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The locking effect is a phenomenon that is unique to quantum information theory and represents one of
the strongest separations between the classical and quantum theories of information. The Fawzi-Hayden-
Sen locking protocol harnesses this effect in a cryptographic context, whereby one party can encode n bits
into n qubits while using only a constant-size secret key. The encoded message is then secure against any
measurement that an eavesdropper could perform in an attempt to recover the message, but the protocol
does not necessarily meet the composability requirements needed in quantum key distribution applications.
In any case, the locking effect represents an extreme violation of Shannon’s classical theorem, which states
that information-theoretic security holds in the classical case if and only if the secret key is the same size as
the message. Given this intriguing phenomenon, it is of practical interest to study the effect in the presence
of noise, which can occur in the systems of both the legitimate receiver and the eavesdropper. This paper
formally defines the locking capacity of a quantum channel as the maximum amount of locked information
that can be reliably transmitted to a legitimate receiver by exploiting many independent uses of a quantum
channel and an amount of secret key sublinear in the number of channel uses. We provide general
operational bounds on the locking capacity in terms of other well-known capacities from quantum Shannon
theory. We also study the important case of bosonic channels, finding limitations on these channels’ locking
capacity when coherent-state encodings are employed and particular locking protocols for these channels
that might be physically implementable.
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I. INTRODUCTION

The security of a cryptographic primitive can be assessed
according to different security criteria. Most modern
cryptosystems are computationally secure—that is, their
security relies on the difficulty of breaking them in a
reasonable amount of time given available technologies.
This is also the case for the enigma machines, a family of
historical polyalphabetic ciphers in use during the earlier
half of the previous century—their security relied on the
difficulty of uncovering patterns hidden in pseudorandom
sequences [1].
A stronger security criterion requires that an encrypted

message is close to being statistically independent of the

corresponding unencrypted message, in which case one

speaks of information-theoretic security. For the case of
classical systems, a good measure of correlation is the
mutual information between the unencrypted and the
encrypted message. If the mutual information vanishes,
the chance of successfully decrypting the message is
exponentially small in the length of the message. Any
encryption scheme with such a property cannot perform
any better than one-time pad encryption, where a truly
random key is used to encrypt (and decrypt) the message
[2]. The one-time pad guarantees information-theoretic
security as long as the key is kept secret, it has the same
length as the message, and it can be used only once.
However, the fact that the secret key should be the same
length as the message imposes severe practical limitations
on the use of the one-time pad protocol.
On the other hand, it is now known that quantum

mechanics provides a way around these limitations.
The locking effect is a phenomenon that is unique to
quantum-information theory [3] and represents one of the
most striking separations between the classical and
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quantum theories of information. It is responsible for
important revisions to security definitions for quantum
key distribution (QKD) [4] and might even help to explain
both how unitarity could be preserved and most of the
information leaking from an evaporating black hole could
be inaccessible until the final stages of evaporation [5,6].
Quantum data locking occurs when the accessible infor-
mation about a classical message encoded into a quantum
state decreases by an amount that is much larger than the
number of qubits of a small subsystem that is discarded [3].
A device that realizes a quantum data-locking protocol is
called a quantum enigma machine (QEM) [7].
Impressive locking schemes exist [6,8,9]. Suppose that a

sender and a receiver share a constant number of secret key
bits. Using these secret key bits, they can then encode an
n-bit classical message into n qubits such that an adversary
who gains access to these n qubits, but who does not know
the secret key, cannot do much better than to randomly
guess the message after performing an arbitrary measure-
ment on these n qubits.
However, the cryptographic applications of quantum

data locking have to be “taken with a grain of salt,” as
they are only applicable if the distribution of the message is
completely random from the perspective of the adversary.
Otherwise, the key size should increase by an amount
necessary to ensure that the distribution of the message
becomes uniform. Moreover, one might say that the
strength of quantum data locking also exposes a weakness.
Indeed, as a small key is sufficient for encrypting a long
message, the leakage of a small part of the secret key may
allow an adversary to uncover a disproportionate amount
of information. For this reason, any cryptographic primitive
based on the locking effect (called a locking scheme) does
not necessarily guarantee composable security [4]. This
also implies that quantum data locking cannot necessarily
be used for secure key distribution. The only exception
is if the adversary has no option other than to perform a
collective measurement on the qubits in her possession just
after she receives them.
As stated above, Shannon proved that such a locking

effect is impossible classically [2]. That is, when using only
classical resources, a sender and a receiver require a secret
key whose size is proportional to the size of the message
in order for the eavesdropper to have a negligible amount
of information about the encrypted message. Thus, after
Shannon’s result, information scientists looked in a differ-
ent direction in order to determine ways for communication
systems to provide secrecy in addition to reliable trans-
mission. In reality, all communication systems suffer from
physical-layer noise, and one might be able to determine
the characteristics of the noise to a legitimate receiver and
to an untrusted eavesdropper. Such a model is known as the
wiretap channel [10], and it is well known now that if
the noise to the eavesdropper is stronger than the noise to
the legitimate receiver, then it is possible to communicate

error-free at a positive rate such that the eavesdropper
obtains a negligible amount of information about the
messages being transmitted.

II. SUMMARY OF RESULTS

In this paper, we consider the performance of locking
protocols in the presence of noise, and as an important
application, we consider locking protocols for bosonic
channels. There are two types of noise to consider in
any realistic locking protocol: that which affects the
transmission to a legitimate receiver and that which affects
the eavesdropper’s system. Both are important to consider
in any realization of a quantum enigma machine.
We begin in Sec. IV by reviewing the locking effect and a

recently introduced quantum enigmamachine fromRef. [7].
This QEM encodes a classical message into a single-photon
state spread over a collection of discrete modes and then
decodes it by direct photodetection. The encryption and
decryption are realized by applying and inverting, respec-
tively, a single multimode passive linear-optical unitary
transformation, selected uniformly at random from a set
of such transformations. Similar to historical enigma
machines, QEMs can encrypt a long message using an
exponentially shorter secret key. However, unlike historical
enigma machines that were only computationally secure,
quantum data locking implies security in the sense that the
outcomes of any eavesdropper measurement will be essen-
tially independent of the message.
After the review, Sec. V provides a formal definition of

the locking capacity of a quantum channel. In short, a
locking protocol uses a quantum channel n times (for some
arbitrarily large integer n) and has three requirements.
(1) The receiver should be able to decode the trans-

mitted message with an arbitrarily small error
probability.

(2) The eavesdropper can recover only an arbitrarily
small number of the message bits after performing a
quantum measurement on their systems.

(3) The number of secret key bits used is no more than
sublinear in the number n of channel uses (for
example, logarithmic in n).

We define the locking capacity of a quantum channel to be
the maximum rate at which it is possible to lock classical
information according to the above requirements.
Changing the systems to which the adversary has access
leads to different notions of locking capacity, and we
distinguish the notions by naming them the weak locking
capacity and the strong locking capacity. The difference
between the two is that, in the weak notion, the adversary is
assumed to have access to only the channel environment,
while, in the strong case, we allow access to the channel
input. We emphasize that when we use the term (weak or
strong) “locking capacity” without any other modifiers, we
refer to the locking capacity of a quantum channel without
additional resources, such as classical feedback. Most of
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the results reported here correspond to such a forward-
locking capacity. The locking capacity of channels with
additional resources such as classical feedback remains
largely open. However, at the very least, we can already say
that quantum key distribution protocols provide lower
bounds on the locking capacity in this setting.
We then find operational bounds on the locking capacity

in terms of other well-known capacities studied in quantum
Shannon theory, and we find other information-theoretic
upper bounds on the locking capacity. We prove that the
locking capacity of an entanglement-breaking channel is
equal to zero, which demonstrates that a quantum channel
should have some ability to preserve entanglement in order
for it to be able to lock information according to the above
requirements. We also show that any achievable locking
rate is equal to zero whenever a given locking protocol has
a classical simulation. Furthermore, we find a class of
channels for which the weak locking capacity is equal to
both the private capacity and the quantum capacity. Finally,
we discuss locking protocols for some simple exemplary
channels.
Section VI establishes several important upper bounds

on the locking capacity of channels when restricting to
coherent-state encodings. If it were possible to exploit
coherent-state encodings to perform locking at high rates,
this would certainly turn the locking effect from an
interesting theoretical phenomenon into one with practical
utility. However, we are able to show that there are
fundamental limitations on the locking capacity when
restricting to coherent-state encodings. In particular, we
prove that the “strong” locking capacity of any channel is
no larger than log2ðeÞ locked bits per channel use
whenever the encoding consists of coherent states (where
e is the base for the natural logarithm). We also prove that
the “weak” locking capacity of a pure-loss bosonic
channel is no larger than the sum of its private capacity
and log2ðeÞ.
In Sec. VII, we discuss an explicit protocol that uses a

pulse-position modulation (PPM) encoding of coherent
states. We derive bounds on the security and key efficiency
of this coherent-state locking protocol and find that it has
qualitative features analogous to the single-mode quantum
enigma machine in the presence of linear loss.
Finally, Sec. VIII presents our conclusions, a discussion

of the scaling of the required physical resources, and open
questions for future research.

III. NOTATION

We briefly review some notation that we use in the rest of
the paper. Let BðHÞ denote the algebra of bounded linear
operators acting on a Hilbert space H. The 1-norm of an
operator X is defined as

∥X∥1 ≡ Trf
ffiffiffiffiffiffiffiffiffi
X†X

p
g:

Let BðHÞþ denote the subset of positive semidefinite
operators (we often simply say that an operator is “positive”
if it is positive semidefinite). We also write X ≥ 0 if
X ∈ BðHÞþ. An operator ρ is in the set DðHÞ of density
operators if ρ ∈ BðHÞþ and Trfρg ¼ 1. The tensor product
of two Hilbert spacesHA andHB is denoted byHA ⊗ HB.
Given a multipartite density operator ρAB ∈ DðHA ⊗ HBÞ,
we unambiguously write ρA ¼ TrBfρABg for the reduced
density operator on system A.
A linear map N A→B: BðHAÞ → BðHBÞ is positive if

N A→BðσAÞ ∈ BðHBÞþ, whenever σA ∈ BðHAÞþ. Let idA
denote the identity map acting on BðHAÞ. A linear map
N A→B is completely positive if the map idR ⊗ N A→B is
positive for a reference system R of arbitrary size. A linear
mapN A→B is trace preserving if TrfN A→BðτAÞg ¼ TrfτAg
for all input operators τA ∈ BðHAÞ. If a linear map is
completely positive and trace preserving, we say that it is a
quantum channel or quantum operation. For simplicity, we
denote a quantum channel N : BðHAÞ↦BðHBÞ simply as
N A→B. Similarly, we denote an isometry U: HA↦HB ⊗
HC simply as UA→BC.
The variational distance between two probability dis-

tributions pðxÞ and qðxÞ is defined as

X
x

jpðxÞ − qðxÞj:

The trace distance between two quantum states ρ and σ is
defined as follows:

∥ρ − σ∥1;

and it is a conventional measure used in quantum-
information theory to quantify the distinguishability of
two quantum states. Clearly, when the two states are
commuting, the trace distance is equal to the variational
distance between the two probability distributions corre-
sponding to the eigenvalues of ρ and σ.
The von Neumann entropy of a state ρ ∈ DðHAÞ is given

byHðAÞρ≔ − Trfρ log ρg. Throughout this paper, we take
the logarithm base 2. For a tripartite state ρABC ∈ DðHABCÞ,
the quantum mutual information and the conditional
quantum mutual information are, respectively, given by

IðA;BÞρ ≡HðAÞρ þHðBÞρ −HðABÞρ;
IðA;BjCÞρ ≡ IðA;BCÞρ − IðA;CÞρ;

where HðAÞρ denotes the von Neumann entropy of the
reduced state ρA, for example.

IV. REVIEW OF QUANTUM DATA LOCKING

A quantum data-locking scheme can be implemented by
a set of jKj unitary transformations fUkgk∈K acting on a
Hilbert space HM of finite dimension jMj [3,6,8,9]. (For
the moment, we restrict ourselves to finite-dimensional
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Hilbert spaces, but Definitions 1 and 2, below, allow for
encoding information into infinite-dimensional Hilbert
spaces.) Alice encodes jMj equiprobable messages by
means of a set of orthonormal states fjmigm∈M defining a
standard basis in HM. The encryption is then made by
applying a particular unitary Uk with k chosen uniformly at
random fromK, and this unitary maps a standard basis state
jmi into a state Ukjmi. The label k identifies the choice of
the basis and plays the role of a secret key.
It is helpful to consider a particular classical-quantum

state when reasoning about a quantum data-locking pro-
tocol. For such a state, we have two classical systems, the
first associated with Alice’s message and the second
associated with the secret key, and a quantum system Q
of dimension jMj corresponding to the quantum-encoded
message of Alice. This classical-quantum state is given by
the following density matrix:

ρMKQ ¼ 1

jMjjKj
X
m;k

jm; kihm; kjMK ⊗ ðUkjmihmjU†
kÞQ;

(1)

where the sets fjmig and fjkig are composed of
orthonormal states representing the message and the secret
key, respectively. The receiver, Bob, has access to the
quantum system Q and the key system K. We assume that
an eavesdropper, Eve, has access only to the quantum
system Q (for example, before it gets passed along to the
receiver Bob). The classical correlations between Alice’s
message M and Bob’s systems K and Q can be quantified
by the accessible information [11]. This is defined as the
maximum classical mutual information that can be
extracted by performing local measurements on the
bipartite state:

IaccðM;KQÞρ ¼ max
MKQ→Y

IðM;YÞ; (2)

where the maximization is taken over local measurement
maps MKQ→Y , and IðX;YÞ ¼ HðXÞ þHðYÞ −HðXYÞ is
the mutual information, with HðZÞ denoting the Shannon
entropy of the random variable Z [12].
The accessible information in Eq. (2) can never be larger

than log2 jMj, due to the bound IðM;YÞ ≤ log2 jMj,
which holds for any random variable Y. A particular
strategy for achieving this upper bound is for Bob to first
perform the controlled unitary

P
kjkihkjK ⊗ ðU†

kÞQ, leav-
ing the state

1

jMjjKj
X
m;k

jm; kihm; kjMK ⊗ jmihmjQ:

He then simply measures in the basis fjmig to recover the
message m perfectly, so that his accessible information is
maximal, equal to log2 jMj.

To assess the security of the communication, let us
consider the accessible information for a party, Eve, who
does not have access to the secret key. We consider the
following reduced state:

ρMQ ¼ 1

jMj
X
m

jmihmjM ⊗
1

jKj
X
k

ðUkjmihmjU†
kÞQ; (3)

obtained by taking the partial trace over the key system
in Eq. (1). The aim of Eve is to find an optimal positive
operator-valued measure (POVM) to maximize the
classical mutual information. It is sufficient to consider a
POVM MQ→Y with rank-one measurement operators, i.e.,

fμyjφyihφyjg; (4)

where each jφyi is a normalized vector and μy > 0 (the
sufficiency of rank-one POVMs follows by a data-process-
ing argument). We then find the following expression for
Eve’s accessible information about Alice’s message [3]:

IaccðM;QÞρ ≤ log2jMj − min
ME→Y

X
y

μy
jMjjKj

X
k

HðqykÞ;

(5)

where the probability distributions qyk have components
qmyk ¼ jhφyjUkjmij2. Note that Eve’s accessible information
is written in terms of the minimum of the Shannon
entropies HðqykÞ ¼ −Pmq

m
yk log2 q

m
yk averaged over y

and k.
While finding Eve’s optimal POVM is generally a

difficult problem, one can obtain a good upper bound by
a convexity argument [3]. Furthermore, one can choose
the encoding unitaries uniformly at random according to
the Haar measure [6,8,9,13], and if one also adjoins to the
message a small ancilla system in a maximally mixed state
[9], then it is possible to reduce the adversary’s accessible
information to become arbitrarily small. These latter results
show that, for large enough jMj, there exist data-locking
schemes with log2 jKj negligibly small in comparison to
log2 jMj, and for which

IaccðM;QÞρ ≪ IaccðM;KQÞρ:

That means that a relatively short secret key can be used
to encrypt an exponentially longer message. To be more
precise, consider the results of [9], according to which, for
jMj large enough, there exist choices of jKj unitaries, with

log2jKj ¼ 4log2ðϵ−1Þ þO½log2log2ðϵ−1Þ�; (6)

such that

IaccðM;QÞρ ≤ ϵlog2jMj; (7)
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for any ϵ > 0. Moreover, if one randomly chooses the jKj
unitaries according to the Haar distribution on the unitary
group, the probability of picking up a set with this property
approaches one exponentially fast in the limit as jMj → ∞.
In quantum data locking, the removal of a subsystem

reduces the accessible information by an amount larger
than the number of qubits removed. This is a purely
quantum feature that has no classical analog. For compari-
son, consider a classical counterpart of the quantum data-
locking setting, in which Alice has access to a message
variableM, Bob has access to an output random variable Y
and key variable K, while Eve has access to Y only. In the
classical framework, the following inequality holds:

IðM;YKÞ − IðM;YÞ ¼ IðM;KjYÞ ≤ HðKÞ ≤ log2jKj:
(8)

This inequality shows that, in the classical framework,
removal of the key variable K reduces the mutual infor-
mation by no more than log2 jKj.
In the quantum case discussed above, this inequality can

be violated by an arbitrarily large amount by replacing the
classical mutual information with the accessible informa-
tion. A violation of the classical inequality in Eq. (8) can be
quantified in terms of the following ratios [3,8]:

r1 ¼
IaccðM;QÞρ
IaccðM;KQÞρ

; (9)

r2 ¼
log2jKj

IaccðM;KQÞρ − IaccðM;QÞρ
: (10)

Equation (9) is the ratio of the accessible information
without the secret key to that with the secret key.
Equation (10) is the ratio of the key length to the amount
of information that Bob can unlock by having access to the
key. For a good locking scheme, both of these quantities
should be small, and the quantum data-locking schemes
discussed above are such that both r1 and r2 can be made
arbitrarily small. On the other hand, the inequality in
Eq. (8) implies that r2 ≥ 1 for any locking scheme that
uses classical resources only. Note that the one-time pad
protocol has r2 ¼ 1 because the number of bits in the key is
equal to the amount of unlocked information for Bob.

A. Quantum enigma machine

A particular example of a QEMwas proposed in Ref. [7].
This QEM implements an optical realization of quantum
data locking, in which Alice exploits a pulse-position
modulation encoding using single-photon states over n
optical modes [7]. The message states jmi ¼ a†mj0i re-
present the states of a single photon occupying one out
of a set of n bosonic modes with canonical operators
fam;a†mgm∈f1;…;ng. Thus, for this case, we have n ¼ jMj.

The unitaries fUkgk∈K are realized as passive linear-optical
transformations acting on nmodes. The encryption through
a passive linear-optical unitary Uk transforms the message
states into

jmik≔Ukjmi ¼
Xn
m0¼1

~Uðm;m0Þ
k jm0i; (11)

where ~Uk is the corresponding n × n unitary matrix acting
on the mode labels. The effect of the encryption is to spread
a single photon coherently over n modes.
Let us first assume that Alice and Bob communicate via a

noiseless quantum channel. Then, Bob receives the state
prepared by Alice unperturbed. He decrypts the message by
first applying the inverse transformation U†

k and then by
performing photodetection on the modes famg. We assume
that Eve may intercept the signal, but she does not know
which unitary has been used for encryption. Then, a direct
application of the results of Ref. [9] shows that Eve’s
accessible information can be made arbitrarily small using
a preshared secret key of length logarithmic in the length of
the message.
One natural application of a QEM is in synergy with

standard quantum key distribution [14,15]—that is, a
relatively short secret key can be first established by
QKD and then used to encrypt a much (exponentially)
longer message through the QEM. This combination of
QKD and QEM in an all-quantum-optical cryptosystem
could possibly overcome the bit-rate limitations of standard
QKD, but more work is necessary to determine if this is
the case.
Let us now suppose that Alice and Bob communicate

through a pure-loss bosonic channel with transmissivity
η ∈ ð0; 1Þ and Eve makes a passive wiretap attack on the
communication line, hence getting the photon lost in the
channel with probability no larger than 1 − η. A simple
feedback-assisted strategy allows for Alice and Bob to use
the same scheme even for transmissivity values below 50%.
Note that the only effect of the pure-loss channel is to
induce a probabilistic leakage of the photon. Hence, each
time Bob detects a photon (which happens with probability
η), he can be sure that he has correctly decrypted Alice’s
message. On the other hand, if Bob’s photodetectors do not
produce a click (which happens with probability 1 − η), he
can request for Alice to resend. This shows that, with the
help of a classical feedback channel, Alice and Bob can
attain the accessible information

IaccðM;KQÞρ ¼ ηlog2n: (12)

Although reduced, this value of the accessible information
equals the maximum value achievable through a pure-loss
bosonic channel with a mean value of n−1 photons per
mode [7,16].
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Lloyd argues that such a scheme should be secure,
in principle [7]. However, a critical assumption for this
security to hold is that Eve should attack each block that
she receives independently, in which case, her accessible
information is reduced by a factor 1 − η when compared to
the lossless case. Indeed, an important assumption for the
security of any locking protocol is that the distribution
of the message is uniform from the perspective of the
adversary. If this is not the case (as for repeated trans-
mission of the same message when it does not show up at
the receiver’s end), then the secret key needs to be large
enough so that the distribution of the message becomes
uniform (see Proposition 4.16 in Ref. [17]).
Concerning the key efficiency of the protocol, we can

estimate the key efficiency ratio as

r2 ≃ 4log2ðϵ−1Þ
ηlog2n

: (13)

This expression implies that, although r2 can be made
arbitrarily small by increasing n, the number of bosonic
modes needed to fulfill the key efficiency condition r2 < 1
grows exponentially with decreasing r2 and η. This feature
is, first of all, a consequence of the fact that the quantum
data-locking scheme in Ref. [9] (similar conclusions are
also obtained using the results of [6,8]) requires a high-
dimensional Hilbert space. On top of that, there is the fact
that the PPM encoding, as noted above, is highly inefficient
as it encodes log2 n qubits into n optical modes.
According to Definition 1, below, this QEM is an

instance of an ðn; R; ϵÞ weak locking protocol (assisted
by classical feedback) for the pure-loss bosonic channel
with transmissivity η, with a locking rate R ¼ ½η log2 n�=n.
It is worthwhile to note that, due to the inefficiency of PPM
encoding, the rate of this QEM approachs zero as n
increases.

V. LOCKING CAPACITY OF
A QUANTUM CHANNEL

In this section, we take a more general approach to
quantum data locking than that pursued in prior work by
defining the locking capacity of a quantum channel. Our
goal is to understand the locking effect in the setting of
quantum Shannon theory, where a sender and a receiver are
given access to n independent uses of a noisy quantum
channel (where n is an arbitrarily large integer). Their aim
is to exploit some sublinear (in n) amount of secret key in
order to lock classical messages from an adversary, in the
sense that this adversary will not be able to do much better
than random guessing when performing a quantum meas-
urement to learn about the transmitted message. Also, we
demand that the legitimate receiver (who knows the value
of the secret key) be able to recover the classical message
with an arbitrarily small probability of error. This leads us

naturally to the following formal definition of a locking
protocol for a noisy channel.
Definition 1: Weak locking protocol.—An ðn; R; ϵÞ weak

locking protocol for a channel N A→B consists of encoding
and decoding maps EMK→An andDBnK→M̂, respectively. The
encoding EMK→An acts on a message system M and a key
system K and outputs the system An for input to n uses of
the channel. The decoding map DBnK→M̂ acts on the output
systems Bn and the key system K to produce a classical
system M̂ containing the receiver’s estimate of the message.
Without loss of generality, the encoding consists of jMjjKj
quantum states ρm;k, where jMj is the number of messages
and jKj is the number of key values. Furthermore, the
decoding consists of jKj POVMs fΛðkÞ

m gm∈M. The rate
R ¼ log2jMj=n and the parameter ϵ > 0. The protocol
should satisfy the following requirements.
(1) Given the key, the receiver can decode the trans-

mitted message well on average:

1

jMjjKj
X
m;k

TrfΛðkÞ
m ðN A→BÞ⊗nðρm;kÞg ≥ 1 − ϵ:

(2) Let fΓyg be a POVM that Eve can perform in an
attempt to learn about the message M. After she
performs this measurement, the joint classical-
classical state of the message and her measurement
outcome is as follows:

1

jMj
X
m

jmihmjM

⊗
X
y

Tr

�
Γy

�
1

jKj
X
k

ðN A→EÞ⊗nðρm;kÞ
��

jyihyjY;

where N A→E is the channel complementary to N A→B.
Equivalently, the joint probability distribution
pM;Yðm; yÞ is equal to

pM;Yðm;yÞ¼ 1

jMjTr
�
Γy

�
1

jKj
X
k

ðN A→EÞ⊗nðρm;kÞ
��

:

Our security criterion (see also Ref. [9]) is that, for any
measurement outcome y of Eve, the variational dis-
tance between the message distribution pMðmÞ and the
distribution pMjYðmjyÞ for the message conditioned on
any particular measurement outcome should be no
larger than ϵ:

X
m

jpMðmÞ − pMjYðmjyÞj ≤ ϵ: (14)

The interpretation here is that Eve cannot do much
better than to randomly guess the message if all of the
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conditional distributions pMjYðmjyÞ are indistinguish-
able from the message distribution.

(3) The secret key consumption grows sublinearly in the
number n of channel uses.

In a weak locking protocol, it is assumed that the
eavesdropper has access to the channel environment only.
A stronger locking protocol is obtained if we allow for
the eavesdropper to have access to the channel input
(or, equivalently, to both the channel output and the
environment).
Definition 2: Strong locking protocol.—An ðn; R; ϵÞ

strong locking protocol is similar to a weak locking
protocol, except that we allow for Eve to have access to
the An systems, so that she can perform a measurement on
the An systems of the following state:

1

jMj
X
m

jmihmjM ⊗
1

jKj
X
k

ðρm;kÞAn :

We then demand that the variational distance as in Eq. (14)
can be made less than an arbitrarily small positive con-
stant ϵ.
Remark 3.—One could, alternatively, allow for the

adversary to have access to the output of the channel,
but we do not explore such a possibility in this paper.
Remark 4.—The Fannes-Audenaert inequality [18,19]

for continuity of entropy implies that, if Eq. (14) holds,
then we get the following bound on Eve’s accessible
information:

IaccðM;EnÞ ≤ h2ðϵ=2Þ þ ϵnR=2; (15)

where h2 is the binary entropy and n and R are as in
Definition 1. In more detail, recall the Fannes-Audenaert
inequality for continuity of entropy,

T ≡ 1

2
∥ρ − σ∥1 ⇒ jHðρÞ −HðσÞj

≤ h2ðTÞ þ T logðd − 1Þ;

where h2 is the binary entropy and d is the dimension of the
states. Applying this to the condition in Eq. (14) gives

HðMÞ−HðMjY¼yÞ≤h2ðϵ=2Þþ
ϵ

2
logðjMj−1Þ; (16)

≤ h2ðϵ=2Þ þ ϵnR=2. (17)

Since the above inequality holds for any measurement of
Eve, averaging it with respect to the distribution pYðyÞ
gives the inequality in Eq. (15).
Remark 5.—If desired, one can demand further for the

secret key rate of an ðn; R; ϵÞ weak or strong locking
protocol to be consumed at a particular sublinear rate (for
example, a logarithmic number of secret key bits or perhaps

ffiffiffi
n

p
secret key bits for n channel uses). However, this paper

establishes several upper bounds on locking capacity in an
independent and identically distributed (IID) setting, and
these bounds converge to the same quantity in the large n
limit regardless of which sublinear rate is chosen. Also, the
Fawzi-Hayden-Sen (FHS) protocol [9] is very strong, in the
sense that it uses such a small amount of secret key. Thus,
in light of these two observations, it seems reasonable to
define locking capacity in such a coarse-grained manner.
However, other characterizations of locking capacity in a
finite block-length setting or in a one-shot setting might
change depending on the amount of secret key allowed (so
it would be necessary to specify in more detail the amount
of secret key allowed).
Remark 6.—Observe that an ðn; R; ϵÞ strong locking

protocol is also an ðn; R; ϵÞ weak locking protocol, but the
other implication is not necessarily true.
Remark 7.—The security and key efficiency ratios

become arbitrarily small for a strong locking protocol.
Indeed, from the fact that IaccðM;AnÞ ≤ h2ðϵ=2Þ þ ϵnR=2,
and the fact that the receiver can decode with the key, so
that IaccðM;BnKÞ ≈ log2jMj, it follows that the security
ratio r1 ≤ h2ðϵ=2Þ=ðnRÞ þ ϵ=2. Also, since we require the
key to be sublinear in the message length, it follows that
the key efficiency ratio r2 ¼ oðnÞ=OðnÞ, which vanishes in
the limit as n → ∞.
In the following, we use the modifier “weak” or “strong”

only when we need to distinguish between them.
Definition 8: Achievable rate for locking.—A rate R is

achievable if ∀ δ, ϵ > 0 and sufficiently large n, there
exists an ðn; R − δ; ϵÞ locking protocol.
Definition 9: Locking capacity.—The locking capacity

LðN Þ of a quantum channel is the supremum of all
achievable rates:

LðN Þ≡ supfRjR is achievableg:

Let LWðN Þ and LSðN Þ denote the weak and strong locking
capacity, respectively.

A. Relation of the locking capacity to other capacities

Let QðN Þ, PðN Þ, and CðN Þ denote the quantum
[20–26], private [26,27], and classical [28,29] capacities
of a quantum channel N , respectively. By employing
operational arguments, we determine that the following
bounds hold:

QðN Þ ≤ PðN Þ ≤ LWðN Þ ≤ CðN Þ: (18)

Indeed, for any channel, its quantum capacity is less than
the private classical capacity because any scheme for
quantum communication can be used for private classical
communication such that the classical information is
protected from the environment of the channel.
Furthermore, the inequality PðN Þ ≤ LWðN Þ holds because
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any ðn; R; ϵÞ private classical communication protocol
satisfies the three requirements of a weak locking protocol

]26,27 ]. Finally, the requirements of a weak locking
protocol are more restrictive than those for classical
communication, so that LWðN Þ ≤ CðN Þ.
Operational arguments and the existence of the FHS

locking protocol [9] also lead to the following bounds on
the strong locking capacity:

QðN Þ ≤ LSðN Þ ≤ LWðN Þ: (19)

We first justify the bound QðN Þ ≤ LSðN Þ, already
observed in some sense in Ref. [17]. The strong locking
capacity of the noiseless qubit channel is equal to one, due
to the existence of the FHS locking protocol (see Example
23 below). By concatenating the FHS locking protocol with
a family of capacity-achieving quantum error correcting
codes, we obtain a family of strong locking protocols that
achieve a strong locking rate equal to the quantum capacity
of the channel. The bound LSðN Þ ≤ LWðN Þ follows
because a strong locking protocol always meets the
demands of a weak locking protocol (recall Remark 6).
The relationship between the private capacity and the
strong locking capacity is less clear. Indeed, a private
communication protocol for a quantum channel protects
information only from the environment of the channel
(which we think of as the eavesdropper’s system). For this
reason, it does not meet the demands of a strong locking
protocol. However, we could consider a “strong privacy”
protocol in which the goal is to protect a message from both
the environment and the output of the channel, under the
assumption that the party controlling these systems does
not have access to the shared key. In this case, the “strong
private capacity” would always be equal to zero because a
sublinear amount of secret key is insufficient to get any
strong private capacity out of the channel. For this reason,
the bounds in Eqs. (18) and (19) are the best simple ones
that we can derive from operational considerations.
We can also consider the case in which a classical

feedback channel is available for free from the receiver to
the sender. In this case, we denote the resulting capacities
with a superscript (←). By employing the same operational
arguments as above, we find that the following inequalities
hold:

Qð←ÞðN Þ ≤ Pð←ÞðN Þ ≤ Lð←Þ
W ðN Þ ≤ Cð←ÞðN Þ; (20)

Qð←ÞðN Þ ≤ Lð←Þ
S ðN Þ ≤ Lð←Þ

W ðN Þ: (21)

Capacities assisted by classical feedback need not be equal
to the unassisted capacities. For example, it is known that
the quantum and private capacities assisted by classical
feedback can be strictly larger than the corresponding
unassisted capacities [30], and this is true even for the
classical capacity [31]. The locking capacity of quantum

channels with classical feedback remains largely an open
question.

B. Upper bounds on the locking capacity

Let us define the information quantity LðuÞ
W ðN Þ as

follows:

LðuÞ
W ðN Þ≡ max

fpðxÞ;ρxg
½IðX;BÞ − IaccðX;EÞ�; (22)

where the above information quantities are evaluated with
respect to a state of the following form:

X
x

pXðxÞjxihxjX ⊗ UN
A→BEðρxÞ; (23)

UN
A→BE is an isometric extension of the channel N , and the

superscript ðuÞ indicates that this quantity will function as
an upper bound on the locking capacity. The following
theorem establishes that the regularization of LðuÞ

W ðN Þ
provides an upper bound on the weak locking capacity
of a quantum channel. This bound is nontrivial given that
the regularization of LðuÞ

W ðN Þ does not depend on the secret
key used in a given locking protocol.
Theorem 10.—The weak locking capacity LWðN Þ of a

quantum channelN is upper bounded by the regularization
of LðuÞ

W ðN Þ:

LWðN Þ ≤ lim
n→∞

1

n
LðuÞ
W ðN⊗nÞ:

Proof: The proof below places an upper bound on the
weak locking capacity of a quantum channel by consid-
ering the most general protocol for this task. Suppose that
the task is to generate shared, locked randomness rather
than to send a locked message (placing an upper bound on
achievable rates for this task gives an upper bound on
achievable rates for the latter task, since a protocol for the
latter task can be used to accomplish the former task). The
most general protocol has Alice input her share of the key
K and her variable M into an encoder that outputs some
systems An to be fed into the inputs of the channels. She
then transmits these systems An over the channel, so that
Bob receives the output systems Bn. Let the following state
describe all systems at this point in the protocol:

ωMKBn ≡ 1

jMjjKj
X
m;k

jmihmjM ⊗ jkihkjK ⊗ N⊗n
A→Bðρk;mÞ:

Bob inputs his share of the key K and the systems Bn into a
decoder DKBn→M̂ to recover M̂, which is his estimate
of Alice’s variable M. The final state of the protocol is
given by
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ω0
MM̂

≡ 1

jMjjKj
X
m;k

jmihmjM

⊗ DKBn→M̂½jkihkjK ⊗ N⊗n
A→Bðρk;mÞ�:

If the protocol is any good for locking the messageM, then
the ideal distribution of M and M̂ deviates from the actual
distribution of these variables by no more than ϵ, in the
sense that

∥Φ̄MM̂ − ω0
MM̂

∥
1
≤ ϵ;

where

Φ̄MM̂ ≡ 1

jMj
X
m

jmihmjM ⊗ jmihmjM̂:

The above condition is equivalent to the condition that
PrfM̂ ≠ Mg ≤ ϵ=2, because

1

2
∥Φ̄MM̂ − ω0

MM̂
∥1 ¼ PrfM̂ ≠ Mg:

Also, from Remark 4, Eve’s accessible information
IaccðM;EnÞ about the variable M is bounded from above
by ϵ″n, where ϵ″ ≡ h2ðϵ=2Þ=nþ ϵR=2, whenever Eq. (14)
is satisfied. We can now proceed with bounding achievable
rates for any locking protocol:

nR ¼ HðMÞΦ̄
¼ IðM; M̂ÞΦ̄
≤ IðM; M̂Þω0 þ nϵ0

≤ IðM;BnKÞω þ nϵ0

¼ IðM;BnÞω þ IðM;KjBnÞω þ nϵ0

≤ IðM;BnÞω − IaccðM;EnÞω þ oðnÞ þ nϵ0 þ nϵ00

≤ LðuÞ
W ðN⊗nÞ þ oðnÞ þ nϵ0 þ nϵ00:

The first equality follows from the assumption that the
random variable M is a uniform random variable. The
second equality is an identity becauseHðMjM̂Þ ¼ 0 for the
ideal distribution on M and M̂. The first inequality follows
from an application of the Alicki-Fannes-Audenart inequal-
ity (continuity of entropy) [19,32], where ϵ0 is a function of
ϵ that approaches zero as ϵ → 0. The second inequality
follows from an application of quantum data processing
(both Bn and K are fed into the decoder to produce M̂). The
third equality follows from an application of the chain rule
for mutual information. The third inequality follows from
the upper bound

IðM;KjBnÞ ≤ HðKjBnÞ ≤ HðKÞ ≤ oðnÞ
(the assumption that the secret key rate is sublinear) and
from the accessible information bound IaccðM;EnÞ ≤ ϵ.

The final inequality follows from optimizing over all
distributions, so that we have

R ≤ lim
n→∞

1

n
LðuÞ
W ðN⊗nÞ:

in the limit as n becomes large and as ϵ → 0. □

Theorem 11.—The strong locking capacity LSðN Þ of a
quantum channel N is upper bounded as

LSðN Þ ≤ lim
n→∞

1

n
LðuÞ
S ðN⊗nÞ;

where

LðuÞ
S ðN Þ≡ max

fpðxÞ;ρxg
½IðX;BÞ − IaccðX;BEÞ�;

and the information quantities are with respect to the state
in (23).
Proof: The proof of this theorem is nearly identical to the

proof of the one above. However, we employ the bound
on the accessible information IaccðM;AnÞ ¼ IaccðM;BnEnÞ
from Definition 2 and Remark 4 instead. □

Remark 12.—Observe that the bounds in the above
theorem hold even if the key is allowed to be a sublinear
size quantum system, as in the locking schemes discussed
in Ref. [6].
It is an interesting and important open question to

determine if the upper bounds given in the above theorems
are achievable.

1. Entanglement-breaking channels have
zero locking capacity

The above theorems and a further analysis allow us to
determine that both the strong and the weak locking
capacities of an entanglement-breaking channel are equal
to zero.
Definition 13: Entanglement-breaking channel

Ref. [33].—A channel N EB is entanglement breaking if
the output state is separable whenever it acts on one share
of an entangled state:

ðidR ⊗ N EBÞðρRAÞ ¼
X
x

pXðxÞσxR ⊗ ωx
B;

where pXðxÞ is a probability distribution, each σxR is a state
on the reference system R, and each ωx

B is a state on the
channel output system B.
Theorem 14.—Both the strong and the weak locking

capacities of an entanglement-breaking channel N EB are
equal to zero:

LWðN EBÞ ¼ LSðN EBÞ ¼ 0.

Proof: The proof of this theorem exploits the upper
bound derived in Theorem 10 and the fact that
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LWðN EBÞ ≥ LSðN EBÞ. We know from Ref. [33] that any
entanglement-breaking channel has a representation with
rank-one Kraus operators, so that its action on an input
density operator is given by

N EBðρÞ ¼
X
y

jφyiBhψyjAρjψyiAhφyjB;

for some set of vectors fjψyiAg, such thatP
yjψyihψyjA ¼ IA, and a set of states fjφyiBg. An iso-

metric extension of the channel is then given by

UN EB
A→BE ≡X

y

jφyiBhψyjA ⊗ jyiE;

with fjyiEg an orthonormal basis for the environment.
From this representation, it is clear that the channel to the
environment is of the form

N c
EBðρÞ ¼

X
y;z

hψyjρjψ ziAhφzjφyiBjyihzjE;

and the environment can simulate the channel to the
receiver by first performing a von Neumann measurement
in the basis fjyig followed by a preparation of the state
jφyiB conditioned on the measurement outcome being y.
Now, consider the information quantity LðuÞ

W ðN EBÞ
defined in Eq. (22). Theorem 10 states that the regulari-
zation of this quantity is an upper bound on the weak
locking capacity. For any finite n, we can always pick the
measurement to be a tensor-product von Neumann meas-
urement of the form mentioned above, giving that

IaccðX;EnÞ ≥ IðX;YnÞ;

where Yn is the random variable corresponding to the
measurement outcomes. Because of the structural relation-
ship given above (the fact that the environment can simulate
the channel to the receiver by preparing n quantum states
jφy1i ⊗ � � � ⊗ jφyni from the measurement outcomes yn),
we find that

IðX;YnÞ ≥ IðX;BnÞ;

by an application of the quantum data-processing inequal-
ity. This is equivalent to IðX;BnÞ − IðX;YnÞ ≤ 0, which
implies that limn→∞

1
n L

ðuÞ
W ðN⊗n

EB Þ ¼ 0 and thus that the
weak locking capacity vanishes for any entanglement-
breaking channel. □

Remark 15.—The importance of the above theorem is the
conclusion that a channel should be able to preserve
entanglement between a purification of the channel input
and its output in order for it to be able to lock information.
If it is not able to (i.e., if it is entanglement breaking), then
the locking capacity is equal to zero. Reference [34]
suggested that entanglement does not play a role in

quantum data locking, but this theorem shows that it does
in any realistic implementation of a locking protocol.
Remark 16.—It should be possible to provide a rigorous

generalization of this result to entanglement-breaking
channels defined over general infinite-dimensional spaces
using the techniques from Ref. [35]. For example, it is
known that a lossy bosonic channel becomes entanglement
breaking when the environment injects a thermal state with
sufficiently high photon number [35]. However, we leave
this question open for future work.

2. Protocols with classical simulations have
zero strong locking rate

It is important to determine the conditions for when the
locking rate of a given protocol is zero, so that we can
distinguish between the classical and quantum regimes for
locking. In this regard, we can exclude all protocols that
have a classical simulation in the following sense.
Definition 17: Classical simulation.—We say that a

locking protocol has a classical simulation if the receiver’s
decoding consists of performing a measurement on the
output of the channel that is independent of the key K,
followed by a classical postprocessing of the measurement
output and the key to produce an estimate of the transmitted
message.
Theorem 18.—The strong locking rate of any locking

protocol with a classical simulation is equal to zero.
Proof: The fact that this theorem should hold might be

obvious, but nevertheless we provide a proof. The setup for
this proof is similar to that in the proof of Theorems 10 and
11, with the exception that the decoder first performs a key-
independent measurement of the channel output to produce
a random variable Y. The decoder then processes the
random variable Y and the key K to produce an estimate
M̂ of the sender’s message. We can bound the rate R of this
protocol as follows:

nR ¼ HðMÞΦ̄
¼ IðM; M̂ÞΦ̄
≤ IðM; M̂Þω0 þ nϵ0

≤ IðM;YKÞω þ nϵ0

¼ IðM;YÞω þ IðM;KjYÞω þ nϵ0

≤ IðM;YÞω − IaccðM;BnEnÞω þ oðnÞ þ nϵ0 þ nϵ00

≤ IðM;YÞω − IðM;YÞω þ oðnÞ þ nϵ0 þ nϵ00

¼ oðnÞ þ nϵ0 þ nϵ00:

The first three lines above are exactly the same as those in
the proof of Theorem 10. The second inequality follows
from quantum data processing. The third equality is the
chain rule. The third inequality follows from the condition
IaccðM;BnEnÞω ≤ ϵ0n, with ϵ″ ≡ h2ðϵ=2Þ=nþ ϵR=2,
whenever Eq. (14) is satisfied, which should hold for
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any strong locking protocol. Also, it follows because
IðM;KjYÞω ≤ HðKÞ ≤ oðnÞ. Finally, the adversary can
choose their processing of the BnEn systems to be a
discarding of En followed by whatever key-independent
measurement of Bn the receiver is performing to produce Y.
Thus, it follows that IaccðM;BnEnÞω ≥ IðM;YÞ. The state-
ment that the strong locking rate is equal to zero follows by
taking the limit as n → ∞ and ϵ → 0. □

As a corollary of the above theorem, we find the
following.
Corollary 19.—If a protocol does not consume any

secret key at all, the strong locking rate is equal to zero.
Proof: This follows simply because the receiver’s

measurement on the channel outputs does not depend on
a key for a scheme that does not use any key at all. □

3. The private and quantum capacity are equal to the
weak locking capacity for particular Hadamard channels

In this section, we prove that, if the channel is such that
the map from the input to the environment is a quantum-to-
classical channel, i.e., of the following form,

ρ →
X
x

TrfAxρA
†
xgjxihxj; (24)

for some orthonormal basis fjxig and where
P

xA
†
xAx ¼ I,

then the weak locking capacity of such a channel is equal to
its private and quantum capacity. This result follows simply
because the systems received by the environment are
already classical, so that the best measurement for the
adversary to perform is given by fjxihxjg on each channel
use. Any measurement other than this one will have mutual
information with the message lower than this measure-
ment’s mutual information by a simple data-processing
argument. Furthermore, since the systems given to the
environment are classical, the Holevo information of the
environment with the input is equal to the accessible
information of the environment with the input for such
channels.
For such channels, the map from the input to the output is

of the following form,

ρ →
X
x

AxρA
†
x ⊗ jxihxj; (25)

because the operator
P

xAxð·Þ ⊗ jxi ⊗ jxi is an isometric
extension of the channel in Eq. (24). A notable example of
such a channel is the “photon detected-jump” channel,
described in Ref. [36]. Channels of the form in Eq. (25) are
examples of Hadamard channels, which are generally
defined as channels complementary to entanglement-break-
ing ones [37,38].
We state the above result as the following theorem.
Theorem 20.—Theweak locking capacity of a channel of

the form in Eq. (25) is equal to its private and quantum
capacity and is given by the following expression,

max
fpXðxÞ;ρxg

½IðX;BÞ − IðX;EÞ�;

where the information quantities are evaluated with respect
to the following state,

X
x

pXðxÞjxihxjX ⊗ UN
A→BEðρxÞ;

with UN
A→BE an isometric extension of the channel N .

Proof: A proof of this theorem follows the intuition
mentioned above. In particular, we know from
Refs. [26,27] that the following formula is equal to the private
capacity of any channel:

PðN Þ ¼ lim
n→∞

1

n
f max
fpXðxÞ;ρðnÞx g

½IðX;BnÞ − IðX;EnÞ�g:

Now, sincewe are assuming the channel to the environment to
have the form given in Eq. (24), the systems given to the
environment are classical so that the accessible information
IaccðX;EnÞ is equal to the Holevo information IðX;EnÞ for
any finite n. Thus, our upper bound from Theorem 10
on the weak locking capacity of such a channel is equal
to the expression given above for its private capacity.
Furthermore, all Hadamard channels are degradable [39],
meaning that the receiver can simulate themap from the input
to the environment by acting with a degrading map on the
system. Finally, it is known that the expression for the private
capacity “single letterizes” to the form in the statement of the
theorem for degradable channels and that the quantum
capacity is equal to the private capacity for such channels
[40]. (It is often said that an information theoretic formula is
“single-letter” if it is function of a single instance of the
channel or resource.) □

Remark 21.—Theorem 20 demonstrates that it suffices to
use a private capacity achieving code for channels of the
form in Eq. (25), with the benefit that these private
communication codes do not require the consumption of
any secret key. That is, there is no need to devise an exotic
information locking protocol for such channels in order to
achieve their weak locking capacity.

4. Quantum discord-based upper bound on the gap
between weak locking capacity and private capacity

The quantum discord is an asymmetric measure that
quantifies the quantum correlation in a bipartite quantum
state [41]. For a given bipartite quantum state ρAB, the
quantum mutual information IðA;BÞρ quantifies all of the
bipartite correlations in ρAB, while maxΛA→X

IðX;BÞ is
meant to capture the classical correlations in the state that
are recoverable by performing a local measurement on the
A system [42]. Thus, the idea behind the quantum discord
DðA; BÞρ is to quantify the quantum correlations in a state
by subtracting out the classical correlation from the total
correlation:
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DðA;BÞρ ≡ IðA;BÞρ −max
ΛA→X

IðX;BÞ:

Ollivier and Zurek originally described the quantum
discord as the correlations lost during a measurement
process [41].
Our upper bound on the weak locking capacity from

Theorem 10 appears similar to the above formula for
quantum discord. Indeed, we can place an upper bound
on the gap between the weak locking capacity and the
private capacity of a quantum channel in terms of the
discord between the environment of the channel and
the classical variable sent into the channel. We can also
interpret this as merely the gap between the Holevo
information of the environment and its accessible informa-
tion. It is clear why this gap is related to quantum discord.
In a private communication protocol, the security guarantee
is with respect to the Holevo information, while in a
locking protocol, the guarantee is with respect to the
accessible information. Thus, the gap between the two
capacities should be related to the correlations lost during
Eve’s measurement.
Proposition 22.—The gap between the weak locking

capacity and the private capacity of a quantum channel is
no larger than

LWðN Þ − PðN Þ ≤ lim
n→∞

1

n
½ max
fpXðxÞ;ρxg

IðX;EnÞ − IaccðX;EnÞ�

¼ lim
n→∞

1

n
½ max
fpXðxÞ;ρxg

DðEn; XÞ�;

where the entropies for any finite n are with respect to a
state of the following form:

X
x

pXðxÞjxihxjX ⊗ N⊗n
A→EðρxÞ;

and N A→E is the channel complementary to N A→B ¼ N .
Proof: Consider that for any finite n, we have the bound

IðX;BnÞ−IaccðX;EnÞ¼ IðX;BnÞ− IðX;EnÞ
þIðX;EnÞ−IaccðX;EnÞ
≤ max

fpXðxÞ;ρxg
½IðX;BnÞ− IðX;EnÞ�

þ max
fpXðxÞ;ρxg

½IðX;EnÞ−IaccðX;EnÞ�:

Then, by using the bound from Theorem 10, the inequality
above, and the characterization of the private capacity as
PðN Þ ¼ limn→∞

1
n ½maxfpXðxÞ;ρxg½IðX;BnÞ − IðX;EnÞ��, the

bound in the statement of the theorem follows. □

C. Examples

Example 23: Noiseless qudit channel.—The noiseless
qudit channel trivially has weak locking capacity equal to

log2d, where d is the dimension of the input and the output
for the channel. The reason for this is that an isometric
extension of this channel has the following form:

X
i

jiiBhijA ⊗ jφiE:

In this case, Eve’s state is independent of the input, so that
her accessible information is always equal to zero (even
without coding in any way).
However, the noiseless qudit channel nontrivially has

strong locking capacity also equal to log2 d. This follows
from the results of Fawzi et al. [9], in which they
demonstrated the existence of a locking protocol that locks
n dits using 4log2ð1=ϵÞ þOð½log2log2ð1=ϵÞÞ� bits of key
while having the variational distance in Eq. (14) for any
eavesdropper measurement no larger than ϵ, for an eaves-
dropper who obtains the full output of the noiseless
channel. Thus, this scheme is an ðn; log2 d; ϵÞ locking
protocol that consumes the secret key at a rate equal to

1

n
f4 log2 ð1=ϵÞ þO½log2 log2 ð1=ϵÞ�g:

So, for any fixed ϵ > 0, we can take n large so that the
secret key rate vanishes in this limit, while the eavesdropper
will not be able to do much better than to randomly guess
the message. Thus, this construction gives a scheme to
achieve the rate log2 d. Since the strong locking capacity of
the noiseless qudit channel cannot be any larger than log2 d,
this proves that it is equal to log2 d for this channel.
In reality, one does not ever have access to perfectly

independent uses of a quantum channel, as this is just an
idealization. As such, it can be helpful to define the “one-
shot” locking capacity for a single use of a quantum
channel. We provide such a definition below.
Definition 24: One-shot locking capacity.—The ϵ-one-

shot locking capacity of a quantum channel is the maxi-
mum number of locked bits that a sender can transmit to a
receiver such that the receiver can recover the message with
average error probability less than ϵ > 0 and such that the
total variational distance of the message distribution con-
ditioned on the eavesdropper’s measurement outcome x
with the unconditioned message distribution pM is no
larger than ϵ:

X
m

jpMjXðmjxÞ − pMðmÞj ≤ ϵ:

We also demand that the number of secret key bits used is
Oðlog2 log2 jMjÞ. Similar to the IID case, we can distin-
guish between weak and strong locking capacities.
Example 25: Depolarizing channel.—Recall that the

quantum depolarizing channel is defined as
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ρ → ð1 − pÞρþ p
I
d
;

where p ∈ ½0; 1� characterizes the noisiness of the channel
and d is its dimension. For sufficiently large d, the ϵ-one-
shot strong locking capacity of the depolarizing channel is
equal to its ϵ-one-shot classical capacity (defined similarly
as above—see Ref. [43], for example). This result follows
simply because any unitary encoding commutes with the
action of the depolarizing channel on the input state, and we
can employ the FHS protocol combined with an ϵ-one-shot
classical capacity achieving code, in order to achieve the
same ϵ-one-shot strong locking capacity of the depolarizing
channel.
While it is easy to prove, this example illustrates the

subtle interplay between locking, entanglement, and
classical communication. The fact that the depolarizing
channel’s one-shot strong locking and classical capacities
match regardless of the strength of the noise would seem
to leave little room for quantum correlations to play any
role. Indeed, it seems hard to reconcile this result with
the statement of Theorem 14 that entanglement-breaking
channels have zero strong locking capacity, which is easily
adapted to the one-shot setting. The resolution is that, for
any fixed but arbitrarily large amount of noise p, the
depolarizing channel eventually ceases to be entanglement
breaking for some sufficiently large d ¼ polyð1=pÞ [44].
Our best known characterization of the locking capacity

of the IID memoryless depolarizing channel is in terms of
the operational inequalities given in Eqs. (18) and (19).
Example 26: Erasure channel.—Consider ad-dimensional

quantum erasure channel defined as

ρ → ð1 − pÞρþ pjeihej;
where jei is an erasure flag state that is orthogonal to the
d-dimensional input state. For this channel, a unitary acting
on the input commutes with the action of the channel, so
that the same argument as above demonstrates that the
ϵ-one-shot strong locking capacity of this channel is equal
to its ϵ-one-shot classical capacity for sufficiently large d.
The feedback-assisted weak and strong locking

capacities of the memoryless erasure channel are at least
ð1 − pÞ2 for p ≤ 1=2 and ð1 − pÞ=ð1þ 2pÞ for p ≥ 1=2.
Furthemore, they are no larger than 1 − p. These results
follow from the best-known lower bounds on the quantum
capacity of the erasure channel assisted by classical feed-
back [30], the fact that the feedback-assisted classical
capacity of the erasure channel cannot exceed 1 − p,
and the operational inequalities in Eq. (21).
Furthermore Example 27: Parallelized locking proto-

cols.—A simple parallelized protocol (as mentioned in
Ref. [7]) is to employ the FHS protocol for each use of a
memoryless depolarizing or erasure channel. However, the
best-known statement regarding the parallel composition of
locking protocols is given by Proposition 2.4 of Ref. [9].

That is, if one locking protocol guarantees that the total
variational distance of a message distribution conditioned
on the eavesdropper’s measurement outcome x1 with the
unconditioned message distribution pM is no larger than ϵ1,

X
m1

jpM1jX1
ðm1jx1Þ − pM1

ðm1Þj ≤ ϵ1;

and another guarantees it is no larger than ϵ2,

X
m2

jpM2jX2
ðm2jx2Þ − pM2

ðm2Þj ≤ ϵ2;

then the parallel composition of these protocols guarantees
a total variational distance no larger than ϵ1 þ ϵ2:

X
m1;m2

jpM1;M2jXðm1; m2jxÞ − pM1;M2
ðm1; m2Þj ≤ ϵ1 þ ϵ2:

Then, consider a simple parallelized protocol consisting
of n uses of a d-dimensional channel, where we suppose
that each channel use has a guarantee that the variational
distance (as above) is no larger than γ > 0. Parallel
composition of the locking protocols guarantees that the
variational distance for the n channel uses is no larger than
γn. By applying the Fannes-Audenaert inequality [18,19]
as in Proposition 3.2 of Ref. [9], one finds the following
bound on the accessible information of the adversary,

ðγnÞ log dnE þ h2ðγnÞ;

where dE is the dimension of the environment for a single
channel use. Thus, the number of secret key bits needed to
guarantee that Eve’s accessible information is no larger
than nϵ is equal to O½n log2 ð1=ϵÞ�, so that the rate of the
key used in this scheme grows linearly with the number of
channel uses. Clearly, this approach is less desirable than
simply using a one-time pad combined with a classical
capacity achieving code. For this latter protocol, the rate of
the key is a fixed constant independent of the number of
channel uses, and the protocol guarantees perfect secrecy
from an adversary with access to a quantum memory.
In information theory, results for memoryless channels

usually follow straightforwardly from their one-shot coun-
terparts. The linear key growth incurred when parallelizing
locking protocols prevents us from quickly concluding
that the non-one-shot strong locking capacities of the
depolarizing and erasure channels match their classical
capacities. Moreover, the covariance argument used to
draw that conclusion does not translate directly to the
setting of many channel uses. We therefore leave it as an
open question to determine whether the equivalence per-
sists beyond the one-shot setting.
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VI. UPPER BOUNDS ON THE LOCKING
CAPACITY WHEN RESTRICTING TO

COHERENT-STATE ENCODINGS

In this section, we prove that there are fundamental
limitations on the locking capacity of channels when we
restrict ourselves to coherent-state encodings. In particular,
we prove that the strong locking capacity of any quantum
channel cannot be any larger than

gðNSÞ − log2 ð1þ NSÞ;

where gðxÞ≡ ðxþ 1Þlog2ðxþ 1Þ − xlog2x, when restrict-
ing to coherent-state encodings with mean input photon
number NS. Observe that gðNSÞ− log2 ð1þNSÞ≤
log2ðeÞ, and this latter bound is independent of the photon
number used for the coherent-state code words. An intuitive
(yet not fully rigorous) reason for why we obtain this bound
is that log2 ð1þ NSÞ is the rate of information that an
adversary can recover about the message simply by
performing heterodyne detection on each input to the
channel, while gðNSÞ is an upper bound on the classical
capacity of any channel with mean input photon number
NS. Thus, the difference of these two quantities should be a
bound on the strong locking capacity.
We also prove that the weak locking capacity of a pure-

loss bosonic channel cannot be any larger than the sum of
its private capacity and

g½ð1 − ηÞNS� − log2½1þ ð1 − ηÞNS�;

when restricting to coherent-state encodings with mean
photon number NS, where η ∈ ½0; 1� is the transmissivity of
the channel. As before, g½ð1−ηÞNS�−log2 ½1þð1−ηÞNS�≤
log2ðeÞ, which is independent of the photon number.
We consider a coherent-state locking protocol in which

the encrypted states fUkjmig are generalized to a set of
n-mode coherent states fjαnðm; kÞigm∈M;k∈K, where
jαnðm; kÞi is an n-fold tensor product of coherent states:

jαnðm; kÞi≡ jα1ðm; kÞi ⊗ � � � ⊗ jαnðm; kÞi:

Definition 28: Coherent-state locking protocol.—A
coherent-state locking protocol consists of coherent-state
code words fjαnðm; kÞigm∈M;k∈K depending upon the
message m and the key value k. These code words are
then transmitted over a quantum channel to be decoded by a
receiver.
Theorem 29.—The strong locking capacity of any

channel when restricting to coherent-state encodings
with mean photon number NS is upper bounded by
gðNSÞ − log2 ð1þ NSÞ.
Proof.—As described in Definition 28, the encoder for

such a scheme prepares a coherent-state code word
jαnðm; kÞi at the input of n uses of a quantum channel
N , depending upon the messagem and the key value k. It is

useful for us to consider the following classical-quantum
state, which describes the state of the message, key, and
input to many uses of the channel:

ρMKAn¼ 1

jMjjKj
X
m;k

jm;kihm;kjMK⊗jαnðm;kÞihαnðm;kÞjAn:

(26)

After the isometric extension of the channel acts (it is
unique up to unitaries acting on the environment), the state
is then as follows:

ρMKBnEn ¼ 1

jMjjKj
X
m;k

jm; kihm; kjMK

⊗ UN
An→BnEn ½jαnðm; kÞihαnðm; kÞjAn �;

where UN
An→BnEn is the isometry corresponding to n uses of

the given channel. Recall from the proof of Theorem 11 that
we obtain the following upper bound on the strong locking
capacity of N :

IðM;BnÞ − IaccðM;BnEnÞ þ oðnÞ þ n2ϵ0: (27)

[Recall that this bound holds for any ðn; R; ϵÞ strong
locking protocol, with ϵ0 a function of ϵ that vanishes as
ϵ → 0.] Consider that the information quantity IðM;BnÞ is
upper bounded as follows:

IðM;BnÞρ ≤ IðM;AnÞρ
¼ IðMK;AnÞρ − IðK;AnjMÞρ;

where the first inequality follows from quantum data
processing, and the equality follows from the chain rule
for quantum mutual information. We then find that

IðMK;AnÞρ ¼ HðAnÞρ −HðAnjMKÞρ
¼ HðAnÞρ; (28)

where the second equality follows because the state on An

is a pure coherent state when conditioned on systems M
and K.
On the other hand, we obtain a lower bound on the

accessible information IaccðM;BnEnÞ ¼ IaccðM;AnÞ by
having the adversary perform heterodyne detection (a
particular measurement that is not necessarily the optimal
one) on each of the systems An, giving

IaccðM;AnÞρ ≥ IhetðM;AnÞρ (29)

¼ IhetðMK;AnÞρ − IhetðK;AnjMÞρ; (30)

where in the second line we again apply the chain rule
for mutual information. An ideal n-mode heterodyne
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measurement is described by a POVM fd2nβnπn jβnihβnjg,
where βn is the amplitude of the n-mode coherent state
jβni≡ jβ1i � � � jβni and d2nβn denotes the Lebesgue mea-
sure on Cn. We can then compute the heterodyne mutual
information IhetðMK;AnÞρ as

IhetðMK;AnÞρ ¼ WðAnÞρ −WðAnjMKÞρ;

where

WðQÞσ ¼ −
Z

d2nβn

πn
hβnjσjβnilog2hβnjσjβni (31)

denotes the Wehrl entropy for a state σ defined on system
Q [45] and its conditional version follows in the natural
way. It is easy to see that the Wehrl entropy of an n-mode
coherent state is equal to n log2ðeÞ, so we find that

IhetðMK;AnÞρ ¼ WðAnÞρ − nlog2ðeÞ: (32)

We are now in a position to derive an upper bound on
Eq. (27). Observe that our development above implies that

IðM;BnÞ−IaccðM;BnEnÞ
≤IðMK;AnÞρ−IðK;AnjMÞρ
− ½IhetðMK;AnÞρ−IhetðK;AnjMÞρ�
≤IðMK;AnÞρ−IhetðMK;AnÞρ
≤max

pXðxÞ
½IðX;AnÞω−IhetðX;AnÞω�

≤nmax
pXðxÞ

½IðX;AÞσ−IhetðX;AÞσ�

¼nflog2ðeÞþmax
pXðxÞ

½HðAÞσ−WðAÞσ�g

≤n½gðNSÞ− log2ð1þNSÞ�: (33)

The second inequality follows from data processing:
IðK;AnjMÞρ ≥ IhetðK;AnjMÞρ (the system M is classical,
and performing heterodyne detection on An can only reduce
the mutual information). The third inequality follows by
taking a maximization over all distributions pXðxÞ, where
ωXAn is a state of the following form:

ωXAn ≡X
x

pXðxÞjxihxjX ⊗ jαnxihαnx jAn ;

such that the mean input photon number to the channel for
each x is NS. The fourth inequality follows by realizing that
the difference between the mutual information and the
heterodyne information is equal to the private information
of a quantum wiretap channel in which the state jαnxi is

prepared for the receiver while the heterodyned version of
this state (a classical variable) is prepared for the eaves-
dropper. Such a quantum wiretap channel has pure product
input states (they are coherent states) and it is degraded.
Thus, we can apply Theorem 35 from the Appendix to
show that this private information is subadditive, in the
sense that

max
pXðxÞ

½IðX;AnÞω − IhetðX;AnÞω�

≤ nmax
pXðxÞ

½IðX;AÞσ − IhetðX;AÞσ�;

where we define the state σXA as follows:

σXA ≡X
x

pXðxÞjxihxjX ⊗ jαxihαxjA:

The last equality follows from the observation in Eq. (32)
and because IðX;AÞσ ¼HðAÞσ−HðAjXÞσ ¼HðAÞσ (since
the states are pure when conditioned on X).
We now show that the maximizing distribution for

maxpXðxÞ½HðAÞσ −WðAÞσ� is given by a circularly sym-
metric Gaussian distribution with variance NS, so that the
optimal ensemble is a Gaussian ensemble of coherent
states. Indeed, let ϱ be a single-mode quantum state with
Tr½aϱ� ¼ 0 and Tr½a†aϱ� ¼ NS, where a† and a are creation
and annihilation operators, respectively. The von Neumann
entropy is given by HðϱÞ ¼ −Tr½ϱ log2 ϱ�. We show that

HðϱÞ −WðϱÞ (34)

is maximized when ϱ is a thermal state. Our approach is
based on a technique used in the Appendix of Ref. [46],
which in turn is based on classical approaches to this
problem [12]. Let

~ϱ ¼ 1

NS þ 1

X∞
m¼0

�
NS

NS þ 1

�
m
jmihmj (35)

be a thermal state with mean photon number NS. We will
show that

Hð~ϱÞ −Wð~ϱÞ − ðHðϱÞ −WðϱÞÞ ≥ 0 (36)

holds for any ϱ with Tr½aϱ� ¼ 0 and Tr½a†aϱ� ¼ NS.
Putting

QϱðβÞ ¼ hβjϱjβi; (37)

the left-hand side of (36) is equal to
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−Tr½~ϱlog2 ~ϱ�þTr½ϱlog2ϱ�þ
Z

d2β
π

Q~ϱðβÞlog2Q~ϱðβÞ−
Z

d2β
π

QϱðβÞlog2QϱðβÞ

¼Tr½ϱðlog2ϱ− log2 ~ϱÞ�þTr½ðϱ− ~ϱÞlog2 ~ϱ�−
�Z

d2β
π

QϱðβÞ½log2QϱðβÞ− log2Q~ρðβÞ�þ
Z

d2β
π

½QϱðβÞ−Q ~ϱðβÞ�log2Q~ϱðβÞ
�

¼Dðϱjj~ϱÞ−DðQϱjjQ~ϱÞþTr½ðϱ− ~ϱÞlog2 ~ϱ�−
Z

d2β
π

½QϱðβÞ−Q~ϱðβÞ�log2Q~ϱðβÞ; (38)

where Dðϱjj~ϱÞ and DðQϱjjQ~ϱÞ are quantum and classical relative entropies, respectively. We can easily show that their
difference is positive by the monotonicity property of the relative entropy. The third term is

Tr½ðϱ − ~ϱÞlog2 ~ϱ� ¼ Tr

�
ðϱ − ~ϱÞ

X∞
m¼0

log2

�
1

NS þ 1

�
NS

NS þ 1

�
a†a

�
jmihmj

�

¼ −log2ðNS þ 1ÞTr½ϱ − ~ϱ� þ log2

�
NS

NS þ 1

�
Tr½ðϱ − ~ϱÞa†a�

¼ 0. (39)

Similarly, the fourth term is

Z
d2β
π

½QϱðβÞ −Q~ϱðβÞ�log2Q~ϱðβÞ ¼
Z

d2β
π

½QϱðβÞ −Q~ϱðβÞ�
�
−log2ðNS þ 1Þ − jβj2

lnð2ÞðNS þ 1Þ
�
: (40)

¼ 0. (41)

Note that Q~ϱðβÞ ¼ 1
ðNSþ1Þ exp½− jβj2

NSþ1
�, and we used the fact that if Tr½a†aϱ� ¼ Tr½a†aτ�, then

Z
d2βQϱðβÞjβj2 ¼

Z
d2βQτðβÞjβj2:

As a consequence, we have

Hð~ϱÞ −Wð~ϱÞ − ½HðϱÞ −WðϱÞ� ¼ Dðϱjj~ϱÞ −DðQϱjjQ~ϱÞ ≥ 0; (42)

which completes the proof that maxpXðxÞ½HðAÞσ −WðAÞσ�
is optimized by a circularly symmetric complex Gaussian
distribution with variance NS.
Finally, we can rewrite log2ðeÞ þ

maxpXðxÞ½HðAÞσ −WðAÞσ� as IðX;AÞσ − IhetðX;AÞσ for
X complex Gaussian, and these information quantities
evaluate to gðNSÞ − log2 ð1þ NSÞ in such a case. By
combining the bounds in Eqs. (27) and (33), we deduce
the following upper bound on the rate R of any strong
locking protocol that employs coherent-state code words
with mean photon number NS:

R ≤ gðNSÞ − log2 ð1þ NSÞ þ
oðnÞ
n

þ 2ϵ0;

which converges to gðNSÞ − log2 ð1þ NSÞ in the limit as
n → ∞ and ϵ → 0. □

Theorem 30.—The weak locking capacity of a pure-loss
bosonic channel with transmissivity η ∈ ½0; 1� when
restricting to coherent-state encodings with mean input
photon number NS is upper bounded by

max f0; gðηNSÞ − g½ð1 − ηÞNS�g
þ fg½ð1 − ηÞNS� − log2½1þ ð1 − ηÞNS�g:

The term max f0; gðηNSÞ − g½ð1 − ηÞNS�g is equal to the
private capacity of the pure-loss bosonic channel, while the
second term is limited by the bound

fg½ð1 − ηÞNS� − log2½1þ ð1 − ηÞNS�g ≤ log2ðeÞ:

Proof: The proof of this theorem is somewhat similar to
the proof of the previous theorem. Nevertheless, there are
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some important differences, so we give the full proof for
completeness.
In the proof of Theorem 10, we obtain the following

upper bound on the weak locking capacity:

IðM;BnÞ − IaccðM;EnÞ þ oðnÞ þ n2ϵ0: (43)

[Recall that this bound holds for any ðn; R; ϵÞ strong
locking protocol, with ϵ0 a function of ϵ that vanishes
when ϵ → 0.] We begin by bounding the quantity
IðM;BnÞ − IaccðM;EnÞ:

IðM;BnÞ− IaccðM;EnÞ
≤ IðMK;BnÞ− ½IhetðMK;EnÞ− IhetðK;EnjMÞ�
≤ IðMK;BnÞ− IhetðMK;EnÞþoðnÞ
¼HðBnÞ−WðEnÞþnlog2ðeÞþoðnÞ
¼HðBnÞ−HðEnÞþHðEnÞ−WðEnÞ
þnlog2ðeÞþoðnÞ

≤ nðmaxf0;gðηNSÞ−g½ð1−ηÞNS�gÞ
þnfg½ð1−ηÞNS�− log2½1þð1−ηÞNS�gþoðnÞ:

The first inequality follows from data processing
IðM;BnÞ ≤ IðMK;BnÞ, the fact that IaccðM;EnÞ≥
IhetðMK;EnÞ, and the identity IhetðM;EnÞ¼IhetðMK;EnÞ−
IhetðK;EnjMÞ. The second inequality follows because
IhetðK;EnjMÞ ≤ HðKÞ ≤ oðnÞ. The first equality follows
from the fact that IðMK;BnÞ ¼ HðBnÞ for the pure-loss
bosonic channel and from the fact that IhetðMK;EnÞ¼
WðEnÞ−nlog2ðeÞ. The second equality is a simple identity.
The final inequality follows because the entropy difference
HðBnÞ −HðEnÞ is equal to a coherent information of the
n-use pure-loss bosonic channel. The only relevant prop-
erty of the input state for which the coherent information
is evaluated is that it has a mean photon number NS,
and so the coherent information is always lower than
nmax f0; gðηNSÞ − g½ð1 − ηÞNS�g, which is equal to n
times the quantum and private capacity of this channel
[47,48]. We also employ an argument similar to that in the
previous theorem to bound HðEnÞ −WðEnÞ þ n log2ðeÞ
from above by nfg½ð1 − ηÞNS� − log2 ½1þ ð1 − ηÞNS�g.
Finally, by combining the above bound with the bound
in Eq. (43), we deduce the following upper bound on the
rate R of any weak locking protocol that employs coherent-
state code words for transmission over a pure-loss bosonic
channel:

R≤maxf0;gðηNSÞ−g½ð1−ηÞNS�g

þfg½ð1−ηÞNS�− log2½1þð1−ηÞNS�gþ
oðnÞ
n

þ2ϵ0;

which converges to max f0; gðηNSÞ − g½ð1 − ηÞNS�g þ
fg½ð1 − ηÞNS� − log2½1þ ð1 − ηÞNS�g in the limit as
n → ∞ and ϵ → 0. □

Remark 31.—Given that the private capacity of a pure-
loss bosonic channel with mean input photon number NS is
equal to max f0; gðηNSÞ − g½ð1 − ηÞNS�g, the above theo-
rem implies a strong limitation on the weak locking
capacity of a pure-loss bosonic channel when restricting
to coherent-state encodings with mean input photon num-
ber NS. That is, the weak locking capacity when restricting
to coherent-state encodings cannot be more than 1.45 bits
larger than the channel’s private capacity.
Remark 32.—These bounds apply, in particular, to

channels that use a coherent-state locking protocol in
which there is a fixed code book fjαnðmÞig and the
coherent states are encrypted according to passive mode
transformations Uk that transform n-mode coherent states
as jαni → j ~Ukα

ni, where ~Ukα
n is understood to be a label

for a coherent-state vector with the following complex
amplitudes:

2
6664

~Uð1;1Þ
k � � � ~Uð1;nÞ

k

..

. . .
. ..

.

~Uðn;1Þ
k � � � ~Uðn;nÞ

k

3
7775

2
664
α1

..

.

αn

3
775: (44)

Remark 33.—If the coherent-state locking protocol
consists of passive mode transformations (as defined
above) for the encryption and the receiver performs
heterodyne detection to recover the message after decrypt-
ing with a passive mode transformation, then the strong
locking capacity of a channel using such a scheme is equal
to zero. This result follows because such a scheme has a
classical simulation—passive mode transformations com-
mute with heterodyne detection in such a way that
heterodyne detection can be performed first followed by
a classical postprocessing of the measurement data with a
matrix multiplication as in Eq. (44). That is, the decoding in
such a scheme is equivalent to first performing key-
independent heterodyne detection measurements followed
by classical postprocessing of the key and the measurement
results. Thus, Theorem 18 applies so that the strong locking
capacity of a channel using such a scheme is equal to zero.
However, this theorem does not apply if the receiver
performs photodetection because passive mode transfor-
mations do not commute with such a measurement.
From our upper bounds on the locking capacity of

channels restricted to coherent-state encodings, it is clear
that there are strong limitations on the rates that are
achievable when employing bright coherent states. That
is, it clearly would not be worthwhile to invest a large mean
input photon number per transmission given the above
limitations on locking capacity that are independent of the
photon number. In spite of this result, it might be possible
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to achieve interesting locking rates with weak coherent
states,butweshouldkeep inmind that theaboveboundswere
derived by considering the information that an adversary can
gain by performing heterodyne detection—the information
of the adversary can only increase if they perform a better
measurement. Nevertheless, we can determine values of the
mean input photon number NS such that the difference
gðNSÞ − log2 ð1þ NSÞ becomes relatively large. By con-
sideringNS ≪ 1, we find the following expansions of gðNSÞ
and log2 ð1þ NSÞ, respectively,

gðNSÞ ≈
�
−NS ln NS þ NS þ

N2
S

2

�
log2ðeÞ; (45)

log2ð1þ NSÞ ≈
�
NS − N2

S

2

�
log2ðeÞ; (46)

so that the difference gðNSÞ − log2ð1þ NSÞ ≈
½−NS ln NS þ N2

S�log2ðeÞ for NS ≪ 1. Indeed, in the limit
as NS → 0, we find that the relative ratio of our upper
bound on the strong locking capacity of a coherent-state
protocol to the classical capacity gðNSÞ of the noiseless
bosonic channel approaches one:

lim
NS→0

gðNSÞ − log2 ð1þ NSÞ
gðNSÞ

¼ 1;

so that there is some sense in which the rate at which we can
lock information becomes similar to the rate at which we
can insecurely communicate information if the bound
gðNSÞ − log2 ð1þ NSÞ is, in fact, achievable. However,
this remains an important open question.

VII. ONE-SHOT PPM COHERENT-STATE
LOCKING PROTOCOL

In spite of the limitations on the locking capacity of
coherent-state protocols in the previous section, we still
think it is interesting to explore what kind of locking
protocols are possible using coherent-state encodings. To
this end, we now discuss a one-shot strong locking protocol
(in the sense of Definition 24) that employs a coherent-state
encoding. For simplicity, we consider the case of a noise-
less channel, with the generalization to the pure-loss
bosonic channel and weak locking being straightforward.
An explicit scheme for locking using weak coherent

states can be obtained by analogy with the PPM encryption
presented in Ref. [7] and reviewed in Sec. IVA. Similar to
the single-photon scheme, to encode a message m, Alice
prepares an n-mode coherent state jαmi, which is a tensor
product of a single-mode coherent state of amplitude α on
the mth mode and the vacuum on the remaining n − 1
modes:

jαmi≡ j0i1…j0im−1jαimj0imþ1…j0in:

(Note that, as in the single-photon case, the PPM encoding
is highly inefficient in terms of the number of modes,
as it encodes only log2 n bits into n bosonic modes.) Let us
fix Ntot ¼ jαj2 to be the total mean number of photons
involved in the protocol and

NS ≡ Ntot

n
(47)

to be the mean photon number per mode. Before sending
anything to Bob, Alice encrypts a message by applying a
unitary selected uniformly at random (according to the
shared secret key) from a set of jKj n-mode linear-optical
passive transformations. If the unitary Uk is used, then the
final state is the n-mode coherent state

Ukjαmi ¼ ⨂
n

m0¼1

j ~Uðm0;mÞ
k αi: (48)

Bob, who knows which unitary has been chosen by Alice,
applies the inverse transformation and performs photo-
detection on the received modes. He will detect (one or
more) photons only in the mth mode, hence successfully
decrypting the message in case of a detection.
Different from the single-photon architecture of Ref. [7],

there is a nonzero probability that Bob’s detector does not
click. Analogous to the case of the single-photon locking
protocol in the presence of loss, if no photon is detected,
Bob may use a public classical communication channel to
ask Alice to resend, yielding

IaccðM;KQÞρ ¼ Ntotlog2n: (49)

However, the same observations from Sec. IVA apply here.
That is, locking is only known to be secure when the
message distribution is uniform, and this is certainly not the
case for a feedback-assisted scheme unless Eve attacks
each PPM block independently. If she attacks collectively,
then it is necessary for Alice and Bob to exploit an amount
of key necessary to ensure that the message distribution is
uniform.
Assuming that Eve independently attacks each block that

she receives, we have to evaluate her accessible information
with respect to the following state:

ρMKQ ¼ 1

njKj
X
m;k

jm; kihm; kjMK ⊗ ðUkjαmihαmjU†
kÞQ:

(50)

If the set of n-mode unitaries is selected uniformly at
random according to the Haar measure, one might expect
that such a set of unitaries scrambles phase information of α
so that it is not accessible to Eve. Thus, a presumably clever
strategy for Eve is to perform a measurement that com-
mutes with the total number of photons. Such a POVM has
the elements
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fj0ih0j; fμð1Þy jφð1Þ
y ihφð1Þ

y jgy; fμð2Þy jφð2Þ
y ihφð2Þ

y jgy;…g; (51)

where j0i is the n-mode vacuum, and for any k ≥ 1, each
vector jφðkÞ

y i belongs to the k-photon subspace. This
suboptimal measurement allows Eve to achieve a mutual
information InumðM;QÞρ such that

InumðM;QÞρ ≤ IaccðM;QÞρ: (52)

For small values of Ntot ≪ 1, the probability of having
more than one photon is of order N2

tot. We can hence argue
that, for N2

tot ≪ 1, the main contribution to InumðM;QÞρ
comes from POVM elements in Eq. (51), with k ¼ 0, 1, and
that the contribution of those with k ≥ 2 is, in the worst
case, of order N2

totlog2n. Noting that the projection of the
coherent state Ukjαmi in the subspace spanned by the
vacuum and the single-photon subspace is

e−jαj2=2ðj0i þ αUkjmiÞ

¼ e−jαj2=2
�
j0i þ α

X
m0

~Uðm0;mÞ
k jm0i

�
; (53)

where jm0i is the state of a single photon on them0th mode,
a straightforward calculation leads to the following expres-
sion for the lower bound InumðM;QÞρ:

InumðM;QÞρ ≤ Ntot

�
log2n −min

Mð1Þ
E

X
y

μð1Þy

njKj
X
k

HðqykÞ
�

þOðN2
totlog2nÞ; (54)

where the optimization is over the POVM Mð1Þ
E defined

on the single-photon subspace, with elements

fμð1Þy jφð1Þ
y ihφð1Þ

y jgi, and qmyk ¼ jhφð1Þ
y jUkjmij2.

The expression in square brackets in Eq. (54) is formally
the same as that in Eq. (5). We can hence bound
InumðM;QÞρ using the results of Ref. [9]. It follows that
there exist choices of jKj n-mode passive linear-optical
unitaries with

log2jKj ¼ 4log2ðϵ−1Þ þO½log2log2ðϵ−1Þ�; (55)

such that

InumðM;QÞρ ≤ ϵNtotlog2nþOðN2
totlog2nÞ; (56)

with ϵ arbitrarily small if n is large enough.
Clearly, the security condition r1 ≪ 1 can be satisfied

only if InumðM;QÞρ ≪ IaccðM;QKÞρ. A necessary condi-
tion for r1 ≪ 1 to hold is

ϵþOðNtotÞ ≪ 1; (57)

which can be fulfilled in the case of weak coherent states,
where Ntot ≪ 1. In this regime, the key-efficiency con-
dition r2 < 1 can be satisfied only if

4log2ðϵ−1Þ < Ntotlog2n: (58)

This implies that the value of Ntot has to be in the range

1 ≫ Ntot >
4log2ðϵ−1Þ

log2n
: (59)

In conclusion, this weak coherent state PPM protocol is
analogous to the single-photon one in the presence of linear
loss. In principle, the condition in Eq. (59) can always be
fulfilled for n large enough, yet the minimum value of n
increases exponentially with decreasing key-efficiency
ratio r2 and with decreasing Ntot.

VIII. CONCLUSION

In this paper, we formally define the locking capacity of
a quantum channel in order to establish a framework for
understanding the locking effect in the presence of noise.
We distinguish between a weak locking capacity and a
strong one, the difference being whether the adversary
has access to the environment of the channel or to its input.
We relate these locking capacities to other well-known
capacities from quantum Shannon theory, such as the
quantum, private, and classical capacity. The existence
of the FHS locking protocol [9] establishes that both the
weak and the strong capacity locking capacities are not
smaller than the quantum capacity, while the weak locking
capacity is not smaller than the private capacity because a
private communication protocol always satisfies the
demands of a weak locking protocol. Furthermore, the
classical capacity is a trivial upper bound on both locking
capacities. We also prove that the strong locking capacity is
equal to zero whenever a locking protocol has a classical
simulation and that both locking capacities are equal to zero
for an entanglement-breaking channel. This latter result
demonstrates that a channel should have some ability to
preserve entanglement in order for nonzero locking rates to
be achievable. Moreover, we find a class of channels for
which the weak locking capacity is equal to both the private
capacity and the quantum capacity.
As an important application, we consider the case of the

pure-loss bosonic channel and the locking capacities for
channels restricted to coherent-state encodings. We note
that a particular example of such a protocol is the αη
protocol (also known as Y00) [49]. We find limitations of
the locking capacity for these coherent-state schemes: the
strong locking capacity of any channel is not larger than
log2ðeÞ locked bits per channel use, while the weak locking
capacity of the pure-loss bosonic channel is not larger than
the sum of its private capacity and log2ðeÞ locked bits
per channel use. If the scheme exploits passive mode
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transformations and the receiver uses heterodyne detection,
the restrictions are as severe as they can be: the strong
locking capacity is equal to zero because there is a classical
simulation of such a protocol.
As a final contribution, we discuss locking schemes that

exploit weak coherent states and that might be physically
implementable. They are similar to the single-photon QEM
of Ref. [7], with the exception that information is encoded
by PPM of a coherent state of a given amplitude α, with
jαj2 ≪ 1, over n modes. The necessary conditions for
security and key efficiency of this scheme are qualitatively
equivalent to that of the single-photon QEM.
The realization of a proof-of-principle demonstration of

a quantum enigma machine is a tremendous experimental
challenge. The main difficulty to overcome concerns the
scaling of the physical resources required for key efficient
encryption. Note that, for single-photon PPM encoding, n
optical modes are needed to encode log2 n bits, while the
required secret key has length of the order of log2 log2 n.
As a consequence, the number of modes increases very
quickly if one requires small values of the key efficiency
ratio r2, as defined in Eq. (10). Although keeping the same
scaling law, the resources required for a key efficient
single-photon QEM become even more demanding when
one introduces loss in the single-photon scheme and when
one moves from the single-photon PPM to the weak
coherent-state PPM. On the other hand, in the case of a
weak coherent-state QEM, one can trade off the increase
in the number of modes (and/or the reduction in the key
efficiency level) with the fact that coherent states can be
prepared deterministically and are much easier to handle
than single-photon states. However, it seems that one has
to go beyond PPM encoding to overcome the key
efficiency limitations.
There are many open questions to consider going

forward. Perhaps the most pressing question is to determine
a formula that serves as a good lower bound on the locking
capacities (that is, one would need to demonstrate locking
protocols with nontrivial achievable rates according to the
requirements stated in Definitions 1, 2, and 8). One might
suspect that the formulas given in Theorems 10 and 11 are
in fact achievable, but it is not clear to us if this is true.
Furthermore, it is important to determine if there is an
example of a channel (perhaps many?) for which its weak
locking capacity is strictly larger than its private classical
capacity, and similarly, if there is a channel for which its
strong locking capacity is strictly larger than its quantum
capacity. We also suspect that the locking capacity is
nonadditive, as is the case for other capacities in quantum
Shannon theory [31,50,51]. If it is the case that the 50%
quantum erasure channel has a weak locking capacity equal
to zero, then it immediately follows from the results of
Ref. [31] and our operational bounds in Eqs. (18) and (19)
that both the weak and the strong locking capacities are
nonadditive.

Another intriguing question is the relationship between
the strong locking and quantum identification capacities
[52] of a quantum channel. Both seem to involve a weak
form of coherent data transmission from a sender to a
receiver. FHS even established an explicit connection
between locking using unitary encodings and quantum
identification over a channel built out of the inverses of
those unitaries [9]. It is tempting to speculate that the
single-letter formula for the amortized quantum identifica-
tion capacity found in Ref. [53] could thereby be recruited
as a tool to study the locking capacity.
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APPENDIX: PRIVATE CAPACITY OF
DEGRADED QUANTUM WIRETAP CHANNELS

This Appendix contains a proof that the private capacity
of a degraded quantum wiretap channel when restricted to
product-state encodings is single letter. Also, we show by
an appeal to Hastings’s counterexample to the additivity
conjecture [54] that there exist two quantum wiretap
channels that are degraded but nevertheless have non-
additive private information. This latter result provides a
simple answer to a question that has been open since the
introduction of weakly degradable channels [55].
A quantum wiretap channel is defined as a completely

positive trace-preserving mapN A→BE from an input system
A to a legitimate receiver’s system B and an eavesdropper’s
system E. Such a map has an isometric extension UA→BEF,
with the property that

N A→BEðρÞ ¼ TrFfUA→BEFρU
†
A→BEFg:

The private capacity of a quantum wiretap channel is given
by [26,27]

lim
n→∞

1

n
PðN⊗n

A→BEÞ;

where PðN A→BEÞ is the private information, defined as

PðN A→BEÞ≡ max
fpXðxÞ;ρxg

IðX;BÞρ − IðX;EÞρ; (A1)

with the entropies taken with respect to the following
classical-quantum state:
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ρXBE ≡X
x

pXðxÞjxihxjX ⊗ N A→BEðρxÞ: (A2)

Such a wiretap channel is degraded if there exists a
degrading map DB→E such that

DB→E∘N A→B ¼ N A→E:

Theorem 34.—The private information formula in
Eq. (A1) for two degraded quantum wiretap channels is
generally nonadditive. That is, there exist degraded quan-
tum wiretap channels N 1 and N 2 such that

PðN 1 ⊗ N 2Þ > PðN 1Þ þ PðN 2Þ:
Proof: This result follows by exploiting the counterex-

ample of Hastings [54] for the Holevo information formula.
Let M1 and M2 be the channels from Hastings’s counter-
example, i.e., they satisfy

χðM1 ⊗ M2Þ > χðM1Þ þ χðM2Þ; (A3)

where χðN Þ is the Holevo information of a channelN . We
then construct our quantumwiretap channelsN 1 andN 2 as
N 1ðρÞ ¼ M1ðρÞ ⊗ σE and N 2ðρÞ ¼ M2ðρÞ ⊗ σE. Both
channels are obviously degraded wiretap channels because
the channel to the environment simply prepares
a constant state σE. Also, there is no dependence of the
environment’s output on the input state, so that the
private information of these channels reduces to Holevo
information:

PðN 1 ⊗ N 2Þ ¼ χðM1 ⊗ M2Þ;
PðN 1Þ ¼ χðM1Þ;
PðN 2Þ ¼ χðM2Þ:

Thus, the inequality in the statement of the theorem follows
from Eq. (A3)). □

Theorem 35.—The private information of a degraded
quantum wiretap channel is additive when restricted to
product state encodings.
Proof: First, consider that we can always restrict the

optimization in the private information formula to be taken
over pure input states whenever the quantum wiretap
channelN A→BE is degraded. Indeed, consider the extension
state

ρXYBE ≡X
x;y

pXðxÞpYjXðyjxÞjxihxjX

⊗ jyihyjY ⊗ N A→BEðψx;yÞ; (A4)

where we are using a spectral decomposition for each
state ρx:

ρx ¼
X
y

pYjXðyjxÞψx;y:

Thus, the state in Eq. (A2)) is a reduction of the state in
Eq. (A4). Now, consider that

IðX;BÞρ − IðX;EÞρ ¼ IðXY;BÞ − IðXY;EÞ − ½IðY;BjXÞ − IðY;EjXÞ�
≤ IðXY;BÞ − IðXY;EÞ
≤ PðN A→BEÞ:

The first equality is from the chain rule for mutual information. The first inequality follows by exploiting the degrading
condition and from the fact that X is classical. The final inequality follows by considering XY as a joint classical system, so
that the private information of the channel can only be larger than IðXY;BÞ − IðXY;EÞ.
Now, consider an isometric extension UA→BEF of a quantum wiretap channel N A→BE. By using the fact that the private

information is optimized for pure state ensembles, we can always rewrite it as

IðX;BÞ − IðX;EÞ ¼ HðBÞ −HðEÞ −HðBjXÞ þHðEjXÞ
¼ HðBÞ −HðEÞ −HðBjXÞ þHðBFjXÞ
¼ HðBÞ −HðEÞ þHðFjBXÞ; (A5)

where in the second line we used the fact that HðEjXÞ ¼ HðBFjXÞ for pure-state ensembles.
Now we show the additivity property for product-state ensembles. Consider the following state on which we evaluate

information quantities:

σXB1E1F1B2E2F2
≡X

x

pXðxÞjxihxjX ⊗ UA1→B1E1F1
ðφxÞ ⊗ UA2→B2E2F2

ðψxÞ;

where we are restricting the signaling states to be product, and without loss of generality, we can take them to be pure, as
shown above. Consider that
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IðX;B1B2Þσ − IðX;E1E2Þσ
¼ HðB1B2Þσ −HðE1E2Þσ þHðF1F2jB1B2XÞ
¼ HðB1Þσ þHðB2Þσ −HðE1Þσ −HðE2Þσ − ½IðB1;B2Þσ − IðE1;E2Þσ� þHðF1F2jB1B2XÞ
≤ HðB1Þσ þHðB2Þσ −HðE1Þσ −HðE2Þσ þHðF1jB1XÞ þHðF2jB2XÞ
¼ ½IðX;B1Þ − IðX;E1Þ� þ ½IðX;B2Þ − IðX;E2Þ�:

The first equality follows from the identity in Eq. (A5). The second equality follows from entropy identities. The first
inequality follows from the degraded wiretap channel assumption, so that IðB1;B2Þσ − IðE1;E2Þσ ≥ 0 and by applying
strong subadditivity of entropy [56] 3 times to get that HðF1F2jB1B2XÞ ≤ HðF1jB1XÞ þHðF2jB2XÞ. The last equality
follows from the identity in Eq. (A5) and the fact that we are restricting to product-state signaling ensembles. □
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