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The application of postselection to a weak quantum measurement leads to the phenomenon of weak
values. Expressed in units of the measurement strength, the displacement of a quantum coherent measuring
device is ordinarily bounded by the eigenspectrum of the measured observable. Postselection can enable an
interference effect that moves the average displacement far outside this range, bringing practical benefits in
certain situations. Employing the Fisher-information metric, we argue that the amplified displacement
offers no fundamental metrological advantage, due to the necessarily reduced probability of success. Our
understanding of metrological advantage is the possibility of a lower uncertainty in the estimate of an
unknown parameter with a large number of trials. We analyze a situation in which the detector is pixelated
with a finite resolution and in which the detector is afflicted by random displacements: imperfections that
degrade the fundamental limits of parameter estimation. Surprisingly, weak-value amplification is no more
robust to them than a technique making no use of the amplification effect brought about by a final,
postselected measurement.
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I. INTRODUCTION

In recent years, the Aharonov-Albert-Vaidman (AAV)
effect [1–3] has received much attention. The phenomenon
arises through a combination of both (i) a weak quantum
measurement of an initial state of a “system” by a quantum
coherent “meter” and (ii) judicious postselection of the
system into an unlikely final state. A salient feature of the
phenomenon is known as “weak-value amplification”
(WVA): One may, by fine control of experimental param-
eters, arrange for an anomalously large average displace-
ment of the meter wave function—but WVA only occurs
infrequently.
The pre- and postselected ensemble is characteristic

of the “two-state-vector approach,” which attempts to
restore time symmetry to quantum mechanics [4].
The AAV effect may thus be of fundamental importance,
although it is not exclusively a quantum one: Especially in
optical scenarios, it can be thought of classically [5].
Applications of the work of AAV continue to excite the
quantum-information field, for example, in the estimation
of unknown quantum states, in testing Leggett-Garg
inequalities, and in testing uncertainty and complemen-
tarity relations [6–11].

Here, we concentrate on the foremost technological
application of the AAV effect: in the estimation of the
small constant (known as an interaction parameter) found
to couple a suitably defined system and meter. The meter
wave function encodes information about the system
through their mutual interaction. It is often claimed that
a larger-than-usual displacement of the wave function will
be of use when technological constraints limit one’s ability
to detect very small interaction parameters. Experiments
have been performed that suggest exactly this kind of
advantage: The most prominent claim a suppression of
technical issues such as pointing stability, detector satu-
ration, finite resolution, unwanted displacements, and noise
with long correlation times [12–16]. In this work, we show
that, for the most ostensible technical issues, namely,
random transverse displacements and pixelation, such an
advantage only prevails while suboptimal estimation pro-
cedures are employed. If the fundamental limit on the
uncertainty in the estimate of the interaction parameter is
attainable (by optimal estimation), the advantage disap-
pears. We consider the performance of a standard technique
that matches or betters WVA by using the same measure-
ment strength but without using postselection.
Previously,we have shown thatweak-value-amplification

techniques offer no advantage for a parameter-estimation
problem with a qubit meter, even under decoherence [17].
By contrast, here we consider the canonical WVA scenario
with a continuous degree of freedom acting as the meter.
Importantly, we include a treatment of technical imperfec-
tions, which is the most significant difference between our
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work and a recent paper by Tanaka andYamamoto [18], who
discuss the role of postselection in WVA metrology.
In Sec. II of this article, we introduce our physical model

and motivate the use of postselection to enable weak-value
amplification. In Sec. III, we introduce the Fisher-informa-
tion metric and maximum-likelihood estimation: Here, we
also define a standard approach to parameter estimation
which makes no use of postselection. Section IV examines
a noise-free scenario, comparing WVA to our standard
approach. In Sec. V, we consider improvements to weak-
value amplification by making full use of any discarded
data. In Secs. VI and VII, we allow detection to suffer from
pixelation and jitter, respectively. For each imperfection,
we include worked examples with Gaussian meter wave
functions and allow for both real and imaginary weak
values. Sections VIII and IX treat the situation without
making approximations. A short discussion follows
in Sec. X.

II. MODEL

We imagine a scenario as depicted in Fig. 1. Begin with a
particle described by a product of its internal state (defined
on a finite-dimensional Hilbert space H) and its transverse
spatial wave function [a continuous degree of freedom
defined on L2ðRÞ]. Expanding the initial state jii in the
eigenbasis of an internal control observableAjaji ¼ λjjaji,
one has

jiijψi ¼
X
j

cjjajijψi; (1)

where cj are an appropriate set of normalized amplitudes
and jψi is the normalized transverse component of the
particle’s spatial degree of freedom. We can expand the

spatial degree of freedom, for example, in the x basis
jψi ¼ R

ψðxÞdxjxi. Allow the particle to undergo a dis-
placement, transverse to its direction of propagation
and dependent on the internal state. The time-evolution
operator is

U ¼ e−igAk̂x ; (2)

where k̂x is the operator corresponding to the x component
of the particle’s momentum, and g is the coupling constant
or “interaction parameter” [19]. The dynamics is unitary
since A is Hermitian and has real eigenvalues. Thus, it
generates translations in the meter variable conjugate to k̂x.
In this case, we have

jaji
Z

ψðxÞdxjxi → jaji
Z

ψðx − λjgÞdxjxi; (3)

i.e., displacements in x. The analyses in this paper apply
equally if k̂x and x̂ are interchanged, so that the interaction
induces shifts in momentum space.
Under this dynamics, each of the eigenstates of the

control observable becomes correlated to a separate wave
function, which, up to the proportionality constant g, is
peaked around the corresponding eigenvalue. When λjg is
much larger than the “width” of ψðxÞ, the internal state of
the particle is said to have been strongly measured by
its spatial wavefunction. Formally, a strong measurement
occurs when the overlap Oij ≔

R
ψ̄ðx − λigÞψðx − λjgÞdx

between each pair of shifted wave functions is vanishingly
small [20]. When λjg is relatively small and the wave
functions are no longer well resolved, the measurement is
said to be weak [21].
Now, allow the particle to undergo another internal-state-

dependent shift, this time in the y direction and at full
strength, i.e., with an interaction Hamiltonian ∝ Bk̂y. The
product of the coupling constant and interaction time
should be large enough such that the eigenstates jfi of
observable B are well separated into distinct “branches.”
By selecting only one branch for investigation, one

postselects the particle into a single final internal eigenstate
of B. Any such state can be expanded in the basis of A,
jfi ¼ P

jc
0
jjaji. The final state in the “success” branch will

then be given by

jψWVAi ¼
1ffiffiffi
q

p
X
j

cjc̄0j

Z
ψðx − λjgÞdxjxi; (4)

where the normalization q represents the probability of
successful postselection and depends on g through Oij.
Aharonov, Albert, and Vaidman showed that, when g is

small, the effect on the wave function is captured by a
single quantity Aw ¼ hfjAjii=hfjii [2]. Aw is AAV’s well
known “weak value” and is generally a complex number
[22]. They arrive at this conclusion as follows:

FIG. 1 The AAV setup. A particle’s spatial wave function is
weakly coupled to an internal observableA, causing it to undergo
a small lateral shift conditional on the internal state. It is then
strongly postselected into the eigenstate of another observable B
and allowed to impinge on a array of pixels with width r. By
tuning certain parameters, one can induce larger-than-usual
average displacements at the detection stage. This figure illus-
trates the dimðHÞ ¼ 2 case.
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jψWVAi ¼ hfje−igAk̂x jiijψi (5)

¼ ðhfjii − ighfjAjiik̂x þ � � �Þjψi (6)

≈ hfjiið1 − igAwk̂xÞjψi; (7)

so that to linear order in g, the distribution over x becomes

PWVAðxÞ ≔ jhxjψWVAij2 ≈ jψ ½x − g ReðAwÞ�j2; (8)

where we assume only that the initial spatial wave function
is real valued but do not make assumptions about its shape
[23]. If we take the initial momentum-space wave function
to be a Gaussian ~ψðkxÞ ∝ e−k

2
x=4Δ2

kx , the distribution over kx
transforms to [24]

~PWVAðkxÞ ≔ jhkxjψWVAij2
≈ j ~ψ ½kx − 2gΔ2

kx
ImðAwÞ�j2: (9)

Under these assumptions, the shape of the meter wave
function is not changed, and the perturbation effect can be
modeled through the simple shifts above: For a detailed
discussion of departures from this behavior, see Ref. [24].
We refer to the conditions necessary for these expressions
to be accurate as the AAV approximation. The motivation
behind using postselection is that, where the AAVapproxi-
mation is valid and when hfjii → 0, the average displace-
ment is much larger than is otherwise possible [25]. The
large displacement is often claimed to be an advantage,
especially for overcoming sources of technical noise.
A simple thought experiment is seductive: Imagine that,

ordinarily, the shift induced by the weak measurement λjg
is smaller than the width of a single pixel in a digital sensor
(such as a CCD) [26]. An amplified shift, if large enough,
could then be distinguished from no shift at all, whereas no
such distinction was previously possible [15]. This thought
experiment presupposes an approach to parameter estima-
tion where only the mean of the probability distribution is
important. However, the mean is not always a sufficient
statistic. As we shall see, if one makes use of the entire
statistical distribution to inform one’s estimate of g, then a
larger displacement is not, per se, advantageous.

III. METRIC

An efficient approach to parameter estimation is maxi-
mum likelihood [27], which has previously been studied
in connection with weak values in Refs. [17,28,29]. It
involves inverting the statistics of a measurement record
to find an estimate for a parameter of interest. No other
estimation technique can give higher confidence asymptoti-
cally (when the number of trials is large) [30]. The ultimate
precision of this estimation scheme, and hence of any
estimation scheme, is captured by the Fisher information:
a powerful tool for the appraisal of parameter-estimation

protocols through their resultant parametric probability
distributions. The set of probability distributions condi-
tioned by the unknown parameter defines a statisticalmodel.
The Fisher information is a functional on such conditional
probability distributions and is defined as

Fg½PðsjgÞ� ¼
Z

∞

−∞
½∂gPðsjgÞ�2
PðsjgÞ ds: (10)

It has the properties of an information: It is positive and
increases as PðsjgÞ (the probability of measuring s given a
value of g) becomes less smooth. In this sense, it is an inverse
measure of entropy. Here, s, representing an element of the
sample space of the statistical model, can be thought of
either as a position or momentum variable—we will
consider both s ¼ x and s ¼ kx in the following. The
derivative ∂g ≡ ∂=∂g is taken with respect to the parameter
of interest—in this context, we are interested in the inter-
action parameter g, but for other parameters, we write,
e.g., Fs½•�.
The Cramér-Rao bound limits, from below, the variance

in an estimate ~g of an unknown parameter g given the
observed statistics [31]

Varð~gÞ ≥ 1

NFg
: (11)

The bound is given by the inverse of the product of the
number of trials N with the Fisher information, making the
denominator a good measure of confidence in the unknown
parameter—higher is better. The question about WVA-
inspired metrology then reduces to the following: Is there
more information about g contained in the postselected
distribution over s than when no postselection is performed?
We define a standard strategy as one making no use of a

final measurement, and hence no use of postselection. In
fact, our benchmark measurement strategy completely
ignores the “system” degree of freedom. Beginning from
Eq. (3), one traces over the internal degree of freedom and
measures the particle in the x basis to give

PstdðxÞ ¼
X
j

jcjj2jψðx − λjgÞj2: (12)

The weighted sum is a convex combination: By controlling
the cj, one can mix the probability densities corresponding
to the different eigenvalues of A. An immediate optimi-
zation for the standard strategy presents itself: The Fisher-
information metric is convex [32], meaning that any such
mixing of probability distributions will be suboptimal. One
should therefore choose the cj to filter the probability
distribution with eigenvalue λ� that gives the highest Fisher
information. Now, Fg½Pstd� ¼ Fg½jψðx − λ�gÞj2�.
The key figure of merit that we shall be concerned with

in this paper is the Cramér-Rao bound of the WVA strategy
and how it compares to that of the standard strategy. In the
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limit of N → ∞, their ratio is equal to qFg½PWVA� to
Fg½Pstd�. The former is corrected by the probability of
successful postselection, in accordance with the additivity
of the Fisher information over N independent events (of
which only qN are available to the WVA strategy). While
this quantity may not do justice to all notions of metro-
logical performance, it provides a fundamental bound with
a clear operational meaning that holds when the number of
trials N is sufficiently large.

IV. IDEAL DETECTOR

Although the aim of this paper is to study certain detector
imperfections, to begin, we consider a stable detector
having infinite resolution.
It is instructive to investigate the Fisher information of a

general distribution Pðs0Þ ¼ jψðs0Þj2 whose argument is
shifted s0 ¼ s − νg. Consider the derivative with respect to
g, which by the chain rule

∂gPðs − νgÞ ¼ ∂s0
∂g

∂Pðs0Þ
∂s0

¼ −ν∂s0Pðs0Þ; (13)

and so

Fg½Pðs − νgÞ� ¼
Z

ν2
½∂s0Pðs0Þ�2

Pðs0Þ ds

¼ ν2Fs½PðsÞ�; (14)

as ds ¼ ds0 under the change of integration variable.
Notably, the information is independent of the size of
the parameter g [33]. The multiplier ν, however, acts as a
sort of velocity for the statistical model: It represents the
rate at which the probability density changes as g is swept
through parameter space. The independence of F on g is an
important difference to other measures of metrological
performance: For example, the signal-to-noise ratio given
in Ref. [34] and employed by Refs. [14,35,36] shows a
dependence on the size of the shift itself rather than its rate
of change.
Equation (14) implies that in the standard strategy, ν

should be given by the eigenvalue λ� with the largest
absolute value. The standard strategy, then, prepares the
system in the eigenstate of A having the largest eigenvalue
and performs no final measurement on the system.
In the WVA strategy, a final measurement gives

rise to the AAV effect, and by Eq. (8) or Eq. (9), one
of the branches experiences a statistical velocity given
by an anomalously large effective eigenvalue ReðAwÞ or
2ΔkxImðAwÞ, respectively. By assuming that the experi-
menter chooses either to measure in position space or
momentum space, and therefore will choose either Aw ¼
ReðAwÞ or Aw ¼ ImðAwÞ, respectively, one can replace the
real or imaginary part of the weak value with its modulus.

Then, taking a ratio of the WVA strategy to the standard
strategy gives

Fg½PWVA�
Fg½Pstd�

¼ jAwj2
λ2�

(15)

for real weak values or

Fg½ ~PWVA�
Fg½Pstd�

¼ jAwj2
λ2�

4Δ4
kx
Fkx ½ ~PðkxÞ�

Fx½PðxÞ�
(16)

for imaginary weak values. Recall that Aw can be much larger
than λ�. It appears, then, that in the postselected runs, not only
is the average displacement of the meter amplified but so, too,
the measure of sensitivity as captured by the Fisher informa-
tion. When pre- and postselection are tuned close to orthogo-
nal, destructive interference is triggered in the meter, causing
cancellation where the superposed meter states overlap most.
Destructive interference leaves only a wave function where
the meter states overlap least, i.e., where the meter states are
most distinguishable. It is therefore not surprising that the
postselected wave function can give a better performance
because the Fisher information is a measure of the distin-
guishability of neighboring meter states as g is varied.
The 4Δ4

kx
Fkx ½ ~PðkxÞ�=Fx½PðxÞ� term in Eq. (16) must be

carefully interpreted. Note that we continue to use the
standard strategy information as a benchmark, which
necessarily involves detection in the x basis. If we take
PðxÞ and ~PðkxÞ to be generated from Gaussian wave
functions, we obtain by Heisenberg’s relation [37]

4Δ4
kx
Fkx ½ ~PðkxÞ�

Fx½PðxÞ�
¼ 4Δ2

kx

Fx½PðxÞ�
¼ 1: (17)

Employing an imaginary weak value then offers no
advantage over a real one.
Of course, the benefit due to “amplification” is not

without cost: We must correct the amplification factor for
the reduced probability of data being selected jhfjiij2—a
necessary drawback of WVA. Then, one finds

jAwj2
λ2�

jhfjiij2 ¼ jhfjAjiij2
λ2�

≤ 1: (18)

The inequality follows by expanding jfi and jii in
the eigenbasis of A and applying the Cauchy-Schwarz
inequality:

jhfjAjiij2 ¼
����Xk

c̄0kλkck

����2 ≤ X
n

jc0nj2
X
m

jλmcmj2

¼
X
m

λ2mjcmj2 ¼ hA2i ≤ λ2�: (19)

Thus, combining Eq. (15), or Eqs. (16) and (17), with
Eq. (18), we have
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qFg½PWVA�
Fg½Pstd�

≤ 1; (20)

at least, under the AAVapproximation and in the absence of
noise, there can be no advantage through WVA for the
purpose of estimating g.
The above conclusions are consonant with a very recent

result of Tanaka and Yamamoto [18]. In their work, the
authors calculate the quantum Fisher information [38] of
the weak-value-amplified wave function (suitably postse-
lected), showing that it is never greater than in the joint
system-meter state after the weak measurement. By con-
trast, our approach compares against a benchmark that
ignores, or “traces out,” the system state during the
detection.

V. FAILED POSTSELECTION

One might wonder whether the large number of dis-
carded events occurring at the postselection stage may be
of use. One recent proposal suggested “recycling” the
rejected particles for another run [39]. By contrast, in a
previous paper, we considered looking at the statistics in
both “pass” and “fail” branches of the postselection. Even
considering the sum of the Fisher information in both
branches fails to lead to an advantage [17]. Here, we
consider the use of data in both branches as well as their
correlations with a “which-branch variable” (call it b). In
other words, we upgrade the WVA strategy, replacing
postselection with a final measurement and allowing any
postprocessing of the result. The ultimate performance of
this class of estimation strategies will be given by the
Fisher information calculated in the joint probability
distribution over b, s:

Fg½Pðb; sÞ� ≔
X
b

Z
dx

½∂gPðb; sÞ�2
Pðb; sÞ : (21)

A joint distribution generally contains more structure (and
more information) than is revealed by its marginal dis-
tributions. Begin with

Pðb; xÞ ¼
X
f

δfbqbjψ ½x − ReðAb
wÞg�j2 (22)

or

~Pðb; kxÞ ¼
X
f

δfbqbj ~ψ ½kx − 2ΔkxImðAb
wÞg�j2; (23)

once more employing the AAV approximation: b indexes
the outcomes of the final, strong measurement. In
this regime, q does not depend on g, although in an
real experiment, the postselection probability itself
carries information about the interaction parameter [40].

Because of the Kronecker δ, each output branch can be
considered independently, leading to

Fg½Pðb; xÞ� ¼
X
f

qfjAf
wj2Fx½PðxÞ� ¼ hA2iFx½PðxÞ� (24)

for real weak values, or indeed,

Fg½ ~Pðb; kxÞ� ¼
X
f

qfjAf
wj2ð2ΔkxÞ2 ¼ hA2i4Δ2

kx
(25)

for imaginary weak values. The last step is in strong
analogy with the usual resolution of probability-weighted
weak values to the expectation value

P
fqfA

f
w ¼ hAi [41].

Notice that once the initial states of system and meter are
chosen, the expected value of the square of the control
observable along with the shape of the initial meter wave
function set a fixed amount of information in the joint
system-meter state after their interaction. The final strong
measurement may distribute the information (which we
should think of as a conserved quantity) among the output
branches in various ways. The choice of basis for the final
measurement may lead to a balanced distribution if, for
example, the final measurement basis is unbiased with
respect to the initial state. If, on the other hand, the basis
contains an element that is almost orthogonal to the initial
state, an arbitrarily large portion of the information may be
concentrated into the corresponding branch of the final
measurement. We repeat this argument in Sec. IX without
making approximations.
When the AAV effect gives rise to a significant ampli-

fication, there is little to be gained from monitoring other
branches: Henceforth, we shall thus only be concerned with
the probability distribution PWVA in a suitably chosen
success branch. In such a situation, an important question
remains: Is the postselected meter wave function (carrying
almost all of the information about g) more robust to
technical noise than an unpostselected wave function?

VI. PIXELATION

We are now in a position to introduce realistic imper-
fections to the scenario. We consider first the effects of
pixelation on an arbitrary wave function that has been
subject to a simple shift, as is of relevance to real weak
values and also to imaginary weak values for a restricted
class of momentum-space wave functions. We then spe-
cialize to Gaussian wave functions, which serve both as an
instructive example and also as the canonical wave function
used in weak-value-amplification experiments for both real
and imaginary weak values.

A. For any wave function

Imagine that the particle (after weak measurement and
postselection) impinges on a detector comprising pixels of
finite width. To model such a device, we build up a discrete
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probability mass PrðnÞ by dividing the s axis into pixels of
size rs. Each pixel carries an integer label n ¼ ⌊s=rs⌉ (so
that values of s are rounded to the nearest integer multiple
of rs). The total Fisher information then becomes

Fg½PrðnÞ� ¼
X
n

1

PrðnÞ ½∂g PrðnÞ�2: (26)

The width of the detector is modeled by varying the range
of this sum, but here we take it to be infinite. For this
reason, any relabeling of the pixels will not change the
result. For example, adding a fixed integer to each pixel’s
label is a bijection f∶Z → Z that preserves the value of
the sum in analogy with the above change of integration
variable; see Eq. (14). The probability of a click in pixel n is

PrðnÞ ¼
Z

rsðnþ1=2Þ

rsðn−1=2Þ
PðsÞds: (27)

Because of the invariance under a relabeling of the pixels,
any shifts in s can now be taken modulo rs.
To understand the effect of pixelation on Pðs − νgÞ, we

may use the chain rule (13) again, taking the derivative
under the integral sign:

Fg½Prð⌊s0=rs⌉Þ� ¼
X
n

½R rsðnþ1=2Þ
rsðn−1=2Þ ∂gPðs0Þds�2R rsðnþ1=2Þ
rsðn−1=2Þ Pðs0Þds

¼ ν2
X
n

½∂s0
R rsðnþ1=2Þ
rsðn−1=2Þ Pðs0Þds�2R rsðnþ1=2Þ

rsðn−1=2Þ Pðs0Þds
: (28)

The pixelation effect is almost decoupled from the depend-
ence on ν. However, when making the change of integration
variable

Prð⌊s0=rs⌉Þ ¼
Z

rsðnþ1=2Þ

rsðn−1=2Þ
Pðs − νgÞds

¼
Z

rsðnþ1=2−νgÞ
rsðn−1=2−νgÞ

Pðs0Þds0; (29)

the finite limits of integration prevent removing the
dependence on ν altogether. Allowing the pixelated detec-
tor to be displaced through a controllable quantity μ

Prð⌊s0=rs⌉Þ ¼
Z

rsðnþ1=2Þ

rsðn−1=2Þ
Pðsþ μ − νgÞds

¼
Z

rsðnþ1=2Þ

rsðn−1=2Þ
Pðs − hÞds; (30)

it becomes clear that the importance of ν is screened by the
alignment h ≔ ðνg − μÞmod rs. The fraction h indicates
the relative alignment of the centroid with the pixel
boundaries. For example, if h ¼ 0, then the mean is aligned

exactly in the middle of a pixel; if h ¼ 0.5, then the mean is
on a pixel boundary—relative alignment is shown sche-
matically in the inset of Fig. 2. One then obtains

Fg½Prð⌊ðs − νgÞ=rs⌉Þ� ¼ ν2Fs½Prð⌊ðs − hÞ=rs⌉Þ�: (31)

The relationship of ν to h is purely incidental: There is no
reason to suppose that larger values of ν will make
alignment easier than smaller values. One should therefore
treat h identically for the WVA and standard strategies. One
can consider adaptive techniques to asymptotically achieve
h ¼ 0.5, or—if alignment control is impossible—one can
average over h ∈ ½0; 0.5�. Hence we arrive at the first key
result of our paper: Any degradation due to pixelation
commutes with the amplification effect.
Correcting by the success probability and dividing by the

standard strategy information, for real weak values, one
has, taking h as identical in both strategies,

qFg½Prð⌊½x − ReðAwÞg�=rx⌉Þ�
Fg½Prð⌊ðx − λ�gÞ=rx⌉Þ�

¼ ReðhfjAjiiÞ2
λ2�

≤ 1: (32)

The pixelation effect has completely canceled, reducing the
problem to that of the ideal detector above—see Eq. (18).
For imaginary weak values, we have

qFg½Prð⌊½kx − 4ΔkxImðAwÞg�=rkx⌉Þ�
Fg½Prð⌊ðx − λ�gÞ=rx⌉Þ�

≤
αðrkx ;ΔkxÞ
αðrx;ΔxÞ

; (33)

FIG. 2 Numerically obtained relationships between relative
Fisher information α and inverse resolution R. The different
curves (blue to red; top to bottom in the main figure and right to
left in the inset) correspond to different alignments that are
schematized in the insets. The worst and best cases at h ¼ 0 and
h ¼ 0.5, respectively, are shown in bold. Aside from misalign-
ment effects (which become important when R≳ 3), finite
resolution does not dramatically limit parameter estimation. In
fact, with only two pixels, the penalty paid is only a loss of about
a third of the information, as long as good alignment is possible.
The curves are equally relevant for the standard strategy or the
WVA strategy.
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where we define αðrs;ΔsÞ ¼ Fs½Prð⌊s⌉Þ�=Fs½PðsÞ� as the
fraction of information remaining after pixelation and have
applied Eqs. (17) and (18). Clearly, there will not be a
perfect cancellation if the pixelation in the kx direction
is more or less severe than in the x direction: But, as
we have shown, the information ratio is independent of
the magnitude of the mean. Moreover, we argue in the
next section that α is monotonically decreasing in
rs=Δs and in fact equal to unity to first order.
Then, αðrkx ;ΔkxÞ∶αðrx;ΔxÞ ≈ 1.

B. For Gaussian wave functions

It is instructive to fix the input wave function to get an
idea of exactly how the pixelation affects its informational
content. By letting the initial state be described by

ψðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1ffiffiffiffiffiffi
2π

p
Δs

s
exp

�
− s2

4Δ2
s

�
; (34)

i.e., a Gaussian centered on the origin with waist Δs, one
finds

Fs½PðsÞ� ¼
1

Δ2
s

(35)

so that Fg½Pðs0Þ� ¼ ν2=Δ2
s . Under pixelation, Pðs0Þ

becomes a discrete probability mass. By the above argu-
ments, it is sufficient to study

PrðnÞ ¼ 1

2

�
erf

�
rs
Δs

γþ

�
− erf

�
rs
Δs

γ−
��

; (36)

where we have introduced convenient quantities γ� ¼
ðh − n� 0.5Þ= ffiffiffi

2
p

and applied Eq. (27). Define α by
dividing the diminished Fisher information of the pixelated
probability mass by the unpixelated information

αðrs;ΔrsÞ ¼
Fs½PrðnÞ�
Fs½PðsÞ�

¼ 1

Fs½PðsÞ�
X
n

fn; (37)

where the summand is to be understood as the pixelwise
information. This function shows how much information
remains after pixelation has occurred. We may take the
division inside the sum, attaching it to each term. In pixel n,

fn
Fs½PðsÞ�

¼ 1

π

ðe−R2γ2þ − e−R2γ2−Þ2
erfðRγþÞ − erfðRγ−Þ

; (38)

where we have chosen to define R ≔ rs=Δs as an inverse
measure of resolution. It represents the granularity of the
pixels against the characteristic width of the Gaussian. One
expects the ratio of Fs½PrðnÞ� to Fs½PðsÞ� to converge to
unity as R → 0.
All that remains is to sum these relative informations

(38) over all pixels. We numerically plot the dependence of

the sum on R in Fig. 2. The limit when h ¼ 0.5 and rs → ∞
is analytically known: The Fisher information is a fraction
2=π of the nonpixelated case [42]. This limit corresponds to
a perfectly aligned “split detector” with only two pixels
[35]. Note that in the opposite limit, α ≈ 1 to first order in
R, meaning that pixelation is a nonissue as long as the pixel
size is at least as small as the width of the wave function.
Our results agree qualitatively with Ref. [43], which found
that pixelation does not set a lower bound on the magnitude
of a shift that can be estimated.
When pixelation is severe and alignment is poor, one

does better with a broader statistical distribution than with a
narrower one. Taking the wave function once more to be
Gaussian (34), in Fig. 3, we fix the pixel width and show
how the Fisher information depends on Δs in such a way as
to offer a tradeoff between uncertainty and misalignment. If
perfect alignment cannot be achieved, there is a limit to
how low Δs may be taken before the worsened effective
resolution combines with the bad alignment to kill off the
Fisher information. For poor enough resolution, it can thus
be advantageous to increase Δs—introducing extra uncer-
tainty leads to a superior performance. One could increase
Δs through a unitary process to present a broader meter
wave function for the system to interact with. In circum-
stances of extreme pixelation, broadening the wave func-
tion may be thought of as making the measurement weaker
to gain an advantage—but the advantage then is quite
distinct from the weak-value formalism (there is no

FIG. 3 Numerically obtained relationships between Fisher
information and Gaussian spread Δs for fixed pixel width
rs ¼ 1. The bold curves are for h ¼ 0 (lowermost) and h ¼
0.5 (uppermost), with fainter curves interpolating linearly. With-
out pixelation, narrower Gaussian distributions are superior—the
delta function offers the ultimate precision. However, the mis-
alignment effect introduced with pixelation combines with the
low effective resolution as Δs is reduced, preventing the con-
tinued improvement. For Δs ≳ rs=3, alignment ceases to be
important. At any given degree of misalignment (which is
described by h), there will be an optimum choice Δs ¼ Δ�

s .
The inset shows how this optimum changes with h.
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postselection) and should not be associated with the AAV
technique. Another option would be to intentionally intro-
duce random displacements to the meter (or detection
apparatus) immediately prior to detection. The latter option
is an instance of a well-known image- and audio-processing
technique known as dithering and does not affect the
strength of the measurement.

VII. JITTER

Here, we model another prevalent source of imperfec-
tion: random lateral displacements of the particle. Again,
we begin with an arbitrary wave function subject to a
simple shift (composed of a g-dependent part and also a
random part) but then specialize to Gaussian wave func-
tions in order to make a concrete connection with the
majority of WVA experiments.

A. For any wave function

We define “jitter”—random displacements of the meas-
uring apparatus, or equivalently, the incident beam—by
convoluting the probability distribution with a suitable
noise kernel N s:

N s⋆PðsÞ ≔
Z

Pðsþ μÞN sðμÞdμ: (39)

Jitter as described by Eq. (39) represents the most promi-
nent source of technical noise that has been studied in the
WVA context, until now only using the signal-to-noise-
ratio metric [24,34–36]. In those cases, WVA gave a
relative advantage, due to identifying the “signal” with
the mean of the probability distribution, which becomes
invisible when it falls through the noise floor. The Fisher-
information metric informs us about the performance of a
superior estimation strategy that allows for (in principle)
any data to contribute to the estimate of the unknown
parameter. In our application of the metric, we assume the
noise is independent of g so that, by another application of
the chain rule (13), we have

Fg½N s⋆Pðs − νgÞ� ¼
Z ð∂g½N s⋆Pðs0Þ�Þ2

N s⋆Pðs0Þ ds

¼ ν2
Z ð∂s0 ½N s⋆Pðs0Þ�Þ2

N s⋆Pðs0Þ ds

¼ ν2Fx½N s⋆PðsÞ�: (40)

Once more, the application of noise commutes with the
amplification factor ν2, the second main result of this paper.
For real weak values, the noise cancels out in the ratio of
Fisher informations:

qFgfN x⋆P½s − ReðAwÞg�g
Fg½N x⋆Pðs − λ�gÞ�

¼ ReðhfjAjiiÞ2
λ2�

≤ 1: (41)

For imaginary weak values, once more, there may not be a
complete cancellation due to the possibility of different

width wave functions and different noise kernels in position
and momentum space. We then have

qFgfN kx⋆P½kx − 4ΔkxImðAwÞg�g
Fg½N x⋆Pðx − λ�gÞ�

≤
βðΔkx ;N kxÞ
βðΔx;N xÞ

(42)

on defining βðΔs;N sÞ as the attenuation factor of Fisher
information under jitter: a function that depends on the
width of the wave function and on the noise kernel in s
space (see below). We note that βðΔkx ;N kxÞ may or may
not be independent of βðΔx;N xÞ, depending, e.g., on how
detection is achieved in the laboratory. Exploiting the
relative severity of noise in position and momentum space
with imaginary weak values has been proposed by Kedem
[36], but this possibility does not derive from the ampli-
fication of the mean.
Note that while we require ∂gN s ¼ ∂sN s ¼ 0, the noise

kernelN sðμÞ can otherwise have arbitrary properties (up to
normalization and positivity); in particular, it may have
nonzero mean.

B. For Gaussian wave functions

As an example, choose the noise kernel to be normally
distributed (with zero mean and variance Js), giving

N⋆PðsÞ ¼
Z

∞

−∞

Pðs − μÞ exp
�
− 1

2
μ2

J2s

�
ffiffiffiffiffiffi
2π

p
Js

dμ: (43)

If Pðs;ΔsÞ is Gaussian with width Δs, the application of
jitter is equivalent to a redefinition of the spread

N⋆Pðs − νg;ΔsÞ ¼ Pðs − νg;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

s þ J2s

q
Þ; (44)

so that the Fisher information takes on a Lorentzian
dependence on Δs, with scale parameter proportional to Js:

Fg½N s⋆Pðs − νg;ΔsÞ� ¼
ν2

Δ2
s þ J2s

: (45)

We then find, for this example,

βðΔs; JsÞ ¼
1

1þ J2s
Δ2

s

: (46)

VIII. EXACT CALCULATIONS

Many experiments have been suggested and performed
[12,13,15,19,29,35,43,44] in the regime where the AAV
approximation holds. Our discussion above immediately
implies that an amplified mean can be no more robust
against pixelation or jitter than a standard strategy.
However, the AAVapproximation ignores certain nonlinear
effects of the system-meter interaction and can overesti-
mate the centroid of the probability distribution [24,45,46].
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When the approximation breaks down, the position of the
centroid can deviate from Aw and the wave-function shape
changes, sometimes featuring a secondary peak [3,47,48].
For simplicity, and because it is almost exclusively the case
in experiments, we restrict the dimension of the system to 2.
We first show that our result for noise-free detection—

that there can be no advantage from WVA—holds inde-
pendently of the AAV approximation. Additionally, we
provide numerical evidence that the main conclusions of
this paper—with respect to jitter and pixelation—persist
under a nonperturbative treatment of the AAV effect. The
arguments are arranged in two subsections: First, we
choose pre- and postselection to guarantee a real weak
value, and then we make a choice to guarantee a pure
imaginary weak value.

A. Real weak-value amplification

We make the following parametrization of the internal
state of the particle:

jii ¼ cos
θi
2
jþi þ sin

θi
2
j−i; (47)

jfi ¼ cos
θf
2
jþi þ sin

θf
2
j−i; (48)

where θi and θf are the pre- and postselection angles,
respectively. The relative phases of these states have been
set to unity in the eigenbasis of the control observable
Aj�i ¼ �j�i to guarantee a purely real weak value: an
optimal choice for detection in the position basis.
With the above parametrization, one finds, without

approximation and by Eq. (4), that

ψWVAðxÞ¼
1ffiffiffi
q

p
�
cos

θi
2
cos

θf
2
ψþþsin

θi
2
sin

θf
2
ψ−

�
; (49)

where ψ� ¼ ψðx� gÞ. In the absence of noise, one can
find an analytic expression for the ratio of informations
available under each strategy, again taking ψðxÞ as a
Gaussian (34)
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FIG. 4 The corrected Fisher information for the WVA strategy is shown in units of the standard strategy information as a contour plot
in the measurement strength G and the pre- and postselection angles θi and θf . Two-dimensional slices through this three-dimensional
plot are taken for interesting parameter combinations. The three uppermost contour plots indicate parameter combinations for which
WVA can mimic the standard technique (red regions). From left to right: In the limit of a strong measurement, G → ∞; when
preselection and postselection are parallel, θi ¼ θf; and when preselection is into an eigenstate of the control observable, θi ¼ 0. The
three lowermost contour plots indicate combinations for which the WVA technique can exhibit characteristically amplified centroids.
From left to right: In the limit of a weak measurement, G → 0; when pre- and postselection are chosen as orthogonal, θf ¼ θi þ π=2;
and when preselection is into a state unbiased with respect to the control observable, θi ¼ π=2. The three-dimensional plot isosurfaces
have colors corresponding to fractional values of qFg½PWVA�=Fg½Pstd� (the color map is given in the legend); in the two-dimensional
plots, the same colors shade regions between contour lines. The symmetries of the parameter space allow us to restrict θi ∈ ½0; π�with no
loss in generality.
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qFg½PWVA�
Fg½Pstd�

¼1

2

�
1þcosθf cosθi−e−G=2sinθf sinθi

þ Gð1þcosθf cosθiÞ
1þeG=2cosecθfcosecθið1þcosθf cosθiÞ

�
:

(50)

We have defined G ¼ g2=Δ2
x as the measurement strength.

It is instructive to examine Eq. (50) in certain limiting
cases, shown in Fig. 4. Treating the situation at this level of
generality allows for the study of intermediate parameter
regimes—for example, when the weak measurement back-
action is non-negligible [49]. The ratio is entirely sym-
metric with respect to interchanging θi↔θf and is also
invariant under θi þ π; θf þ π. While the ratio (50) can
reach unity, it never exceeds it.
To study jitter and pixelation, we perform a numerical

search for an advantage under theWVA technique using the
exact wave function (49). First, under jitter, a numerical
maximization of qFg½N x⋆PWVAðxÞ�=Fg½N x⋆PstdðxÞ� over
the fg;Δx; θi; θf; Jxg parameter space suggests that it
remains at unity or below for all combinations. For
pixelation, a numerical maximization tends to find param-
eter combinations that lead to a ratio greater than 1 because
the alignment is sometimes incidentally superior.

B. Imaginary weak-value amplification

Here, we parametrize the qubit by

jii ¼ 1ffiffiffi
2

p ðjþi þ eiϕi j−iÞ; (51)

jfi ¼ 1ffiffiffi
2

p ðjþi þ eiϕf j−iÞ; (52)

which guarantees a purely imaginary weak value. The
position wave function is then

ψWVAðxÞ ¼
1ffiffiffiffiffiffi
2q

p ½ψðxþ gÞ þ eiðϕi−ϕfÞψðx − gÞ�; (53)

and a Fourier transform yields the momentum wave
function

~ψWVAðkxÞ ¼
1ffiffiffiffiffiffi
2q

p ~ψðkxÞðe−igkx þ eiðϕi−ϕfþgkxÞÞ: (54)

We choose the spatial wave function to be a Gaussian with
waist Δx, so that the momentum wave function is also
Gaussian with waist Δkx ¼ 1=2Δx. Thus, the measurement
strength G ¼ g2=Δ2

x ¼ 4g2Δ2
kx
. Computing the corrected

ratio of informations leads to

qFg½PWVA�
Fg½Pstd�

¼ 2eG=2G cosðδϕÞ þ 2eG − cosð2δϕ − 1Þ
4eG=2 cosðδϕÞ þ 4eG

:

(55)

Once more, we compare against the standard strategy that
measures the particle in the x basis. We have used the
shorthand δϕ ¼ ϕi − ϕf: It is clear that only this difference
in the relative phase angles matters, and the parameter
space consists of only fG; δϕg. By inspection, the ratio can
never exceed unity; see Fig. 5.
We perform a numerical search to investigate the effects

of jitter on the exact wave function; see Eq. (54).
Constraining the search so that the jitter is equally
severe in momentum space and position space
(JxΔkx ¼ JkΔx ¼ Jkx=2Δkx), we find the ratio of informa-
tions is bounded by unity throughout the fg;Δkx ;ϕi −
ϕf; Jx; Jkxg space. The results confirms the situation that
was found in the AAV limit. A similar investigation for
pixelation sometimes gives a ratio of higher than unity due
to the aforementioned incidental alignment problem.

IX. EXACT CALCULATIONS:
FAILED POSTSELECTION

Here, we repeat the calculations of Sec. V relating to
failed postselection without the use of any assumptions: In
particular, the postselection branch index b is allowed to
carry information about g, and we include all nonlinear
effects of the system-meter interaction. We restrict the
system to a two-dimensional Hilbert space, so that b is now
a binary pass-fail variable. We first present an argument
with real weak values and then an argument for imaginary
weak values. In both cases, the wave function can take an
arbitrary shape. In both cases, we shall make use of the
following fact: If one has a joint distribution
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FIG. 5 Contour plot of the corrected ratio of Fisher information
for the weak-value-amplification strategy to Fisher information
for the standard strategy, expressed as a function of the meas-
urement strength G and the angle between pre- and postselection
ϕi − ϕf . The plot relates to imaginary weak values.
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Pðb; sÞ ¼ δb1P̄pass þ δb0P̄fail; (56)

where the bar denotes an unnormalized probability dis-
tribution, the Fisher information will be

Fg½Pðb; sÞ� ≔
X
b

Z
ds

½∂gPðb; sÞ�2
Pðb; sÞ

¼
Z

ds
ð∂gP̄passÞ2

P̄pass þ
Z

ds
ð∂gP̄failÞ2

P̄fail : (57)

A. Real weak values

Lemma 1.—For ψ ¼ P
ieiψ i and P̄ðxÞ ¼ ψ2, a (possibly

unnormalized) probability density, we have

Z
dx½ð∂gP̄Þ2=P̄�¼

X
i

e2i Fg½ψ2
i �þ4

X
i≠j

eiej

Z
dx∂gψ i∂gψ j;

(58)

where Fg½•� is the Fisher-information functional. Note that
the expression is not an information unless P̄ is normalized:
Otherwise, it may be negative.

Proof.—Consider

ð∂gP̄Þ2
P̄

¼ ð2ψ∂gψÞ2
ψ2

¼ 4ð∂gψÞ2; (59)

which follows by the chain rule. Now write

ð∂gψÞ2 ¼
�X

i

ei∂gψ i

��X
j

ej∂gψ j

�
(60)

by taking the derivative inside the sum. Expanding the sum
into diagonal and off-diagonal terms, multiplying by 4, and
integrating over x gives the result.

Theorem 1.—Let b ¼ 1 when postselection passes and
b ¼ 0 when postselection fails.
Consider the joint probability distribution

Pðb; xÞ ¼ δb1

�
cos

θi
2
cos

θf
2
ψþ þ sin

θi
2
sin

θf
2
ψ−

�
2

þ δb0

�
− cos

θi
2
sin

θf
2
ψþ þ sin

θi
2
cos

θf
2
ψ−

�
2

¼ δb1P̄pass þ δb0P̄fail; (61)

where ψ� is a real wave function with arbitrary shape that
has undergone a positive (negative) shift by some function
of g. It has Fisher information equal to that found in
either P� ≔ ψ2

�.

Proof.—Using Eq. (57), and by Lemma 1, we have

Fg½Pðb; xÞ� ¼
�
cos2

θi
2
cos2

θf
2
þ sin2

θi
2
sin2

θf
2

�
Fg½ψ2þ�

þ
�
cos2

θi
2
sin2

θf
2
þ sin2

θi
2
cos2

θf
2

�
Fg½ψ2−�

þ 4

�
2 cos

θi
2
cos

θf
2
sin

θi
2
sin

θf
2

− 2 cos
θi
2
sin

θf
2
sin

θi
2
cos

θf
2

�

×
Z

dx∂gψþ∂gψ−: (62)

The final term is zero. By symmetry, we have
Fg½ψ2þ� ¼ Fg½ψ2−�, giving the desired result:

Fg½Pðb; xÞ� ¼ Fg½ψ2
�� ¼ Fx½PðxÞ�: (63)

The last step follows from Eq. (14) and the fact that in this
case the eigenvalues of A are �1.

B. Imaginary weak values

By Eq. (54), we see that the joint probability distribu-
tion is

Pðb; kxÞ ¼
1

2
j ~ψðkxÞj2fδb1½1þ cosðϕi − ϕf þ 2gkÞ�:

þ δb0½1 − cosðϕi − ϕf þ 2gkÞ�g: (64)

¼ δb1P̄pass þ δb0P̄fail: (65)

We can once more employ Eq. (57) to arrive at

Fg½Pðb;kxÞ� ¼
1

2

Z
dx

½ ~PðkxÞ�2
~PðkxÞ

�½−2ksinð2gkþφi−φfÞ�2
1þ cosð2gkþφi−φfÞ

þ ½−2ksinð2gkþφi−φfÞ�2
1− cosð2gkþφi−φfÞ

�

¼
Z

dxj ~ψðkxÞj2ð−2kÞ2¼ 4hk2i¼Fx½PðxÞ�:

(66)

In the last step, we employ Eq. (17). The above results
agree with the approximate analysis of Sec. V. Of course,
for qubits, hA2i ¼ 1.

X. DISCUSSION

In this article, we have studied the metrological advan-
tages of weak-value amplification from a parameter-
estimation perspective and derived the ultimate limits on
uncertainty that apply. Importantly, our analysis encom-
passes the presence of jitter and of finite detector resolution.
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Under our choice of metric, and under these prevalent
examples of technical imperfection, we have found there to
be no advantage whatsoever for real weak values.
For imaginary weak values, we have shown that any

advantage—if one exists at all—will be menial: due, for
example, to an (often incidental) mismatch of noise in
position and momentum space rather than an anomalously
large mean. We therefore conclude that the “amplification”
aspect of the weak-value formalism offers no fundamental
benefits over suitable standard strategies. Further analyti-
cal and numerical results suggest that our conclusion
remains valid outside the regime of validity of the AAV
approximation.
Previously, we have studied WVA in the context of

phase estimation and found that limitations imposed by
decoherence are not mitigated by the technique [17]. The
combination of our earlier result (concerning quantum
noise affecting the wave function prior to detection) with
the findings of this paper (concerning noise and imperfec-
tions relating to the detection apparatus itself) restricts the
class of noise where one expects superiority of WVA in
metrology scenarios. The very recent work of Ferrie and
Combes shows that even errors associated with a finite
sample size do not favor a weak-value approach [50].
Nonetheless, when circumstances make increased use of

resources preferable to complicated postprocessing, WVA
may remain an attractive option [53]. Our results also do
not rule out that aspects other than the amplification itself
may still be useful in certain experimental circumstances.
Alongside the opportunity to induce changes in the direct
meter observable (rather than its conjugate), other possibly
useful applications include the reduction in signal intensity,
either via a reduction in absolute systematic error (e.g.,
due to imperfect optics) or via an avoidance of detector
saturation. However, these effects are quite distinct from
the notion of amplification and hence fall outside the
purview of this paper. More theoretical work is required
in order for their utility to be assessed and quantified.
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