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Non-Poissonian bursty processes are ubiquitous in natural and social phenomena, yet little is known
about their effects on the large-scale spreading dynamics. In order to characterize these effects, we devise
an analytically solvable model of susceptible-infected spreading dynamics in infinite systems for arbitrary
inter-event time distributions and for the whole time range. Our model is stationary from the beginning, and
the role of the lower bound of inter-event times is explicitly considered. The exact solution shows that for
early and intermediate times, the burstiness accelerates the spreading as compared to a Poisson-like process

with the same mean and same lower bound of inter-event times. Such behavior is opposite for late-time

dynamics in finite systems, where the power-law distribution of inter-event times results in a slower and

algebraic convergence to a fully infected state in contrast to the exponential decay of the Poisson-like

process. We also provide an intuitive argument for the exponent characterizing algebraic convergence.
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I. INTRODUCTION

Events of the dynamical processes of various complex
systems are often not distributed homogeneously in time
but have intermittent or bursty character. This is ubiqui-
tously witnessed in processes of nature like earthquake
statistics [1], solar flare [2], and firing of neurons [3], but
also in social processes like financial interactions [4] and
human communication activities [5]. In these examples,
the distribution of inter-event times follows a power-law
behavior [1-5], in contrast to the homogeneous Poissonian
processes showing exponential distribution.

Dynamical processes of complex systems can be con-
sidered to take place on a network formed by pairwise
interactions between the constituents of the system [6,7]. In
the recently developed approach of temporal networks [8],
a link between two nodes is considered to exist only at the
moment of interaction. One of the most interesting dynami-
cal processes on networks is the spreading [9—13] that takes
place on temporal networks, and the statistics of events
strongly influences its most important feature, namely, the
speed of propagation. This feature is of pivotal interest and
importance, e.g., for halting epidemic outbreaks or pro-
moting diffusion of innovations.

Recently much effort has been devoted to clarifying
how burstiness of events influences the spreading speed,
partly by using empirical data analysis [14—19] and partly
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by model calculations [8,14,20-22]. In those studies, the
bursty character of an event sequence was found to slow
down the late-time dynamics of spreading, evidenced also
by a heavy tail in the inter-event time distribution.
However, for the early-time dynamics, conflicting results
have been reported [23]. In studies by Vazquez et al. [14]
and Karsai et al. [15], the burstiness is found to slow down
spreading, while other works point towards the opposite
direction [16,18,21]. This calls attention to the importance
of small inter-event times or to the role of lower bounds of
inter-event times. The effect of lower bounds has been
largely ignored, although it is present in empirical phe-
nomena and it is important for understanding the early-time
behavior of reference systems.

Model studies usually aim to reproduce some empirical
observations to uncover the main mechanisms of the real
underlying processes. Here, we take the perspective of
constructing a tractable and analytically solvable model,
where the effects of different parts of the inter-event time
distribution can be studied explicitly and understood in
detail. The model we consider is without correlations found
in realistic data sets, except for the correlation due to the
inter-event time distribution. In this way, we hope to
provide a reference system, which can serve as a starting
point for later studies.

II. MODEL

In order to model bursty spreading phenomena, we study
deterministic susceptible-infected (SI) dynamics taking
place on a temporal network of infinite size. Each node
remains inactive for an inter-event time, denoted by I,
before becoming instantaneously active, and then it turns
inactive for another inter-event time period, and so on. The
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@ . I . I I'(t —1). Here, I is an independent and identical copy of
J T ) > I, i.e., the number of infected nodes starting from one
| ¢ w > infected and inactive node. Thus, we get
(b) 1 if t <1,
" I,(1) = 1
: v = : l > ol {I()(t—l)+1’l(t—l) if £1>1, )
. v w'
! 4 as depicted in Fig. 1(a). Since the newly infected node must
FIG. 1. Schematic diagram of the infections by an already wait a residual time w, as in Fig. 1(b), the number of

infected node (a) and by a newly infected node (b). Vertical lines
and vertical arrows denote activation timings of nodes and
infections from infected nodes (solid horizontal line) to suscep-
tible nodes (dotted horizontal line). Inter-event times /, I, and [
are independent of each other, and so are the residual times w, w’,
and w”.

inter-event time distribution Py(l) is assumed to be the
same for all nodes, implying a homogeneous population.
The activation pattern of a node is independent of whether
it is susceptible (S) or infected (I). Whenever any infected
node becomes active, it chooses a random node and infects
it if the chosen node is susceptible (see Fig. 1). Here, the
probability of choosing a susceptible node is 1 in the
infinite-size system, as the dynamics starts from a single
infected node. The newly infected inactive node should
wait a residual time, denoted by w, before it becomes active
again. The distribution of w is derived from Py(l) as
Pi(w) = ﬁf;" Py(l)dl, with p denoting the mean of /.
Thus, the dynamics is stationary from the beginning, as it is
independent of the nodes being initially active or inactive.
Otherwise, the early stage of spreading dynamics could be
sensitive to the variation of the initial distribution of active
or inactive nodes.

In our model, the dynamics can be interpreted as
occurring on a temporal network, in the sense that any
pairwise interaction between nodes, defining a link, is
instantaneous and annealed. Such links can be interpreted
as directed, as the inter-event time distribution is considered
only for outgoing events of infecting nodes. The spreading
dynamics on this temporal network can be related to a class
of Bellman-Harris branching processes [16,20,24]. It
should be noted that temporal inhomogeneities have been
considered in a model study by Perra et al. [12], although
they took a different approach than ours by using inho-
mogeneous activities of nodes.

We investigate the spreading dynamics, starting from
one infected and active node at time t = 0. The number of
infected nodes at a later time ¢, denoted by [,(¢), remains 1
for the inter-event time / given to the initially infected node.
After the first infection at # = [, () can be written as the
sum of two numbers: One is for the infecting node and its
subsequent infected nodes, which can be denoted by an
independent and identical copy of [, but starting at t = [,
thus as [{,(r — ). The other is for the newly infected node
and its subsequent infected nodes, similarly denoted by

infected nodes starting from one infected and inactive node
can be written as

1) { 1 if t <w, )
) =
‘ (t—w)+ 11 —w) if t>w,
where the [”s are independent and identical copies of I.
The generating function for [I,(r) is defined as
Fo(z,1) = > 50 Prllo(r) = k|z*, and we get

z if t <,

F()(Zv t) = .
Fo(z,t = 1)F(z,t—1) ift>1

Here, F(z,t) is the generating function defined for 7, ().
By taking the expectation over [ with Py(/), one obtains

Fdaﬂ—z/w%uwl

+ / Folzt = DF (2.t — DPo(Ddl. (&)
0

Then, the average number of I((¢) is calculated as

- aFo(Z, t)

no(t) = (Iy(1)) = o &)

z=1

_/oopo(l)dl+/t[no(t—l)+n1(t—l)]Po(l)dl’ ©)

where n;(t) = (I,(t)). Taking the Laplace transform, we
get

io(s) = -2 i (5) 4 (Ps). D)
in(s) = o) + IR, ®)

which straightforwardly leads to

i’o(s) _
(s = )[1 = Po(s)]

where we have used the relation P;(s) = /% [1— Py(s)].
Then, 1y () can be calculated by taking the inverse Laplace

1
no(s) = T ®
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transform of 7 (s) analytically or numerically if necessary.
Note that this solution has been obtained for arbitrary inter-
event time distributions and for the whole time range,
enabling us to evaluate the effect of burstiness on spreading
at any stage of dynamics. In contrast to this case of infinite
system size, the late-time behavior of finite systems cannot
be investigated analytically.

As for the non-Poissonian bursty processes, they are
often characterized by broad inter-event time distributions,
such as Gamma and log-normal distributions [16] and
power-law distributions with an exponential cutoff [14,21].
Since these distributions have a zero lower bound for inter-
event times, the effect of the lower bound on the early stage
of spreading dynamics has been ignored, despite the
importance of the finite lower bound in empirical phenom-
ena. In order to systematically investigate the effect of the
lower bound as well as the heavy tails of inter-event times,
we consider the shifted power-law distribution with an
exponential cutoft:

a—1
%

r(l—ap

Py(l) = I=%e=!g(1 — 1), (10)

where I' is the upper incomplete Gamma function and 6
is the Heaviside step function. [, and [/, denote the lower
bound and the exponential cutoff of /, respectively. In the
case with /. — oo, the value of the power-law exponent a
should be larger than 2 to guarantee finite y, i.e., the mean
of . The mean is related to other parameters as follows:

_ Il-ay)
iYcEr) "

where x = l;" and y = ﬁ—" Here, 0 < x < 1 because the mean
cannot be smaller than the lower bound. When y =0, the
relation reduces to x = % Note that setting the power-law
exponent a = 0 reduces the distribution to the shifted
Poissonian case.

A. Poissonian processes

As the simplest case, the Poissonian process with
Py(l) = u~'e”!/¥ results in the solution

no(t) = e/r. (12)

Generally, we consider the shifted Poissonian process by
setting @ = 0 in Eq. (10), leading to

1
PPl—
0()

exp (— - l°>9(1 —1y).  (13)
— 1

H—lo

Here, we have used /. = u — [, from Eq. (11). Then, we get

1 1 1
sos—p ! [(w—1lo)s +1]el — 1

(14)

For the early-time dynamics, by assuming that s > 1, we
obtain

1 1 el

n ~— , 15
ols) s s = l)s + 1 (2

which results in the following solution:

1 =l _i=ly
no(t) 1+ [e P —e u—lo}e(z “ly)  (16)

o

~1+t_109(t—1) (17)

As for Eq. (17), the exponential functions for # << p have
been expanded. The lower bound [, delays the first
branching, while at times later than t = [, the spreading
speeds up. Let us define a dimensionless spreading rate at
the moment of the first branching as follows:

di’lo
Co=pu— , 18
0= H . (18)
1
P(x) = . 1
Co(x) 1—x (19)

Next, we study the late-time dynamics, where the late
time for infinite-size systems corresponds to the intermedi-
ate time for finite-size systems. Since it is evident that
no(t) ~ e'* for large t, we characterize the asymptotic
behavior by defining the coefficient of the leading expo-
nential term as

Cy = tlimno(t)e_’/” (20)
= lir%sﬁo(s +u ). (1)

Here, we have used the final value theorem [25]
lim f (1) = lims(s). (22)

with () = ny(t)e™"/*. By plugging Eq. (14) into Eq. (21),
we obtain

1

O =G e r1

(23)

This result implies that the finite lower bound suppresses
the late-time spreading dynamics.
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B. Non-Poissonian processes

Now we consider the general form of Py(/) in Eq. (10).
The Laplace transform of Py(/) is obtained as follows:

Bo(s) = (51, + 1y U ;gi(zly;r D)

(24)

To investigate the early-time dynamics of n(), we con-
sider the case with s > 1. By expanding the incomplete
gamma function, we obtain

" y—ae—y e—slo

P ~ , 25
o(s) 'l —a,y)sl.+1 @5)
1 1 1
7 ~—+A — =l 26
o) = A (e e 0o
with A = Flv%’ leading to
1—ly Iy
no() ~ 1+ A(eT - e—T) o(t—1,). @27
The spreading rate at t = lg , 1.e., Cp, is obtained as
1 ylfaefy
Colx,y,0) = —————. 28
O(X y a) xF(l—a,y) ( )

Note that x, y, and a are not independent by means of
Eq. (11) and that Cy(x,y,0) == C{(x). For the
comparison to shifted Poissonian processes, we define

the ratio of spreading rates as

Co(x,y,a)
r()(xv ya a) = OCP()C) ’
0

which turns out to be exactly the same as the ratio of

(29)

gt
Pg(l—lo)‘ (30)
Pyl = I(J)r )
This indicates that the probability of having [ = [j deter-
mines the early-time spreading dynamics. In addition to
ro(x,y,0) = 1, by definition, it is found that r, > 1 for
a>0and ry < 1 for @ < 0 [see Fig. 2(a)]. Provided that
a > 0, one can conclude that the non-Poissonian bursty
activity always accelerates the early-time spreading dynam-
ics as compared to the shifted Poissonian case with the
same mean y and the same lower bound /.

For the late-time dynamics, we focus on the asymptotic
behavior characterized by C, in Eq. (20). Similarly to the
Poissonian case, one gets the following general result:

(1+9'T(1 —ax + )

Fl—ay) =1+ Tl —ax+y)
€1V

Coolx.y.a) =

FIG. 2. Exact solutions of (a) the ratio of initial spreading rates
ro(x,y, @) in Eq. (29) and (b) the ratio of asymptotic coefficients
ro(x,y, ) in Eq. (32). We note that x = band y = ;—0, with the
lower bound [(, the mean y, and the cutoff 1. of the Inter-event
time distribution in Eq. (10). We plot ro(x,y) and ry(x,y) for
various values of y and, in the insets, ry(y,a) and ry (v, a) for
various values of a. By definition, the ratios have the value
of 1 for @ = 0. In the limits of x — 1 and/or y — oo, one gets
Py(1) = 8(1 — u); thus, ry and ry, have the value of 1.

Note that Co, (x,y,0) = m = C%,(x). Similarly to r,
we define the ratio
C b b
ol y,0) = S22 (32)

Co(x)

In addition to r (x,y,0) = 1, by definition, it is found that
re >1for a >0 and r, <1 for a <0 [see Fig. 2(b)].
This implies that the non-Poissonian bursty activity accel-
erates the late-time dynamics as compared to the corre-
sponding Poissonian processes. Our analysis is confirmed
by the numerical simulations as depicted in Fig. 3(a).
The correction term to the exponential growth for late-
time dynamics is obtained for the case of y = 0 such that

no(t) = Coe'*(1 — Be™). (33)
Both B and A can be analytically obtained by taking the

Laplace transform of the above equation for s > u~!. By
defining e = s — u~' > 0, Eq. (33) is transformed to

i B
eitg(u" +€) = Coy <1 - +€€> : (34)

By expanding both sides up to the order of ¢? for small e
and comparing the coefficients, one can get 4 and B as
functions of x and «. In the limit of x - 0 (a — 2),
we obtain A — x~! and B — 1, resulting in
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FIG. 3. Numerical simulation results of Poisson-like and non-

Poissonian cases for systems with infinite size (a) and finite size
N =4 x 10° (b—e). In (a,b), we set u = 1 and [, ~ 0.106 for all
cases, from which we get @ ~ 2.118 for /. — oo (power law) and
a=1.5 for I, = 100[, (power law with cutoff). Each curve is
averaged over up to 1.5 x 10° runs. In (c), we plot the fractions of
susceptible nodes, 1 — "01\5’>, using the same results as in (b), as well
as for various values of a in the power-law case with 4 = 1 (thin
reddish curves). The Poisson-like case is fitted with e~’, while the
power-law cases are fitted with . The estimated f as a function
of a is presented in (d), comparable with # = @ — 1. For under-
standing this scaling relation, in (e) we plot the individual runs with
different initial inter-event times (from blue to red curves) with
their average (black solid curve) in the case with o~ 2.118.

no(t) = Coe'/t — Cg. (35)

The constant term implies the existence of residual times
that are effectively infinite because of the non-normal-
izability of P;(w), whose tail is characterized by the
exponent o — 1.

C. Finite-size effects

Finally, we consider the effect of the finite system size N
on the spreading dynamics. Whenever an infected node
becomes active at time ¢, it chooses a random node and
infects it if the chosen node is susceptible. In other words,
the infection occurs with probability N%j'l(t) ~1— "OT(I), but
otherwise it does not occur. Since the exact solution could
not be obtained, we perform numerical simulations to
obtain the spreading dynamics shown in Figs. 3(b), 3(c),
3(d), and 3(e). The early- and intermediate-time dynamics

are consistent with the early- and late-time dynamics of
the infinite system, respectively. For the late-time dynam-
ics, the non-Poissonian bursty activity results in a slower
algebraic convergence to the fully infected state, i.e., ~~*
with f = a — 1 for the power-law case, in contrast to the
exponential decay of the Poisson-like process, i.e., ~e™".

We provide an intuitive argument for the relation f =
a — 1 in the case of power-law inter-event time distribu-
tions. While the average fraction of susceptible nodes
decays algebraically, the fraction of susceptible nodes
for each run remains close to 1 and then suddenly decays
exponentially, as shown in Fig. 3(e). The period staying
close to 1 must be governed mostly by the inter-event time
initially given to the first infected node. Therefore, the
average fraction of susceptible nodes can be obtained as the
fraction of runs that did not reach the fully infected state
at time ¢. Such a fraction of runs is equal to the probability
of having [ > ¢, which is proportional to r~(*1), leading to
p = a—1. Considering the dominant role of inter-event
time given to the first infected node, this argument should
be valid for the SI dynamics with a power-law inter-event
time distribution on a broad class of networks.

III. CONCLUSIONS

We have introduced an analytically solvable model for
studying the effect of non-Poissonian bursty inter-event
time distributions on the SI spreading dynamics. Our model
is devised to be stationary from the beginning. For this, we
make a realistic assumption that for each infection event the
infecting node should wait another inter-event time and the
newly infected node should wait a residual time before they
become active again. With this assumption, we can obtain
the analytic solution of spreading dynamics in infinite
systems for arbitrary inter-event time distributions, but
more importantly for the whole time range. With our
analytic solution, the role of the lower bound of inter-
event times has been exactly compared for Poisson-like and
non-Poissonian processes. We also note that, as done in the
case of null models, randomizing or shuffling the event
timings to destroy temporal correlations can eliminate the
lower bound of inter-event times. Hence, for systematic
comparison between the original situation and the null
model, one needs to employ a shuffling method that
conserves the lower bound.

Let us next discuss apparently conflicting results for the
early-stage spreading dynamics presented in Refs. [15,18].
The early-stage dynamics is mainly driven by small inter-
event times, which generally leads to a faster spreading for
non-Poissonian cases than for Poisson-like cases. This is
the case when any infected node finds a susceptible node
without a topological limit. However, it is well known that
the mobile-phone-call network (MCN) in Ref. [15] has the
community structure accompanying the bottleneck effect
due to weak links between communities [26]. The large
inter-event times associated with such weak links are the
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main reason for slowing down the spreading on the MCN,
while the role of small inter-event times coupled with local
topological structure is still important for spreading within
communities. This leads us to study more realistic models
as a future work. On the other hand, the spreading is
enhanced by the burstiness on the sexual network [18]. This
might be because the sexual network has different com-
munity and/or temporal structures from the MCN, so the
spreading on the sexual network can be better understood
by our model to some extent.

As a followup, our model can be extended to incorporate
a number of other complex situations, such as susceptible-
infected-recovered spreading dynamics and cascading
phenomena. Our results should be of interest beyond the
community of network scientists because non-Poissonian
processes are ubiquitous and yet little is known about their
impact on the large-scale dynamics.
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