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Quantum fluctuations become particularly relevant in highly frustrated quantum magnets and can lead to
new states of matter. We provide a simple and robust scenario for inducing magnetic vortex crystals in
frustrated Mott insulators. By considering a quantum paramagnet that has a gapped spectrum with six-fold
degenerate low-energy modes, we study the magnetic-field-induced condensation of these modes. We use a
dilute gas approximation to demonstrate that a plethora of multi-Q condensates are stabilized for different
combinations of exchange interactions. This rich quantum phase diagram includes magnetic vortex
crystals, which are further stabilized by symmetric exchange anisotropies. Because skyrmion and domain-
wall crystals have already been predicted and experimentally observed, this novel vortex phase completes
the picture of emergent crystals of topologically nontrivial spin configurations.
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I. INTRODUCTION

The emergence of topological spin textures in solids
triggered an enormous interest because of their relevance
for spin-electronic technology. Outstanding examples are
the crystals of magnetic skyrmions that were recently
discovered in noncentrosymmetric magnets with the B20
structure MX (M is a transition metal and X ¼ Si, Ge)
[1–3] and also in a Mott insulator Cu2OSeO3 [4–9]. A
magnetic skyrmion is a hedgehog-like spin texture that
wraps a sphere when mapped on the spin space. Crystals of
these topological textures emerge in the above materials
from competition between Dzyaloshinskii-Moriya and
exchange interactions [1]. Similar to Abrikosov vortex
lattices in type-II superconductors, skyrmion crystals can
be driven by injecting an electronic current in the metallic
compounds [10,11]. In contrast, Mott insulators allow for
energetically more efficient manipulations of the skyrmion
crystals because these spin textures induce a spatial
modulation of electric dipole moments that can be driven
by electric-field gradients [5,9].
After this sequence of discoveries, it is natural to ask if

crystals of topological spin configurations can emerge under
more general conditions. While skyrmion crystals [12],
soliton crystals [13,14], and Z2 vortex crystals [15] have
beenpredicted for classical spin systems,we are not aware of
any prediction of crystals of usual (i.e., Abelian) magnetic
vortices. In this paper, we demonstrate that magnetic vortex
crystals arise in a class of frustrated quantummagnets from a
multi-Q Bose-Einstein condensate (BEC) of low-energy

magnetic modes induced by the magnetic field. Because
these crystals emerge from frustration, the intervortex
distance is controlled by the ratio between competing
exchange constants and can be tuned with external pressure.
The phenomenon of Bose-Einstein condensation appears

in different realizations of bosonic gases. Atomic gases [16]
and superconductivity (condensation of Cooper pairs) are
two prominent examples in which bosons normally con-
dense into a zero-momentum single-particle state. Quantum
magnets provide an alternative realization of Bose gases
because spin operators of different ions commute with each
other [17]. For instance, a lattice ofS ¼ 1=2moments can be
exactly mapped into a gas of hardcore bosons on the same
lattice [18]. The notion of the Bose-Einstein condensation is
only approximated in real spin systems because
the total number of bosons (magnetization) is not strictly
conserved. Anisotropic contributions arising from dipolar
and spin-orbit interactions break the U(1) symmetry of
global spin rotations along an external magnetic field.
Nevertheless, it has been established that the description
of the Bose-Einstein condensation offers a very good
approximation when the anisotropy terms are weak [17].
The advantage of having weak anisotropy terms is that the
boson density can be tuned by applying a magnetic field,
which works as a chemical potential. Another advantage of
magnetic incarnations of Bose gases is that there are many
materials in which the bosons condense at a nonzero-
momentum single-particle state. This situation is quite
common when the system has a highly frustrated exchange
interaction because it can lead to a single-boson dispersion
ωk with minima at low-symmetry points of the Brillouin
zone. For p-fold symmetric lattices, for instance, such a
strong frustration leads to degenerate minima of ωk at
different Q vectors related by p-fold rotations along the
symmetry axis. Bosons can then condense in a single-Q
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BEC state or in a linear combination of single-particle
states with different Q vectors (multi-Q BEC). As we will
demonstrate here, this characteristic of frustrated quantum
magnets opens the exciting possibility of stabilizing mag-
netic-vortex crystals under rather general conditions.
Previous studies of multi-Q condensates in frustrated

quantum spin systems, such as triangular lattice antiferro-
magnets [19–21] and helimagnets [22], considered the
minimal case where the system has only two different
lowest-energy modes k ¼ �Q. In this situation, the two
possible condensates are a single-Q spiral state and a
double-Q coplanar state, neither of which is a vortex crystal.
Actually, vortex crystals arise from p-Q condensates with
p ≥ 3. We will derive various multi-Q BEC solutions
corresponding to vortex crystals by considering highly
frustrated quantum spin systems with six-fold degenerate
lowest-energy modes (Fig. 1). Moreover, we will see that
small anisotropy terms dominate interaction effects in the
low-density limit, namely, close enough to the quantum
critical point (QCP) that divides the magnetically ordered
and the paramagnetic phases. Remarkably, this effect
significantly enlarges the region where a particular type
of vortex crystal is stabilized.
To illustrate our point, we consider a hardcore boson

model on a lattice of triangular layers stacked in a period-3
structure along the c axis. The choice of this lattice is
motivated by the highly frustrated quantum paramagnet
Ba3Mn2O8 [23–28]. Ba3Mn2O8 consists of triangular
layers of weakly coupled antiferromagnetic S ¼ 1 spin
dimers (Fig. 2). Each dimer is predominantly in the singlet
state at low fields, and the lowest energy excitation is a
triplet state that propagates with well-defined momentum
(triplon) [17,29]. The triplon dispersion is gapped at low
fields and has six-fold degenerate minima (Fig. 1). Because
of the finite energy gap, triplons are only thermally
activated below the critical magnetic field,H ¼ Hc1, where

the gap is closed. A BEC is stabilized at zero temperature
(T ¼ 0) for H ≥ Hc1 [17,29,30], opening the possibility of
multi-Q ordered states. In an idealized situation without
anisotropy, the model has U(1) symmetry along the field
direction and the type of BEC is determined by the effective
triplon-triplon interactions. The arbitrarily low triplon con-
centration close enough to the QCP allows for a controlled
and robust analytical approach by expanding in the small
lattice-gas parameter [31]. As mentioned above, we also
discuss the effect of anisotropy that becomes relevant close
enough to the QCP.

II. MODEL

The low-energy effective Hamiltonian for a spin-dimer
antiferromagnet near the magnetic-field-induced QCP is

H ¼ H2 þH4;

H2 ¼
X
k

ωk

�
b†kbk þ 1

2

�
;

H4 ¼
1

2N

X
k;k0;q

ðU þ VqÞb†kþqb
†
k0−qbk0bk: (1)

Here, b†k ¼ N−1=2 PN
i¼1 e

ik·rib†i , and b†i (bi) is a bosonic
creation (annihilation) operator of an Sz ¼ 1 triplon in the
dimer i relative to the singlet background. Thus, we keep
only two low-energy states of each dimer. U is the on-site
hardcore potential to exclude unphysical states [32]. Vq is
the Fourier transform of the microscopic off-site boson-
boson interactions. We assume that the single-particle
dispersion ωk is characterized by six-fold degenerate
minima, as illustrated in Fig. 1. For H < Hc1, the spectrum
has an energy gap that can be controlled by the external
magnetic field. For the moment, we will exclude anisotropy
terms that break the U(1) symmetry of H.
The magnetic lattice system of Ba3Mn2O8 [23–28]

provides a perfect realization of H (Fig. 2). Inelastic
neutron scattering measurements determined the spin

FIG. 1 Single-boson dispersion ωk characterized by
six-fold degenerate minima at low-symmetry positions
�Q1≤n≤3 (shown for kz ¼ 0), which can be realized in the lattice
shown in the inset yielding Q1 ¼ ð2α; α; αÞ, Q2 ¼ ð−α; α; 0Þ,
and Q3 ¼ ð−α;−2α;−αÞ. In Ba3Mn2O8, α is slightly smaller
than 2π=3 [23].

FIG. 2 (a) Magnetic (Mn5þ) lattice of Ba3Mn2O8. (b) and
(c) NN and next-NN exchange couplings between adjacent
bilayers.
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Hamiltonian [23]. Each spin dimer is coupled by an
antiferromagnetic exchange J0 ¼ 19:05ð4Þ K, and spins on
different dimers are coupled by J2 and J3 on the same layer
and also by several other interlayer exchanges, J1;p, J1;x, J4;p,
and J4;x [Figs. 2(a)–2(c)], which are much smaller than
J0 [33].
Because of these interdimer exchange interactions, a

triplon can propagate in the 3D lattice. The microscopic
hopping process includes the intralayer hopping,
t2 ∝ J2 − J3, between nearest-neighbor (NN) dimers as
well as t1 ∝ J1;p − J1;x and t4 ∝ J4;p − J4;x, respectively,
between NN and next-NN dimers on adjacent bilayers [34].
Without these interlayer hopping processes, the minima of
ωk would be located at the K points on the 2D Brillouin
zone edge. The finite values of t1 and t4 shift the Q vectors
to incommensurate wave vectors, k ¼ �Qn (1 ≤ n ≤ 3),
within the same reciprocal plane (see Fig. 1) [35]. Because
theseQ vectors are not connected by reciprocal unit vectors,
the lowest-energy single-triplon excitation becomes six-fold
degenerate. In addition to the on-site hardcore potential U,
triplons are subjected to off-site density-density interactions
V1∝J1;pþJ1;x, V2∝J2þJ3, and V4 ∝ J4;p þ J4;x when
they occupy adjacent dimers connected by the hopping paths
of t1, t2, and t4, respectively.

III. INSTABILITY ANALYSIS OF THE FIELD-
INDUCED BOSE-EINSTEIN CONDENSATION:

DILUTE BOSE GAS APPROXIMATION

A. Ground-state energy

The triplon excitation spectrum becomes gapless at
H ¼ Hc1, signaling an instability towards the formation
of a BEC at the six-fold degenerate single-particle states
k ¼ �Q1≤n≤3. This instability is associated with a diver-
gent transverse spin susceptibility at these Q vectors; i.e.,
the BEC state corresponds to a magnetically ordered state
for spin components perpendicular to the external field.
The order parameter comprises the k ¼ �Q1≤n≤3 Fourier
components of the transverse magnetization. Therefore,
to predict the spin structure of the ordered phase, we
need to determine the condensate distribution among
k ¼ �Q1≤n≤3. Quantum fluctuations provide the selection
mechanism for interacting systems [19–22,37]. Because
the boson density vanishes at the field-induced QCP, the
relevant effective interaction can be computed very
accurately by using Beliaev’s low-density approximation
[31]. Through minimization of the resulting effective
Hamiltonian, we can determine the BEC state right above
H ¼ Hc1 in a reliable way [19–22,37].
We calculate the effective interaction in the long-

wavelength limit, k≃�Qn, by adding the ladder diagrams
shown in Fig. 3(a). The calculation is performed in the
static limit (i.e., for zero total frequency) because we are
only interested in the ground state. The interaction vertex
Γqðk;k0Þ for incoming triplons with momenta k and k0 and

momentum transfer q is asymptotically exact in the dilute
limit H ≃Hc1 (see Appendix A for details of this calcu-
lation) [31]. Once we obtain the interaction vertices, we can
write down the Ginzburg-Landau (GL) expansion of the
ground-state energy density, Eeff , with asymptotically
exact GL expansion coefficients. For deriving this GL
theory, we only need to take into account the k ¼ �Q1≤n≤3
modes that have a divergent susceptibility. Formally,
such a GL expansion is obtained by replacing the bare
interaction vertices,U þ Vq, involving k;k0 ∈ f�Q1≤n≤3g
with Γqðk;k0Þ. Then, we approximate the condensates by
N−1=2hb�Qn

i≡ ffiffiffiffiffiffiffiffiffiffiρ�Qn

p expðiϕ�Qn
Þ by using the standard

Bogoliubov prescription. We obtain

Eeff ¼ −μX3
n¼1

ðρQn
þ ρ−Qn

Þ þ Γ1

2

X3
n¼1

ðρ2Qn
þ ρ2−Qn

Þ

þ Γ2

X3
n¼1

ρQn
ρ−Qn

þ Γ3

X
n<m

ðρQn
ρQm

þ ρ−Qn
ρ−Qm

Þ

þ Γ4

X
n<m

ðρQn
ρ−Qm

þ ρ−Qn
ρQm

Þ

þ 2Γ5

X
n<m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρQn

ρ−Qn
ρQm

ρ−Qm

p
cos ðΦn − ΦmÞ; (2)

where μ ¼ gμBðH −Hc1Þ and
Φn ¼ ϕQn þ ϕ−Qn. (3)

Equation (2) is universal as long as theminima ofωk are six-
fold degenerate at incommensurate wave vectors. The GL
coefficients are given by the following vertices:

Γ1 ¼ Γ0ðQn;QnÞ;
Γ2 ¼ Γ0ðQn;−QnÞ þ Γ−2Qn

ðQn;−QnÞ;
Γ3 ¼ Γ0ðQn;QmÞ þ ΓQm−Qn

ðQn;QmÞ;
Γ4 ¼ Γ0ðQn;−QmÞ þ Γ−Qm−Qn

ðQn;−QmÞ;
Γ5 ¼ ΓQm−Qn

ðQn;−QnÞ þ Γ−Qm−Qn
ðQn;−QnÞ; (4)

FIG. 3 (a) Effective vertex from ladder diagrams. The filled
square (wavy line) represents the effective (bare) potential.
(b) Diagonal and (c) off-diagonal effective interactions in the
GL theory.
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where 1 ≤ m ≠ n ≤ 3. As illustrated in Fig. 3(b), Γ1≤ν≤4
represents the effective density-density interaction between
the condensate triplons. The Γ5 vertex represents a process
in which a pair of triplons with momenta k ¼ �Qn is
annihilated and a different pair is created with momenta
k0 ¼ �Qm≠n [Fig. 3(c)]. Because of its off-diagonal nature,
the Γ5 term is the only one that depends on the relative
phases Φn − Φm.

B. Quantum phase diagram at the field-induced QCP

For μ < 0 (gapped spectrum), Eeff is simply minimized
by ρ�Qn ¼ 0 for ∀ n; i.e., the solution is a quantum
paramagnet. The instability of the Bose-Einstein conden-
sation occurs at μ ¼ 0. Figure 4 shows a phase diagram
obtained by minimizing Eeff as a function of the effective
interactions for a small constant value of the total density
ρ ¼ ΣnðρQn þ ρ−QnÞ. Here, we assume Γ1 > 0, which is
usually the case in antiferromagnets, where the boson-
boson interaction is repulsive. We also assume that jΓ5j is
small relative to the others, which turns out to be the case in
the microscopic calculation that we discuss later.
The phase diagram shows a plethora of multi-Q order-

ings for Γ3 ≃ Γ4 ≲ Γ1 and Γ2 ≲ Γ1. This condition implies
that the single-Q state is not favored (because of the
dominating Γ1 vertex). It also implies that the effective
interactions between different modes, Γ2, Γ3, and Γ4, are
highly frustrated. An additional condition Γ5 > 0 leads to a
bifurcation of exotic multi-Q states (No. 6 and Nos. 8–11).
Figure 5 shows the corresponding schematic condensate
distributions in momentum space. As we describe below,
these states are magnetic vortex crystals, in which vortex

cores of xy-spin components form a regular lattice (see
below). On the other hand, the condition Γ5 < 0 almost
exclusively favors the 6-Q I BEC state where Φ1 ¼ Φ2 ¼
Φ3 (No. 7 in Fig. 5). This corresponds to a coplanar state,
which is not a vortex crystal. The reason for this contrast
between Γ≷0 is an additional phase frustration that appears
only when Γ5 > 0 [see Eq. (2)].
The phase diagram becomes rather simple away from

the region that we described above. We can easily narrow
down an optimal state in the limit of strong density-density
interactions. For instance, the optimal state for Γ3 ≫ Γ1

belongs to the set {No. 1, No. 2, No. 3}, which avoids this
repulsive coupling. Similarly, the optimal state for Γ2 ≫ Γ1

and Γ4 ≫ Γ1 belongs to {No. 1, No. 3, No. 4, No. 5} and
{No. 1, No. 2, No. 4}, respectively. In these limits, the
small Γ5 term is ineffective because the density prefactor
becomes 0 for all of the above candidate states.
Given this rich phase diagram, it is important to

determine if these multi-Q BEC states can be realized
under realistic conditions. As we already mentioned, for a
field-driven QCP of the Bose-Einstein condensation, we
can compute the GL coefficients from a microscopic model
under control; i.e., Eeff (2) is not a phenomenological
mean-field theory. For definiteness, we consider the spin
Hamiltonian that is proposed for Ba3Mn2O8 [23–28]. We
assume H∥c so that the U(1) symmetry is almost exact. In
the following, we fix ωk to the dispersion obtained from
inelastic neutron scattering experiments [23], while V1, V2,
and V4, which parametrize Vq, are regarded as free
parameters because they are not constrained by neutron
scattering experiments [38]. We focus on the region
0 ≤ V1, V2, V4 ≪ J0 ≈ 19 K corresponding to the weakly
coupled spin dimers with repulsive triplon-triplon inter-
actions (appropriate for antiferromagnetic compounds
like Ba3Mn2O8).

FIG. 4 Phase diagram as a function of eΓν ≡ Γν=Γ1 with Γ1 > 0
in the low-density limit. The states corresponding to the indices
(1)–(11) are summarized in Fig. 5.

FIG. 5 Schematic condensate distribution in momentum space
for the single- and multi-Q states that appear at the field-induced
QCP. The arrows representing Φn variables are shown only for
states with some conditions on Φn. The states marked with (*) are
vortex crystals (see text).
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We produce the phase diagram shown in Fig. 6 by
computing Γ1≤ν≤5 as a function of these microscopic
interaction parameters. The density-density interaction
vertices, Γ1≤ν≤4, are positive in the investigated region,
as expected from the repulsive bare interactions. The Γ5

vertex has a much smaller amplitude. Most importantly, we
confirm the plethora of multi-Q phases in this microscopic
model. They are stabilized when V1 ≳ 1.5 K and some
other conditions on V2 ≃ V3 are fulfilled. We also observe
that the sign change of the Γ5 vertex can induce an
instability towards the coplanar 6-Q I state (No. 7), as
indicated by the dashed line in Figs. 6(e) and 6(f).

IV. VORTEX CRYSTALS

A. Spin configurations

The BEC state for μ > 0 can be approximated by

hbii ∼
X3
n¼1

ðρQn
eiϕQn eiQn·ri þ ρ−Qn

eiϕ−Qn e−iQn·riÞ: (5)

The actual spin configuration for either a dimerized
compound or a generic quantum antiferromagnet near
the saturation field follows from the spin-boson trans-
formations [18] (see Appendix B). The simplest state is the
well-known single-Q state (No. 1), which is an xy spiral
with a uniform magnetization along the field direction. The
double-Q I state (No. 2) has also been well studied [19,22],
and it is a coplanar state with a one-dimensional modula-
tion (“fan”). In general, the other multi-Q spin states
correspond to richer spin structures. In particular, states
Nos. 4–6, and Nos. 8–11 are vortex crystals, whose
emergent lattice parameter is controlled by jQnj−1
when jQnj ≪ 1.
To illustrate the main characteristics of vortex crystals,

we take the 6-Q II BEC state (No. 8) and describe its spin
structure in some detail. The condensates of this state
occupy all of the six degenerate single-particle states,
k ¼ �Q1≤n≤3, with equal amplitudes. The relative phases
Φnþ1 − Φn (Φ4 ≡ Φ1) take the values �2π=3 because of
the positive Γ5 term in Eq. (2):

Φn ¼
2nκπ
3

þ const; κ ¼ �1. (6)

The spin structure is derived from

hbii ∼
ffiffiffiffiffi
2ρ

3

r X3
n¼1

cos

�
Qn · ðri − r�Þ þ δn;3

Θ
2

�
eiΦn=2; (7)

which is exact in the low-density limit. Here, we have
chosen a shift r� to emphasize the other phase parameter,

Θ ¼
X3
n¼1

ðϕQn
− ϕ−Qn

Þ; (8)

which is invariant under the U(1) group of global spin
rotations along the field axis. Θ can be equal to 0 or π
depending on the sign of the three-body scattering vertex
Γ6 which leads to the following contribution to the
Hamiltonian (in which however we do not explicitly
evaluate Γ6):

H6 ∼ Γ6ðb†Q1
b†Q2

b†Q3
b−Q1

b−Q2
b−Q3

þ H.c.Þ
∼ 2Γ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY
n

ρQn
ρ−Qn

r
cosΘ: (9)

Note that this contribution conserves momentum
because Q1 þQ2 þQ3 ¼ 0.
In Fig. 7, we show the spin configuration of this BEC

state for κ ¼ þ1, Θ ¼ π, and jQnj ≪ 1 on a given
triangular lattice layer. The spin configuration corresponds
to a crystal of magnetic vortices, and this is essentially
invariant along the c axis. Here, we adopt a pseudospin
representation ~S, i.e., j ~↑ii⇔j∅ii (i.e., a singlet dimer) and

FIG. 6 Phase diagram near the field-induced QCP for a system
with the single-boson dispersion of Ba3Mn2O8 as a function of
V1, V2, and V4. The dashed line indicates a boundary across
which the Γ5 vertex changes sign. The states corresponding to the
indices (1)–(11) are summarized in Fig. 5.
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j ~↓ii⇔b†i j∅i (a triplet dimer), where the amount of canting
relative to the z axis corresponds to the local condensate
density and the azimuth angle is equal to the local boson
phase (see Appendix B). Figure 7(b) shows that the
condensate density is suppressed near each vortex core
and becomes equal to 0 right at the center of the core. The
density gradually increases away from a core, and the xy-
spin components wind around the core. The phase change
in winding around the core is 2κπ, depending on the two

branches, κ ¼ �1, of Eq. (6). Thus, the vortex crystal is a
chiral spin texture. The condensate density starts decreas-
ing again beyond a certain radius from the core because
the “edges” that separate different vortices are low-density
regions which form a honeycomb lattice. These crystallized
vortices are not topological defects but thermodynamic
stable states similar to the skyrmion crystals observed in
B20 compounds [1,3,4] and in triangular lattice models
for classical spins [12] or to the crystals of magnetic Z2

vortices [15] and solitons [13,14,39] obtained in different
contexts. The Abrikosov lattice in the type-II supercon-
ductors is another example of this kind [40].
Another important observation is that the net spin-solid-

angle wrapped by a single vortex is always 0 [see Fig. 7(d)].
Starting from a vortex core, h ~Si wraps some fraction
of a sphere from the “north pole.” However, h ~Szi starts
to increase again beyond a threshold radius, meaning that
h ~Si starts unwrapping the sphere. After including the whole
contribution up to the vortex edge, the contribution from
inside the threshold radius is exactly cancelled. Therefore,
these structures are not skyrmions π2ðS2Þ, which wrap the
full solid angle of a sphere [Fig. 7(e)]. However, they are
certainly Abelian vortices π1ðS1Þ because of the structure of
the xy-spin components. Similarly to the case of skyrmion
crystals [1,3,4,12], the Abelian vortex crystals are also
characterized by regularly spaced vortex cores. To elucidate
this property, we show a contour plot of the boson phase,
arghbii, for the same spin configuration in Fig. 7(c). The
endpoints of branch cuts between arghbii ¼ �π indicate
the locations of vortex cores, which indeed form a lattice
structure. Another interesting observation is the presence
of the vortex cores on the edges, which are less evident in
the other plots. The net vorticity is zero because of these
additional vortices; i.e., there is no branch cut that is
connected to the infinity point.
Figure 8 shows the other variant, Θ ¼ 0, of the 6-Q II

state (κ ¼ þ1). The high-density regions form a kagome
lattice. The vortex cores are located at the center of the
faces of this kagome lattice. Single vortices (winding

FIG. 7 (a) The 6-Q II BEC state for κ ¼ þ1, Θ ¼ π, and
jQnj ≪ 1. The inset shows a modulation of the pseudo-spin z-
component along C1-E-C2 that corresponds to a vortex lattice
unit spacing. (b) Contour plot showing the boson density
distribution. (c) Contour plot showing the boson phase distribu-
tion. The open (filled) circles indicate vortices (anti-vortices).
(d) Spin structure of a single vortex mapped on a sphere in
the spin space, which is compared to (e) the same plot of a
skyrmion.

FIG. 8 The 6-Q II BEC state for κ ¼ þ1, Θ ¼ 0, and jQnj ≪ 1
showing (a) the boson density and (b) boson phase distributions.
The open (filled double) circles indicate vortices (double-anti-
vortices).
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number equal to κ) are located at the center of the smaller
faces, while double-antivortices (winding number −2κ) are
located at the center of the bigger faces. The phase contour
plot shown in Fig. 8(b) elucidates two branch cuts coming
out of one double-antivortex, both of which are connected
to a unitary vortex. This shows that there is no net vorticity
for Θ ¼ 0.
So far, we have described the case jQnj ≪ 1. Now, we

will briefly comment on the case relevant for Ba3Mn2O8,
where theQ vectors are located very close to the K point of
the 2D Brillouin zone (see Fig. 1). The proximity to the K
point leads to a local spin structure that resembles a three-
sublattice order. The small deviation ΔQn induces a long-
wavelength spin modulation, which results in the vortex
crystal on each of the three sublattices (Fig. 9). The
superlattice spacing λ is proportional to the inverse of this
deviation, λ ∝ 1=jΔQnj.

B. Dielectric properties and orbital currents

The complex noncoplanar spin structure of the vortex
crystals can lead to nontrivial dielectric properties.
Magnetoelectric behavior appears naturally in these struc-
tures because they locally break most of the symmetries of
the underlying crystal. For example, the local vector chirality
of the vortex crystal will naturally affect the locations of the
nonmagnetic ions that mediate superexchange through the
so-called inverse Dzyaloshinskii-Moriya mechanism [41].
Even without considering the spin-lattice coupling, spin
textures that break the equivalence between bonds (bond
ordering) or develop a finite scalar spin chirality induce
purely electronic charge effects resulting from virtual proc-
esses on frustrated plaquettes [42,43]. Below, we demon-
strate that this is indeed the case for our vortex crystals.
For definiteness, we consider a spin-1=2 quantum anti-

ferromagnet very close to the saturation field H ¼ Hsat on
the nondimerized variant of the period-3 stacked triangular
lattice, as shown in the inset of Fig. 1. Our theory also
applies to this situation if we just identify the pseudospin ~S
with a real spin-1=2 operator. In that case, j∅i becomes the
fully polarized spin state and b†r is an operator that flips a
spin on site r. By neglecting contributions from the
interlayer electron hopping for the sake of simplicity, the
effective electronic-charge-density operator is 1þ δ ~nr,
with [42]

δ ~nr ∝
X
0≤η<6

ðSr − SrþΔrηþ1
Þ · SrþΔrη ; (10)

where Δr0≤η<6 runs counterclockwise over the displace-
ment vectors to the NN sites of the triangular lattice layer.
The lowest-order contribution to δ ~nr is of third order in the
electron hopping. The three hopping processes must close a
triangular plaquette. Equation (10) is obtained by adding
contributions from the six triangles connected to the site r.
Figure 10(a) shows the distribution of δ ~nr in the case of the

A

BC

FIG. 9 Three-sublattice structure of the 6-Q II state, where
Θ ¼ π, κ ¼ þ1, and �Q1≤n≤3 coincide with the triplon
dispersion minima of Ba3Mn2O8 (see Fig. 1). The arrows
indicate locations of the vortex cores of each sublattice A,
B, and C.

FIG. 10 (a) Charge-density wave induced by the 6-Q II state with κ ¼ þ1, Θ ¼ 0, and jQnj ≪ 1. (b) Distribution of orbital magnetic
moments induced by the same phase. Orbital currents nearly cancel each other on the common bonds of two neighboring plaquettes (see
the inset).
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6-Q II vortex crystal (No. 8) with Θ ¼ π. The results are
insensitive to κ ¼ �1. We find a charge-density wave
resulting from the long-wavelength modulation of the spin
texture. This charge modulation should be, in principle,
detectable by x-ray measurements.
As it was also pointed out in Ref. [42], the scalar spin

chirality on each triangle is a manifestation of a local
electronic current (orbital current) that circulates around the
triangular plaquette. The effective orbital current operator
for a triangle r1 − r2 − r3 is [42]

~Iðr1; r2; r3Þ ∝ χ1;2;3 ¼ ðSr1 × Sr2Þ · Sr3 : (11)

The orbital current produces an orbital magnetic momentL
normal to the plaquette. Once again, by only considering
the effect of the in-plane electronic hopping in the 6-Q II
vortex crystal with Θ ¼ π and jQj ≪ 1, we obtain that
contributions of neighboring plaquettes tend to cancel each
other, but the vortex crystal still sustains orbital currents
well beyond the scale of the lattice spacing [see Fig. 10(b)].

V. ANISOTROPY EFFECTS

A. Symmetric exchange anisotropy

The U(1) symmetry of the spin Hamiltonian [Eq. (1)]
results from an approximation. In real magnets, there are
several anisotropy terms that break any continuous sym-
metry. Contributions from exchange anisotropy are propor-
tional to ρ. Thus, no matter how small their amplitude might
be, they dominate the interaction effects (∝ ρ2) in the
low-density limit, i.e., close enough to the field-induced
QCP. We consider the in-plane symmetric exchange
anisotropy, HA;6¼ðJA;6=2Þ

P
r;ηðe−2ηπi=3b†rb†rþΔrη þH.c.Þ,

which can be induced either by the relativistic spin-orbit
coupling or by dipole-dipole interactions. This contribution
breaks the U(1) symmetry of H down to the six-fold
symmetry of the triangular lattice.
After taking the long-wavelength limit of HA;6, we

obtain

HA;6∼
γJA;6
N

X3
n¼1

ðe2ðn−1Þπi=3b†Qn
b†−Qn

þH:c:Þ

∼2γJA;6
X3
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρQn

ρ−Qn

p
cos

�
Φn−2ðn−1Þπ

3

�
; (12)

where γ is a constant prefactor. Equation (12) suggests that
the phases Φ1≤n≤3 must be adjusted to Φn ¼ 2ðn − 1Þπ=3
[Φn ¼ ð2nþ 1Þπ=3] for γJA;6 < 0 (γJA;6 > 0) in the low-
density limit. In addition, the pairs k ¼ �Qn (1 ≤ n ≤ 3)
must have the same condensate amplitudes if they are
finite. At this level, there are three degenerate solutions:
the double-Q fan state (No. 2), the 4-Q state similar to
No. 6 but with the above condition for Φn, and the 6-Q
II state (No. 8). This degeneracy is lifted by the

boson-boson interaction [Eq. (2)]. The final result is that
the 6-(double-)Q state has the lowest energy if 2ðΓ1þΓ2−
Γ3−Γ4ÞþΓ5>0 (< 0) and there is no chance for the 4-Q
state to be a stable solution. Figure 11 shows that HA;6
significantly enlarges the 6-Q II phase near the field-
induced QCP.
Thermodynamic measurements on Ba3Mn2O8 show two

different phases in the vicinity of H ¼ Hc1 even for H∥c
[27]. A narrow “phase II” appears right above Hc1, while a
broad single-Q spiral “phase I” extends over a much bigger
window of magnetic fields inside the dome of ordered
phases. Because HA;6 becomes ineffective sufficiently
away from the QCP, the broad window of phase I suggests
that the interaction parameters V1, V2, and V4 favor the
single-Q state. As is shown in Fig. 11, the single-Q phase
obtained without taking HA;6 into account is typically
crossed by the line of the condition 2ðΓ1 þ Γ2 − Γ3 − Γ4Þþ
Γ5 ¼ 0. This observation indicates that when the angle
between H and the c axis is small, either the double-Q fan
state (No. 2) or the type-II vortex crystal No. 8 stabilized by
HA;6 could explain phase II. This prediction can be verified
by performing nuclear magnetic resonance or neutron
scattering experiments right above H ¼ Hc1 for H∥c.

B. Uniaxial anisotropy and the magnetic field
tilted from the symmetry axis

If the system has an uniaxial magnetic anisotropy along
the c axis, the U(1) symmetry requires a fine-tuning of the
magnetic-field direction along this symmetry axis. In other
words, a different symmetry-breaking term appears when
H is tilted from the c axis. Recently, field-angle–dependent
phases and phase transitions have become an interesting
subject in frustrated magnets such as Ba3Mn2O8 [25,27]
and Ba3CoSb2O9 [44–46].
Below, we address the effects due to the uniaxial

anisotropy and H away from the c axis. We neglect the

V2 (K)V2 (K)

0 1 2 3 4 5  6

(a) V1 = 1.5 K

0 1 2 3 4 5  6
 0

 1

 2

 3

 4

 5

 6

V
4 (

K
)

No.8 No.8

No. 2No.2

*

(b) V1 = 3.75 K

FIG. 11 Phase diagram at the field-induced QCP for the
same system as in Fig. 6 after including the symmetric
exchange anisotropy HA;6 in Eq. (12). The phase boundary
corresponds to the condition 2ðΓ1 þ Γ2 − Γ3 − Γ4Þ þ Γ5 ¼ 0.
For comparison, phase boundaries only due to the interaction
terms are also shown; the region indicated by (*) is the
single-Q phase.
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effect of HA;6 in Eq. (12) for the sake of simplicity, and
maintain the quantization axis always along the field
direction. The additional term that appears in the long-
wavelength limit is

HA;2 ∼
γ0JA;2
N

X3
n¼1

ðb†Qn
b†−Qn

þ H.c.Þ

∼ 2γ0JA;2
X3
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρQn

ρ−Qn

p
cosΦn; (13)

where γ0 is a numerical prefactor. This term breaks the U(1)
symmetry down to Z2 symmetry. HA;2 also scales as ∝ ρ
and thus dominates the interaction terms in the low-density
limit. Consequently, Φ1≤n≤3 are enforced to take the same
value Φ ¼ 0, π depending on the sign of its prefactor, and
the pair k ¼ �Qn (1 ≤ n ≤ 3) must have the same con-
densate amplitudes if they are finite. As a result, HA;2
leaves three degenerate states: the double-Q fan state
(No. 2), a 4-Q state similar to No. 6 but with
Φn ¼ Φ ð¼ 0; πÞ, and the coplanar 6-Q I state (No. 7).
The boson-boson interaction lifts this degeneracy: the
6-(double-)Q state is stabilized for Γ1 þ Γ2 − Γ3 − Γ4 −
Γ5 > 0 (< 0); see Fig. 12. The condensate of the coplanar
6-Q I state is described by Eq. (7) with Φn ¼ Φ. Slightly
different spin configurations are obtained depending on
Θ ¼ 0, π, which is determined by the sign of the three-body
scattering term in Eq. (9).

VI. CONCLUSIONS

In summary, we have demonstrated that magnetic vortex
lattices arise under rather general conditions near the
magnetic-field–induced quantum critical point that sepa-
rates magnetically ordered and paramagnetic phases. While
we have mainly discussed the case of a quantum spin-dimer

compound, our theory also applies to nondimerized frus-
trated magnets near their saturation field H ¼ Hsat. The
emergence of magnetic vortex crystals from 6-Q conden-
sates in the triangular lattice systems can be immediately
generalized to other p-fold symmetric lattices with p ≥ 3.
For instance, 4-Q condensates lead to square crystals of
magnetic vortices, and 3-Q condensates lead to honeycomb
crystals, which can be realized in the stacked frustrated
square and honeycomb lattices, respectively.
While our theory is only valid in the dilute limit (close to

the critical fields), it is interesting to analyze the evolution
of the 6-Q condensate as a function of increasing density of
bosons because this phase could remain stable for higher
boson densities. To understand this evolution, we extend
our analysis on the nondimerized frustrated magnets near
their saturation field. We find that as a function of
increasing bosonic density, the solid angle wrapped by
the spin configuration inside a certain radius from the
vortex core should increase [see Fig. 7(d)]. Then, there is a
critical density, ρ ¼ ρc, for which the whole sphere (solid
angle 4π) is wrapped inside the threshold radius. This
means that a skyrmion structure emerges inside of each
vortex structure at ρ ¼ ρc. The same solid angle is
unwrapped by the spin configuration between the threshold
radius and the vortex edge.
The magnetic vortex crystals complement the already-

known skyrmion and domain-wall lattices that arise in
other families of frustrated magnets. Among other things,
the possibility of stabilizing magnetic crystals of topologi-
cal spin structures opens a new road for studying and
exploiting magnetoelectric coupling in Mott insulators.
Magnetic orderings that break enough lattice symmetries
induce a redistribution of ionic and electric charge that can
lead to a net electric polarization [41–43]. This magneti-
cally driven ferroelectricity is observed in type-II multi-
ferroic materials [41]. Because vortex crystals locally
break most of the underlying lattice symmetries, they are
expected to induce a local charge modulation that becomes
more pronounced near the rapidly varying regions of
the magnetic configurations (domain walls of soliton
lattices and cores of skyrmion and Abelian vortex lattices).
Consequently, crystals of topological defects induce
charge-density-wave patterns that can be used either to
detect these magnetic crystals via x-rays or to achieve
magnetic-field control of the local electric polarization and
electric-field control of the local spin chirality [4].
To conclude, we summarize the essential ingredients

for finding magnetic vortex crystals in real materials.
The lattice must be p-fold symmetric (p ≥ 3) to allow
for a single-boson dispersion with more than two minima.
Magnetic frustration is required to have minima at low-
symmetry wave vectors. Finally, symmetric exchange
anisotropy JA;6, which can be produced by either dipolar
or spin-orbit interactions, can stabilize this phase over
a window of magnetization values that is roughly

 0
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V

4
 (

K
)

V2 (K)V2 (K)
 0  1  2  3  4  5  6

No. 2

No. 7 No. 7

No. 2

 0  1  2  3  4  5  6

(a) V
1
 = 1.5 K (b) V

1
 = 3.75 K

FIG. 12 Phase diagram at the field-induced QCP for the same
system as in Fig. 6 after including the effect of exchange
anisotropy HA;2 in Eq. (13). The phase boundary corresponds
to the condition Γ1 þ Γ2 − Γ3 − Γ4 − Γ5 ¼ 0. For comparison,
phase boundaries only due to the interaction terms are
also shown.
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proportional to JA;6=J, where J is the typical value of the
exchange coupling.
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APPENDIX A: LADDER DIAGRAM

The Bethe-Salpeter equation for a vertex Γqðk;k0Þ
defined by the ladder diagram with zero total frequency is

Γqðk;k0Þ¼UþVq−
Z

d3q0

8π3
Γq0 ðk;k0ÞðUþVq−q0 Þ

ωkþq0 þωk0−q0
: (A1)

We use a simplified notation Γq ≡ Γqðk;k0Þ because the
equation does not mix with a different set of ðk;k0Þ. Below,
we summarize a standard procedure to solve Eq. (A1) for
lattice models. We assume the following ansatz:

Γq ¼ hΓi þ
Xz

η¼1

AηVðrηÞeiq·rη ; hΓi≡
Z

d3q0

8π3
Γq0 .

(A2)

Here, Aη ≡ Aηðk;k0Þ are undetermined coefficients inde-
pendent of q. rη denotes a displacement vector to a site
where the interaction potential due to a particle at the origin
is nonzero. z is the total number of such sites.
We assume that the interaction potential is centrosym-

metric, meaning
R
d3q0Vq0 ¼ 0. Then, we find

hΓi ¼ U

�
1 −

Z
d3q0

8π3
Γq0

ωkþq0 þ ωk0−q0

�
: (A3)

By using this, we can rewrite Eq. (A1) as

Γq ¼ hΓi þ Vq −
Z

d3q0

8π3
Γq0Vq−q0

ωkþq0 þ ωk0−q0
: (A4)

We introduce the following notations:

τ0 ≡
Z

d3q0

8π3
1

ωkþq0 þ ωk0−q0
;

τη1 ≡
Z

d3q0

8π3
e−iq0·rη

ωkþq0 þ ωk0−q0
;

τη;ν2 ≡
Z

d3q0

8π3
e−iq0·ðrη−rνÞ

ωkþq0 þ ωk0−q0
: (A5)

By substituting (A2) into (A3), we obtain

Xz

η¼1

VðrηÞðτη1Þ�Aη þ ðτ0 þ U−1ÞhΓi ¼ 1; (A6)

where we can take the U → ∞ limit. In addition, the
substitution of (A2) into (A4) leads to

Xz

ν¼1

ðτη;ν2 VðrνÞþδη;νÞAνþτη1hΓi¼1; 1≤η≤ z: (A7)

Equations (A6) and (A7) can be made compact by
introducing Bην ≡ την2 VðrνÞ þ δην and cη ≡ VðrηÞðτη1Þ�:

0
BBBB@

B11 � � � B1z τ11
..
. . .

. ..
. ..

.

Bz1 � � � Bzz τz1
c1 � � � cz τ0

1
CCCCA

0
BBBB@

A1

..

.

Az

hΓi

1
CCCCA ¼

0
BBBB@

1

..

.

1

1

1
CCCCA. (A8)

Because the matrix elements on the left-hand side are q
independent, Aη (1 ≤ η ≤ z) and hΓi are also q indepen-
dent, as is assumed in the ansatz (A2). While lattice
symmetries may be used to simplify Eq. (A8), this is a
generic prescription for solving the integral equation (A1)
for lattice models.

APPENDIX B: SPIN CONFIGURATION
FOR A GIVEN BEC STATE

In the BEC phase, the state of an individual dimer (for a
dimerized magnet atH ∼Hc) or a spin (forH ∼Hsat) at r is
well approximated by the coherent state [47]:

jψir ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jψ rj2

q
j ~↑ir þ ψ rj ~↓ir; (B1)

where

ψ r ¼
X3
n¼1

ðρQn
eiϕQn eiQn·r þ ρ−Qn

eiϕ−Qn e−iQn·rÞ: (B2)

The expectation value of the pseudospin ~Sr is

h ~Sþr i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jψ rj2

q
ψ r; h ~Szri ¼

1

2
− jψ rj2; (B3)

which implies 0 ≤ jψ rj ≤ 1. h ~Sxri2 þ h ~Syri2 þ h ~Szri2 ¼ 1=4
is guaranteed. The pseudospin is a real spin for a spin-1=2
system close to the saturation field.
To obtain the spin configuration for a dimerized

magnet near the field-induced QCP, where we regard
j ~↑ir and j ~↓ir as the singlet and the triplet polarized along
the external-field direction, respectively, we evaluate the
expectation values of the spin operators of each spin,
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a ¼ 1, 2, on a dimer at r. For instance, the expressions for
S ¼ 1 are

hSþr;ai ¼ ð−1Þa 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jψ rj2

q
ψ�
r ;

hSzr;ai ¼
1

2
jψ rj2: (B4)
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