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Packings of hard polyhedra have been studied for centuries due to their mathematical aesthetic and more
recently for their applications in fields such as nanoscience, granular and colloidal matter, and biology. In
all these fields, particle shape is important for structure and properties, especially upon crowding. Here, we
explore packing as a function of shape. By combining simulations and analytic calculations, we study three
two-parameter families of hard polyhedra and report an extensive and systematic analysis of the densest
known packings of more than 55 000 convex shapes. The three families have the symmetries of triangle
groups (icosahedral, octahedral, tetrahedral) and interpolate between various symmetric solids (Platonic,
Archimedean, Catalan). We find optimal (maximum) packing-density surfaces that reveal unexpected
richness and complexity, containing as many as 132 different structures within a single family. Our results
demonstrate the importance of thinking about shape not as a static property of an object, in the context of
packings, but rather as but one point in a higher-dimensional shape space whose neighbors in that space
may have identical or markedly different packings. Finally, we present and interpret our packing results in a
consistent and generally applicable way by proposing a method to distinguish regions of packings and
classify types of transitions between them.
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I. INTRODUCTION

The optimization problem of how to pack objects in
space as densely as possible has a long and colorful history
[1–3]. Packing problems are both easy to grasp and
notoriously hard to solve mathematically, qualities that
have made them interesting recreational math puzzles [4].
Recent work on nanoparticle and colloidal self-assembly
[5–7], micrometer molecule analogs [8], reconfigurability
[9–17], and jammed granular matter [18,19], as well as
biological cell aggregation [20,21] and crowding [22,23],
has motivated further the study of packing. Packing in
containers has a broad range of applications in operations
research, such as optimal storage, packaging, and trans-
portation [24,25].
Despite significant progress in the study of packing,

knowledge remains patchy and focuses on a few selected
shapes with high symmetry. The densest packing of the
sphere, known as the Kepler conjecture and formulated

over 400 years ago [26], was proven by Hales in 2005
[1,27,28]. Besides the sphere and objects that tile space
(i.e., fill space completely without gaps or overlaps), no
mathematical proofs have been found and results are
obtained numerically, which means that other, denser
packings may exist (e.g., aperiodic, large primitive unit
cells). Throughout this paper, all of the densest packings
reported or cited refer to the densest known packings.
Motivated by the great diversity of nanoparticle shapes

that can now be synthesized [7,29,30], many groups have
studied dense packings of highly symmetric polyhedra
(Platonic solids, Archimedean solids, and others) [31–38].
Yet, finding the densest (optimal) packing is challenging
even for seemingly simple shapes such as the tetrahedron
[32–35,39,40]. Recent experiments have gone even further
by synthesizing nanoparticles—specifically, nanocubes
(superballs) [13], whose shape can be tuned from a cube
to an octahedron via a sphere—generating homologous
families of shapes whose packings may vary with shape.
To date, most theoretical and/or computational studies have
reported the densest known packings for shape deforma-
tions of one-parameter families (i.e., one “axis” in “shape
space”). Examples include ellipsoids [41], superballs
[13,42], puffy tetrahedra [43], concave n-pods [36] and
bowls [44], convex shapes characterized by aspect
ratios [45], as well as truncated polyhedra, such as the
tetrahedron-octahedron family [37], the octahedron-cube
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family [46], and tetrahedral dimers [38]. Many of these
recent studies report a diversity of densest packings as a
functionofshape, resulting ina topographicallycomplex line
through what is actually a high-dimensional shape space.
The behavior of higher-dimensional maximum-density sur-
faces in shape space obtained by varying two or more shape
parameters simultaneously, as we do in this paper, affords a
more in-depth look at the role of shape in packing. In
particular, such a study allows for the identification and
definition of topographical features (regions, types of boun-
daries). These definitions characterize the density surfaces
and facilitate the comparison among different packing
studies.
In this paper, we investigate the packing problem for

three two-parameter families of symmetric convex poly-
hedra. Our families interpolate between edge-transitive
polyhedra via continuous vertex and/or edge truncations.
The interpolation goes through various solids (Platonic,
Archimedean, Catalan), thereby including some of the
above-referenced one-parameter studies as linear paths
(subfamilies) on our two-parameter surfaces. The maxi-
mum packing density forms surfaces in shape space that
reveal great diversity in richness and complexity. Our
results demonstrate that some not previously studied paths
through shape space give a plethora of consecutive distinct
packing structures through a series of transitions (as the
shape deforms), whereas other paths give the same or
similar packings with no or few transitions. Given the
richness of the surfaces of the densest packings, we aim to
standardize the way packing results are presented and
interpreted in the community by doing the following.
Based on the theories of Minkowski [47,48] and the
Kuperbergs [49], we define regions of topologically equiv-
alent packings from their intersection equations (contacts
with nearest neighbors) as opposed to their Bravais lattice
type or symmetry group. We thus define and classify three
types of boundaries between adjacent regions (valley, ridge,
tangent). The classification is general for continuous
families of shapes. We analyze previous works and argue
that packing problems can be treated consistently using our
framework.
The paper is organized as follows: Section II introduces

some of the theoretical concepts andmathematical tools that
have been formulated over the years for packing problems.
We construct three two-parameter families of symmetric
polyhedra in Sec. III. Section IV describes our analytical,
numerical, and computational methods.We show results for
the surfaces ofmaximumpacking density in Sec.Vand close
with a comparison with other studies in Sec. VI, and a
summary of our main points and conclusion appear in
Sec. VII.

II. THEORETICAL BACKGROUND

The packing problem is an optimization problem that
searches for the densest possible packing arrangement of

objects Ξ in a container or in infinite Euclidean space. It is,
in general, an intractable problem that does not allow a
rigorous analytic treatment or numerical search. When
packing in containers, the problem depends on a finite
number of object positions and orientations and can often
be solved via a brute-force search [50]. Packing in infinite
space requires the optimization of an infinite number of
variables. Here, we focus on the packing of identical convex
objects (convex particles) in infinite Euclidean space.
Because all known densest packings of convex objects are
periodic, we restrict our search to those. The packing density
of a periodicpacking isϕ ¼ nU=V,whereU is thevolumeof
the object,V is the volume of the unit cell of the lattice, and n
is the number of objects in the unit cell.
In this section, we give a theoretical background on

mathematical concepts, tools, and theories that have been
developed to solve packing problems and that we use in our
approach in this paper. Specifically, we introduce (i) def-
initions for the sum and difference bodies (from set theory),
where polyhedra are defined as sets of points comprising
the shape, (ii) Minkowski’s theory on packings [47,48] that
have one particle in the primitive unit cell, and (iii) the
Kuperbergs’ extension of Minkowski’s theory to include
packings that have two antiparallel particles in the primitive
unit cell [49].

A. Sum and difference bodies

Given two particles Ξ and Z, the sum body and the
difference body are the sets of sums and differences of all
points in the particles:

Ξ þ Z ¼ fξþ ζ∶ ξ ∈ Ξ; ζ ∈ Zg;
Ξ − Z ¼ fξ − ζ∶ ξ ∈ Ξ; ζ ∈ Zg.

See Fig. 1 for an example of the sum and difference bodies
for a noncentrally symmetric polyhedron.
For any particle Ξ, we define positive orientation as

þΞ ¼ Ξ and negative orientation −Ξ by inversion at the
origin. Two particles Ξ and Z are parallel, if there exists a
vector ς such that Z ¼ ςþ Ξ. They are antiparallel, if there
exists a vector ς such that Z ¼ ς − Ξ. Two particles Ξ and
Z are in contact, if their intersection is equal to the
intersection of their boundaries Ξ∩Z ¼ ∂Ξ∩∂Z. From
basic set theory, we know the following.
(i) If a convex particle Ξ (centered at 0) and a parallel

neighbor ςþ Ξ (centered at ς) touch, then ς lives on
the surface of the difference body Ξ − Ξ (see the
Appendix, Fig. 11, top left and right).

(ii) If a convex particle Ξ (centered at 0) and an anti-
parallel neighbor ς − Ξ (centered at ς) touch, then ς
lives on the surface of the sum body Ξ þ Ξ (see the
Appendix, Fig. 11, bottom left and right).

(iii) The sum body of particle Ξ is always convex, even
if Ξ is not.
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(iv) For a convex particle Ξ, the sum body has the same
shape but twice the size: Ξ þ Ξ ¼ 2Ξ (see Fig. 1, left).

(v) The difference body of particle Ξ is always centrally
symmetric, even if Ξ is not (see Fig. 1, middle).

(vi) For a centrally symmetric particle Ξ, the difference
body equals the sum body.

Examples of parallel and antiparallel neighbors of a
noncentrally symmetric polyhedron, whose centers are
on the difference and sum bodies, are shown in the
Appendix, Fig. 11.

B. Minkowski lattices

A lattice packing is a packing with one particle in the
primitive unit cell (n ¼ 1). It has been observed that the
densest known packing for many convex particles with
central symmetry is a lattice packing [33,36–38], but this is
not generally true [41]. The densest packings of non-
centrally symmetric shapes frequently require two or more
particles in the primitive unit cell.
The theory of lattice packings was originally developed

by Minkowski [47,48], who described packings consider-
ing the contacts of a particle with its neighbors. Chen [51]
used this method to study the densest packings of various
shapes. In a lattice packing, all particles are parallel and
have identical neighborhoods related by translations, which
are linear combinations with integer coefficients of the
lattice vectors fχ;ψ ;ωg. Minkowski proved the following.
(1) The densest lattice packing (Minkowski lattice) of a

convex particle Ξ is always identical to the densest
lattice packing of its difference body Ξ − Ξ.
This theorem is important because it is easier to
(i) mathematically manipulate centrally symmetric
shapes and (ii) write down intersection equations in
terms of the difference body [see Sec. IV B and the
Supplemental Material [52] (p. 6–42)].

(2) For all centrally symmetric convex shapes (in three
dimensions), a Minkowski lattice can always be
chosen such that each particle Ξ is in contact with
either 12 or 14 neighbors and the lattice satisfies one

of three possible types with either six or seven pairs
of neighbor contacts:

G6− ¼�fχ;ψ ;ω;ψ −ω;ω− χ; χ − ψg;
G6þ ¼ �fχ;ψ ;ω;ψ þω;ωþ χ;χ þψg;
G7þ ¼ �fχ;ψ ;ω;ψ þω;ωþ χ;χ þψ ; χþ ψ þωg.

Examples of the Minkowski lattice types G6−, G7þ, and
G6þ for a noncentrally symmetric polyhedron are shown
in Fig. 2.
We make two comments regarding the relation of the

Minkowski lattices (and all packings reported in this paper)
to Bravais lattices employed in crystallography. First, in
connection to the unit cell, we choose vectors that form a
basis for the lattice with a minimum positive determinant
(lattice volume), and thus we always use the primitive
unit cell (smallest repeated unit). In crystallography, it is
common to define basis vectors so that they are close to a
cubic lattice (angles between π

3
and π

2
) but do not necessarily

correspond to the primitive unit cell; see Fig. S1
(Supplemental Material [52]). Second, in connection to
the lattice, the Minkowski lattice type G6−, G6þ, or G7þ
refers to the number and positions of the reference-particle
contacts with its neighbors. The Bravais lattice type is not
equivalent because it refers to particle centers. We can draw
a connection if we consider the space-filling packing of
Voronoi polyhedra for the face-centered-cubic (fcc) and the
body-centered-cubic (bcc) packings, which are the rhombic
dodecahedron and the truncated octahedron, respectively.
We can then think of the fcc packing as an example of G6−
(with 12 contacts) and the bcc packing as an example of
G7þ (with 14 contacts).
We note that Betke and Henk [31] developed another

method to calculate the densest lattice packings that makes
use of Minkowski’s result (see point 1 in Sec. II B). Their
algorithm systematically checks feasible combinations of
vectors on the faces of the difference body of the reference

FIG. 1 The sum body (left) and difference body (middle) for a noncentrally symmetric polyhedron. A Kuperberg pair for the same
polyhedron (right).
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shape, where the neighbors’ centers live, and is thus
deterministic, not probabilistic.

C. Kuperberg pairs

A double-lattice packing of a convex particle Ξ has two
antiparallel particles in the primitive unit cell (n ¼ 2) þΞ
and δ − Ξ that form a Kuperberg pair [49]; see Fig. 1
(right). The Kuperbergs extended Minkowski’s theory to
double-lattice packings. They showed that the pair often
packs densely for particles without central symmetry and is
a candidate for the solution of the general packing problem
in situations when lattice packings are not a good solution.
Chen et al. [34,51] and Haji-Akbari et al. [38] used
Kuperberg pairs in their studies of the densest packings.
Exceptions where the densest packings are realized in

neither the Minkowski lattice nor a Kuperberg pair are
known. For example, the densest packing of ellipsoids
has n ¼ 2 but is not a double-lattice packing because the
two ellipsoids in the primitive unit cell are not antiparallel
[41]. The densest packing of tetrahedra requires n ¼ 4
[34,35,37,38]. In two dimensions, space-filling packings
(tilings) of pentagons are known with n ¼ 2, 3, 4, 6, 8 [53].

III. CONSTRUCTION OF TWO-PARAMETER
FAMILIES OF POLYHEDRA

In order to define a packing problem, we need to specify
the container and the objects. Here, we focus on packing in
infinite Euclidean space, so there is no container. The other
parameter we need to specify is the object or particle.
Because the maximum packing density is a function of the
geometric shape of the particles, it is useful to have an
analytical and continuous way to describe shape, i.e., an
N-parameter family of shapes. An N-parameter family of
three-dimensional shapes is a function F∶RN → R3. The
parameters X ¼ hX1;…; XNi ∈ RN then represent specific
operations on the shape Ξ ¼ FðXÞ. The advantages of such

a construction are that (i) it gives us a continuous function
of shape, so we can then use as fine a grid as we wish to
study packing properties, and (ii) the maximum-density
surface that we calculate is also a continuous function of
shape and thus easier to manipulate mathematically.

A. Spheric triangle groups

Weintroducefamiliesofpolyhedra that interpolatebetween
various symmetric solids (Platonic, Archimedean, Catalan)
via truncation. The amount of truncation is varied in each
family by shifting the truncation planes radially in a manner
respecting a centrosymmetric point-symmetry group. Such
symmetrygroups are knownas (finite) spheric trianglegroups
Δp;q;r. A spheric triangle group is generated by three reflec-
tionsacross thesidesofaspheric trianglewithanglesfπp ; πq ; πrg.
The finite irreducible spheric triangle groups are Δ3;2;3

(tetrahedral, Schönflies notationTd),Δ4;2;3 (cubic/octahedral,
Oh), and Δ5;2;3 (dodecahedral/icosahedral, Ih) [54].

B. Truncation planes

Three two-parameter families of polyhedra are con-
structed by truncating the vertices and edges of the
dodecahedron or icosahedron (523 family), the cube or
octahedron (423 family), and the tetrahedron (323 family).
The results are three types of equivalent face-normal
vectors fα; β; γg that are axes of fp; q; rg-fold symmetry
(rotation by angles f2πp ; 2πq ; 2πr g). The triangle group maps
any axis to any other axis of the same type. We define the
polyhedron Ξ as the intersection of half-spaces for all
normal vectors, where the parameters fa; b; cg specify the
amount of truncation or position of the bounding plane:

Ξ

8>><
>>:

ξ · α ≤ a

ξ · β ≤ b

ξ · γ ≤ c:

FIG. 2 Example of Minkowski lattice types G6−, G7þ, and G6þ (left to right) for a noncentrally symmetric polyhedron. Lines connect
the reference polyhedron at the origin to its neighbors’ centers. The lines indicate the color of the faces of the reference polyhedron that
touches the neighboring polyhedra. The lines are darker shades of {magenta, cyan, and yellow} to aid the eye. The packings correspond
to the 323 · 1-family region ρ4, the ridge ρ4∧ρ0, and the region ρ0 (left to right).
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FIG. 3 Left column: Representative polyhedra for the families 523, 423, 323þ, and 323−. The two pairs of diagonally opposite
corners correspond to dual polyhedra. The 323 family also has reflection symmetry about the diagonal a ¼ c. Middle column: The
direction of face-normal vectors fα; β; γg, the parameter range ha; ci, and the names of the corner polyhedra. Right column: A color map
of the surface-area fraction of face types. In all columns, the color {magenta, yellow, and cyan} indicates the type of face fα; β; γg.
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The normal vectors and parameter ranges for the three
families are given by

523

8>><
>>:

α ¼ h1; 0; si 1 ≤ a ≤ s
ffiffiffi
5

p

β ¼ h2; 0; 0i 2 ¼ b

γ ¼ hS; S; Si S2 ≤ c ≤ 3;

S ¼ 1
2
ð

ffiffiffi
5

p
þ 1Þ; s ¼ 1

2
ð

ffiffiffi
5

p − 1Þ;

423

8<
:

α ¼ h1; 0; 0i 1 ≤ a ≤ 2

β ¼ h1; 1; 0i 2 ¼ b
γ ¼ h1; 1; 1i 2 ≤ c ≤ 3;

323

( α ¼ −h1; 1; 1i 1 ≤ a ≤ 3

β ¼ �h1; 0; 0i 1 ¼ b
γ ¼ þh1; 1; 1i 1 ≤ c ≤ 3.

We fix b to be constant because the packing density
remains invariant if we rescale all parameters by the same
scalar. Figure 3 shows representative polyhedra on the
square ha; ci parameter domain. Note that at the boundaries
of the square domain, the polyhedra have degeneracies
(faces with zero area, edges with zero length, coincident
points). If we include the degeneracies, all family members
have the same number of faces, edges, and vertices. If we
exclude the degeneracies, the polyhedra at the corners of
the domain are edge transitive. Formulas for the polyhedron
volume U and face areas fα; β; γg are given in the
Supplemental Material [52] (p. 5).

C. Sum and difference bodies

Most polyhedra in the pqr family have a point-
symmetry group that is identical to the triangle group
Δp;q;r. The only exceptions occur in the 323 family, where
the polyhedra with central symmetry are also members of
the 423 family, so they have the higher Δ4;2;3 symmetry. In
fact, 323 is the only family with noncentrally symmetric
polyhedra. We derive two subfamilies: (i) the family of sum
bodies 323þ that is identical to 323 and (ii) the family of
difference bodies 323− that corresponds to 323 along the
diagonal a ¼ c and does not change in the orthogonal
direction aþ c ¼ 0.
The sum and difference bodies of polyhedra in the 523

and 423 families with central symmetry are identical:

Z ¼ 2Ξ

8<
:

ζ · α ≤ 2a

ζ · β ≤ 2b

ζ · γ ≤ 2c:

For the 323 family without central symmetry, the sum
(323þ) and difference (323−) bodies are different:

Z ¼ Ξ þ Ξ

8<
:

ζ · α ≤ aþ a

ζ · β ≤ bþ b

ζ · γ ≤ cþ c;

Z ¼ Ξ − Ξ

8<
:

ζ · α ≤ aþ c

ζ · β ≤ bþ b

ζ · γ ≤ cþ a:

IV. METHODS

For each family, we analyze the densest packings in two
steps. First, we generate dense packings using Monte Carlo
simulations by compressing a small number of n particles
with periodic boundary conditions. We then use these
results as a guide to construct an analytic surface of
maximum packing density (as in Ref. [38] for one shape
parameter).
For polyhedra with central symmetry (523, 423, and

323− families), we investigate only lattice packings because
the densest known packings of centrally symmetric shapes
are most likely found to be lattice packings [33,36–38].
For polyhedra without central symmetry (323þ family), we
study packings with n ¼ 1, 2, 3, 4 particles in the primitive
unit cell. In the following, we use the notation 323 · n for a
packing of a shape in the 323 family with n particles in the
primitive unit cell.

A. Monte Carlo simulated compression

Our computational techniques closely follow previous
works [37,38,55,56]. We study small systems of n identical
polyhedra in a box of volume V with periodic boundary
conditions. The particle positions and orientations evolve in
time according to a Monte Carlo trial-move update scheme,
where polyhedra are chosen randomly and then rotated and
translated by a random amount. In addition, the simulation
box is updated in the isobaric-isotension ensemble by
randomly perturbing the coordinates of the three box
vectors. Strong elongations of the box vectors are avoided
by using a lattice-reduction technique. Trial moves are
accepted if the generated configurations are free of overlaps
and rejected otherwise. Overlap checks are performed
using the Gilbert-Johnson-Keerthi (GJK) distance algo-
rithm [57]. In contrast to previous works, here, self-
overlaps are accounted for with periodic copies due to
the small dimensions of the simulation box. Compared
to other compression techniques in the literature
[33,36,58,59], our scheme consistently finds equivalent
or denser packings; see Figs. S2 and S3 in the
Supplemental Material [52] for a comparison.
For each of the three families, we choose polyhedra from

a fine 101 × 101-parameter grid in the ha; ci-parameter
domain. In some parts of the domain, where the packings
change rapidly with parameters ha; ci, we apply a finer grid
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to achieve a higher resolution. Although there is some
overlap between the shapes of the 423 and 323 families, the
total number of unique shapes simulated for this study is
more than 55 000. The simulation is initialized at low
density and then slowly compressed by gradually increas-
ing the pressure using an exponential protocol over 7 × 105

steps. Because our approach resembles the simulated
annealing technique replacing temperature with pressure,
we call it “simulated compression.” Each compression run
is repeated 10 times, and the densest packing is recorded for
each parameter choice. The result of the algorithm is a
numerical candidate for the densest packing function over
the two shape parameters.

B. Analytic optimization

We use the densest packings from simulated compres-
sion as a guide to analytically construct small primitive
unit-cell packings that are locally optimal under rotations
and translations of the particles.
For a lattice packing (n ¼ 1), we perform the following.
(1) We analyze the neighbor contacts in the densest

packings obtained with simulated compression.
(2) We write the (abstract) intersection equations in

terms of the lattice basis vectors fχ;ψ ;ωg and
difference-body faces (where the neighbors’ centers
live), which are functions of the shape parame-
ters ha; ci.

(3) We reduce the parameters fχ;ψ ;ω; a; cg to a min-
imal set of free parameters.

(4) If the (abstract) lattice volume V ¼ det½χ;ψ ;ω� has
free parameters, we find the values of the free
parameters that minimize V and therefore maximize
the packing density ϕ ¼ nU=V.

Ingeneral, for agiven lattice, therearemultipleways tochoose
a set of basis vectors that generates the lattice. For centrally
symmetric shapes, we choose basis vectors to satisfy one
of the three Minkowski types. This choice simplifies the
optimization procedure and maintains consistency.
For the double-lattice packings (n ¼ 2) in 323 · 2, we

repeat the same process as for the lattice packing with
the offset vector ς as an additional parameter and we use
the difference body for parallel neighbors and the sum
body for antiparallel neighbors. By coincidence, the
n ¼ 4 case (323 · 4 family) reduces to double-lattice pack-
ings. The only exception is an area near the tetrahedra
(ha; ci ¼ h1; 3i and h3; 1i) that is a double-lattice packing
of dimers only slightly rotated (face to face, almost edge
to edge). Note that we use a packing of two monomers,
whereas the Kuperbergs [49] use a packing of one dimer
(Kuperberg pair), and thus there are additional degrees of
freedom in our packing. The packing of the 323 · 2 family
(and most of the 323 · 4 family) is a combination of the
sum-body 323þ and difference-body 323− packings, in
that the neighbors in the densest packing are either parallel
or antiparallel.

Because the particles in Kuperberg pairs are related to
one another by simple inversion, all intersection equations
in the n ¼ 1, 2, 4 cases are linear and can be solved
analytically. However, for arbitrary shapes (e.g., truncated
triangular bipyramids [38]) and n ≥ 3, rotations between
neighboring particles can result in a system of quadratic
intersection equations. For example, in the 323 · 3 family
the nonlinear intersection equations must be solved
numerically.
The intersection equations of all analyzed families are

shown in the Supplemental Material [52] (pp. 6–42).
Numeric versus analytic maximum packing densities are
compared in the Appendix, Figs. 12–17.
In all cases, we verify that (i) the packing-density data

from simulated compression are always a lower bound to
the analytic results and (ii) adjacent regions match up
correctly.

C. Classification of packings

We classify the densest packings based on the types of
contacts between neighboring particles in the primitive
unit cell. There are six topological types of contact:
vertex-vertex, vertex-edge, vertex-face, edge-edge, edge-
face, and face-face. Each contact is mathematically
expressed in the form of an intersection equation. We
refer to packings with the same topological types of
contacts and intersection equations as topologically
equivalent. Note that the contacts map to each other
via isometry between lattice vectors and/or isomorphism
between basis vectors. The equivalence relation partitions
the domain of each N-parameter family of packings into
equivalence classes that we call packing regions and
denote by the symbol ρi. Within each region, the packing
density varies continuously and smoothly with shape
parameters X because the intersection equations and
therefore the lattice vectors are smooth (algebraic) func-
tions of the shape parameters X. At the boundaries
between adjacent regions, the packing density might be
nonsmooth (discontinuous derivative). The packing den-
sity ϕðXÞ is necessarily continuous everywhere on the
domain.
When crossing between adjacent regions, a minimal

set of intersection equations changes. This minimal set
depends on the symmetries of adjacent packings and the
number of particles in the primitive unit cell. We use the
discontinuities of the first derivative of ϕðXÞ to distinguish
three boundary types, as depicted in Fig. 4. We define the
following.
(1) A valley ½ϕi∨ϕj� is a “soft” boundary. Extending

beyond a valley is allowed but gives suboptimal
packings. A valley is a generic boundary; inter-
section equations of adjacent regions need not be
related, so the lattice vectors can change discon-
tinuously. We can write the optimal density for a
valley as
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ϕi∨j¼½ϕi∨ϕj�¼maxfϕi;ϕjg¼
�
ϕi ϕi≥ϕj

ϕj ϕi≤ϕj.
(1)

(2) A ridge ½ϕi∧ϕj� is a “hard” boundary. Extending
beyond a ridge introduces overlaps into the packing,
which is not allowed. The lattice volume and lattice
vectors vary continuously but not smoothly across a
ridge. On the ridge, the set of contacts is the union of
the sets of contacts on both sides. Thus, the set
of intersection equations is the union of the sets of
intersection equations on both sides. In other words
that there are more contacts on the ridge than on
either side. We can think of a ridge as a lower-
dimensional region in its own right. For a ridge
boundary,

ϕi∧j¼½ϕi∧ϕj�¼minfϕi;ϕjg¼
�
ϕi ϕi≤ϕj

ϕj ϕi≥ϕj.
(2)

(3) A tangent ½ϕi ∼ ϕj� ðϕi ≤ ϕjÞ or ½ϕi∽ϕj� ðϕi ≥ ϕjÞ
is a hybrid between a valley and a ridge. Extend-
ing from the lower-density side to the higher-
density side is allowed but gives suboptimal
packings. Extending from the higher-density side
to the lower-density side introduces overlaps. The
lattice volume and lattice vectors are continuous
and smooth across a tangent. The intersection
equations of the higher-density region are a subset
of the intersection equations of the lower-density
region, and in this case, more constraints result in
lower packing density. For a tangent boundary, we
take partial derivatives in any direction transverse
to the tangent boundary, from the ϕi to the ϕj side:

ϕi∼j ¼ ½ϕi ∼ ϕj� ¼
�
ϕi ∂ϕi ≥ ∂ϕj

ϕj ∂ϕi ≤ ∂ϕj;
(3)

ϕi∽j ¼ ½ϕi∽ϕj� ¼
�
ϕi ∂ϕi ≤ ∂ϕj
ϕj ∂ϕi ≥ ∂ϕj:

(4)

V. RESULTS

The results from simulated compression and analytic
optimization are presented in Figs. 5–10. In each figure, the
top 3 × 3 grid of images shows the surface of maximal
packing density ϕha; ci, 18

49
≤ ϕ ≤ 1, in 3D space ha; c;ϕi.

The normal vector of the surface of maximum packing
density maps to the color sphere: white along the north pole
(ϕ direction), bright colors along the equator. The central
cube has perspective from the þϕ direction. The peripheral
cubes are rotated by a zenith angle from the central cube
(π
3
from the þϕ direction).
The bottom row shows a top view on the ha; ci plane of

the packing regions (separated by solid lines). The colors
for each region interpolate between the three colors that
correspond to the face types in Fig. 3 {magenta, yellow,
and cyan}. On the bottom left, if applicable, the numbers
indicate the Minkowski lattice type. The colors indicate
which types of faces are in contact between parallel
neighbors only. On the bottom center, the numbers label
the regions in order of area size, 0 being the smallest. The
colors indicate the proportion of each type of face over
the shape’s total surface area, thus aiding visualization of
the dominant faces. Finally, if the polyhedra are not
centrally symmetric, there is a bottom right panel. The
colors indicate which types of faces are in contact between
antiparallel neighbors only.

A. 523 results

Figure 5 shows the surface of maximum packing density
for the 523 family. There are 11 regions fρig, all with
Minkowski lattice type G6−, which includes fcc. All boun-
daries are valleys, so the overall packing-density function is
simply the maximum of the functions for each region

FIG. 4 Boundaries between adjacent regions of topologically distinct packings are classified into three boundary types: valley (left),
ridge (middle), and tangent (right).
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ϕ ¼ maxfϕ6−
10 ;ϕ

6−
9 ;ϕ6−

8 ;ϕ6−
7 ;ϕ6−

6 ;ϕ6−
5 ;ϕ6−

4 ;

ϕ6−
3 ;ϕ6−

2 ;ϕ6−
1 ;ϕ6−

0 g;

wherewe enumerate the regions (subscripts) and indicate the
Minkowski lattice type (superscripts).
Consider the colors in the bottom left panel and the

numbers in the bottom center. Along the sequence of
regions fρ6; ρ4; ρ5; ρ8; ρ7; ρ2; ρ3g, contacts of yellow fβg
faces between neighbors (which are perpendicular to the
twofold axes) are gradually replaced by contacts of cyan
fγg faces (threefold axes). The same is true for the
sequence fρ6; ρ9; ρ10g, where contacts of yellow faces are
gradually replaced by contacts of magenta fαg faces
(fivefold axes). There is a close similarity between the
transitions in colors characterizing the face contact
(bottom left panel) and the colors characterizing the face
area (bottom center panel). This similarity in the tran-
sition in color demonstrates that the face type with the
largest area also has the maximum number of neighbor
contacts.

B. 423 results

Figure 6 shows the surface of maximum packing density
for the 423 family. We find 18 regions enumerated in the
bottom center panel. Figure 6 shows a complex surface,
where seven regions meet at the point ha; ci ¼ h6

5
; 12
5
i. All

boundaries are valleys except for three ridges ½ϕ6−
15∧ϕ6þ

11 �,
½ϕ6þ

13 ∧ϕ6−
7 �, and ½ϕ6−

12∧ϕ6þ
3 � and one tangent ½ϕ7þ

2 ∼ ϕ6þ
0 �.

We can combine regions so that they all intersect at valleys;
thus, the overall packing-density function is simply the
maximum of the packing-density functions for each region:

ϕ ¼ maxfϕ15∧11;ϕ13∧7;ϕ12∧3;ϕ2∼0;ϕ6−
17 ;ϕ

6−
16 ;ϕ

7þ
14 ;

ϕ7þ
10 ;ϕ

7þ
9 ;ϕ7þ

8 ;ϕ7þ
6 ;ϕ7þ

5 ;ϕ7þ
4 ;ϕ6−

1 g:

Unlike the 523 family, here the colors in the bottom left
panel (characterizing the face contact) do not always follow
the colors in the bottom center panel (characterizing the
face area). The two panels transition in color in the same
direction across valleys and in the opposite direction across
ridges. An example is the sequence fρ14; ρ11; ρ15g. While
the boundary between ρ14 and ρ11 is a valley and the color
changes from cyan toward purple in both panels, ρ15 has
more cyan than ρ11 in the bottom left panel. This change in
color means that parts of the magenta faces that were in
contact in ρ11 are no longer in contact in ρ15, despite the
magenta faces being larger in ρ15.
Furthermore, we observe that at a ridge, the Minkowski

lattice type always changes from G6− to G6þ. We can
rationalize this behavior in the following way. By defi-
nition, a ridge is the boundary where if we extend beyond
from either side, the packing has overlaps. The implication
is that as the shape is deformed, a new contact is introduced

exactly on the ridge. That new contact will become an
overlap if we extend beyond the ridge. There are only three
possible types of lattice packings (G6−,G6þ,G7þ), and two
of them (G6− and G6þ) have the same number of contacts.
Thus, the only way that regions can intersect via a ridge is if
the packings have type G6− on one side, type G6þ on the
other side, and typeG7þ at the boundary. An example of the
three Minkowski lattice types across a ridge is shown
in Fig. 2.

C. 323 family

Figure 7 shows the surface of maximum packing density
for the 323⋅1 family. There are eight regions of all three
Minkowski lattice types, symmetric about the diagonal
a ¼ c. All boundaries are valleys except for two ridges
½ϕ6−

6 ∧ϕ6þ
1 � and ½ϕ6−

4 ∧ϕ6þ
0 �. By combining regions

separated by ridges, we can write down the overall
packing-density function simply as the maximum of the
packing-density function for each region:

ϕ ¼ maxfϕ6∧1;ϕ4∧0;ϕ7þ
7 ;ϕ7þ

5 ;ϕ7þ
3 ;ϕ7þ

2 g:

As required, ridges separate regions of Minkowski lattice
types G6− and G6þ and have type G7þ at the boundary;
see Fig. 2.
Figure 8 shows the surface of maximum packing density

for the 323 · 3 family. We have not constructed the analytic
surface because there are variable rotations among the
three particles in the primitive unit cell that give quadratic
(nonlinear) intersection equations. The figure gives an
impression of the noise in the raw numerical data and thus
demonstrates the significance of the analytic optimization
for obtaining a clean surface of maximum packing density.
The comparison of the maximum densities for 323 · 1 and
323 · 3 shows that three particles in the primitive unit cell
pack denser than lattice packings.
Figure 9 shows the surface of maximum packing density

for the 323 · 2 family. The surface is remarkably complex
and has reflection symmetry about the diagonal a ¼ c.
Since all packings are double-lattice packings, we can
solve for the intersection equations analytically. There are
8 × 1þ 62 × 2 ¼ 132 regions, taking into account reflec-
tion symmetry. Eight regions straddle the diagonal, and 62
mirror pairs are reflected across the diagonal. All bounda-
ries are valleys except 13 ridges and 11 tangents. We find
multiple junctions where several ridges or several tangents
meet at a point.
Figure 10 shows the surface of maximum packing

density for the 323 · 4 family. There are 8 × 1þ 61 × 2 ¼
130 regions, eight that straddle the diagonal, and 61 mirror
pairs reflected across the diagonal. All boundaries are
valleys except 13 ridges and 11 tangents, which are the
same as for the 323 · 2 above.
On the symmetry axis a ¼ c, which is identical to the

subfamily of 323− polyhedra with central symmetry, all
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FIG. 5 523-family optimal density surface (3 × 3 grid of cubes), parallel contacts (bottom left), face areas, and region size (bottom
center).
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FIG. 6 423-family optimal density surface (3 × 3 grid of cubes), parallel contacts (bottom left), face areas, and region size (bottom
center).
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FIG. 7 323 · 1-family optimal density surface (3 × 3 grid of cubes), parallel contacts (bottom left), face areas, and region size (bottom
center).
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FIG. 8 323 · 3-family optimal density surface (3 × 3 grid of cubes) and face areas (bottom center).
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FIG. 9 323 · 2-family optimal density surface (3 × 3 grid of cubes), parallel contacts (bottom left), antiparallel contacts (bottom right),
face areas, and region size (bottom center).
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FIG. 10 323 · 4-family optimal density surface (3 × 3 grid of cubes), parallel contacts (bottom left), antiparallel contacts (bottom right),
face areas, and region size (bottom center).
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323 families have the same surface of maximum packing
density and the same packing, which is the Minkowski
lattice G7þ. Near the symmetry axis, in the regions
straddling it, all 323 families have the same density
function but possibly different packings. The densest
packings for 323 · 2 and 323 · 4 are identical except for a
small area near the tetrahedron corners ha; ci ¼ h3; 1i
and its mirror image h1; 3i, where the regions ρ60 and
ρ34 consist of a Kuperberg pair of dimers.

VI. Comparison with other packing studies

Packing studies of one-parameter families have observed
some of the maximum-density surface topography pre-
sented here [33,36–38,41–43,46]. In this section, we
apply our classification of regions of packings and boun-
daries to earlier works and compare their analyses of the
maximum-density graphs to our surfaces of maximum
density.
In Fig. 3 of Ref. [43] on puffy tetrahedra, Kallus and

Elser describe four regions and three transitions, two of
them as abrupt (betweenD1 and S1, and S1 andD0) and one
as continuous (between S0 and D1). From their data, we
would define five regions and four transitions (two ridges
and two valleys). Specifically, there is a ridge between S0
and D1, where we expect the lattice vectors to change
continuously but not smoothly. A second local maximum
within the S1 region is not identified as a transition but
according to our theory is a ridge, which means the two
sides must have different intersection equations.
The one-parameter family of truncated tetrahedra in

Ref. [37] [see their Fig. 2(a)] corresponds to the left edge
(and by symmetry also to the bottom edge) of the 323 · 4
family. The authors find eight regions and seven transitions,
with which we are in agreement: fρ60; ρ66; ρ68; ρ31; ρ56; ρ62;
ρ41; ρ70g. We note that their vector-length curves are
continuous across ridges, as expected. The ridges are
½ρ66∧ρ68� and ½ρ31∧ρ56�.
The one-parameter family of Gantapara et al. [46]

interpolating from the cube to the octahedron via the
cuboctahedron corresponds to the symmetry diagonal in
the 323 family. While they report 14 regions (see their
Fig. 1 and Supplemental Material [52]), we find that some
of these regions are identical and instead we identify only
eight: fρ7; ρ2; ρ5; ρ0; ρ4; ρ6; ρ1; ρ3g; see Fig. 7. Our region
ρ4 corresponds to their regions VI, VII, and VIII, and our
region ρ6 corresponds to their IX, X, XI, and XII. The
discontinuities in the lattice basis-vector lengths and angles
that appear due to ordering them by magnitude were
interpreted by the authors as the boundary X–XI. Other
discontinuities were interpreted as boundaries VI–VII,
VII–VIII, IX–X, and XI–XII, but we think they appear
due to the specific choice of basis vectors. In addition, our
region ρ2 corresponds to their regions II and III, but we find
no boundary in between.

VII. CONCLUSIONS

We studied three two-parameter families of symmetric
polyhedra, where the shape is continuously deformed via
vertex and edge truncations. The surface of maximum
packing density was determined as a function of shape
parameters ha; ci. We defined an equivalence relation of
packings based on the topological type of contacts and
intersection equations, which allowed a classification of
packings into regions, as well as a definition of three types
of boundaries between adjacent regions: valleys, ridges,
and tangents. We note that ridges are special boundaries;
the lattice deforms continuously across a ridge, but the set
of neighbors in contact changes. We have shown that for
centrally symmetric shapes, a ridge always separates a
region of Minkowski typeG6− from a region of Minkowski
type G6þ. On the ridge, the packing has Minkowski
type G7þ.
A similar study of maximum-density surfaces can be

performed for general shapes (not necessarily polyhedra). If
we define a continuous family of shapes, then the maxi-
mum-density surface will also be continuous. Thus, we
expect the same classification of boundaries between
packing regions (valleys, ridges, and tangents) for general
shapes, too. For example, the smoothness of the shape itself
(e.g., curvature versus sharp vertices or edges) does not
affect our boundary classification as long as the shape
parameter varies continuously.
The holy grail of packing studies is to predict structures

based solely on shape. It is tempting from the large data set
presented here to hope that a simple relation between shape
and packing might be discerned. However, our results
demonstrate that a complete appreciation of the way
polyhedra pack at high density must be achieved through
exploration of not only the specific shape of immediate
interest but also shapes near it in shape space, as achieved
by small deformations. Here, we investigated deformation
via truncations, but other shape-anisotropy dimensions may
be explored in the same manner [60–62]. This knowledge
should be especially helpful in the design and synthesis of
particles intended to pack into target structures and/or
densities, as we demonstrate below.
Our results suggest the following general principles

relating packing and shape that we hope will both serve
as useful guidelines to experiments and be tested by
theorists.
(i) A single shape descriptor is generally insufficient for

predicting the densest packing fractions or structures.
Instead, one needs to consider higher-dimensional
surfaces of optimal packing densities and/or structures
of nearby shapes (in shape space) to anticipate how
well or poorly a given shape might pack.

(ii) In experiments, particles at all scales (nano, colloidal,
and even 3D printed) have shape imperfections and
some degree of polydispersity. The densest packings
are more likely to be achieved experimentally and
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more tolerant to small differences if the packing lies in
a smooth region of the maximum-density surface. In
contrast, it may be very difficult to achieve and less
tolerant to imperfections if the packing lies in a
complex region of the surface (i.e., adjacent to many
different packing regions or on boundaries). For
example, for the truncated cube (Fig. 6, region 17),
we foresee that small imperfections in the shape will
make little difference in the packing structure. On the
other hand, for the edge-and-vertex truncated tetrahe-
dron (Fig. 10, region 35), small imperfections in the
particle shape may give completely different packing
structures than expected.

(iii) The topography of the maximum-density surface as a
function of shape is useful if we are interested in
obtaining a target density. If the slope of the region is
steep, small imperfections in shape will achieve very
different packing densities. Knowledge of the under-
lying surface can help to anticipate how sensitive the
packing density is to small shape imperfections and
even suggest alternative shapes that yield the desired
packing fraction.

(iv) Given the landscape topography in the neighborhood
of a specific shape, one can deduce a posteriori what
kind of imperfection the sample of shapes may have,
in the absence of other information. For example,
consider a shape that lies on a region of the landscape
where the packing density changes rapidly with edge
truncations but not much with vertex truncations,
as in region 10 of Fig. 5. The deformation from the
dodecahedron to the icosidodecahedron (going down
along the left edge) changes the packing density only
slightly. We can thus be certain that imperfections on
the shape’s vertices will make little difference to the
packing density. However, if we observe that the
packing density in an experiment is much lower than
expected for a given perfect shape, we may deduce
that our polyhedron has imperfections on its edges,
rather than its vertices. We expect such information to
be useful in the synthesis of nanoparticles for target
applications that exploit dense packings.

(v) For centrally symmetric shapes, we showed that if the
shape lies on a surface that is near a ridge, the contacts
on either side of the ridge are different, while the

lattices are the same. For example, in Fig. 6 going from
the octahedron to the cuboctahedron via vertex trun-
cations (moving to the left along the lower edge), there
is a ridge between regions 11 and 15; thus, although
the contacts are different, the lattice is the same.
Furthermore, this feature might allow the fabrication
of reconfigurable structures whose interparticle ori-
entations (contacts) can be toggled back and forth
while the crystal superlattice remains the same.

An important caveat in the general principles outlined
above is that they hold for the two shape parameters
explored here. Of course, there are many other shape
parameters that may similarly affect the densest packing
landscape. Thus, a surface that appears smooth for the two
parameters considered here may be rough when other
parameters are also considered. Moreover, here we have
not considered surfaces of suboptimal packings, which may
affect the practical achievability of a given densest packing.
These two points further emphasize the value in thinking
of shape not as a fixed and static property but rather as
part of a continuum of shape-anisotropy characteristics
(dimensions). Thus, if one is interested in dense packings,
the relevant question to ask is not “what is the densest
packing of a particular shape” but rather “what is the
maximum-packing-density surface in the neighborhood of
that shape?”
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APPENDIX

FIG. 11 Sum body 323þ (top center) and difference body 323− (bottom center). 323-family face-face contacts: yellow to yellow
between antiparallel neighbors (top left), magenta to magenta and cyan to cyan between antiparallel neighbors (top right), yellow to
yellow between parallel neighbors (bottom left), and magenta to cyan and cyan to magenta between parallel neighbors
(bottom right).
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FIG. 12 Contours of optimal packing density ϕ for the 523 family, numeric (left) versus analytic (right). The color gradient {blue,
magenta, red, yellow, green, cyan, and blue} represents the ϕ gradient fϕ − 3
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FIG. 13 Contours of optimal packing density ϕ for the 423 family, numeric (left) versus analytic (right). The color gradient {blue,
magenta, red, yellow, green, cyan, and blue} represents the ϕ gradient fϕ − 3
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FIG. 14 Contours of optimal packing density ϕ for the 323 · 1 family, numeric (left) versus analytic (right). The color gradient {blue,
magenta, red, yellow, green, cyan, and blue} represents the ϕ gradient fϕ − 3
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FIG. 15 Contours of optimal packing densityϕ for the 323 · 3 family, numeric (left) versus analytic along the symmetry diagonal (right). The
color gradient {blue, magenta, red, yellow, green, cyan, and blue} represents the ϕ gradient
fϕ − 3
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FIG. 17 Contours of optimal packing density ϕ for the 323 · 4 family, numeric (left) versus analytic (right). The color gradient {blue,
magenta, red, yellow, green, cyan, and blue} represents the ϕ gradient fϕ − 3
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FIG. 16 Contours of optimal packing density ϕ for the 323 · 2 family, numeric (left) versus analytic (right). The color gradient {blue,
magenta, red, yellow, green, cyan, and blue} represents the ϕ gradient fϕ − 3
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