lines
stand for disorder averaged scattering amplitudes.
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insensitive to disorder and other energy scales and reduces
to a density of states at the Fermi energy, χsðq;ωÞ≈
ν ¼ 2

P
nðℏπvnÞ−1. The dynamic part χd consists of the

contributions with upper (lower) Green’s functions of a
ladder in Figs. 7(c) and 7(d) being retarded (advanced).
We now turn to the analysis of the related retarded-

advanced scattering amplitude. Because of Eq. (51), two
separate scattering amplitudes can be introduced,
Γ��ðq;ωÞ and Γ�;∓ðq;ωÞ, describing the diffusion of
the conserved and precessing spin components, respec-
tively. These amplitudes satisfy the corresponding Dyson
equations presented graphically in Figs. 7(c) and 7(d),

Γγγ0
n;n0 ¼ V2

n;n0 þ
X
n00

V2
n;n00Π

γγ0
n00 Γ

γγ0
n00;n; (53)

where the polarization operator

Πγγ0
n ðq;ωÞ ¼

X
r¼�

Z
dp
2π

GR
n;γ;rðϵþ ω; pþ qÞGA

n;γ0;rðϵ; pÞ

(54)

is easily evaluated with Eq. (46),

Πγγ0
n ðq;ωÞ ¼

X
r¼�

τn
vn

�
1 − iωτn þ irvnqτn

þ i
2
ðγ − γ0ÞΔnτn

�−1
: (55)

We first address the dynamics of the component parallel
to the effective field by setting γ ¼ γ0. At long distances,
the spin density is dominated by the spin-diffusion mode
away from the source. To identify this mode, we adopt the
approach of Ref. [35] and introduce the spectral decom-
position of the scattering amplitude as follows:

X
n0
V2
n;n0Π

��
n0 ð0; 0Þφl

n0 ¼ λlφ
l
n: (56)

Here the index l ¼ 0; 1;… labels eigenfunctions φl
n nor-

malized by the condition

X
n

φl
nΠ��

n ð0; 0Þφl
n ¼ δl;l0 : (57)

Substituting the expansion V2
n;n0 ¼

P
la

l
nφ

l
n0 into Eq. (56)

and using Eq. (57), we obtain

V2
n;n0 ¼

X
l

λlφ
l
nφ

l
n0 : (58)

The amplitude in Eq. (53) can be decomposed using
Eqs. (56)–(58) as follows:

Γ��
n;n0 ¼

X
l

λl
1 − λl

φl
nφ

l
n0 : (59)

The hydrodynamic mode is identified as the one having
the eigenvalue λl¼0 ≈ 1. Following Ref. [35], this mode is
written as

φl¼0
n ¼ Z

2τn
; Z ¼

ffiffiffi
2

p �X
n
v−1n τ−1n

�
−1=2

; (60)

where Z is the normalization factor fixed by the condition
Eq. (57). Indeed, because it follows from Eq. (55) that
Π��ð0; 0Þ ¼ 2τn=vn, and because of Eq. (52), the defi-
nition Eq. (56) gives

X
n0
V2
n;n0Π

��
n0 ð0; 0Þφl¼0

n0 ¼ φl¼0
n : (61)

Equation (61) shows that φl¼0 corresponds to the hydro-
dynamic pole of the scattering amplitude, Eq. (59), at q ¼ 0
and ω ¼ 0. This pole is a consequence of the conservation
of the spin polarization parallel to the effective field.
To obtain the dynamics in the long-wavelength, i.e.,
hydrodynamic, limit, we analyze the small q and small
ω dependence of the λl¼0ðq;ωÞ eigenvalue. At nonzero q
and ω, the eigenvalue equation is

X
n0
V2
n;n0Π

��
n0 ðq;ωÞφl¼0

n0 ¼ λl¼0ðq;ωÞφl¼0
n : (62)

In the hydrodynamic regime, ωτn, vnqτn ≪ 1, the
difference

Π��
n ðq;ωÞ − Π��

n ð0; 0Þ ≈ 2τn
vn

ðiωτn þ v2nq2τ2nÞ (63)

can be considered as a small perturbation of an original
eigenvalue problem at q ¼ 0, ω ¼ 0 with the unperturbed
solution Eq. (60). The corresponding perturbation theory
has been worked out in Ref. [35], and here we quote the
result,

λl¼0ðq;ωÞ ≈ 1þ iωhτ−1i−1 − hDiq2hτ−1i−1; (64)

where the averaging over modes is defined as a sum
weighed by the density of states,

hAi ¼
P

nv
−1
n AnP

nv
−1
n

(65)

and Dn ¼ v2nτn. In the quasiclassical regime, the number of
modes is large, and the sum in Eq. (65) can be replaced by
the integral,
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hAðnÞin ≈
R kF
−kF dkAðkÞðkF − k2Þ−1=2R kF

−kF dkðkF − k2Þ−1=2 ; (66)

where kF is the bulk Fermi momentum. Equation (66), in
turn, corresponds to an angular integration over the Fermi
surface with the energy-independent density of states. In
the same limit, the relaxation rate hτi−1 and the diffusion
coefficient hDi approach their corresponding bulk values
1=τ and k2F=m

2ðτ=2Þ for a two-dimensional electron gas in
the presence of δ-correlated disorder. In the case of the
diffusion coefficient, the numerical prefactor appears as a
result of the identity

R
1
−1 dxx

2ð1 − x2Þ−1=2R
1
−1 dxð1 − x2Þ−1=2 ¼ 1=2:

Keeping only the hydrodynamic mode in the expansion,
Eq. (59), as appropriate at large distances from the spin
source, we finally obtain

Γ��
n;n0 ≈

φl¼0
n φl¼0

n0 hτ−1i
iω − hDiq2 ; (67)

which is natural for diffusion without spin-precession and
spin-flip processes.
The diffusion of the nonconserved component of the spin

polarization is accompanied by oscillation. This manifests
itself in polarization operators at small q and ω,

Π�∓
n ðq;ωÞ − Π�∓

n ð0; 0Þ ≈ 2τn
vn

ðiωτn þ v2nq2τ2n∓iΔnτnÞ;
(68)

which differs from Eq. (63) by the presence of a spin-
splitting contribution. Similarly to Eq. (67), we obtain

Γ�∓
n;n0 ≈

φl¼0
n φl¼0

n0 hτ−1i
iω − hDiq2∓ihΔi : (69)

The most singular contributions to a dynamical spin
susceptibility are

χdðq;ωÞ ≈ iω
2π

X
γ¼�

X
n;n0

½cos2θΠγ;γ
n Γγ;γ

n;n0Π
γ;γ
n0

þ sin2θΠγ;−γ
n Γγ;−γ

n;n0 Π
γ;−γ
n0 �; (70)

where the cos θ and sin θ are the matrix elements of the spin
operator in the jn;�i basis introduced in the discussion of
the ballistic case. In Eq. (70), the polarization operators can
be evaluated at q ¼ 0 and ω ¼ 0, so that from Eq. (55),
Πγγ0

n ≈ 2τn=vn. Then substitution of Eqs. (60), (67), and
(69) into Eq. (70) gives

χdðq;ωÞ ≈ νcos2θ
ω

ωþ ihDiq2

þ ν

2
sin2θ

�
ω

ω − hΔi þ ihDiq2 þ
ω

ωþ hΔi þ ihDiq2
�
:

(71)

The first term in this equation describes diffusion of the
spin component parallel to the effective field. The second
term describes the diffusion of oscillating spin polarization
(coming from precessing pseudospins). The stationary spin
polarization obtained by a substitution of Eq. (71) in
Eq. (23) reads

szðxÞ ≈ s0cos2θðjxs − xdj=2hDiÞ

−
s0lH

23=2hDi sin
2θe−jx−xsj=lH cos

�
π

4
þ jx − xsj

lH

�

þ s0lH
23=2hDi sin

2θe−jx−xdj=lH cos
�
π

4
þ jx − xdj

lH

�
;

(72)

where the Hanle length lH¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏhDi=hΔip ¼ ffiffiffiffiffiffiffiffiffiffi

2lSOl
p

≫ l.
For the particular geometry, xs < xd < x with jxs − xdj ≫
lH ≫ l and x within a few lH of xs, the last term due to the
drain in Eq. (72) can be omitted. At x − xs ≫ lH, the
second term due to the source in Eq. (72) is negligible as
well and the result Eq. (43) is obtained using Eqs. (37)
and (38) and replacing δSOn ≈ δSO.
In the above derivation, the dispersion in θn angles has

been neglected. We expect the variation of θn to induce
randomness in the effective field and, therefore, cause spin
relaxation akin to a D’yakonov-Perel’ mechanism of spin
relaxation. Nevertheless, the corresponding relaxation rate
is expected to be suppressed relative to its bulk value
because such band-to-band variations of θn are rather
small. In the parabolic confining potential at the resonance,
θn ¼ π=2 for all n. Likewise, off the resonance, θn ≈ 0.
This spin relaxation is left for future studies.

B. Spin polarization in the presence
of weak disorder, W ≪ lSO ≪ l

Weak disorder has little effect on the nonconserved
(precessing) part of spin polarization, whereas the con-
served part still diffuses along the channel for distances
exceeding the mean-free path. Therefore, the second term
of Eq. (41), which is valid in the ballistic case, applies for
the nonconserved component, and the first term of Eq. (72)
is appropriate for the conserved part, which is still
determined by a simple diffusion equation. For distances
much more than lSO, away from the source the signal is
dominated by the conserved part and the BSR effect is
qualitatively described by Eq. (43).
To justify this, we begin with Eq. (54), which remains

valid. The components of the polarization operator
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Πγγ0
n ðq;ωÞ with γ ≠ γ0 contain the factor Δnτn in the

denominator, where Δnτn ≫ 1 [Eq. (55)]:

Π�∓
n ðq;ωÞ ¼

X
r¼�

τn
vn

½1 − iωτn þ irvnqτn � iΔnτn�−1:

(73)

In the interval x ≫ lSO, we can approximate Eq. (73) as

Π�∓
n ðq;ωÞ≃�2i

τn
vn

ðΔnτnÞ−1: (74)

From Eq. (52), we can estimate the scattering vertex
V2 ≃ ℏv=τ, where the subband indices are omitted for
clarity. This yields an estimate of the product

V2Π�∓ ≃ Δτ ≪ 1: (75)

It follows from Eq. (75) that the components Π�∓ are
approximately their ballistic counterparts, as the Dyson
series [Fig. 7(d)] produces corrections to the ballistic result
that are small by a factor ∼ðΔτ=ℏÞ−1 ¼ lSO=l.
The components Π��, Eq. (55) with γ ¼ γ0 ¼ �, do not

contain the parameter Δτ, so

Π��
n ðq;ωÞ ¼

X
r¼�

τn
vn

½1 − iωτn þ irvnqτn�−1; (76)

which describes the diffusion of the conserved part regard-
less of the ratio l=lSO. Combining these observations, for
the steady-state spin polarization we obtain

szðx; BÞ ¼ s0cos2θ
jxs − xdj
2hDi

þ s0
2
P

nv
−1
n

X
n

v−2n sin2θn cos

�
2π

ln
ðx − xdÞ

�
:

(77)

In Eq. (77), the source contribution was omitted, as we
assume the source is located far enough (many lH) from the
point of observation x.

C. Comparison to the case of
no Zeeman splitting, EZ ¼ 0

We now comment on the relation of the present analysis
to previous studies of spin dynamics in narrow channels in
the diffusive regime. The spin dynamics in the limit EZ ¼ 0
and with the mean-free path the shortest length scale in the
problem was studied in Refs. [17,22]. The dynamics in
the spin channel was described by the spin-1 spinor ψ with
the components being linear combinations of spin polari-
zation. The collective modes in this regime were identified
as solutions of a 3 × 3 matrix equation [17,36], which we
reproduce here for the sake of comparison to the present
problem, ½Dðqx − 2mαþĴzÞ2 þDð−i∂z − 2mα−ĴxÞ2�ψq ¼
−iωψq, where ω is the frequency of a collective mode.

The matrices Ĵi, i ¼ 1, 2, 3, represent spin-1 angular
momentum.
In the absence of Zeeman splitting, the term proportional

to α− can be eliminated by a suitable gauge transformation
[17]. If the channel’s widthW is smaller than ðmα−Þ−1, this
transformation is close to identity and, therefore, has a
small influence on the αþ term that can be treated by
perturbation theory. This is true even if the mean-free path
is larger than the channel width and W ≪ ðmα−Þ−1. The
reason is that the transverse subbands’ energy separation
exceeds the typical matrix element of α−pzσx in this
regime. In other words, the α− term is largely irrelevant
and the spin dynamics is controlled by the αþ term alone.
The modes are then classified as eigenstates of the Ĵz
operator. The slowest modes include the so-called spin-
spiral configurations [22].
We now compare this situation to the spin dynamics

studied in this paper at the BSR. At Ez ≈ ℏωc, it is α− that
is more important and αþ less relevant. This is due to the
strong mixing of subbands jnþ 1;↓i and jn;↑i, as dis-
cussed in Sec. II. We emphasize that the α− term cannot be
gauged out close to the BSR because it strongly mixes the
above subbands, which are near degeneracy at the reso-
nance. Instead, the pairs jnþ 1;↓i and jn;↑i entangled by
the α− term define the pseudospin space for each n. In the
above discussion, these states were labeled by jn; γi, with
γ ¼ �1. To derive expressions that can be compared with
previous studies, we introduce the spin-1 spinor ψ ðnÞ
describing the total angular momentum of electron-hole
pairs, [36] in a pseudospin subspace jn; γi, γ ¼ �1. For the
purposes of this work, it is sufficient to consider EZ ¼ ℏωc.
The equation for collective modes obtained above

[(Eq. (62)] can be rewritten in a form similar to that used
in Ref. [17] as follows:

X
n0
V2
nn0

2τn0

vn0
½1þ iωτn0 þDn0 ðqx − 2αþĴzÞ2τn0

þ δSOn0 Ĵx�ψ ðn0Þ ¼ λðq;ωÞψ ðnÞ; (78)

where the splitting δSOn is solely due to the α− term as
defined by Eq. (39). The diffusion pole is ½1 − λðq;ωÞ�−1,
where λðq;ωÞ is the lowest hydrodynamic eigenfunction.
For αþ ¼ 0, Eq. (78) simplifies. The collective modes are
labeled by eigenstates of Ĵx, and the results of Sec. IVA are
recovered. The conserved polarization diffusion pole,
Eq. (67), is obtained for eigenstates with Ĵxψ ðnÞ ¼ 0.
The precessing polarization Hanle-like pole, Eq. (69), is
obtained for Ĵxψ ðnÞ ¼ �ψ ðnÞ.
The inclusion of the α− term, in general, makes the above

classification inapplicable. We can estimate the importance
of this term by comparing its typical value and δ− ∼ α−pF.
At typical wave vectors q≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α−Δ=D
p

, the ratio of the two
terms is ∼ðαþ=α−Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

α−pFτ
p

. In the diffusive regime studied
in Refs. [17,22], α−pFτ ≪ 1, and, therefore, the αþ term is
expected to produce little change in the spin dynamics
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within each pseudospin space. In the presence of intersub-
band scattering, it leads to D’yakonov-Perel’–like relaxa-
tion, and is expected to affect the shape of the resonance.
Nevertheless, the general trend of the nonequilibrium spin
polarization to form a dip at the resonance remains intact.

V. CONCLUDING REMARKS

We study theoretically the phenomenon of BSR in quasi-
one-dimensional channels. Our theory reliably reproduces
the drop in the nonlocal voltage (which presumably reflects
local spin density) induced by nonequilibrium spin polari-
zation in both ballistic and diffusive regimes. When the
Zeeman splitting is comparable to the energy scale of
transverse quantization, the bands become doubly degen-
erate, as in Fig. 2. By hybridizing these pairs of bands, SO
coupling causes the precession of the injected spin polari-
zation, as in Fig. 3. In the ballistic regime, the variation of
the injected spin density is due to the spatial beating of
various modes in the channel. The magnitude of the
oscillation is reduced by increasing the size of the source.
In the diffusive regime, the dynamics of injected spins is a
Hanle-like relaxation.
In this paper, we model the spin injection as a continuous

influx of a quasiequilibrium polarization, as in Ref. [37].
While such an approximation may apply to spin injection
from a ferromagnetic contact to a bulk semiconductor [38],
its application to injection via a QPC has yet to be studied.
Experimentally, the voltage is fixed, not the spin injection
rate. A more rigorous way of describing the injection would
be to use a Landauer approach. In a multiterminal geom-
etry, this requires solution of a quantum-mechanical scat-
tering problem for electrons injected via the QPC.
Although we have captured the gross features of BSR, a

more accurate modeling of a spin injection is necessary for
a detailed description of spin transport in channels con-
tacted by a QPC. For example, when a band is just touching
the Fermi level, the velocity of the carriers along the
channel is nearly zero, so that if the injection rate is kept
constant, a divergent spin accumulation would result. The
injection rate should instead become zero due to perfect
reflection at the QPC, which eliminates the divergence. We
also note that the effective size of an injection or detection
region depends on the microscopic details of a QPC.Within
our theory, therefore, this size should be regarded as a
phenomenological parameter. In Fig. 5, the injector size is
taken to be 0.5 μm. If one takes 2 μm instead, the spin
polarization is noticeably smoothed out, as seen in Fig. 8.
Oscillations in the nonlocal voltage due to ballistic spin

precession have been reported in Ref. [39]. The oscillations
seen in our Fig. 5 reflect this observation. Injection via the
QPC differs from injection from the long contact bar used
in Ref. [39] and better resembles Fig. 8, with an effectively
larger injector and detector region. A more detailed study of
the spin injection across a QPC will be helpful to develop

further understanding, and will be addressed in forthcom-
ing studies.
The BSR phenomenon is an ideal setting to study the

role of electron-electron interaction in spin transport and
spin relaxation in confined geometries, which was the
primary motivation for this work. Of particular interest is an
interaction-induced renormalization of the resonant field,
which will be studied in the future, based on the theory
above. Spin relaxation and coherence of the precessing
pseudospins in the channel are likely to yield additional
surprises.

ACKNOWLEDGMENTS

We thank J. A. Folk and A. M. Finkel’stein for useful
discussions. M. K. acknowledges the support of the
University of Iowa. M. E. F. was supported in part by
C-SPIN, one of six centers of STARnet, a Semiconductor
Research Corporation program, sponsored by MARCO
and DARPA.
Note added.—Recently, we became aware of Ref. [40],

which also treats ballistic spin resonance.

APPENDIX: STATIONARY SPIN POLARIZATION

In this Appendix, we derive the general relation,
Eq. (23), assuming linear response, and illustrate it for
simple diffusion. For clarity, we consider a steady influx of
a specified particle density; the number of particles
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FIG. 8. The same as Fig. 5 but with an effective spin injector
size of 2 μm, 4 times larger than 0.5 μm used in Fig. 5. In this
case, the effective injector size is comparable to the typical
channel width W ¼ 1.2 μm. The dip in spin polarization is more
pronounced for parabolic lateral confinement (a) as the resonance
condition, Eq. (21), can be satisfied for all bands simultaneously,
which is not the case for the infinite square-well confinement (b).
This is due to the washing out of an oscillatory precessing
polarization component with distance. The suppression of oscil-
lations occurs for larger injector sizes and is present for both the
parabolic (c) and square-well (d) confinements.
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imparted into the system per unit time and per unit volume is the flux FρðxÞ. In order to relate the steady-state density to the
retarded density correlation function χρðx; tÞ, we rely on the following auxiliary result proven in Ref. [37]. If an excess
density ρðxÞ is prepared at an initial time instant ti, the subsequent time evolution of the density at a given time t and
location x, ρðx; tÞ, is determined by the correlation function χρðx; tÞ according to

ρðx; t > tiÞ ¼ −i
Z

dω
2π

Z
dx0

Z
dx00e−iωðt−tiÞ

½χρðx − x0;ωÞ − χρ;stðx − x0Þ�
ω − i0þ

χ−1ρ;stðx0 − x00Þρðx00; tiÞ; (A1)

where the static correlation function χρ;stðx0 − x0Þ ¼ χρðx0 − x0;ω ¼ 0Þ. During each infinitesimal time interval ½ti; ti þ dti�,
the density FρðxÞdti is imparted into the system. This density is evolving in time according to Eq. (A1). In the linear
response regime, the separate contributions of each of the time intervals add up to yield

ρðx; tÞ ¼ −i
Z

t

−∞
dti

Z
dω
2π

Z
dx0

Z
dx00e−iωðt−tiÞ

½χρðx − x0;ωÞ − χρ;stðx − x0Þ�
ω − i0þ

χ−1ρ;stðx0 − x00ÞFρðx00Þ: (A2)

For a flux that is turned on adiabatically, Fρðx00Þ is replaced in Eq. (A2) by Fρðx00; tiÞ ¼ Fρðx00Þ expðδþtiÞ. The steady-state
result is then obtained by taking the limit δ → 0 at the end of the calculation. With this regularization, the integration over
the injection time ti is straightforward and yields the following expression:

ρðxÞ ¼ −
Z

dω
2π

Z
dx0

Z
dx00

½χρðx − x0;ωÞ − χρ;stðx − x0Þ�
ðω − i0þÞðω − iδþÞ χ−1ρ;stðx0 − x00ÞFρðx00Þ: (A3)

The integration over the frequency ω can be done by
closing the contour of integration in the upper half of a
complex ω plane due to the fast decay of the integrand at
large ω. It is essential that the retarded correlation function
χρðx − x0;ωÞ is analytic in the area enclosed by the above
contour. Using the residue theorem and introducing spatial
Fourier harmonics, we rewrite Eq. (A3) as

ρðxÞ ¼ −i
Z

ddq
ð2πÞd e

iqx½∂ωχρðq;ωÞχ−1ρ;stðqÞ�j
ω→iδ

FρðqÞ;
(A4)

where d is the dimension of space. We note that the order of
the limits taken with the regularizing infinitesimals 0þ and
δþ in (A4) is not important.
The arguments leading to Eq. (A4) can be repeated for

spin injection. The steady state spin polarization density
sðxÞ is determined by the spin polarization rate F following
a similar approach to Eq. (A4), yielding

sðxÞ ¼ −i
Z

ddq
ð2πÞd e

iqx½∂ωχ̄ ðq;ωÞχ̄−1ðqÞ�j
ω→iδ

Fq; (A5)

where χ̄ ðq;ωÞ is the dynamical spin polarization tensor and
matrix multiplication is assumed.

To realize the specific case treated in this paper, we
assume the injection rate FðxÞ to be constant across the
channel and introduce a spin density that has been
integrated over the channel cross section,

ŝðxÞ ¼ 1

2

Z þ∞

−∞
dz½ψ†

s1ðx; zÞσs1;s2ψ s2ðx; zÞ�; (A6)

where σ are the Pauli matrices and s1;2 are dummy spin
indices. Integrating Eq. (A5) over the cross section of a
quasi-one-dimensional channel and using the definition
Eq. (A6), for the steady-state value of the integrated spin
density we obtain

sðxÞ ¼ −i
Z

dq
2π

eiqx½∂ωχ ðq;ωÞχ−1ðqÞ�j
ω→iδ

Fq; (A7)

where the integrated spin polarization tensor

χijq;ω ¼ −i
Z

∞

0

dt
Z

dxe−iqxþiωth½ŝiðx; tÞ; ŝjð0; 0Þ�i: (A8)

We now consider injection of a z component of polari-
zation, which is the experimental geometry, and set
FðxÞ ¼ ẑFðxÞ. The resulting z component of the integrated
spin polarization from Eqs. (A7) and (A8) is

szðxÞ ¼ −i
Z

dq
2π

eiqx
X

j¼x;y;z
f∂ωχ

zjðq;ωÞ½χ−1ðqÞ�jzgj
ω→iδ

Fq: (A9)
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For the geometry considered in the main text, only j ¼ z
provides nonzero contributions to Eq. (A9), for although
ŝzðxÞ has nonzero matrix elements (only within the two-
dimensional eigenstate subspaces αjnþ 1;↑i þ βjn;↓i,
β�jnþ 1;↑i − α�jn;↓i), all four matrix elements in the
same subspace of ŝxðxÞ and ŝyðxÞ are zero. Therefore,
Eq. (A9) reduces to

szðxÞ ¼ −i
Z

dq
2π

eiqx∂ωχ
zzðq;ωÞ½χ−1ðqÞ�zzj

ω→iδ
Fq:

(A10)

Finally, by writing χzzðq;ωÞ ¼ χðq;ωÞ and χzzðqÞ ¼ χðqÞ,
Eq. (23) is obtained.

1. Steady state in diffusive regime

To illustrate the result Eq. (A4), we consider diffusion in
d spatial dimensions. The density-correlation function
reads

χρðq;ωÞ ¼ νd
Dq2

Dq2 − iω
; (A11)

where νd is the density of states and D is the diffusion
coefficient. Substitution of Eq. (A11) in Eq. (A4) yields

ρðxÞ ¼
Z

ddq
ð2πÞd

eiqxFρðqÞ
Dq2 − iω

����
ω→iδ

: (A12)

Consider the localized injection source of an excess density
at the origin x ¼ 0. For the injection rate, we have
FρðxÞ ¼ s0δðxÞ, which gives FρðqÞ ¼ s0. It follows that
for the localized source, the integral in Eq. (A12) diverges
for d ¼ 1, 2 and converges in higher dimensions. This fact
reflects the Polýa recurrence theorem, which states that the
random walker will return to its original location in a finite
time for d ¼ 1, 2, while in d > 3, the recurrence time is
infinite. For a generic source, the integral in Eq. (A12)
diverges. Correspondingly, the jamming in d ¼ 1, 2 pre-
vents the system from reaching the steady state. For d > 3,
the jamming is reduced, and the steady state is reached, as
given by the convergent integral [Eq. (A12)]. Note that the
convergence at large wave vectors is achieved due to the
finite size of any realistic injector.
The steady state is realized in d ¼ 1, 2, provided the total

flux injected is zero. Indeed, in this case, Fρðq ¼ 0Þ ¼ 0,
and the integral in Eq. (A12) is convergent. The simplest
realization of this situation is the combination of spatially
separated pointlike source and drain. Focusing on d ¼ 1,
we write the injection profile as

FðxÞ ¼ s0½δðx − xsÞ − δðx − xdÞ�; (A13)

which describes the source and drain located at x ¼ xs and
x ¼ xd, respectively. The Fourier image of Eq. (A13) is

FðqÞ ¼ s0½e−iqxs − e−iqxd �: (A14)

Since the total injected flux Fðq ¼ 0Þ ¼ 0, the steady state
becomes possible and the integral in Eq. (A12) becomes
convergent. It is important to keep δ finite in the course of
this integration and set δ ¼ 0 only at the end of the
calculation. This widely used limiting procedure reflects
our scheme of adiabatically turning on the sources starting
at the remote past. The straightforward integration over q
gives the following result:

SðxÞ ¼ s0
2D

½jx − xdj − jx − xsj�: (A15)

The result, Eq. (A15), can also be easily obtained by solving
the diffusion equation in the steady state ∂2

xρðxÞ ¼ 0with the
boundary conditions Eq. (A20) derived in the next section.
The solution, Eq. (A15), is presented graphically in Fig. 9.
Equation (A12) can also be written in real space,

ρðxÞ ¼
Z

∞

0

dt
Z

∞

−∞
dx0Dcðx − x0; tÞFρðx0Þ; (A16)

where the diffusion kernel

Dcðx; tÞ ¼
expð−x2=4DtÞffiffiffiffiffiffiffiffiffiffiffi

4πDt
p : (A17)

Equations (A16) and (A17) can be generalized easily to
include spin precession, drift, and relaxation leading to,
e.g., Eq. (1) of Ref. [38].

2. Boundary conditions for the diffusion
in one spatial dimension

We integrate the diffusion equation with the source

∂tρ ¼ D∂2
xρþ FðxÞ (A18)

over the interval b1 < x < b2 in the steady state ∂tρ ¼ 0 to
obtain

FIG. 9. The steady-state density distribution, Eq. (A15),
obtained by the integration in Eq. (A12) with a source and drain
located at x ¼ xs and x ¼ xd as represented by the injection rate,
Eq. (A13).
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Z
b2

b1

dxFðxÞ ¼ −D∂xρðx ¼ b2Þ þD∂xρðx ¼ b1Þ: (A19)

We now apply the general Eq. (A19) to Eq. (A13), with
b1 ¼ xs − ϵ, (xd − ϵ) and b2 ¼ xs þ ϵ (xd þ ϵ), and take
the limit ϵ → 0. As a result, the following boundary
conditions are obtained:

−D∂xðx ¼ xs þ 0þÞ þD∂xðx ¼ xs − 0þÞ ¼ s0;

−D∂xðx ¼ xd þ 0þÞ þD∂xðx ¼ xd − 0þÞ ¼ −s0: (A20)
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