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We discuss a renewal process in which successive events are separated by scale-free waiting time
periods. Among other ubiquitous long-time properties, this process exhibits aging: events counted initially
in a time interval ½0; t� statistically strongly differ from those observed at later times ½ta; ta þ t�. The
versatility of renewal theory is owed to its abstract formulation. Renewals can be interpreted as steps of a
random walk, switching events in two-state models, domain crossings of a randommotion, etc. In complex,
disordered media, processes with scale-free waiting times play a particularly prominent role. We set up a
unified analytical foundation for such anomalous dynamics by discussing in detail the distribution of the
aging renewal process. We analyze its half-discrete, half-continuous nature and study its aging time
evolution. These results are readily used to discuss a scale-free anomalous diffusion process, the
continuous-time random walk. By this, we not only shed light on the profound origins of its characteristic
features, such as weak ergodicity breaking, along the way, we also add an extended discussion on aging
effects. In particular, we find that the aging behavior of time and ensemble averages is conceptually very
distinct, but their time scaling is identical at high ages. Finally, we show how more complex motion models
are readily constructed on the basis of aging renewal dynamics.
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I. INTRODUCTION

A stochastic process nðtÞ counting the number of some
sort of events occurring during a time interval ½0; t� is called
a renewal process, if the time spans between consecutive
events are independent, identically distributed random
variables [1]. Renewal theory does not specify the exact
meaning or effect of a single event. It could be interpreted
as the appearance of a head in a coin-tossing game or the
arrival of a bus or a new customer in a queue. In a
mathematical formulation, events remain abstract objects
characterized by the time of their occurrence. Thus, not
surprisingly, renewal processes are at the core of many
stochastic problems found throughout all fields of science.
Maybe the most obvious physical application is the
counting of decays from a radioactive substance. This is
an example of a Poissonian renewal process: the random
time passing between consecutive decay events, the waiting
time, has an exponential probability density function
ψðtÞ ¼ τ−1 expð−t=τÞ. In other words, events here are
observed at a constant rate τ−1 (that is, if the sample is

sufficiently large and the half-life of individual atoms is
sufficiently long).
A physical problem of more contemporary interest is

subrecoil laser cooling [2–4]. Two counterpropagating
electromagnetic waves can cool down individual atoms
to an extent where they randomly switch between a trapped
(i.e., almost zero momentum) state and a photon-emitting
state. Successive lifetimes of individual states are found to
be independent and stationary in distribution. Hence, the
transitions from the trapped to the light-emitting state form
the events of a renewal process. Similar in spirit, colloidal
quantum dots [5,6] switch between bright states and dark
states under continuous excitation. In contrast to the
Poissonian decay process, the latter two examples feature
a power-law distribution of occupation times t, whose long-
time asymptotics reads

ψðtÞ ∼ τα

jΓð−αÞjt1þα ; with 0 < α < 1: (1)

Such heavy-tailed distributions are not uncommon for
physically relevant renewal processes. To see this, consider
a simple unbounded, one-dimensional Brownian motion,
and let nðtÞ count the number of times the particle crosses
the origin. Then, the waiting time between two crossings is
of the form (1) with α ¼ 1=2. Indeed, a random walk of
electron-hole pairs either in physical space or in energy
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space was proposed as a mechanism leading to the power-
law statistics of quantum dot blinking [7]. In general,
whenever events are triggered by domain crossings of a
more complex, unbounded process, power-law distributed
waiting times are to be expected. In addition, the latter can
be interpreted as a superposition of exponential transition
times with a (infinitely) wide range of rate constants τ. The
power-law form (1) for the interevent statistics is a typical
ansatz to explain such renewal dynamics in highly dis-
ordered or heterogeneous media such as spin glasses [8],
amorphous semiconductors [9], or biological cells [10,11].
Note that distributions as in Eq. (1) imply a divergent

average waiting time, hti ¼ R
∞
0 tψðtÞdt ¼ ∞. Renewal

processes of this type are said to be scale free, since,
roughly speaking, statistically dominant waiting times are
always of the order of the observational time. Hence, their
outstanding characteristics play out most severely on long
time scales: while for t ≫ τ, Poissonian renewal processes
behave quasideterministically, nðtÞ ≈ t=τ, heavy-tailed dis-
tributions lead to nontrivial random properties at all times.
Stochastic processes of this type are known to exhibit weak
ergodicity breaking [12]; i.e., time averages and associated
ensemble averages of a physical observable are not
equivalent. Moreover, despite the renewal property, the
process nðtÞ is nonstationary [13]: events naðta; tÞ counted
after an unattended aging period ta > 0, i.e., within some
time window ½ta; ta þ t�, are found to be statistically very
distinct from countings during the initial period ½0; t�.
Fewer events are counted during late measurements, in a
statistical sense, and thus we also say the process exhibits
aging. Deeper analysis reveals that this slowing down of
dynamics is due to an increasingly large probability to
count no events at all during observation. Intuitively, in the
limit of long times t, ta ≫ τ, one would expect to see at
least some renewal activity na > 0. Instead, the probability
to have exactly na ¼ 0 increases steadily, and as ta → ∞,
the system becomes completely trapped.
The first part of our paper is devoted to an in-depth

discussion of the aging renewal process. We directly build
on the original work of Refs. [13–15], calculating and
extensively discussing the probability density function
(PDF) of the aged counting process na, with special
emphasis on aging mediated effects. We provide leading-
order approximations for slightly and strongly aged
systems and discuss their validity. We then derive the
consequences for related ensemble averages and discuss the
special impact of the uneventful realizations.
The second part of our paper addresses the question of

how these peculiar statistical effects translate to physical
applications of renewal theory. Our case study is the
celebrated continuous-time random walk (CTRW) [16].
Originally introduced to model charge-carrier transport in
amorphous semiconductors [9], it has been successfully
applied to many physical and geological problems [17,18],
and was identified as a diffusion process in living

cells [10,11]. It extends standard random walk models
due to the possibility of having random waiting times
between consecutive steps. Heavy-tailed waiting times (1)
are, of course, of special interest to us, and we review
several well-studied phenomena inherent to CTRW models
in the light of aging renewal theory. Indeed, the insights
gained from the first part of our discussion help us to
contribute several new aspects to the bigger picture,
especially with respect to aging phenomena (see also
Refs. [14,15,19,20]). Thus, we analyze the scatter of time
averages and their deviation from the corresponding
ensemble averages (the fingerprint of weak ergodicity
breaking [21–31]) under aging conditions. We report strong
conceptual differences between aging effects on time and
ensemble averages, yet they exhibit identical time scalings
at late ages. Furthermore, we discuss a novel population
splitting mechanism, which is a direct consequence of the
discrete, increasing probability to measure na ¼ 0 steps
during late observation: a certain fraction within an
ensemble of CTRW particles stands out statistically from
the rest as being fully immobilized. Finally, we use the
methods and formulas developed in the course of our
discussion to analyze a model combination of CTRW and
fractional Langevin equation (FLE) motion [32]. By this,
we include the effects of binding and friction forces and a
persistent memory component. We discuss the intricate
interplay of aging and relaxation modes and highlight the
essential features and pitfalls for aged ensemble and single-
trajectory measurements.

II. AGING RENEWAL THEORY

Here, we analyze in detail a renewal process with distinct
non-Markovian characteristics, focusing especially on
its aging properties. In that, we proceed as follows. In
Sec. II A, we define the aging renewal process and
introduce some basic notations and concepts to be used
throughout the rest of this work. We then turn to a long-
time scaling limit description of the renewal process in
Sec. II B. In the case of scale-free waiting times, we obtain
a continuous-time counting process with interesting non-
stationary random properties. Sections II A and II B have
review character, and we refer to the original works for
more detailed discussions on generalized limit theorems.
Here, we concentrate on the time evolution of the renewal
probability distribution, which we study extensively in
Sec. II C. In particular, we discuss the emergence of both a
discrete and a continuous contribution and contrast slightly
and highly aged systems in terms of the behavior around
the origin, around local maxima, and in the tails. The
implications for calculating and interpreting ensemble
averages are deduced in Sec. II D. With the probability
distribution separating into discrete and continuous con-
tributions, it is natural to consider conditional averages, an
issue we address in Sec. II E.
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A. Aging renewal process

Suppose we are interested in a series of events that occur
starting from time t ¼ 0. We may later choose to specifi-
cally identify these events with the arrival of a bus, the steps
of a random walk, or the blinking of a quantum dot—for
now, they remain abstract. Let nðtÞ count the number of
events that occur up to time t; we occasionally refer to it as
a counting process. The time spans between two consecu-
tive events are called waiting times. They are not neces-
sarily fixed. Instead, we take them to be independent,
identically distributed random variables. In such a case, it is
justified to refer to events as renewals: The process nðtÞ is
not necessarily Markovian, but any memory of the past
is erased with the occurrence of an event—the process is
renewed. The PDF of individual waiting times is denoted
by ψðtÞ. Obviously, the nature of this quantity heavily
influences the statistics of the overall renewal process.
Figure 1 shows realizations for deterministic periodic
renewals, ψðtÞ ¼ δðt − τÞ, for Poissonian waiting times,
ψðtÞ ¼ τ−1 expð−t=τÞ, and for heavy-tailed waiting times;
i.e., ψðtÞ has long-t asymptotics (1). In all cases, the scaling
parameter τ > 0 serves as a microscopic time scale for
individual waiting times.
First, study the inset of Fig. 1, which focuses on the

initial evolution of these processes at short time scales. The
complete regularity of the deterministic renewals is distinct,
but the two random counting processes are not clearly
discernible by study of such single, short-period observa-
tions. Now, compare this to the main figure, which depicts
realizations of the processes on much longer time scales.
Here, the realizations of the deterministic and Poissonian
renewal processes look almost identical. Recall that, for
independent exponential waiting times, the average time
elapsing until the nth step is made increases linearly with n,
while the fluctuations around this average grow like n1=2.
Thus, the relative deviation from the average decays to zero
on longer scales. Roughly speaking, on time scales that are
long as compared to the average waiting time hti ¼ τ, we
observe a quasideterministic relation nðtÞ ¼ t=τ.
For heavy-tailed waiting times as in Eq. (1), the picture is

inherently different. The above scaling arguments fail,
since the typical time scale to compare to, the average
hti of a single waiting time, is infinite. This is why these
types of dynamics are sometimes referred to as scale free
and they are studied in light of generalized central limit
theorems [33]. We sketch some of the analytical aspects in
the following section. Most importantly, it turns out that, in
the absence of a typical time scale, waiting time periods
persist and are statistically relevant on arbitrarily long time
scales. The effect is clearly visible in Fig. 1: The renewal
process nðtÞ remains a nontrivial random process, even
when t ≫ τ.
We also introduce at this point the concept of an aged

measurement: while the renewal process starts at time 0, an
observer might only be willing to or capable of counting

FIG. 1 (color online). Sample realizations for three
different types of renewal processes. Events are separated by
waiting times, which are independent, identically distributed
according to a probability density function (PDF) ψðtÞ. Here,
we depict the cases of deterministic periodic renewals,
ψðtÞ ¼ δðt − 1Þ, Poissonian waiting times, ψðtÞ ¼ e−t, and
heavy-tailed waiting times, ψðtÞ ¼ 4.5 × ð5tþ 1Þ−1.5 (see the
key). Inset: During an observation on short time scales, the
randomness of Poissonian and heavy-tailed waiting times
contrasts with the regular, steady progression of the determin-
istic renewal process. However, it is difficult to distinguish the
two random processes on this level of analysis. Main figure:
Observation on long time scales reveals the profound statistical
difference between the two random processes: The Poissonian
renewal process behaves almost deterministically on time scales
long as compared to hti ¼ 1. At the same time, the random
nature of heavy-tailed waiting times is visible on all time
scales, as hti ¼ ∞. On the one hand, this means that counting
the number of renewal events n up to time t yields different
results from one process realization to the next: nðtÞ remains a
nontrivial random counting process on all time scales. On the
other hand, for ensemble measurements, aging should be taken
into account: The statistics of the number of renewals nðtÞ
during observation time ½0; t� can turn out to be different from
the statistics of naðta; tÞ, the number of renewals in ½ta; ta þ t�.
The conceptual difference of the two counting processes lies
in the forward recurrence time t1, which measures the time
span between the start of observation at time ta and the
counting of the very first event (see graph). If the observation
starts simultaneously with the renewal process, i.e., ta ¼ 0 and
na ≡ n, then t1 has the PDF ψðt1Þ, just like any other waiting
time. But if ta > 0, then t1 represents only the observed
fraction of a regular waiting time, which possibly started
before ta. Therefore, t1 has its own distinct, age-dependent
PDF hðta; t1Þ.
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events starting from a later time ta > 0. In place of the total
number of renewals nðtÞ, he then studies the counted
fraction naðta; tÞ ¼ nðta þ tÞ − nðtaÞ. The fundamental
statistical difference between the renewal processes n
and na stems from the statistics of the time period t1 that
passes between the start of the measurement at ta and the
observation of the very first event. We refer to it as the
forward recurrence time [13] and denote its PDF by
hðta; t1Þ. If the observer counts starting at time ta ¼ 0,
the forward recurrence time is simply distributed like any
other waiting time, hð0; t1Þ ¼ ψðt1Þ. But for later, aged
measurements, ta > 0, the distribution is different, as
indicated in Fig. 1.
We call the dependence of the statistical properties of the

counted renewals na on the starting time of the measure-
ment ta an aging effect. Its impact crucially depends on the
waiting time distribution in use. For instance, a Poissonian
renewal process is a Markov process, meaning here that
events at all times occur at a constant rate. In this case,
hðta; tÞ≡ ψðtÞ, so there the process does not age. For any
other distribution, hðta; tÞ ≠ ψðtÞ; yet, if the average wait-
ing time is finite, then on time scales long in comparison to
the average waiting time hti, the renewal process behaves
quasideterministically (details below). Thus aging is in
effect, but becomes negligible at long times. But scale-free
waiting times as in Eq. (1) result in nontrivial renewal
dynamics, with distinct random properties, and aging
effects should be taken into careful consideration. In the
following section, we thus study and compare in detail the
statistics of the renewal processes nðtÞ and naðta; tÞ in
terms of their probability distributions and discuss the
consequences for calculating aged ensemble averages.

B. Long-time scaling limit

Several authors have studied the aging renewal process
as defined above and its long-time approximation; see
Refs. [13,16,34,35] and references therein. Here, we
demonstrate the basic concept of a scaling limit, focusing
on the calculation of the rescaled PDF.
The probability pðn; tÞ of the random number of events n

taking place up to time t takes a simple product form in
Laplace space [36],

pðn; sÞ ¼ Lt→sfpðn; tÞg ¼
Z

∞

0

e−stpðn; tÞdt

¼ ψðsÞn 1 − ψðsÞ
s

; (2)

which is a direct consequence of the renewal property of the
process. It can be read as the probability of counting exactly
n steps at some arbitrary intermediate points in time and not
seeing an event since then.
We also study measurements taken after some time

period ta during which the process evolves unattended.
With this intent, we consider naðta; tÞ ¼ nðta þ tÞ − nðtaÞ,

the number of events that happen during the time interval
½ta; ta þ t�. The corresponding probability paðna; ta; tÞ
reads in double Laplace space, ðta; tÞ → ðsa; sÞ [13],

paðna; sa; sÞ ¼
� ðsasÞ−1 − hðsa; sÞs−1 na ¼ 0

hðsa; sÞψna−1ðsÞ½1 − ψðsÞ�s−1 na ≥ 1;

(3)

where we introduce

hðsa; sÞ ¼
ψðsaÞ − ψðsÞ

s − sa

1

1 − ψðsaÞ
; (4)

the PDF of the forward recurrence time t1 as defined in the
preceding section. The interpretation of Eq. (3) is straight-
forward: The probability to see any events at all during the
period of observation equals the probability that t1 ≤ t.
Furthermore, the observer counts exactly na events if the
first event at time ta þ t1 is followed by (na − 1) events at
intermediate times ta þ ti and an uneventful time period
until the measurement ends at ta þ t.
We check that for Poissonian waiting times,

ψðtÞ ¼ τ−1 expð−t=τÞ, we have ψðsÞ ¼ 1=ðsτ þ 1Þ ¼
sahðsa; sÞ, and, hence, hðta; tÞ≡ ψðtÞ. The Poissonian
(i.e., Markovian) renewal process is unique in this respect.
Now assume that waiting times are heavy tailed, i.e.,

their PDF is of the form (1). Waiting times of this type have
a diverging mean value, which has severe consequences for
the resulting renewal process, even in the scaling limit of
long times. To see this, introduce a scaling constant c > 0
and rescale time as t ↦ t=c. Then, write the following
approximation in Laplace space, where, by virtue of
Tauberian theorems [16], small Laplace variables corre-
spond to long times:

Lt→sfcψðctÞg ¼ ψðs=cÞ ≈ 1 − ðsτ=cÞα: (5)

If we rescale the counting process accordingly, meaning
here n ↦ n=cα, we can take the limit c → ∞ to arrive at a
long-time limiting version of the renewal process. For
instance, the probability distribution in Eq. (2) takes the
following form:

pðn; sÞ ↦ Lt→sfcαpðncα; ctÞg ¼ cα−1pðncα; s=cÞ

≈ ταsα−1
�
1 − nðsτÞα

ncα

�
ncα

→ ταsα−1 exp½−nðsτÞα� ðc → ∞Þ: (6)

Note that in these equations, n was turned from an integer
to a continuous variable, characterized by a PDF. (Still, for
simplicity, we continue to refer to this variable as the
number of events.) For the sake of notational simplicity, we
set τ ¼ 1 in what follows, bearing in mind that the rescaled
time variables t and ta are measured in units that are by
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definition large as compared to the microscopic time scale
of individual waiting times.
The evolution of the probability density with respect to

real time t is obtained via Laplace inversion of Eq. (6),
according to the procedure

pðn; tÞ ¼ L−1
s→tfsα−1 expð−nsαÞg

¼ 1

α
L−1
s→t

� ∂
∂s expð−nsαÞ

�

¼ 1

α
tn−1−1=αlþ

α ðtn−1=αÞ; (7a)

where

lþ
α ðzÞ ¼ L−1

s→zfexpð−sαÞg; (7b)

is a one-sided (completely asymmetric) Lévy stable den-
sity. Remarkably, nðtÞ thus remains a nontrivial random
quantity even after the rescaling procedure. The special
limit α → 1 is representative for finite average waiting
times. In this case, the Laplace transform in Eq. (5) is a
moment generating function, and thus we identify τ ¼ hti.
In the scaling limit such a process collapses to a
deterministic counting process: Eq. (6) then implies
pðn; sÞ ¼ expð−nsτÞ, and, consistently, Eq. (7) becomes
a Dirac δ distribution, pðn; tÞ¼ tn−2δð1− t=nÞ≡δðn− tÞ.
In contrast, for any 0 < α < 1, nðtÞ obeys a scaling

relation nðtÞ ∼ tα and follows a Mittag-Leffler law [34],
directly related to the one-sided stable density lþ

α ðzÞ
[33,37]. The latter is a fully continuous function on the
positive half line z ≥ 0. This implies, in particular, that for
t > 0, the probability to have exactly nðtÞ ¼ 0 is infinitely
small. Apparently, for the long-time scaling limit of the
counting process nðtÞ, the length of the very first single
waiting time is negligible and the observer starts counting
events immediately after initiation of the process.
The procedure for finding the PDF pa of counted events

na in an aged measurement ta ≥ 0 is analogous. In the long-
time scaling limit defined above, Eqs. (3) and (4) turn into

paðna; sa; sÞ ¼ δðnaÞ
�
1

sas
−mαðsa; sÞ

�

þ hðsa; sÞpðna; sÞ; (8)

with the definition

mαðsa; sÞ ¼ hðsa; sÞ=s (9)

and

hðsa; sÞ ¼
sαa − sα

sαaðsa − sÞ : (10)

Equation (8) demonstrates the aging time’s distinct influ-
ence on the shape of the PDF of the number of events.
Most remarkably, as t, ta > 0, the occurrence of a term

proportional to δðnaÞ indicates a nonzero probability for
counting exactly naðta; tÞ ¼ 0. This means we might
observe no events at all in the time interval ½ta; ta þ t�.
This is a quite distinct aging effect, contrasting
the immediate increase of the nonaged counting nðtÞ.
Only the limit α → 1 leads us back to a trivial deter-
ministic, nonaging counting process, and, consequently,
paðna; ta; tÞ≡ pðna; tÞ ¼ δðna − tÞ.
For the aged PDF pa, Laplace inversion of Eqs. (6–10) to

real time ta, t yields [14,15]

paðna; ta; tÞ ¼ δðnaÞ½1 −mαðta; tÞ� þ hðta; tÞ �t pðna; tÞ;
(11)

with [13,38,39]

mαðta; tÞ ¼
Z

t

0

hðta; t0Þdt0

¼ Bð½1þ ta=t�−1; 1 − α; αÞ
Γð1 − αÞΓðαÞ ≡mαðta=tÞ; (12)

where

hðta; tÞ ¼
sinðπαÞ

π

tαa
tαðta þ tÞ : (13)

Here, the asterisk �t indicates a Laplace convolution with
respect to time t. Figure 2 gives a first example of how such
an aged PDF behaves. We depict the case α ¼ 0.5 at high
ages, ta=t ¼ 100. In addition, we demonstrate scaling
convergence: if a renewal process with simple power-law
waiting time distribution is monitored on increasingly long
scales for time and event numbers, then its statistics
approach the continuous limit described by Eqs. (11–13).
In this case, Eqs. (11–13) relate the aged PDF pa to the

nonaged PDF p via the PDF h of the forward recurrence
time. mα is the probability to count any events at all during
observation. Its representation in terms of an incomplete
beta function Bðz; a; bÞ (see the Appendix) is found by a
simple substitution u ¼ t0=ðt0 þ taÞ. It can be written as a
function of the ratio ta=t alone, and we suggest to use the
latter as a more precise and quantitative notion of the age of
the measurement. In particular, we call the process or
measurement or observation slightly aged if ta ≪ t.
Conversely, we say it is strongly or highly aged if
ta ≫ t. We now look deeper into these two limiting
regimes.
At this point, we briefly digress to touch the issue of

other forms of waiting times in renewal processes.
Formally, any waiting time distribution different from an
exponential form yet possessing a finite characteristic
waiting time leads to nonconstant occurrence rates of
renewal events and thus to some sort of aging. A case
of particular interest is the one with broadly distributed
waiting times. As such, we designate waiting times
characterized by the algebraic decay (1), albeit with an
exponent 1 < α < 2. They result in renewal dynamics
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which are, in a sense, intermediate between simple
Poissonian and scale-free behavior. On the one hand, the
average waiting time hti is finite. Hence, by virtue of the
above scaling arguments, the renewal process nðtÞ behaves
quasideterministically on time scales that are arbitrarily
large as compared to hti. On the other hand, the fluctuations
around the average waiting time are considerable, since
ht2i ¼ ∞. This has a remarkable consequence for the
forward recurrence time. The PDF of the latter in this case
becomes, at infinite age [13], hðta ¼ ∞; tÞ≃ hti−1ðt=τÞ−α,
which is, in fact, heavy tailed. In other words, although the
average time passing between events is finite, the average
time passing before the very first event is infinite. The
inferred aging effect might, thus, still be notable on time
scales t several orders of magnitude larger than hti.
Therefore, the parameter regime 1 < α < 2 certainly
deserves a thorough investigation; see also the related
discussion in Refs. [40–42]. However, this is not the scope
of the present work, and in what follows, we restrict
ourselves to 0 < α < 1, the parameter range relevant to
single-particle tracking experiments in living cells
[10,11,43,44] or complex liquids [45,46]. We also note
that the case 1 < α < 2 deserves separate attention in
CTRW subdiffusion with a drift [47] and in aging processes
connected with logarithmic time evolution [48].

C. Aging probability distribution

1. Slightly aged PDF

First, notice that in Eqs. (11–13), the PDF h of the
forward recurrence time appears inside integrals and should

be interpreted in a distributional sense. For instance, in the
limit ta → 0, we should recover the PDF of a nonaged
system, pa → p. To confirm this, study the limit sa → ∞ in
Laplace space. We find hðsa; sÞ ∼ s−1a . Thus, we should
write hð0; tÞ ¼ δðtÞ, consistently implying mαð0Þ ¼ 1 and
paðna; 0; tÞ≡ pðna; tÞ. Again, we find that only an
observer counting from the initiation of the (rescaled)
renewal process, ta ¼ 0, witnesses the onset of activity
instantly.
We can go one step beyond this limit approximation and

study the properties of a slightly aged system (ta ≪ t and
sa ≫ s). We write hðsa; sÞ ∼ s−1a − s−1−αa sα and find, by
use of Tauberian theorems, that

1 −mαðt=taÞ ∼
ðta=tÞα

Γð1þ αÞΓð1 − αÞ ; (14)

and

hðta; tÞ �t pðna; tÞ∼L−1
s→tfsα−1e−nasαg

−
ðta=tÞα
Γð1þαÞL

−1
s→tfs2α−1e−nasαg

∼pðna; tÞ− tαa
Γð1þαÞL

−1
s→tfs2α−1e−nasαg:

(15)

Here, first-order corrections are provided in terms of a
Laplace inversion. For the analytical discussion, we alter-
natively express them as

FIG. 2 (color online). Scaling convergence of the aging renewal process. We simulate a renewal process with a waiting time
distribution ψðtÞ ¼ ð4πÞ−1=2ðπ−1 þ tÞ−3=2. The latter is of the heavy-tailed form (1) with α ¼ 0.5, τ ¼ 1 (a.u.). Time is rescaled as
t ↦ t=c and renewals as na ↦ na=cα. We plot the PDF paðna; ta; tÞ for the number of renewals within the time interval ½ta; ta þ t�,
with ta ¼ 100 and t ¼ 1, in terms of the rescaled quantities. The area below each step in the graph represents the probability to count a
certain number of (rescaled) renewals; the respective values are indicated by symbols. As the scaling constant c increases (see key), pa
converges to the analytical, smooth scaling limit, i.e., the PDF given through Eqs. (11–13) (same as in Fig. 4, right center panel). Since
here we only show renewal probabilities for na > 0, the total area below each graph equals the probability mα to count any events at all.
Ensemble statistics are based on data from 107 independent renewal process realizations.
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hðta; tÞ �t pðna; tÞ ∼ pðna; tÞ þ
tαa

Γð1þ αÞ
∂pðna; tÞ

∂na ; (16)

relating them to the nonaged PDF, and thus to the familiar
stable density; see Eq. (7). Finally, we can also interpret
these contributions as FoxH-functions, for which we know
series expansions for small arguments and asymptotics for
large arguments (see the Appendix and Ref. [49]; the
connection between Fox H-functions, stable densities, and
fractional calculus is established in Ref. [50]):

hðta; tÞ �t pðna; tÞ∼H10
11

�
n
tα

���� ð1− α;αÞ
ð0;1Þ

�

−
ðta=tÞα
Γð1þ αÞ

1

tα
H10

11

�
n
tα

���� ð1− 2α;αÞ
ð0;1Þ

�
: (17)

From any of these representations, we learn that leading-
order corrections to the nonaged PDF are of the form
ðta=tÞα. An intuitive reasoning for this can be given as
follows. A slightly late observer generally has to wait the
forward recurrence time before seeing the first event. The
corrections thus have to account for waiting times that start
earlier than the beginning of the observation ta but reach far
into the observation time window ½ta; ta þ t�. Note that the
number of (still few) waiting times drawn before time ta is
measured by nðtaÞ ∼ tαa, while the probability for any of
them to be statistically relevant during an observation of
length t is proportional to

R∞
t ψðtÞdt≃ t−α. The expected

number of statistically relevant waiting times starting
before but reaching into the time window ½ta; ta þ t�
therefore scales like tαa × t−α, and so do leading order
corrections.
The precise nature of the modifications to the nonaged

PDF due to aging can be separated into two aspects. On the
one hand, the continuous part of the aged PDF, h �t p, loses
weight to the discrete δðnaÞ part with growing age ta of the
counting process. This reflects an increasing probability to
havewaiting times that not only reach into but actually span
the full observation time window, so that no events at all are

observed. We provide a graphical study of the early age
dependence of 1 −mα, i.e., the weight of the discrete
contribution, in the left-hand panel of Fig. 3. The double
logarithmic plot clearly demonstrates the initial power-law
growth ≃ðta=tÞα. Moreover, we see that for any fixed age
ta=t, the value of 1 −mα is higher for lower values of α.
This was to be expected, since lower values of α are related
to broader waiting time distributions, and thus stronger
aging effects.
Interestingly, on the other hand, the modification to the

continuous part of the aged PDF, h �t p, goes beyond this
weight transfer: It is not proportional to the nonaged PDF
itself, but, according to Eq. (16), to its slope. With
increasing age ta=t, regions with negative (positive) slope
increase (decrease), so that local maxima have a tendency
to shift towards na ¼ 0. Furthermore, we can deduce from
the Fox H-function representations, Eq. (17), the behavior
around the origin, 0 < nat−α ≪ 1, and the tail asymptotics,
nat−α ≫ 1. See the Appendix for details. For α > 1=2, the
initial slope of h �t p is negative, and hence, the early aging
effect is an increase of h �t p between the origin and the
local maximum. This is notable since, on the long run (i.e.,
for sufficiently long ta), the probability to have any na > 0
tends to zero. For α < 1=2, we find the converse: the initial
slope is negative, and the PDF in the vicinity of the origin
starts dropping from early ages. The PDF tails are, for any
value of α, of a compressed exponential form, meaning
here logðh �t pÞ≃ n1=ð1−αÞ.
We can assess the validity of this early-age approxima-

tion by studying the left-hand panels of Fig. 4. We plot the
nonaged PDF, Eq. (7) (full lines) [37], a numerical
evaluation of the continuous part of the aged PDF,
h �t p, as given through the full convolution integral in
Eq. (11) (dotted or dashed lines), and the early-age
approximation by expanding the Fox H-functions in
Eq (17) as power series (symbols). All qualitative state-
ments from the previous paragraph are confirmed by the
sample plots. Still, the leading-order approximation,
Eqs. (15–17), is apparently not equally suitable for all
values of α. We observe deviations when α gets close to 1.

FIG. 3 (color online). Double logarithmic plots of the probability mα to observe any events during the measurement period ½ta; ta þ t�
(right) and the complementary probability 1 −mα (left), both as a function of age ta at t ¼ 1. The full analytic behavior is given by
Eq. (12). Note the initial power-law increase ð1 −mαÞ≃ ðta=1Þα and the final power-law decay mα ≃ ð1=taÞ1−α. Vertical lines indicate
the values of ta used for the plots in Fig. 4.
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FIG. 4 (color online). Continuous part of the PDF pðna; ta; tÞ of the number of events na counted during the measurement period
½ta; ta þ t�. Exact results are provided in terms of a numerical evaluation of the convolution hðta; tÞ �t pðna; tÞ as defined through
Eqs. (7), (11–13). We plot sample graphs for t ¼ 1 and various α. Left-hand panels show the nonaged case (ta ¼ 0), the slightly aged
case (ta ¼ 0.05), and the leading order approximation for the slightly aged PDF [ta ¼ 0.05; see Eq (17)]. Right-hand panels show the
highly aged case (ta ¼ 100) and the approximation thereto [ta ¼ 100; see Eq. (20)]. Note the significantly different vertical scales in the
panels, owing to the age-sensitive probability mα to count any events at all during observation (cf. Fig. 3).
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Indeed, one can show that the leading order terms in
Eqs. (15–17), which account for corrections of Oð½ta=t�αÞ,
are followed by higher-order terms of Oðta=tÞ. Hence, in
general, these “almost leading-order” corrections need to
be taken into account when α is close to 1. Yet again, in this
case, the total corrections with respect to the nonaged PDF,
as measured in terms of the weight loss 1 −mα, are
relatively small anyway.

2. Highly aged PDF

Conversely, we approximate for sa ≪ s,
hðsa; sÞ ∼ s−αa sα−1. This yields the leading-order behavior
for highly aged measurements, ta ≫ t,

1 −mαðt=taÞ ∼ 1 − ðt=taÞ1−α
ΓðαÞΓð2 − αÞ (18a)

and

hðta; tÞ �t pðna; tÞ ∼
1

ΓðαÞ
1

t1−αa
L−1
s→tfs2α−2e−nasαg: (18b)

The above Laplace inversion can be related to the nonaged
PDF (7) through

hðta; tÞ �t pðna; tÞ ∼ − 1

ΓðαÞ
1

t1−αa

Z
t

0

∂pðna; t0Þ
∂na dt0; (19)

or expressed as a Fox H-function by

hðta; tÞ �t pðna; tÞ ∼
ðt=taÞ1−α
ΓðαÞ

1

tα
H10

11

�
n
tα

���� ð2 − 2α; αÞ
ð0; 1Þ

�
:

(20)

Again, modifications account for waiting times that start
before but reach into the time window of observation. But
in this late time regime, the initiation of the renewal process
already lies far in the past, so not all waiting times before ta
have a realistic chance to do that. Instead, we assume again
that statistically relevant premeasurement waiting times
need to be of the order of t (implying a probability ≃t−α).
To estimate their number, note that they must follow events
which occur roughly within a time period ½ta − t; ta�.
However, at this (late) stage of the renewal process, the
average event rate has dropped to ðdn=dtÞt≈ta ∼ tα−1a . Thus,
the expected number of waiting times in the (comparatively
short) time period preceding the measurement we con-
jecture scales like ∼tα−1a t. This heuristic line of argument
explains why, for highly aged measurements, we have
leading-order contributions of the order tα−1a t × t−α ¼
ðt=taÞ1−α.
Graphical examples for this regime are given in the right-

hand panels of Figs. 3 and 4. Here, the continuous part
h �t p of the aged PDF is not proportional to the slope of
the nonaged PDF, but, according to Eq. (19), rather its time

integral over the duration of the measurement. Moreover,
through its Fox H-function representation (20), we learn
that the initial slope of the late-age PDF is positive for
α > 2=3 and negative if α < 2=3. The far tail behavior,
however, persists at late-aging stages, as we still find
logðh �t pÞ≃ n1=ð1−αÞ. Notice that, in the case of high
ages, in Fig. 4 realized as ta=t ¼ 100, the leading-order
terms (18–20) are satisfactorily approximating the exact
convolution (11) for all values of α.

D. Aging ensemble averages

From the nonaged PDF in Eq. (6), one can derive the
expected time behavior of any function f of the number of
events n counted since the initiation of the renewal process:

hfðnðtÞÞi ¼
Z

∞

0

fðnÞpðn; tÞdn

¼ L−1
s→tfsα−1Ln→sαffðnÞgg: (21)

We give concrete examples below. First, we ask how such
an ensemble average is altered if evaluated for the aged
counting process. For this, we substitute n by na and p by
pa and insert Eqs. (11–20):

hfðnaðta; tÞÞi ¼
Z

∞

0

fðnaÞpaðna; ta; tÞdna
¼ fð0Þ½1 −mαðta=tÞ� þ hðta; tÞ �t hfðnðtÞÞi;

(22)

with the limiting behavior

hðta; tÞ �t hfðnðtÞÞi

∼
� hfðnðtÞÞi þ tαahf0ðnðtÞÞi=Γð1 − αÞ ta ≪ t

tα−1a

R
t
0hf0ðnðt0ÞÞidt0=ΓðαÞ ta ≫ t:

(23)

These equations relate an ensemble average taken for the
observation window ½ta; ta þ t� to the respective quantity
measured in ½0; t�. Interestingly, the modifications due to
aging are rather related to the ensemble average of the
derivative of the observable, f0ðnÞ ¼ ð∂f=∂nÞðnÞ.
As an example, we consider qth order moments of the

number of renewals, fðnÞ ¼ nq, q > 0. We find

hnqðtÞi ¼ L−1
s→t

�
sα−1 Γðqþ 1Þ

sαqþα

�
¼ A0tαq (24)

and
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hnqaðta; tÞi ¼ Γðqþ 1Þðtþ taÞαq

×
Bð½1þ ta=t�−1; 1þ αq − α; αÞ

ΓðαÞΓð1þ αq − αÞ

∼
� hnqðtÞi þ A1tαatαq−α ta ≪ t

B1tα−1a t1−αþαq ta ≫ t.
(25)

The incomplete beta function comes into play again by
substituting u ¼ t0=ðt0 þ taÞ in the convolution integral in
expression (22). The time-independent coefficients are
given by

A0 ¼
Γðqþ 1Þ
Γðαqþ 1Þ ; A1 ¼

Γðqþ 1Þ
Γð1 − αÞΓðαqþ 1 − αÞ ;

B1 ¼
Γðqþ 1Þ

ΓðαÞΓðαqþ 2 − αÞ : (26)

For the nonaged system, moments evolve like tαq,
reflecting the characteristic scaling property of the renewal
process, nðtÞ ∼ tα. But for aged systems, ta > 0, the scaling
is broken, and the behavior of moments with respect to time
is more complex. Only at very high ages, ta ≫ t, we can
approximate again by a single power law. When comparing
the growth of the counting processes for the two limiting
regimes, Eq. (25) is somewhat ambivalent. At high ages,
the probability for observing no events at all tends to one.
Consequently, a prefactor tα−1a lets all moments decay to
zero as ta goes to ∞. However, note that for a fixed, large
but finite value of ta, the t dependence is ≃t1−αþαq (in
accordance with Ref. [51]), so the power-law exponent is
actually larger than for the nonaged moments. In summary,
at higher ages ta, the absolute number na of counted events
drops, but it increases faster with measurement time t. In
particular, consider the average number of events during
observation, q ¼ 1: Counting from the start of the process,
we observe a sublinear behavior hni≃ tα, but at a fixed,
high age of the process, the average rate of events is
approximately constant, hnai≃ t, like in a nonaging,
Poisson type of renewal process.
Another useful expression is the Laplace transform of

Eq. (6) with respect to the number of renewals, n → λ, and,
respectively, Eq. (8), with na → λ, which is obtained
through the same techniques. Thus,

hexp½−λnðtÞ�i ¼ L−1
s→t

�
sα−1
sα þ λ

�
¼ Eαð−λtαÞ; (27)

and

hexp½−λnaðta; tÞ�i

∼
� hexp½−λnðtÞ�i½1 − λtαa=Γð1 − αÞ� ta ≪ t

1 − ðt=taÞ1−αEα;2−αð−λtαÞ=ΓðαÞ ta ≫ t;
(28)

where Eα and Eα;2−α are (generalized) Mittag-Leffler
functions (see the Appendix). Interestingly, here the early

first-order corrections due to aging do not significantly alter
the t dependence. At low age, the Mittag-Leffler function
interpolates between 1 − const × tα for t ≪ λ−1=α and
const × t−α at t ≫ λ−1=α. At high age, the transition is
from 1 − const × t1−α to 1 − const×t1−2α.

E. Conditional ensemble averages

To conclude this section, we address the question of how
counting statistics change when we selectively evaluate
only realizations of the process where na > 0. This means
we discard the data when no events happen during the
complete time of observation ½ta; ta þ t�. This is, on the one
hand, a relevant question when it comes to the application
of renewal theory: An observer who is unaware of the
underlying counting mechanism might misinterpret real-
izations with na ¼ 0 as a separate, dynamically different
process, since the statistics are so distinct from the
remaining continuum na > 0. A process realization during
which no events occur at all might not even be visible to the
observer in the first place. We give an example in the next
section. On the other hand, this study also helps us to
distinguish two aspects of the aging PDF: We neglect the
effect of having single waiting times that cover the full
observation window, leading to a weight transfer from the
continuous to the discrete part of the PDF. Instead, we
specifically only account for waiting times that start before
but finish during the period of observation, in order to
understand the modifications of the continuous part beyond
its loss of weight. With this intent, we look at the condi-
tional ensemble average

hfðnaðta; tÞÞim
≡

Z
∞

0

fðnaÞpaðnajna > 0; ta; tÞdna

¼ hðta; tÞ �t hfðnðtÞÞi
mαðt=taÞ

∼
� hfðnðtÞÞi ta ¼ 0

tα−1
R
t
0hf0ðnðvÞÞidv=Γð2 − αÞ ta=t → ∞:

(29)

For ta ¼ 0, as mentioned above, counting of events starts
instantly, so the restriction to na > 0 is redundant. But in
the limit of late ages, a possibly nonzero forward recurrence
time affects the measurement. We find that ensemble
averages conditioned to na > 0 have a well-defined, non-
trivial limiting time dependence, even when ta=t tends to
infinity. This is in contrast to the full ensemble, where at
infinite ages, hfðnaðta; tÞÞi → fð0Þ. As an example, con-
sider again the time evolution of qth order moments,
restricted to na > 0. We find

hnqaðta; tÞi → 0; as ta=t → ∞; (30)

but
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hnqaðta; tÞim ∼
�
A0tαq ta ¼ 0

C0tαq ta=t → ∞;
(31)

where A0 is given by Eq. (26) and

C0 ¼
Γðqþ 1ÞΓð2 − αÞ
Γðαqþ 2 − αÞ : (32)

Thus, as opposed to the unrestricted ensemble measure-
ment, conditional moments scale like ∼tαq in both nonaged
and extremely aged systems. Note, however, that prefactors
are different, and a behavior deviating from a simple power
law is still observable at intermediate ages.

III. AGING CONTINUOUS-TIME
RANDOM WALKS

The theory of continuous-time random walks directly
builds on the concept of the renewal theory. We are thus
able to view many of the intriguing features of this random
motion, such as anomalous diffusion, population splitting,
and weak ergodicity breaking, in the light of the abstract
analytical renewal theory ideas developed above. To do so,
we start with a definition of the CTRWmodel in Sec. III A,
extending the renewal process by a random spatial dis-
placement component. We then review results from pre-
vious work in the field, discussing, in particular, the aspects
of population splitting (Sec. III B) and anomalous diffusion
and weak ergodicity breaking (Sec. III C). Concurrently,
we add elements from our own recent discussion [20],
aiming at relating these phenomena to the aging properties
of the underlying renewal process. Population splitting can
be traced back to the partially discrete nature of the aging
renewal PDF. Studying ergodicity ultimately leads us to a
general in-depth study of aging ensemble and time averages
(Sec. III D). We work out the fundamental differences
between these two types of averages under aging con-
ditions (weak ergodicity breaking), but also find interesting
parallels at late ages (equivalence in time scalings). Finally,
we apply the methods and formulas developed in the course
of our discussion to analyze a stochastic process that
generalizes previous CTRW models by additional confine-
ment, friction, and memory components in Sec. III E.

A. From aging renewal theory to aging
continuous-time random walks

Consider a random walk process (one dimensional, for
the sake of simplicity) where steps do not occur at a fixed
deterministic rate, but are instead separated by random,
real-valued waiting times. The idea is to model the random
motion in a complex environment where sticking, trapping,
or binding reactions are to be taken into account. The
processes we study here are CTRWs with finite-variance
jump lengths, on the one hand, and independent, identically
distributed waiting times, on the other (see Refs. [16–18]

for a review on CTRW theory). Eventually, we are
interested in studying these processes on long time scales,
aiming at extending existing simple diffusion models to
describe diffusion in complex environments. Thus, we
focus again on scale-free waiting time distributions of
the form (1), which have the capability of modifying the
resulting diffusion dynamics on arbitrarily long time scales.
In the simplest scenario, sticking or trapping mecha-

nisms are decoupled from diffusion dynamics. On the level
of theoretical modeling, this means we can take jump
distances of the base random walk to be independent from
waiting times. The renewal theory of the previous section is
readily extended to describe such idealized systems. Let
xðnÞ be the random walk process as a function of the
number of steps n. Then, by means of subordination
[35,52–54], we construct a CTRWas xðtÞ ¼ xðnðtÞÞ, where
nðtÞ is a renewal counting process. Each step of the random
walk is, hence, interpreted as an event of the renewal
process. The properties of xðtÞ follow from the combined
statistics of xðnÞ and nðtÞ. For example, if WRWðx; nÞ
denotes the PDF for the position coordinate x after n steps,
starting with xð0Þ ¼ 0, then

WCTRWðx; tÞ ¼
Z

∞

0

WRWðx; nÞpðn; tÞdn (33)

is the PDF of the associated CTRW process at time t. Note
that we see n as a continuous variable here, so we are
arguing on the level of long-time scaling limits. In the
simplest case, xðnÞ would be an ordinary Brownian motion
so that WRW would be a Gaussian.
Now, imagine that a particle is injected into a complex

environment, beginning a CTRW-like motion at time 0. In
general, the experimentalist might start the observation at a
later time, ta > 0. The reason for this could be experimental
limitations, or maybe the goal is to study a maximally
relaxed system, which makes it necessary to wait for
relaxation. In either case, the particle motion is initially
unattended. At time ta, the particle is tracked down, and its
position at this instant serves as the origin of motion for
the following observations. Instead of the full CTRW xðtÞ,
the experimentalist then monitors the aged CTRW
xaðta; tÞ ¼ xðta þ tÞ − xðtaÞ. Thus, as we worked out in
the previous section, if the dynamics are characterized by
heavy-tailed trapping or sticking times, the issue of aging
has to be taken into careful consideration.

B. Population splitting

Arguably, the most striking aging effect in CTRW theory
is the emergence of an apparent population splitting
[15,20]. The aged renewal process naðta; tÞ controls
the dynamic activity of the aged CTRW xaðta; tÞ.
Consequently, the forward recurrence time t1 marks the
onset of dynamic motion in the monitored window of time.
We learned from the analysis of aging renewal theory that,
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for increasingly late measurements, we should expect t1 to
assume considerable values. Physically, this reflects the
possibility for the particle to find ever deeper traps or to
undergo more complex binding procedures, when given
more time to probe its environment before the beginning of
observation. In particular, the forward recurrence time is
more and more likely to span the full observation time
window, t1 > t, so that the particle does not visibly exhibit
dynamic activity.
From an external, experimental point of view, an

ensemble measurement in such a system appears to indicate
a splitting of populations. Let, for instance, the base
random walk xðnÞ be Markovian, and let the PDF
WRWðx; nÞ be a continuous function of x (e.g.,
Gaussian). In this case, we can supplement the ensemble
PDF WCTRW from Eq. (33) by its aged counterpart
WACTRW, using renewal theory Eq. (22):

WACTRWðxa; ta; tÞ ¼
Z

∞

0

WRWðxa; naÞpaðna; ta; tÞdna
¼ δðxaÞ½1 −mαðta=tÞ�
þ hðta; tÞ �t WCTRWðxa; tÞ: (34)

This propagator was discussed previously in Ref. [15]. The
ensemble statistics have a sharply peaked δ contribution,
caused by a fraction 1 −mα of particles that remain
immobile at the origin of the observed motion. They
contrast the mobile fraction mα of particles, since the
PDF of their arrival coordinates, h �t WCTRW, varies con-
tinuously along the accessible regions of space 0 < xa <
∞ [as derived, by virtue of Eq. (33), from the continuous
nature of the PDFs h, WRW, and p]. For fixed evaluation
time t, the size of the immobile subpopulation increases
with growing age ta, as aging renewal dynamics terminally
come to a complete halt. An exhaustive discussion of the
shape of the aged propagator WACTRW can be found in
Ref. [15] for both unbiased motion and in the presence of
a drift.
Indeed, splitting into subpopulations is a phenomenon

encountered in complex environments such as biological
cells. Such dynamics was observed for the motion of lipids
in phospholipid membranes [55], single protein molecules
in the cell nucleus [56], H-Ras on plasma membranes [57],
and of membrane proteins [58]. The immobile fraction is
also often found in fluorescence recovery after photo-
bleaching experiments [55].
It is important to understand that, for CTRW types of

motion, this effect emerges without assuming nonidentical
particle dynamics. Even during the evolution of the
process, stochastic motion of individual particles in an
ensemble is independent and identical. In particular, all
particles, in principle, exhibit their dynamic activity for an
indefinite amount of time. The “immobility attribute” can
only be assigned when the evolution of the (aged) process

is studied within a finite time window. Then, a certain
fraction of particles—the immobile ones—stand out sta-
tistically from the rest. The displacement propagator (34)
with its conspicuous, discontinuous contribution serves as a
statistical indicator for the population splitting, if evaluated
at finite times t < ∞ (more precisely, the effect is most
noticeable while t remains short as compared to the age ta).
Similarly, we show in the following section that population
splitting is particularly relevant when assessing time
average data on a per-trajectory basis. Of course, in any
case, observations of real physical systems are finite by
nature. It is, hence, important to know the characteristics of
the aging population splitting, as to set it apart from
separation mechanisms due to physically nonidentical
particle dynamics.

C. Analysis of mean-squared displacements

An alternative way to assess particle spreading in the
solvent is to study the time evolution of the mean-squared
displacement. This is particularly useful when ensemble
data are not extensive enough as to deduce reliable
propagator statistics WACTRW. There are two common
ways of defining such mean-squared displacements: in
terms of either an ensemble average or a single-trajectory
time average. Analysis and comparison of these two types
of observables reveals several fingerprint phenomena of
CTRW motion, such as subdiffusion and weak ergodicity
breaking. In the following, we collect known results and
discuss their implications for aged systems.

1. Ensemble average

As a simple example, we take xðnÞ to be unbounded,
unbiased Brownian motion and consider an ensemble
measurement of the mean-squared displacement. In this
case, the PDF WRW is Gaussian, and we know that

h½xðkþ nÞ − xðkÞ�2i ¼ hx2ðnÞi

¼
Z

∞

−∞
x2WRWðx; nÞdx

¼ 2Dn (35)

for all k, n > 0. We use arbitrary spatial units from here,
2D ¼ 1. Since xðnÞ is a process with stationary increments,
the calculation of moments is independent of the number of
steps k made before the start of the measurement. Thus, if
the process the experimentalist studies is Brownian motion,
there are no aging effects: at all initial times k, one observes
a linear scaling with respect to observational time n,
hx2ðnÞi≃ n, a behavior commonly classified as normal
diffusion. However, if the motion is paused irregularly for
heavy-tailed waiting time periods, the dynamics are of
CTRW type and we get a quite different picture. For the
process xðtÞ ¼ xðnðtÞÞ, we find
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h½xðta þ tÞ − xðtaÞ�2i ¼ hx2aðta; tÞi ¼
Z

∞

−∞
x2aWACTRWðxa; ta; tÞdxa ¼

Z
∞

−∞

Z
∞

0

x2aWRWðxa; naÞpaðna; ta; tÞdnadxa

¼
Z

∞

0

napaðna; ta; tÞdna ¼ hnaðta; tÞi ¼ hnðta þ tÞi − hnðtaÞi

¼ 1

Γð1þ αÞ ½ðta þ tÞα − tαa� ∼
�
tα=Γðαþ 1Þ þ tαa=Γð1 − αÞ ta ≪ t

tα−1a t=ΓðαÞ ta ≫ t;
(36)

in accordance with Ref. [15]. As expected, the non-
stationarity of the aging renewal process carries over to
the CTRW. If monitored at ta ¼ 0, the mean-squared
displacement grows like hx2ai ¼ hx2i≃ tα. With the in-
crease being less than linear in time, the phenomenon in the
context of diffusion dynamics is commonly referred to as
subdiffusion. For ta > 0, the mean-squared displacement is
no longer described in terms of a single power law. The
process looks more like diffusion in a nonequilibrium
environment, and in fact, ta might be conceived as an
internal relaxation time scale. Interestingly, if the meas-
urement takes place in the highly aged regime ta ≫ t, the
mean-squared displacement as a function of the observation
time t indicates normal diffusion with an age-dependent
diffusion coefficient, hx2ai≃ tα−1a t. We are able to identify
the complete turnover from one aging regime to the other as
a fingerprint of CTRW dynamics only if data on an
extensive range of time scales are available. Still, for as
long as the experimentalist cannot control the age ta of the
measurement, the aging effect can be misinterpreted as an
internal relaxation mechanism. The situation gets even
more complicated if ta is possibly random.

2. Time average

Now, consider the alternative time average notion of the
mean-squared displacement. For a single-particle trajectory
xðtÞ, recorded at times t0 ∈ ½ta; ta þ T�, it is defined in
terms of the sliding average

δ2ðΔ; ta; TÞ ¼
1

T − Δ

Z
taþT−Δ

ta

½xðt0 þ ΔÞ − xðt0Þ�2dt0:

(37)

Here, Δ is called lag time, and parameters defining the time
window of observation are also referred to as age ta and
measurement time T. While the ensemble mean (36) is
evaluated in terms of squared displacements from a
multitude of independent process realizations, the time
average (37) uses data from within a single trajectory at
several points in time. The latter is thus a useful alternative
whenever measurements on long (i.e., T ≫ Δ) but rela-
tively few trajectories are available. For ergodic, stationary
processes, both types of averages are equivalent. For
example, for a Brownian motion, the time average δ2 is
by definition a random quantity differing from one trajec-
tory to the next, but in the limit of long trajectory

measurements, T ≫ Δ, the time average converges to
the corresponding ensemble value, δ2 → 2DΔ, and fluc-
tuations become negligible [30,31].
In contrast, the CTRW xðtÞ ¼ xðnðtÞÞ violates both

ergodicity (δ2 remains random for arbitrarily long meas-
urement times) and stationarity (δ2 depends on ta and T). In
the context of aging, we can now ask two questions. First,
does the distribution of the time average change qualita-
tively when evaluated after the onset of the particle
dynamics, ta > 0? This issue is discussed extensively in
Ref. [20]. In short, we find that the time-averaged mean-
squared displacement is directly related to the number of
steps na made during the measurement via [21,30,31,59]

FIG. 5 (color online). Numerical demonstration of the asymp-
totic identity (38) in the limit of long measurement times T ≫ Δ.
While Δ ¼ 100 remains fixed, we compare T ¼ 2 × 105 (blue
squares), T ¼ 2 × 106 (red bullets), and T ¼ 2 × 107 (orange
triangles), demonstrating convergence. Each point in the graph
represents an individual CTRW trajectory. Full symbols represent
free CTRW, open symbols are for motion bounded by a box. ta is
either 0 (nonaged) or for specific α and T chosen such that
mαðta=TÞ ¼ 0.21 (aged). The simulation data are extensive
enough as to ensure that every system is represented by roughly
200 points with δ2 > 0.

AGING RENEWAL THEORY AND APPLICATION TO … PHYS. REV. X 4, 011028 (2014)

011028-13



δ2ðΔ; ta; TÞD
δ2ðΔ; ta; TÞ

E ¼ naðta; TÞ
hnaðta; TÞi

: (38)

Figure 5 provides a numerical validation of this relation in
terms of explicit CTRW simulations for free and confined
motion. Notice that Eq. (38) is not a distributional
equality, but it is meant to be a stronger, per-trajectory
equality that we validate here by means of simulations
data. Hence, all random properties of the time average in
this case are not only related to, but quite literally taken
over from, the underlying counting process. In particular,
the distribution of the time average δ2 is a rescaled version
of the renewal theory PDF pa as discussed in Sec. II and
plotted in Figs. 3 and 4. This implies that a statistical study
of time averages reveals the aging population splitting:
within an ensemble of independent particles, we may find
some that do not exhibit any dynamic activity during

observation, na ¼ 0, δ2 ¼ 0, and thus apparently stand out
as an individual subpopulation from the remaining con-
tinuum, na > 0, δ2 > 0. Likewise, one can study [60] the
statistics of microscopic diffusivities Dα ¼ δ2=Δα ¼
½xðt0 þ ΔÞ − xðt0Þ�2=Δα along a single time series
t0 ∈ ½0; T�. These diffusivities are consistently found to
have a discrete probability for Dα ¼ 0. The latter implies
that no steps are made during any Δ-sized lag-time
interval along the time series, and the probability for this
actually grows with measurement time T.
The second aging-related question addresses the explicit

lag-time dependence. Although it is different from one
trajectory to the next, δ2 is generally characterized by a
universal scaling with respect to lag time Δ. The question
now is, is this scaling age dependent? To this end, we
consider the average (over many individual trajectories) of
Eq. (37). With the help of Eq. (36),

�
δ2ðΔ; ta; TÞ

�
¼ 1

T − Δ

Z
taþT−Δ

ta

h½xðt0 þ ΔÞ − xðt0Þ�2idt0

¼ 1

ðT − ΔÞΓð2þ αÞ ½ðta þ TÞαþ1−ðta þ T − ΔÞαþ1 − ðta þ ΔÞαþ1 þ tαþ1
a �

∼
Λαðta=TÞ
Γð1þ αÞ

Δ
T1−α ; (39)

where

ΛαðzÞ ¼ ð1þ zÞα − zα: (40)

The approximation in the fourth line is for the relevant case
of long measurement times, T ≫ Δ. A few points are
remarkable when comparing the time dependence of the
ensemble average, Eq. (36), to the scaling of the time
average, Eq. (39). The answer to the question on lag-time
dependence is a simple one: We generally find a linear
scaling δ2 ∼ Δ, regardless of age ta. In this respect, the time
average is a less complicated observable than the ensemble
average. The latter has a comparatively complicated t
dependence and is characterized by an age-dependent
regime separation. Compare this to the time average, where
nonstationarity enters in terms of the prefactors Λα and
Tα−1. Only the amplitude of time averages depends on the
measurement duration and age. More precisely, if either
measurement time parameter tends to ∞, the time average
itself tends to zero. This is why we call Λα an aging
depression. It can be expressed in terms of the dimension-
less ratio ta=T. In analogy to ensemble measurements, we
thus speak of a nonaged (ta ¼ 0), a slightly aged (ta ≪ T),
and a highly aged (ta ≫ T) time average.
Aside from the differences, there is also an interesting

parallel between ensemble and time average: the linear

scaling of the time average with respect to Δ is reminiscent
of the linear t dependence of the ensemble average at
high ages. If, in addition to a very long measurement
duration, we also assume an even longer preceding aging
period, ta ≫ T ≫ Δ, the similarity even becomes an
equivalence,

�
δ2ðΔ; ta; TÞ

�
∼ tα−1a

Δ
ΓðαÞ ∼ hx2aðta;ΔÞi: (41)

The time scalings of ensemble and time averages are hence
identical at high ages. This is quite surprising considering
that these quantities are fundamentally distinct in a process
that exhibits weak ergodicity breaking. In what follows, we
discuss whether or not these discrepancies and parallels of
the two types of averages are specific to the mean-squared
displacement.

D. Aging ensemble and time averages

Consider a random walk xðnÞ and a stationary observ-
able Fðx2; x1Þ, meaning that

hFðxðnþ kÞ; xðkÞÞi ¼ hFðxðnÞ; xð0ÞÞi≡ fðnÞ (42)

for any number of steps n or k. In other words, the above
ensemble average should not depend on when we begin the
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observation. The example discussed in the previous section
falls into this category. There, xðnÞ was Brownian motion,
Fðx2; x1Þ ¼ ðx2 − x1Þ2 was the squared displacement, and
we had fðnÞ ¼ 2Dn. But condition (42) would also allow
for general order moments or any other function of
displacements Fðx2 − x1Þ. Moreover, we can replace
xðnÞ by other processes with stationary increments, like
fractional Brownian motion [61]. If xðnÞ is even stationary
itself (e.g., the stationary limit of confined motion), then
any function F is fine (allowing us to calculate, e.g.,
correlation functions, Fðx2; x1Þ ¼ x2x1; CTRW multipoint
correlation functions have been studied extensively in
Refs. [30,31,53,62,63]).

1. Ensemble averages.

In any such case, we can ask the question of how the
statistical properties of the random motion and the mea-
sured observable change when introducing heavy-tailed
waiting times between steps. We define xðtÞ ¼ xðnðtÞÞ via
subordination, assuming that xðnÞ and nðtÞ are stochasti-
cally independent processes. In general, the aging proper-
ties of the renewal process nðtÞ are inherited by the CTRW
xðtÞ. The stationarity of the ensemble average is broken. To
calculate the magnitude of the effect, we can use condi-
tional averaging by virtue of the independency of the two
stochastic processes at work. We denote by h·iRW the
average with respect to realizations xðnÞ and write

hFðxðta þ tÞ; xðtaÞÞi ¼ hFðxðnðta þ tÞÞ; xðnðtaÞÞÞi

¼
Z

∞

0

Z
∞

0

hFðxðn2Þ; xðn1ÞÞiRW PrfnðtaÞ ¼ n1; naðta; tÞ ¼ n2 − n1gdn1dn2

¼
Z

∞

0

Z
∞

0

fðn2 − n1Þ PrfnðtaÞ ¼ n1; naðta; tÞ ¼ n2 − n1gdn1dn2

¼
Z

∞

0

Z
∞

0

fðmÞ PrfnðtaÞ ¼ n1; naðta; tÞ ¼ mgdn1dm

¼
Z

∞

0

fðmÞpaðm; ta; tÞdm

¼ hfðnaðta; tÞÞi: (43)

The average on the last line is with respect to naðta; tÞ, so
we can use our knowledge on ensemble averages of the
aging renewal process. The latter are characterized by a
distinct turnover behavior; see Eqs. (21–23). For the
slightly aged CTRW ensemble average, we have

hfðnðtÞÞi ¼L−1
s→tfsα−1Ln→sαffðnÞgg;

hfðnaðta; tÞÞi ¼ hfðnðtÞÞiþO½ðta=tÞα�; ðta ≪ tÞ: (44)

For CTRWs, the leading-order corrections due to aging are
of the order of ðta=tÞα, just as for the underlying renewal
process. Conversely, at high ages, we rewrite the leading-
order terms slightly as

hfðnaðta; tÞÞi

∼ fð0Þ þ tα−1a

ΓðαÞ
Z

t

0

�
hf0ðnðt0ÞÞi − fð0Þ ðt0Þ−α

Γð1 − αÞ
�
dt0

¼ fð0Þ þ tα−1a

ΓðαÞL
−1
s→tfs2α−2Ln→sαffðnÞ − fð0Þgg

≡ Cþ tα−1a

ΓðαÞ gðtÞ; ðta ≫ tÞ; (45)

introducing the constant C ¼ fð0Þ and defining an aux-
iliary function gðtÞ, either relating it to the analog stationary

average fðnÞ (third line) or to the corresponding nonaged
CTRW average hf0ðnðtÞÞi (second line). When the meas-
urement of the observable F is taken arbitrarily late,
ta → ∞, we will ultimately measure the constant C. For
example, if the base random motion xðnÞ is a random walk
with a characteristic scaling x ∼ nH, H > 0, and we study
moments of displacements, Fðx2; x1Þ ¼ jx2 − x1jq, q > 0,
then fðnÞ≃ nqH; in this case, C ¼ 0, so we will get
arbitrarily small moments at high ages. If xðnÞ is the
stationary limit of a confined motion and we are interested
in the correlation function Fðx2; x1Þ ¼ x2x1 (as studied in
Refs. [20,30,31]), then late measurements will be close to
the thermal value of the squared position C ¼ hx2i. No
matter which observable we are studying, the approach to
the constant value C is of the form hfðnaðta; tÞÞi − C≃
ðt=taÞ1−α, ta ≫ t.

2. Time averages

Now we turn to the analog time average, namely,

FðΔ; ta; TÞ ¼
1

T − Δ

Z
taþT−Δ

ta

Fðxðt0 þ ΔÞ; xðt0ÞÞdt0;

(46)

and calculate its expectation value
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�
FðΔ; ta; TÞ

�
¼ 1

T − Δ

Z
taþT−Δ

ta

hfðnaðt;ΔÞÞidt

∼ Cþ 1

T

Z
taþT

ta

ðtÞα−1
ΓðαÞ gðΔÞdt

¼ Cþ Λαðta=TÞ
Γð1þ αÞ

gðΔÞ
T1−α : (47)

The approximation in the second line holds for sufficiently
long trajectories, T ≫ Δ. Note that from the full, possibly
complicated time dependence of the ensemble average,
only the late-age limiting behavior, Eq. (45), entered this
approximation. The reason is that with the integrand in the
time average of Eq. (47) decaying like ðt0Þα−1, the integral
itself is still an increasing function of T; namely, it grows
like Tα.
Thus, indeed, aging effects for time averages in CTRW-

type random motion are universally described in terms of
the constant C and simple prefactors Λα and Tα−1. The full
lag-time dependence is captured by the function gðΔÞ,
which is independent of the parameters defining the time
window of observation, ta and T. Conversely, the concrete
choice for the model xðnÞ or the observable F enters only C
and g but not the prefactors.
Furthermore, the Δ dependence of the time average is

closely related to the tdependenceof the ensemble average at
high ages, ta ≫ t. In particular, we find a universal asymp-
totic equivalence in the time scaling of time and ensemble
averages, if both are taken during late measurements:D
FðΔ; ta; TÞ

E
∼ hFðxðta þ ΔÞ; xðtaÞÞi for ta ≫ T ≫ Δ:

(48)

Thus, indeed, averaging at late ages appears to happen
under stationary conditions. Keep in mind, however, that
the above identity refers to the expectation value of time
averages, and thus to the time scaling behavior. Since
CTRWs exhibit weak ergodicity breaking, the amplitude of
the time average of a single trajectory can largely deviate
from the expected value, especially at high ages. (See, for
instance, the discussion on the ergodicity-breaking param-
eter for δ2 in Ref. [20].)

E. Interplay of aging and internal relaxation

Recent experimental studies of the motion of submicron
granules in the cytoplasm and of protein channels in the
plasma membranes of living cells, as well as of lipid
molecules in large-scale computer simulations of lipid
bilayers, suggest that two different stochastic components
are needed to describe the observations [10,11,43,44].
Thus, one component underlying the motion was identified
as the weakly nonergodic, aging CTRW process whose
long-tailed waiting times may emerge due to transient
binding, caging, or critical clustering in the system. The

other component was identified as ergodic anomalous
diffusion mirroring the fractality of the available paths
due to the complex geometry of the environment [11] or the
viscoelasticity of the cytoplasm or lipid bilayers [10,43,44].
Here, we analyze such a two-component stochastic motion
governed by CTRW-style dynamics coupled to a visco-
elastic component described by the fractional Langevin
equation [64,65]. On the one hand, this analysis serves as
an exemplary application of the formulas and methods
described in this paper. In particular, it gives a concrete
meaning to the analytical discussion of time and ensemble
averages and their relation to internal relaxation time scales.
On the other hand, its complexity and versatility make it
more suitable for the description of physical phenomena.
The definition of this model is as follows.
With our base random walk xðnÞ, we depart from the

simple Brownian motion and instead consider the fractional
Langevin equation

0 ¼ −λxðnÞ − γ̄

Z
n

0

ðn − n0Þ2H−2x: ðn0Þdn0

þ
ffiffiffiffiffiffiffiffiffiffiffi
γ̄kBT

p
ξHðnÞ: (49)

Here, the dot signals a first-order derivative, γ̄ > 0 is a
generalized friction constant, kBT > 0 gives the thermal
energy of the environment, and λ > 0 quantifies the
strength of an external, harmonic potential VðxÞ ¼ λx2,
centered around x ¼ 0. Thus, this fractional Langevin
equation describes the random motion xðnÞ of a pointlike
particle subject to the static external potential, a friction
force, and a fluctuating force due to the interaction with the
surrounding heat bath. We assume that dynamics are
overdamped, meaning that the particle mass is so small
that we can neglect particle inertia. Consequently, there is
no term proportional to x

::ðnÞ in Eq. (49). The random force
ξH is modeled in terms of the so-called fractional Gaussian
noise, i.e., a Gaussian process defined through [61,66]

hξHðnÞi ¼ 0 (50a)

and

hξHðn1ÞξHðn2Þi¼ jn2−n1j2H−2

þ 2

2H−1
jn2−n1j2H−1δðn2−n1Þ; (50b)

where 1=2 < H < 1.
While the noise process itself can be defined, in

principle, for any 0 < H < 1, the friction kernel in
Eq. (49) diverges for values H ≤ 1=2. Hence, we restrict
ourselves to 1=2 < H < 1, implying that noise correlations
are of the long-range, persistent type. They stand for the
interaction with a complex environment, where relaxation
dynamics are slow and cannot be characterized in terms of
single relaxation rates. The latter anomalous diffusion
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phenomenon comes about when accounting for obstructed
motion (e.g., single-file diffusion [67] or other many-body
systems [68,69]) or an interaction with a viscoelastic
network [64,65,70,71]. Biological cells feature highly
complex, crowded environments, crossed by filament net-
works. FLE dynamics have thus found wide application in
biological physics, describing diffusive motion processes
within the cell [70,72–75], and also conformational dynam-
ics of individual protein complexes [76].
Such long-range correlations carry over to the particle

motion in a twofold way, as the friction term in Eq. (49)
also incorporates long-range memory effects: its magnitude
is defined by the complete velocity history starting from
n0 ¼ 0. The power-law memory kernel is chosen such that
this FLE fulfills a Kubo-style fluctuation-dissipation theo-
rem [77]. This implies that deterministic friction and
random noise forces do not originate from separate physical
mechanisms, but are both generated by interactions with
the environment. Moreover, it means we can model
“equilibrated diffusion”: Eq. (49) admits a solution with
a stationary velocity profile, so that the net energy
exchange of the particle with the heat bath is zero. Such
a solution is a Gaussian process defined by [32]

hxðnÞi ¼ 0 (51a)

and

h½xðkþ nÞ − xðkÞ�2i ¼ 2kBT
λ

�
1 − E2−2H

	
− λ

γ
jnj2−2H


�
;

(51b)

in terms of a generalized Mittag-Leffler function
E2−2H (see the Appendix), introducing γ ¼ γ̄Γð2H − 1Þ.
(Note that the definition of a Gaussian process in terms
of its correlation function is equivalent to the definition
in terms of squared increments, since h½x2 − x1�2i ¼
hx21i þ hx21i − 2hx1x2i.) The nonequilibrium solutions to
the FLE are discussed in Refs. [78,79], including an
interesting discussion on their transient aging behavior
[79]. In the limit H → 1=2, Eq. (51) defines a stationary
Ornstein-Uhlenbeck process, implying exponential relax-
ation. Physically, the latter models overdamped motion in
an harmonic potential where friction and noise forces are
memoryless.
The stationary Gaussian process (51) is the starting point

for our discussion on aging induced by heavy-tailed
waiting times. There are, of course, various ways to
introduce an aging, nonergodic, CTRW-like model com-
ponent, and the resulting stochastic processes differ largely.
For instance, one can combine the Gaussian dynamics with
an independent CTRW motion in a purely additive manner,
as discussed in Ref. [80]. Moreover, for a nonoverdamped,
inertial motion, the FLE velocity process vðnÞ ¼ x

: ðnÞ can
be modified by adding periods of constant velocity with

heavy-tailed statistics [81,82]. Here, we instead stick to the
standard subordination approach as described in the pre-
ceding sections: we introduce stalling dynamics by defin-
ing xðtÞ ¼ xðnðtÞÞ, where the aging renewal process nðtÞ is
assumed to be statistically independent from xðnÞ.
Physically, this scenario implies that the particle under
observation is governed by the FLE (49). Eventually, it
becomes trapped for a random waiting time governed by
the probability density ψðtÞ. After release from the trap, we
assume that the particle motion quickly thermalizes and the
particle again follows the stationary Gaussian dynamics
(51) until the next trapping event.
We note that the independence of xðnÞ and nðtÞ in a

physical sense implies that the stalling dynamics is neither
affected by the external binding potential nor intertwined
with heat bath relaxation mechanisms. The theory pre-
sented here may thus be considered as an effective case
study. The implications of the case when the waiting time
parameters τ or α respond to external forces are discussed
for two-state models in Refs. [83,84]. The interplay of
aging renewals and adapted nonstationary external forces
are highlighted in Refs. [85,86]. In particular, it was shown
that the regular fluctuation-dissipation and linear response
theorems break down for renewal aging processes [83–86].
It is also an open question to what extent these results carry
over to the physical behavior of the corresponding time-
averaged quantities. A partial answer to these questions
may come from applications of the aging renewal theory
discussed herein and formulations of the corresponding
dynamics by aging fractional Fokker-Planck–type equa-
tions [14], or aging extensions of the generalized master
equation [87]. In that sense, there are clearly some
fundamental physical questions still to be answered, which
certainly goes beyond the scope of the present work.
We also note that here we identify the origin of the time

coordinate as the time where the particle enters a trap [i.e.,
nðtÞ starts at t ¼ 0], and we assume that by the time ta we
start the observation, the FLE dynamics xðnÞ have already
relaxed to the stationary equilibrium state. Note that for
ta ¼ 0, this implies that we have means to either measure or
control the onset of trapping dynamics.
Basically, we have three motivations to study the random

motion xðtÞ. First, CTRWs provide one approach to model
diffusive motion in biological cells, where waiting times
represent multiscale binding or caging dynamics. The sheer
complexity of this kind of environment, however, brings
the necessity to further introduce aspects of anomalous
diffusion not contained in the renewal process nðtÞ
[43,44,51,88,89]. While the overdamped FLE dynamics
(51) adds both friction and external binding forces, it also
introduces the concept of long-time correlations within an
equilibrated environment.
From the point of view of our theoretical discussion of

aging CTRWs, our second motive to discuss this particular
model is the stationarity of increments of xðnÞ. It allows us
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to exercise the methods we introduced in the previous
section by calculating ensemble and time averages—mean-
squared displacements, in particular—of the aging proc-
ess xðtÞ.
Third, aside from its didactic purpose, the definition of

the process xðnÞ also extends the ordinary Brownian
motion by introduction of an intrinsic time scale
n� ¼ ðγ=λÞ1=ð2−2HÞ, characterizing the competition between
binding and friction forces. According to Eq. (51), sta-
tionary Langevin dynamics exhibit a turnover,

h½xðkþ nÞ − xðkÞ�2i

∼
2kBT
λ

� ½Γð3 − 2HÞ�−1ðn=n�Þ2−2H n ≪ n�

1 n ≫ n�;
(52)

from subdiffusion on short time scales to the stationary
Boltzmann limit 2kBT =λ on long scales. Now, for the aging
process xðtÞ, we know that the age of a measurement ta
itself can be conceived as a time scale separating the time
dependence into early- and late-age behavior. It would be
interesting to know how complex the process xðtÞ behaves
with respect to both time scales. Are all conceivable time
regimes clearly distinct? Are time and ensemble averages
equally sensitive to transitions from one regime to
the other?
A partial answer is given by Eqs. (43–45), which focus

on the calculation of ensemble averages. We discuss the
mean-squared displacement, Fðx1; x2Þ ¼ ðx1 − x2Þ2 and
fðnÞ, as defined through Eq. (51). Inserting the latter into
Eq. (44), we find an approximation for low ages, ta ≪ t:

hx2aðta; tÞi ¼ h½xðta þ tÞ − xðtaÞ�2i ¼ h½xðtÞ − xð0Þ�2i þO½ðta=tÞα�

∼
2kBT
λ

L−1
s→t=τ

�
sα−1Ln→sα

��
1 − E2−2H

	
− λ

γ
jnj2−2H


���

¼ 2kBT
λ

L−1
s→t=τ

�
1

s
− sð2−2HÞα−1

sð2−2HÞα − λ=γÞ

�

¼ 2kBT
λ

�
1 − Eð2−2HÞα;2−α

	
− λ

γα
tð2−2HÞα


�
: (53)

In order to obtain reasonable physical units, we reintroduce
the parameter τ from Eq. (1), bearing the dimension of
seconds s. Moreover, the new constant γα ¼ γτð2−2HÞα has
physical units kg s−ð2−2HÞα−2.
For increasingly aged ensemble measurements, aging

corrections of the order ðta=tÞα come into play. The detailed
time behavior of the ensemble mean-squared displacement
is found by combining Eqs. (51), (43), and (22). Here, we
have fð0Þ ¼ 0, and thus we can write

hx2aðta;tÞi

¼2kBT
λ

hðta;tÞ�t
�
1−Eð2−2HÞα;2−α

	
− λ

γα
tð2−2HÞα


�
: (54)

The full time dependence of the ensemble average comes as
a convolution of the forward recurrence time PDF (13) with
a generalized Mittag-Leffler function. We provide graphi-
cal examples below.
The behavior at high ages, ta ≫ t, can be calculated

analytically by use of Eqs. (51) and (44):

hx2aðta; tÞi ∼
tα−1a

ΓðαÞ gðtÞ;

where, in this case, C ¼ fð0Þ ¼ 0 and

gðtÞ¼2kBT
λ

L−1
s→t=τ

×

�
s2α−2Ln→sα

�
1−E2−2H

	
−λ

γ
jnj2−2H


��

¼2kBT
λ

t1−α
�

1

Γð2−αÞ−Eð2−2HÞα;2−α
	
− λ

γα
tð2−2HÞα


�
:

The time dependence of the mean-squared displacement,
Eq. (54), is relatively complicated. In both the limits of
slightly and highly aged measurements, we observe a
Mittag-Leffler behavior, but with different parameters.
We can extract from Eqs. (53) and (55) four time regimes
where the diffusive behavior with respect to time t is
described in terms of single power laws; regimes are
separated by a time scale ta induced by aging and an
intrinsic relaxation time scale τ�α ¼ ðγα=λÞ1=½ð2−2HÞα�:

hx2aðta; tÞi ∼
2kBT
λ

8>><
>>:

A�
αtα−1a t1−ð2H−1Þα t ≪ ta; τ�α

B�
αtð2−2HÞα ta ≪ t ≪ τ�α

C�
αtα−1a t1−α τ�α ≪ t ≪ ta

1 ta; τ�α ≪ t;

(55)

with coefficients
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A�
α ¼ ½τ�αð2−2HÞαΓðαÞΓð2 − ð2H − 1ÞαÞ�−1;

B�
α ¼ ½τ�αð2−2HÞαΓð1 − ð2 − 2HÞαÞ�−1;

C�
α ¼ ½ΓðαÞΓð2 − αÞ�−1:

Figure 6 gives several examples for the detailed turnover
behavior of the mean-squared displacement for various
values of α and H. At infinite times t → ∞, the ensemble
mean-squared displacement converges to the Boltzmann
limit. At finite times, we generally observe subdiffusive
behavior. The dynamics are slowest when t is short as
compared to both intrinsic relaxation and aging time scales.
Notice that the behavior at times t ≫ τ�α is independent of

the parameter H, defining the memory of friction and noise
forces. This regime is fully dominated by the aging
transition.
Again, we stress that the full double turnover behavior of

the ensemble average might not be visible to the observer of
a real physical system due to limitations of the experimental
setup. In addition, precise knowledge of the aging time ta,
which preceded the actual ensemble measurement, might
not be available. Maybe ta is even random, varying from
one trajectory to the next. In any such case, the observer
cannot know which of the power-law regimes of Eq. (55) is
being probing by means of mean-squared displacement
measurements.
The analog time-average measurement is much less

complex and thus easier to interpret. According to
Eq. (47), we have for T ≫ Δ,

�
δ2ðΔ;ta;TÞ

�

∼
Λαðta=TÞ
Γð1þαÞ

gðΔÞ
T1−α

¼ Λαðta=TÞ
Γð1þαÞT1−α

2kBT
λ

×Δ1−α
�

1

Γð2−αÞ−Eð2−2HÞα;2−α
	
− λ

γα
Δð2−2HÞα


�
: (56)

The dependence on measurement time parameters ta and T
factorizes from the lag-time dependence. The latter is
captured by the function g. Recall that for weakly non-
ergodic CTRW dynamics, the amplitude of a single-
trajectory time average δ2 is random by nature, while its
scaling with lag time Δ is not. Thus, the Δ scaling of the
time-averaged mean-squared displacement is age indepen-
dent. For combined CTRW-FLE dynamics, it is universally
given by g in terms of a Mittag-Leffler–type single turn-
over, with (lag) time regimes being separated by the
intrinsic time scale τ�α ¼ ðγα=λÞ1=½ð2−2HÞα�. In particular, a
single, long trajectory measurement is, in principle, suffi-
cient to read off the scaling exponents α andH and the time
scale τ�α.
Aging affects the amplitude of the time average only;

as ta increases, we expect smaller values of δ2. For
exemplary plots, see Fig. 7. Note that the late lag-time
behavior is generally Δ1−α, independently ofH, as reported
previously [23,30,31] for confined, memoryless CTRWs
(i.e., for H ¼ 1=2). Moreover, in the limit α → 1, aging
becomes negligible, Λ1 ≡ 1, and we recover the ergodic

FLE result
D
δ2ðΔÞ

E
¼ h½xðn ¼ Δ=τÞ − xð0Þ�2i, with xðnÞ

as in Eq. (51).

FIG. 6 (color online). Time evolution of the ensemble-averaged
mean-squared displacement for combined CTRW and over-
damped, confined FLE dynamics. Plots are numerical evaluations
of the convolution integral (54). We study several parameter
configurations for H and α. The behavior is characterized by a
double turnover between several power-law regimes as labeled
above the graphs; see also Eq. (55). Respective turnover time
scales τ�α and ta are indicated as vertical lines. A horizontal line
gives the infinite time stationary limit hx2ai → 2kbT =λ. Top: The
ensemble measurement starts at a time where internal FLE
dynamics have not yet relaxed to equilibrium; i.e., ta ≪ τ�α.
Bottom: Opposite case, ta ≫ τ�α.
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IV. CONCLUSIONS

We investigate a renewal process in which the average
waiting time between consecutive renewals is infinite. For
such a process, the randomness of events is relevant on
even the longest of time scales. This process has several
nontrivial properties, one of which is aging: the statistics of
renewals counted within a finite observation time window
strongly depends on the specific instant at which we start to
count. The most remarkable aging effect is a growing,
discrete probability to not count a single event during
observation. Concurrently, the continuous distribution of
the nonzero number of renewals is also transformed. We
discussed analytical expressions for this distribution with
respect to series expansions, tail behavior, and monoto-
nicity; see Eqs. (15–20) and Figs. 3 and 4. We deduce exact
expressions for related ensemble averages, Eqs. (22) and
(23), such as arbitrary moments of the number of renewals
in terms of incomplete beta functions, Eq. (25). We found
that we count fewer renewals at increasingly late ages.
However, this is mainly due to the mentioned high

probability of counting zero renewals. Restricting the
counting statistics to eventful measurements, see Eq. (31),
yields a finite distribution even at infinite age, characterized
by the same time scaling as the nonaged process.
Motivated by experimental evidence for stochastic

motion with long-tailed trapping time distributions of the
type (1) from single-particle tracking experiments in the
cytoplasm of living cells and other complex fluids, we
apply this aging renewal theory to CTRW models: renewal
events are identified with steps of the random walk. The
aging effects translate from the renewal to the random walk
process. Thus, the increasing probability for the complete
absence of dynamic activity is conceived as a population
splitting effect. In an ensemble of identical particles, a
certain fraction remains fully immobile during a finite time
observation. The total size of the mobile population
decreases with age, and their detailed statistics also change.
We discuss the implications for ensemble- and time-

averaged observables in CTRW theory. Aging affects the
distributions of time averages, and population splitting has
to be considered, in particular. Remarkably, we find that
ensemble averages behave very differently with respect to
aging effects than related time averages. The age of a
measurement modifies the complete time dependence of an
ensemble average, mimicking an internal relaxation mecha-
nism. We provide an analytical description in terms of
Eqs. (43–45). In contrast, aging enters the associate time
average only as a distributional modification, while its
scaling with respect to (lag) time remains indifferent. We
calculate the respective scaling function g [see Eqs. (45)
and (47)]. In addition, we derive the precise aging mod-
ifications for the ensemble averaged time average. The
latter, in turn, do not depend on details of the definition of
the process or the observable. Instead, they are captured by
universal constants, and the age enters, in particular,
through the aging depression Λα, defined in Eq. (40).
Despite this fundamental conceptual difference between
time and ensemble averages, we find that their time scalings
are identical in highly aged measurements. This is a
surprising result since CTRWs are notorious for weak
ergodicity breaking, i.e., the general inequivalence of the
two types of averages.
Following recent observations of the combined features of

weakly nonergodic and ergodic anomalous diffusion based
on experimental and simulations data, we give a more
specific meaning to these general considerations by discus-
sing combined FLE-CTRW dynamics. The latter extend
ordinary CTRW models by introduction of binding and
friction forces and a correlated noise. We contrast turnover
behaviors of aging and internal relaxation and provide a
detailed discussion of the associated limiting regimes.
CTRW is a very natural application of aging renewal

theory, yet it is far from unique. All aging effects, such as
population splitting and altered ergodic behavior, have their
analog phenomenon in any physical system where the

FIG. 7 (color online). Expectation value of the time-averaged
squared displacement δ2 as a function of lag time Δ. Plots
graphically represent Eq. (56), for the same system parameters α
and H as in Fig. 6. In all cases the duration of the measurement is
T ¼ 106. In contrast to the analog ensemble average, the behavior
is given by a single turnover at the internal relaxation time scale
τ�α, no matter at which time ta the recording of the trajectory is
initiated. Results obtained at late age (ta=T ¼ 103, dashed or
dotted lines) differ from those at early age (ta=T ¼ 10−3,
continuous lines of same color) merely by a prefactor (displayed
as a constant shift in the double logarithmic plot).
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mean sojourn time in microstates is infinite. Thus, we
expect a certain fraction of blinking quantum dots or cool
atoms to be constantly stuck in one state during a delayed
observation period. At the same time, the statistics of the
switching population are aging. Power spectral densities
obtained from signals from such systems should display
related aging properties, as discussed briefly in Ref. [90].
Aside from the stochastic process studies, weakly chaotic
systems are also shown to exhibit analogous aging behav-
iors [91]. When it comes to diffusion dynamics, a study of
alternative CTRW-like models might turn out to be worth-
while. Examples are the noisy CTRW [80], aging renewals
on a velocity level [81,82], spatiotemporally coupled
Lévy walks [40,92–95], and correlated CTRW [96–98].
Moreover, further studies of the aging renewal process,
e.g., with respect to higher-dimensional probability distri-
butions, will reveal additional insight into aging mecha-
nisms of such physical systems.
In the future, it will be interesting to consider the effect of

aging on other classical fields of application of the renewal
theory, such as operations research [99], social processes
[100], the theory of risk [101], or financial mathematics and
general queuing theory [102]. Moreover, physical ques-
tions, such as the the effect of aging and time averaging on
biased random walks as well as the formulation of a time-
averaged aging Einstein relation, will need to be addressed.
Finally, the parameter range 1 < α < 2 for the exponent of
the waiting time distribution should be considered. The
combination of a finite characteristic waiting time with a
diverging second moment should lead to further interesting
observations.
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APPENDIX: SPECIAL FUNCTIONS

The asymptotics of the PDF pa of the aging renewal
process na, Eqs. (17) and (20), and the rescaled time
averaged mean-squared displacement distribution in
Eq. (38) for highly aged processes contain the Fox H-
function, a very convenient special function [49]. For the
specific cases considered here, the series expansion around
z ¼ 0 is

H10
11

�
z
��� ðβ; αÞð0; 1Þ

�
¼

X∞
k¼0

ð−zÞk
k!Γðβ − αkÞ : (A1)

The behavior for large values of z is a stretched exponential,

H10
11

h
z
��� ðβ; αÞð0; 1Þ

i
∼ Czð1−2βÞ=ð2−2αÞ expð−Dz1=ð1−αÞÞ; (A2)

with the abbreviations

C ¼ ½2πð1 − αÞ�−1=2αð1−2βÞ=ð2−2αÞ;
D ¼ ð1 − αÞαα=ð1−αÞ:

(A3)

Logarithmic tail analysis thus yields

log
n
H10

11

h
z
��� ðβ; αÞð0; 1Þ

io
≃−z1=ð1−αÞ; (A4)

independently of β. The expressions for pa as nonaged,
slightly aged, and strongly aged renewal PDFs are obtained
by substituting β with 1 − α, 1 − 2α, and 2 − 2α, respec-
tively. Note that for α ¼ 1=2 the relevant, H-functions
simply become

H10
11

"
z

����� ð1=2; 1=2Þð0; 1Þ

#
¼ 1ffiffiffi

π
p expð−z2=4Þ;

H10
11

�
z

���� ð0; 1=2Þð0; 1Þ

�
¼ zffiffiffiffiffiffi

4π
p expð−z2=4Þ;

H10
11

�
z

���� ð1; 1=2Þð0; 1Þ

�
¼ erfcðz=2Þ (A5)

in terms of exponential and complementary error functions.
The probability mα in Eq. (11) and the qth order

moments of renewals (25) are expressed in terms of an
incomplete beta function, defined through [103]

Bðz; a; bÞ ¼
Z

z

0

ua−1ð1 − uÞb−1du

∼
�
za=a z≳ 0

Bða; bÞ − zb=b z≲ 1;
(A6)

with the special value

Bð1; a; bÞ ¼ Bða; bÞ ¼ ΓðaÞΓðbÞ=Γðaþ bÞ: (A7)

Here, a, b > 0 and 0 ≤ z ≤ 1.
The Laplace transform of pa with respect to the number

of events, Eqs. (27) and (28), and the mean-squared
displacement for FLE motion, Eqs (51), (53), and 55,
are expressed in terms of generalized Mittag-Leffler func-
tions. The latter are characterized alternatively by series
expansions around z ¼ 0,

Eα;βðzÞ ¼
X∞
k¼0

zk

Γðαkþ βÞ ; (A8)

or asymptotic series for large arguments,

Eα;βðzÞ ∼ −X∞
k¼1

z−k
Γðβ − αkÞ ; (A9)
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or by their Laplace pair,

Eα;βð−ztαÞ ¼ t1−βL−1
s→t

�
sα−β
sα þ z

�
; (A10)

for any α; β > 0. The ordinary Mittag-Leffler functions are
the special cases EαðzÞ≡ Eα;1ðzÞ.
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