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We study the temperature dependence of the Gibbs energy of vacancy formation in Al and Cu from
T ¼ 0 K up to the melting temperature, fully taking into account anharmonic contributions. Our results
show that the formation entropy of vacancies is not constant as often assumed but increases almost linearly
with temperature. The resulting highly nonlinear temperature dependence in the Gibbs formation energy
naturally explains the differences between positron annihilation spectroscopy and differential dilatometry
data and shows that nonlinear thermal corrections are crucial to extrapolate high-temperature experimental
data to T ¼ 0 K. Employing these corrections—rather than the linear Arrhenius extrapolation that is
commonly assumed in analyzing experimental data—revised formation enthalpies are obtained that differ
up to 20% from the previously accepted ones. Using the revised experimental formation enthalpies, we
show that a large part of the discrepancies between DFT-GGA and unrevised experimental vacancy
formation energies disappears. The substantial shift between previously accepted and the newly revised
T ¼ 0 K formation enthalpies also has severe consequences in benchmarking ab initio methods against
experiments, e.g., in deriving corrections that go beyond commonly used LDA and GGA exchange-
correlation functionals such as the AM05 functional.
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I. MOTIVATION

Vacancies in a crystal are known to have a strong impact
on mechanical strength and ductility, e.g., by enabling
material transport, acting as pinning centers for disloca-
tions, or by enabling a dislocation climb. A key quantity to
characterize vacancies is their temperature-dependent
Gibbs energy of formation, GfðTÞ, since it provides direct
information regarding thermodynamic stability, equilib-
rium concentration, and solubility. In the dilute limit, the
concentration c is related to Gf by

c ¼ g expð−Gf=kBTÞ; (1)

with g a geometry factor (e.g., g ¼ 1 for monovacancies
and g ¼ 6 for divacancies in fcc) and kB the Boltzmann
constant. The experimental determination of c faces severe
difficulties: (i) The vacancies must occur in concentrations
well above the experimental detection limit, (ii) their
detection should not be shadowed by other defects or
impurities, and (iii) their concentration must have reached
equilibrium. Particularly, conditions (i) and (iii) force
experimentalists to go to high temperatures, where

concentrations are high and defect kinetics is fast. In
practice, measurements are restricted to a temperature
range between ≈60% and 100% of the melting point, as
indicated in Fig. 1 for Al and Cu by the gray shaded area.
Ab initio calculations, in particular, density-functional

theory (DFT), have become the work horse to compute
energies of defect formation. The majority of these studies,
however, have been performed at T ¼ 0 K, and only
recently, the quasiharmonic approximation or empirical
potentials were used to estimate finite temperature effects in
defect systems [13–15]. The inclusion of explicit anhar-
monicity due to phonon-phonon interactions—relevant at
high temperatures—was computationally too expensive to
be evaluated on a DFT level.
Taking into account the theoretical restriction to low

temperatures and the experimental restriction tohigh temper-
atures, it becomes evident that a direct and conclusive
comparison of experiment and theory has so far been
hampered by a large temperature gap. To bridge this gap
and to provide a temperature dependence of Gf, a common
approach is the assumption of an Arrhenius-like behavior,

GfðTÞ ¼ Hf − TSf; (2)

with temperature-independent enthalpy and entropy of for-
mation,Hf and Sf, that are obtained by a fit to experimental
data. As shown in Fig. 1, the limited and scattered exper-
imental data (black symbols) do not allow one to check the
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accuracy of this assumption. Indeed, Fig. 1 indicates devia-
tions fromthesimple linearArrheniusbehavior [difference in
slopesbetweenpositronannihilationspectroscopy(PAS)and
differential dilatometry (DD) data], which have been exten-
sively and controversially discussed over the last decades
[1,15–19].
We show here by means of highly accurate finite

temperature DFT calculations that Gf for the two prototype
elements Al and Cu has a strong temperature dependence
and that the common assumption of a linear Arrhenius
extrapolation [Eq. (2)] may give rise to deviations of a few
tenths of an eV in the formation enthalpies and an order of
magnitude in the entropies. In particular, our results reveal
that anharmonic phonon-phonon interactions—efficiently
captured by the recently developed upsampled thermody-
namic integration using Langevin dynamics (UP-TILD)
method—explain the observed deviations of a few tenths of
an eV compared to the quasiharmonic approximation.
Because GfðTÞ is found to be strongly nonlinear in
temperature, we show that the almost universally accepted
linear Arrhenius assumption needs to be replaced by a local
Grüneisen theory (LGT) with a formation entropy linear in
the temperature. Only the LGT accurately captures the ab
initio computed temperature dependence. As will be dis-
cussed, these results have important implications for the
interpretation of experimental data, and we provide revised
T ¼ 0 K extrapolated vacancy formation enthalpies for Al
and Cu to guide future studies that rely on the availability of
highly accurate experimentally derived T ¼ 0 K data.
Using these newly derived T ¼ 0 K data, we show that

a large part of the previously reported discrepancies
between DFT-GGA and experimental vacancy formation
energies disappears. Consequently, previously introduced
concepts such as surface corrections [16] or the AM05
functional that aim at correcting DFT errors and that have
been justified by benchmarking against experimental T ¼
0 K extrapolated vacancy formation enthalpies must be
revisited.

II. METHODOLOGY

A. General approach to compute the Gibbs energy
of vacancy formation

Key to computing the temperature dependence of Gf is
the calculation of the bulk and vacancy supercell free
energies containing the relevant excitation mechanisms,

F ¼ E0K þ Fel þ Fqh þ Fah; (3)

all being computed by DFT: the T ¼ 0 K energy E0K and
the electronic, quasiharmonic, and anharmonic free energy,
Fel, Fqh, and Fah, respectively. The computation of the first
three contributions is standard and described in detail, e.g.,
in Ref. [20]. The computationally most challenging con-
tribution is the anharmonic one, which only recently
became accessible on a DFT level [21–23]. Converging
the anharmonic contribution of the defect formation energy
Gf to a precision similar to the contribution to the bulk free
energy F is a completely new challenge since the relevant
energy is scaled to the defect and not to the atom, as is the
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FIG. 1 (color online). Experimental (black symbols) and DFT [blue/orange (LDA/GGA-PBE) lines] Gibbs energy of formation of
vacancies in (a) Al and (b) Cu. Experiments (PAS ¼ positron annihilation spectroscopy [1], DD ¼ differential dilatometry [1,2]) are
limited to a region (gray shaded) close to the melting point, Tmelt

Al=Cu. Extrapolations of available PAS [1,3–7] and DD data [2,1,3,8–12] to
T ¼ 0 K using the common Arrhenius ansatz, GfðTÞ ¼ Hf − TSf, introduce scatter in the reported values (filled/empty black bars
mark corresponding intervals). Formation energies computed by common ab initio approximations such as the T ¼ 0 K (dotted line)
and the electronic-plus-quasiharmonic (elþ qh; dashed line) approach are shown. The full curve (elþ qhþ ah) includes all free-energy
contributions in particular anharmonicity. The error resulting when assuming the Arrhenius extrapolation, ΔArr, is marked by the orange
arrow at T ¼ 0 K.
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case for bulk properties. The targeted precision therefore
needs to bemuch higher. To estimate the necessary accuracy,
let us consider a precision of 1 meV (see Ref. [22] for a
discussion on the required precision) to sample the anhar-
monic contribution of a supercell containing 100 atoms. Our
molecular-dynamics runs are performed for the bulk and
defect systems on a quasiharmonic reference, as described in
Ref. [22]. Since both reference systems are of similar quality,
the standard deviation σ of the sampled energy differences is
very similar in the bulk and defect cases, σbulk ≈ σdefect. In a
bulk calculation with 100 atoms, extensivity holds and the
standard error σn can be calculated as a per-atom quantity. In
the case of defect formation energy, we are interested in
energy differences of the two supercells (defect minus bulk),
and the standard error will therefore be 100 times larger
compared to the bulk free-energy calculation. Using the
definition of the standard error σn≔ σffiffi

n
p , with n being the

number of time steps in the corresponding molecular-
dynamics run, we see a dramatic effect on ndefect=nbulk: To
obtain the sameprecision in the defect formation energy as in
thebulkfree-energycalculation,weneedasamplingtimethat
is 104 times longer. Since converging the anharmonic bulk
free energy to 1meV/atom is already a difficult task on an ab
initio level, it becomesclear that to convergedefect formation
energies toa similarquality is aconsiderablechallenge.Here,
we employ the UP-TILD [22] approach, which is based on a
successive coarsening of configuration space, while simul-
taneously increasing accuracy in the energy calculation. At
the final level, only a few hundred fully converged DFT
configurations are needed to achieve statistical error bars of
0.1 meV/atom in FðV; TÞ and 10 meV/defect in a corre-
sponding 108 (107) atom cell for Gf.
Using this approach, we calculate all contributions

entering the free energy of the vacancy cell and perfect
bulk cell, Fvac and Fbulk, as a function of volume and
temperature. The temperature- and pressure-dependent
Gibbs energy of formation is then given by

GfðP; TÞ ¼ FvacðΩ; T;NÞ − NFbulkðV; TÞ þ Pvf: (4)

The volume of the defect supercell Ω with N atoms and the
volume per atom V of the perfect bulk are self-consistently
determined to correspond to a given pressure P (standard
atmospheric pressure). The volume of vacancy formation is
given by vf ¼ Ω − NV.

B. Technical details

For our calculations, we employ the projector augmented
wave method [24] as implemented in VASP [25,26]. The
exchange-correlation functional is described by the local-
density and generalized-gradient approximations (LDA/
GGA) within the scheme of Ceperley-Alder [27] as
parametrized by Perdew and Zunger [28] for LDA and
Perdew-Burke-Ernzerhof (PBE) [29] for GGA. Additional
calculations were performed at T ¼ 0 K with the Perdew
Wang (PW91) [30] parametrization to GGA and with

the AM05 functional [31], which is assumed to largely
overcome the deficiencies of the LDA and GGA func-
tionals in describing vacancy formation energies.
Extensive convergence tests were conducted for all free-

energy contributions entering Eq. (3): E0K, Fel, Fqh, and
Fah. In general, convergence parameters are optimized such
as to guarantee a precision of better than 10 meV/defect in
the formation energies Gf. This corresponds to converging
the bulk free-energy contributions to ≈0.1 meV=atom in a
108-atom cell (3 × 3 × 3 ¼ 33 fcc supercell), as described
in the previous section. For clarity, we consistently specify
meV/atom when referring to free energies while using
meV/defect for defect formation energies Gf. The number
of atoms per supercell given below refers to perfect bulk
supercells, while corresponding monovacancy or divacancy
cells have one or two atoms less. The supercells are given in
units of the conventional fcc unit cell. To minimize errors,
all calculations are performed using equal convergence
parameters for the bulk and defect calculations.
The T ¼ 0 K contribution E0K was investigated for Al

up to a 43 supercell (256 atoms). Differences between a 33

(108 atoms) and a 43 supercell are below 2 meV/defect. In
Cu, we find a difference of 6 meV/defect between a 23

(32 atoms) and a 33 supercell. We carefully checked the
k-point convergence up to 1 million k-points times atom.
Both Al and Cu converge at roughly 100,000 k-point times
atom to our chosen convergence criterion. We tested plane-
wave cutoffs up to 500 eV, and we find that 300 eV for Al
and 400 eV for Cu are sufficient.
For the electronic contribution Fel, a well-converged

formation energy is achieved by a parametrization of the
ðT; VÞ dependence on a grid including seven T steps and
four volumes employing 32,000 k-points times atom. The
exact details of the parametrization follow the scheme
introduced in Ref. [32]. By separating out the T ¼ 0 K
contribution, an accuracy of better than 2 meV/defect is
easily obtained. For Al and Cu, convergence tests were
performed in a 23 supercell, and we find that the electronic
contribution to Gf is negligible in both elements.
Phonon calculations for obtaining the quasiharmonic free

energyFqhweredonein23 and33 supercells,andninevolume
points were found for both elements to ensure converged
vibrational free-energy contributions. We also carefully
checked the k-point convergence up to 130,000 (90,000)
k-points times atom for Al (Cu) and find converged results
already at 55,000 (23,000) k-points times atom. For the Al
phonon part, we tested plane-wave cutoffs of 300 eV and
400 eVand found the lower value to be well converged. For
Cu, we tested cutoffs up to 500 eVand found a difference of
2 meV/defect compared to a cutoff of 400 eV.
The anharmonic free energy Fah was investigated in a 23

(32 atoms) and a 33 (108 atoms) supercell and treated with
the UP-TILD method [22]. The corresponding molecular-
dynamics simulations used a time step of 10 fs and a
friction parameter of 0.01 for Al and 0.03 for Cu for the
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Langevin dynamics. We defined a convergence criterion for
the statistical error to 0.1 meV/atom. This criterion resulted
in molecular-dynamics trajectories (after equilibration) of
3,000 steps (30 ps) at the lowest considered temperatures of
250 K and of 15,000 steps (150 ps) at the melting
temperature for both elements. For Al, we used a 33 k-
mesh and a plane-wave cutoff of 250 eV as low converged
parameters for both cells but checked k-meshes up to 43

and cutoffs up to 300 eVexplicitly at several selected high-
temperature points. For our high converged runs of Al, we
used a cutoff of 400 eVand a 63 k-mesh in the 23 supercell
and a 43 k-mesh in the 33 supercell. For the low converged
Cu molecular dynamics, we used a 33 k-mesh in the 23

supercell and a 23 k-mesh in the 33 cell. The high
converged runs for Cu were performed at a 400-eV cutoff
and a 63 k-mesh in the 32-atom cell (43 k-mesh for the 108
cell). For each temperature and volume, we sampled a mesh
of five coupling parameters (0, 0.15, 0.5, 0.85, 1) and used
the proposed cotangent fit [32] for parametrization. We
used a dense mesh of > 25 volume-temperature points
for both elements (five volumes and more than five
temperatures) as fitting input for the parametrization
based on a renormalized phonon frequency [22], ωah ¼
a0 þ a1T þ a2V, with a0…a2 fitting coefficients. The
resulting renormalized shift due to anharmonicity is used
to fit the anharmonic free-energy surface according to the
analytical model introduced in Ref. [22]. Within this model,
ωah enters a nonlinear function for the free energy, which
provides the capability to capture the strong nonlinearity
observed in Fig. 1.

III. RESULTS

The resulting Gibbs energy of vacancy formation for Al
and Cu is shown for the two commonly employed
exchange-correlation functionals LDA and GGA-PBE in
Fig. 1 (thick solid blue and orange lines). We consistently
observe strong and clearly non-negligible deviations from
linearity, particularly when considering the full and exper-
imentally inaccessible temperature window. To quantify the
error of the linear extrapolation which is commonly
assumed in analyzing experimental data, we perform an
Arrhenius fit through the GGA-PBE high-temperature data
(“Arrhenius” lines in Fig. 1). The T ¼ 0 K extrapolated
value of the energy of vacancy formation is 0.15 eV
(≈23%) for Al and 0.22 eV (≈20%) for Cu above the
original T ¼ 0 K value. Thus, strong non-Arrhenius behav-
ior clearly results in non-negligible corrections to the T ¼
0 K energy of vacancy formation. The large nonlinearity
also explains the intensively debated difference in the
slopes of the PAS and DD data [1,15–19]. The two methods
are restricted to distinct temperature ranges, and they
therefore probe the slope of the non-Arrhenius curve in
different regions.
The possibility of non-Arrhenius behavior has been

proposed in previous studies [33], but clarifying the

microscopic origin remained impossible and has led to
severe controversies between two schools of thought,
suggesting either (a) strong finite-temperature contributions
[16,17] or (b) significant concentrations of not one, but at
least two types of point defects [18,8,34]. Most exper-
imental studies assumed, in their analyses, situation (b) with
divacancies as a second type of point defects to explain the
nonlinearities in Gf. Fitting such a model of monovacan-
cies and divacancies to experiment, about 40% of vacancy-
type defects at Tmelt have to be assumed to be divacancies
for Al and 20% for Cu [34,8]. Averification of these fits has
been lacking so far since a separation of the total concen-
tration into monovacancies and divacancies, which would
allow one to prove or disprove the underlying assumptions,
turned out to be experimentally infeasible.
Having our formalism at hand, we are able to clarify

whether divacancies may give rise to the non-Arrhenius
contributions observed in Fig. 1. For that purpose, we also
apply the methodology described in Sec. II for computing
the complete thermodynamics of divacancies in both Al
and Cu. The divacancy-to-monovacancy concentration
ratio at the melting point resulting from our calculations
is 0.3% and 0.4% for Al and Cu, respectively, and not 40%
and 20% as had to be assumed in the empirical model (b);
i.e., they are two orders of magnitude smaller. A critical
assumption that had to be made in the empirical model
(b) is to invoke for divacancies a much larger entropy of
formation than for monovacancies. Figure 2 shows a
representative example of the ab initio computed and
empirically proposed formation entropies for Cu. As can
be seen, the actual entropy of divacancy formation (orange
dashed line) is only slightly higher than that of the
monovacancy (orange solid line). This result is in gross
contrast to a factor of up to 5 higher entropy for the
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divacancy, which had been postulated to fit the exper-
imentally observed non-Arrhenius behavior (green dashed
vs green solid line) [8,35,36]. The consequence of these
observations is that divacancies [model (b)] can be clearly
ruled out as a source of the non-Arrhenius behavior for both
elements [16]. The strong temperature dependence of the
formation energy of the monovacancy therefore remains an
exclusive source. Thus, a crucial question to be answered is
what type of physical excitation mechanism can lead to
such a strong temperature dependence.
For answering this question, the fully ab initio approach

described here is ideally suited. Its advantage is that all
free-energy contributions are available, allowing one to
identify the responsible one(s) for the strong non-Arrhenius
behavior. The corresponding analysis reveals the explicit
anharmonic contribution, i.e., the one describing excita-
tions beyond the quasiharmonic approximation, as the main
source: When it is excluded, we find an almost linear
dependence in the Gibbs energy of formation (orange
dashed lines labeled “elþ qh” in Fig. 1) and negligible
contributions to the entropy of formation (thin orange
dashed and solid lines in Fig. 2). The strong impact of
explicit anharmonicity is surprising since for fcc crystals it
is generally assumed to be small. To understand the origin,
we have analyzed in detail how temperature affects the
distribution function ρV;Tðx; yÞ of the metal atoms closest to
the vacancy:

ρV;Tðx; yÞ ¼
X
i

δðXNN
V;T;i − xÞ · δðYNN

V;T;i − yÞ: (5)

Here, the sum runs over all time steps of a molecular-
dynamics run at a fixed volume V and temperature T; δðxÞ
is equal to 1 for x ¼ 0 and otherwise 0. Further, XNN

V;T;i and
YNN
V;T;i are the coordinates of all the first nearest neighbors of

the vacancy at the ith molecular-dynamics step transformed
into the first quadrant of the xy plane by proper point group
symmetry operations. Figure 3a shows an example of
ρV;Tðx; yÞ for Cu at the melting temperature, and Fig. 3b
shows the Gauss broadened projection onto the [110]
direction,

ρV;TðdÞ ¼
X
i

δ

�
1ffiffiffi
2

p ½XNN
V;T;i þ YNN

V;T;i� − d

�
; (6)

i.e., along the line through the vacancy center and the
neighboring atom. Using the ab initio computed distribu-
tion function, the temperature-dependent effective potential

veffV;TðdÞ ¼ −kBT ln ρV;TðdÞ (7)

is constructed. Both ρV;T and veffV;T show an anisotropy and
softening towards the vacancy [Fig. 3b], which can be
intuitively understood by the fact that bond compression is
absent in this direction. As a consequence, the effective

potential resembles a Morse potential and leads to a
displacement of the time-averaged position towards the
vacancy center with increasing temperature [orange dia-
monds in Fig. 3b]. This net inward relaxation with
increasing temperature leads to a local expansion of the
host matrix at the expense of the vacancy volume.
The large anharmonicity in the effective potential is a

direct consequence of destroying the inversion symmetry
that an atom has in a perfect fcc crystal: While in the ideal
bulk the effective potential will be symmetric and thus
effectively cancel third- and higher-odd-order anharmonic
contributions, the loss of inversion symmetry of an atom
near the vacancy center gives rise to sizable odd-order
contributions, as shown in the effective potential in Fig. 3b.
The presence of odd, in particular, third-order asymmetric
contributions near the vacancy (or any defect destroying
inversion symmetry locally) naturally explains the surpris-
ingly large anharmonic effects.
Based on this discussion, the largest anharmonic con-

tributions should be along directions where inversion
symmetry is destroyed locally. Indeed, this behavior is
found in the distribution shown in Fig. 3a: Odd-order
anharmonicity is large towards the vacancy center (along
[110]) but absent for directions perpendicular to the [110]
direction because of the presence of a mirror symmetry.

FIG. 3 (color online). (a) Harmonic (black) and anharmonic
(orange) distribution ρV;Tðx; yÞ according to Eq. (5) for Cu at
Tmelt ¼ 1360 K. The vacancy center is placed at (0, 0), and the
equilibrium position of the first nearest neighbor is marked by a
green cross. The points (black/orange) show the molecular-
dynamics trajectory of the atom at discrete time steps of 10 fs.
The region close to the equilibrium position is densely populated,
and thus the individual points are not resolvable on this scale. The
harmonic data are obtained from thermodynamic integration runs
at zero coupling constant. (b) Distribution function ρV;TðdÞ
(dashed lines) according to Eq. (6), i.e., projection of
ρV;Tðx; yÞ onto the [110] direction indicated in (a), and corre-
sponding effective potential according to Eq. (7) (solid lines). The
zero line of the distribution function is shifted upwards by the
energy kBTmelt according to the temperature at which ρV;TðdÞwas
calculated. The orange diamonds mark the shift of the center of
mass of the anharmonic ρV;TðdÞ shown and additional anhar-
monic distributions (not explicitly shown) towards the vacancy at
the following temperatures: 250, 450, 800, 1100, 1250 K (related
to the energy axis by kBT). For clarity, the latter curve is scaled by
a factor of 10 on the d axis.
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Since we further find that asymmetries in the distributions
of second-and further-neighbor atoms around the vacancy
are small, the only relevant collective degree of freedom is
the displacement of the nearest-neighbor atoms along a line
through the vacancy center.
Being able to relate the anharmonicity to a single

collective degree of freedom allows us to make a formal
connection to the conventional Grüneisen theory that
describes (quasi-)anharmonicity of an ideal bulk system
with respect to a collective variable such as the lattice
constant or the volume. Thus, anharmonicity of a vacancy
(or, more generally, of any defect locally destroying the
symmetry) may be regarded as local quasi-anharmonicity,
where all physical quantities related to the bulk collective
variable are replaced by an analogous variable related to the
vacancy neighbor displacement; i.e., thermal expansion
relates to the (inward) shift of the neighbors with increasing
temperature, the bulk modulus to the second derivative of
the effective potential shown in Fig. 3b. In the following,
we call this new mechanism local Grüneisen theory (LGT).
The unveiled connection to the Grüneisen theory allows

us to understand a further important feature observed in
Fig. 2: The entropy of formation is not a temperature-
independent constant—the cornerstone of the Arrhenius
approximation and a common assumption in defect
models—but the actual dependence is approximately linear
for both monovacancies and divacancies, resulting in an
approximate T2 scaling in the Gibbs energy of formation
(Fig. 1). Our results also reveal for Al a linear temperature
dependence of the monovacancy and divacancy entropies
(not included in Fig. 2), suggesting that the origin of this
behavior might be generic. Indeed, a linear temperature
dependence of the entropy is also observed for the conven-
tional (i.e., related to the volume expansion of bulk
systems) Grüneisen model if a harmonic reference entropy
(one at a fixed volume) is subtracted from the full entropy
(containing the volume dependence). The situation for the
LGT of a vacancy, discovered here, is similar: While the
entropy of the defect supercell is equivalent to the quasi-
harmonic entropy in the conventional Grüneisen model,
the entropy of the perfect bulk supercell is equivalent
to the harmonic entropy in the conventional model. Thus,
taking the difference between the entropy of the defect
supercell and the entropy of the perfect bulk to obtain the
entropy of formation within the LGT corresponds to the

difference of the quasiharmonic entropy and a harmonic
entropy within the conventional Grüneisen approach—
which is linear.
Empirical models based on a linear temperature depend-

ence of the entropy of formation have in fact been
considered earlier [33,38] but failed to receive sufficient
attention since they were based on experimental diffusion
rather than on concentration data. All reported experimental
vacancy formation energies have instead used the conven-
tional Arrhenius dependence with constant entropies of
formation. Our present calculations reveal that, at least for
the investigated elements, the Arrhenius model needs to be
replaced by a model in which the formation entropy has to
be expanded up to the first order in temperature
SfðTÞ ≈ S0 þ S0T. For the dominant contribution of mono-
vacancies, the S0 term is negligible with respect to the S0T
term (cf. Fig. 2), and we can further approximate

SfðTÞ ≈ S0T: (8)

This ab initio derived relation corresponds to fitting
experimental point-defect formation energies to

GfðTÞ ¼ Hf
0K − 1

2
T2S0; with S0 ¼ const; (9)

rather than to Gf ¼ Hf
0K − TSf with Sf ¼ const. The new

model based on Eq. (9) contains the same number of fitting
coefficients as a linear Arrhenius model, requiring only
Hf

0K and the slope S0 ¼ ∂Sf=∂T to be fitted. Table I gives a
concise comparison of the conventional linear Arrhenius
approximation with the LGT proposed here, which has
been inspired by the ab initio computed temperature
dependence of the defect formation entropy.
Applying the LGT to experimental data, revised enthal-

pies of formation at T ¼ 0 K (Hf
0K) are given for Al and Cu

in Table II and compared to values obtained by the linear
Arrhenius extrapolation of PAS or DD data. For the latter,
errors of up to 0.24 eVare observed that are consistent with
the magnitude found for our explicitly computed data (ΔArr

in Fig. 1). For Al, the generally accepted value for the
vacancy formation enthalpy is the one extracted from PAS
data. As shown in Table II, the difference between our
revised value and the PAS one is only 0.01 eV and thus
unlikely to change any conclusions or benchmarks where

TABLE I. Comparison of the previously applied linear Arrhenius approximation and the newly proposed and ab initio based LGT.

Enthalpy of
formation

Entropy of
formation

Gibbs energy
of formation

Temperature
dependence of Gf

Fitting
coefficients

Linear Arrhenius
approximation

Hf
0K ≡ const Sf ≡ const Gf ¼ Hf

0K − TSf Linear Hf
0K, S

f

Local Grüneisen theory
(LGT)

Hf
0K ≡ const Sf ¼ TS0

S0 ≡ const
Gf ¼ Hf

0K − 1
2
T2S0 Quadratic Hf

0K, S
0
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this value has been used. For Cu, the difference between the
revised one and the one recommended by Landoldt-
Börnstein is 0.22 eV, i.e., an order of magnitude larger,
making it mandatory to use the revised value. Future
studies also need to address the question of whether the
validity of S0 ≈ 0 that has been assumed in Eqs. (8) and (9)
is specific to these two metals or whether it is of a more
general behavior.
Finally, we discuss the performance of the exchange-

correlation (xc) functionals employed in this study.
Figure 1 clearly shows that the GGA-PBE–based curves
lie almost on top of all experimental data sets in absolute
value and curvature, while the LDA data predict system-
atically too-high formation energies (albeit with a similar
curvature). This finding is in clear contrast to what has been
recently concluded based on calculations without DFT-
based anharmonicity and using Arrhenius-extrapolated
experimental data as a reference [16,40,41]. In these
studies, LDA appeared to be the functional that predicts
T ¼ 0 K energies of vacancy formation in best agreement
to Arrhenius-extrapolated experimental data for Al and Cu,
while the two commonly employed GGA functionals (PBE
and PW91) predict the energies systematically lower. This
behavior is illustrated in Fig. 1 and can also be seen in
Table II by comparing the theoretical Hf

0K values (LDA,
GGA-PBE, GGA-PW91) to Arrhenius extrapolated PAS

and DD data. In fact, the apparent underestimation of GGA
appears to be a general trend for fcc metals when compar-
ing DFT formation energies to experimentally derived
T ¼ 0 K values reported in the literature [40].
The systematic underestimation of vacancy formation

energies by GGA was explained by LDA describing the
energetics of metal surfaces better than GGA [40,42]. Since
vacancies may be regarded as an inner surface, it has
recently been proposed [16] that for vacancy calculations
novel xc functionals should be used that partly correct this
deficiency, such as the AM05 xc functional [31].
The present results clearly show that the good agreement

of the LDA energies of vacancy formation with exper-
imental data extrapolated to T ¼ 0 K is accidental and
related to the neglect of the non-Arrhenius behavior in the
temperature window not accessible by experiment. To
further verify this conclusion, we performed additional
T ¼ 0 K calculations including surface corrections and
using the AM05 xc functional. The results are included in
Table II and in the insets of Fig. 1. A clear trend is observed
for the formation enthalpies (Table II): Both the AM05 xc
functional and the surface-corrected PBE calculation give
values that are significantly too large when comparing with
the revised experimental reference, i.e., the one obtained by
using the LGT rather than the Arrhenius-extrapolated data.
It is interesting to note that for the unrevised “experimen-
tal” T ¼ 0 K enthalpies (see the Landoldt-Börnstein value
in Table II), the surface-corrected GGA-PW91 functional
(the one originally used in the work of Carling et al. [16])
shows an apparently better performance than the uncor-
rected LDA or GGA explaining why these xc corrections
have been suggested, but it also highlights why it is so
important to accurately extrapolate experimental data to
T ¼ 0 K. Table II shows that the overall best performance
is for the non-surface-corrected GGA-PBE functional.

IV. CONCLUSIONS

Based on an efficient technique to sample anharmonic
free-energy contributions for point defects on a DFT level
(UP-TILD), we were able to go beyond previous
approaches that were limited to a harmonic or quasihar-
monic description of the vibrational part of the Gibbs
formation energy. Applying this technique to compute
formation energies of prototype point defects, the mono-
vacancy and divacancy in fcc-bulk Al and Cu, allowed to
cover the entire temperature interval from T ¼ 0 K up to
the melting temperature of the bulk systems. A detailed
analysis of the computed temperature dependence revealed
features in gross contrast to present textbook knowledge,
which is based solely on experimental high-temperature
concentration data. First, the formation entropy of all
studied defects is not independent of temperature as is
commonly assumed and as is the basis for the practically
universally accepted Arrhenius model, but it shows in
leading order a linear temperature dependence. This strong

TABLE II. Comparison of experimental formation enthalpies
from the compilation in the Landoldt-Börnstein series [39] and of
Arrhenius-extrapolated PAS and DD formation enthalpies
(averaged values of black filled/empty bars in Fig. 1) with
experimental values obtained from the LGT proposed here
(Table I) and with ab initio computed formation enthalpies at
T ¼ 0 K. For computing the ab initio values, various flavors of
exchange-correlation functionals have been employed: LDA,
GGA-PBE, GGA-PW91, and AM05. Additionally, surface
corrections based on the scheme from Ref. [40] have been
used for the PBE and PW91 functionals. The columns labeled
Δexp give the difference from the LGT DDþ PAS value.

–

–

– –

–
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and unexpected linear dependence was traced back to
explicit anharmonicity, i.e., the part of anharmonicity that
is not included in the quasiharmonic treatment. Introducing
a LGTwith a collective variable that represents the distance
between the vacancy center and its first nearest neighbor,
we explained the origin of the large linear temperature
dependence of the entropy of formation. Replacing the
Arrhenius relation by a dependence following from the
LGT, we showed that the highly controversially discussed
discrepancies between PAS and DD data practically dis-
appear and that the accepted T ¼ 0 K defect formation
enthalpies—as compiled, e.g., in the Landoldt-Börnstein
series [39]—must be revised. While the difference between
revised and unrevised values is negligible for the Al
vacancy (0.01 eV), it is sizable for the Cu vacancy
(0.22 eV) and should be considered in future compilations
and studies. Using the revised experimental T ¼ 0 K
values and comparing them with DFT calculations
employing different xc functionals, we showed that the
conventionally accepted picture according to which LDA
outperforms the various flavors of GGA in describing
vacancy formation energies is, to a large part, a conse-
quence of comparing with the original Arrhenius-
extrapolated experimental data and changes qualitatively
when comparing with the temperature corrected (revised)
values derived here. An important consequence is that the
apparent improvement when employing surface corrections
or using surface-corrected xc functionals such as AM05
vanishes. For example, using the revised values, GGA-PBE
performs better than all studied xc functionals, while the
previously described surface corrections that were needed
to get an improved agreement with the unrevised values
perform significantly worse. Finally, we note that the
mechanisms behind the strong local anharmonicity are
not restricted to vacancy defects but apply to any defect
configuration that induces locally strong asymmetric dis-
placement potentials, e.g., bulk systems with point defects
such as doped semiconductors, alloys, or larger-scale
defects like surfaces or interfaces and grain boundaries.
Including anharmonicity in future studies of such systems
is therefore expected to be crucial.
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