
Holographic Path to the Turbulent Side of Gravity

Stephen R. Green*

Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada

Federico Carrasco†

FaMAF-UNC, IFEG-CONICET, Ciudad Universitaria, 5000 Cordoba, Argentina

Luis Lehner‡

Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada
(Received 9 October 2013; published 9 January 2014)

We study the dynamics of a 2þ 1-dimensional relativistic viscous conformal fluid in Minkowski

spacetime. Such fluid solutions arise as duals, under the ‘‘gravity/fluid correspondence,’’ to 3þ
1-dimensional asymptotically anti–de Sitter (AAdS) black-brane solutions to the Einstein equation.

We examine stability properties of shear flows, which correspond to hydrodynamic quasinormal

modes of the black brane. We find that, for sufficiently high Reynolds number, the solution undergoes

an inverse turbulent cascade to long-wavelength modes. We then map this fluid solution, via the

gravity/fluid duality, into a bulk metric. This suggests a new and interesting feature of the behavior of

perturbed AAdS black holes and black branes, which is not readily captured by a standard

quasinormal mode analysis. Namely, for sufficiently large perturbed black objects (with long-lived

quasinormal modes), nonlinear effects transfer energy from short- to long-wavelength modes via a

turbulent cascade within the metric perturbation. As long-wavelength modes have slower decay, this

transfer of energy lengthens the overall lifetime of the perturbation. We also discuss various

implications of this behavior, including expectations for higher dimensions and the possibility of

predicting turbulence in more general gravitational scenarios.
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I. INTRODUCTION

The AdS/CFT correspondence [1,2] proposes a remark-
able connection between quantum gravity in dþ 1 dimen-
sions and quantum field theory in d dimensions. In a
certain classical limit, this correspondence can be utilized
to link the behavior of perturbed asymptotically anti–
de Sitter (AAdS) black branes in general relativity to that
of viscous conformal fluids on the AdS boundary, provided
the perturbations are of sufficiently long wavelengths
[3–6]. This limit of the AdS/CFT correspondence is known
as the gravity/fluid correspondence.

The gravity/fluid correspondence can also be derived on
its own in a purely classical manner without any appeal to
AdS/CFT, as a derivative expansion within general relativ-
ity (see, e.g., Ref. [4]). This derivation provides an explicit
perturbative mapping between solutions, which can be
exploited to relate gravitational and fluid behavior. In
particular, interesting known phenomena on one side of

the duality should have counterparts on the other, which
can lead to new predictions or to new methods of analysis.
This idea has been used as a means to frame fluid-
dynamics questions in terms of gravitational physics. For
example, Ref. [7] explored the relation between the
Penrose inequalities—which predict the onset of naked
singularities in general relativity—and the finite-time
blowup of solutions in hydrodynamics. In Ref. [8], it was
suggested that a gravity dual could be utilized to under-
stand the complex phenomenon of fluid turbulence. In the
present work, following the analysis presented in Ref. [9],
we follow the opposite route; namely, we study the impli-
cations that turbulent phenomena—that can arise in fluid
dynamics—have for our understanding of general
relativity.
Turbulence is a ubiquitous property of fluid flows ob-

served in nature at sufficiently high Reynolds number R.
Such behavior has recently been shown to also arise in
inviscid conformal relativistic hydrodynamics [9,10].
While the actual fluid dual to an AAdS black brane has
nonzero shear viscosity, this viscosity is subleading in the
black-hole temperature, so the inviscid approximation is
valid at sufficiently high temperature [9]. This suggests
that there should be a corresponding regime where
long-wavelength black-hole perturbations in asymptoti-
cally AdS spacetimes behave in a turbulent manner.
Furthermore, in 2þ 1 dimensions, such inviscid conformal
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fluids display an inverse cascade of energy to large scales
[9], in accordance with intuition from Navier-Stokes fluids
[11]. This result ensures that if the initial condition falls
within the regime of applicability of the gravity/fluid cor-
respondence (i.e., sufficiently long-wavelength perturba-
tions), so should its time evolution; therefore, there should
exist a black brane that behaves in a dual manner. The
intuition described here has been borne out in very recent
ground-breaking work [12], which demonstrated the
development of turbulence in gravitational perturbations
in 3þ 1 spacetime dimensions. Thus, gravitational
behavior in this regime is effectively captured by a hydro-
dynamic analysis.

Drawing again on intuition from fluids, one should also
expect, on the gravity side, behavior akin both to turbulent
and laminar flows. It is important to emphasize that these
two phenomena can arise on the fluid side irrespective of
the velocity of the background flow alone. Rather, the
behavior depends on the value of the Reynolds number,

R� �vL

�
; (1.1)

where �, v, L, and � are the characteristic energy density,
velocity fluctuation, distance scale, and shear viscosity,
describing the flow, respectively.1 For high values of R,
turbulence occurs, whereas for small values the flow is
laminar.

These results and observations concerning the turbulent
nature of perturbed AAdS black branes appear to be in
tension with the standard expectation that such perturba-
tions decay exponentially via quasinormal modes [13,14].
Indeed, for small-amplitude gravitational perturbations
(which are dual to fluid flows with small-velocity fluctua-
tions v), a linear analysis should be valid. Because of the
symmetries of the black brane, a mode decomposition is
then possible. Such an analysis indicates that the modes
decay in time as radiation is absorbed by the black brane
(the only place where energy is lost, as the AdS boundary
acts as a mirror). Quasinormal modes of black branes in
AdS can be grouped into three ‘‘channels’’ based upon
their transformation properties under rotations: the sound,
shear, and scalar channels. The longest-lived families of
modes within the sound and shear channels, in turn, are
known as the ‘‘hydrodynamic’’ quasinormal modes of the
black brane [15]. The dual fluid captures the behavior
associated with these quasinormal modes. (Of course, the
fluid satisfies nonlinear equations, whereas quasinormal
modes are solutions to linear equations.) The gravity/fluid
correspondence applies to large black holes, where other
quasinormal modes decay more rapidly and thus can be
neglected.

Of course, any behavior dual to quasinormal mode
decay is surely absent in analyses of fluids with vanishing
viscosity. In this paper, in order to examine this issue more
closely, we extend the previous analysis of Ref. [9] to
include viscosity, which captures the role of the black
brane as a sink of energy. We numerically study turbulent
(and laminar) solutions for the viscous relativistic confor-
mal fluid (in d ¼ 2þ 1) that arises in the gravity/fluid
correspondence. We then contrast our results with the
expectations we have laid out for the gravity dual, and
we draw conclusions about the regime of applicability of
linear perturbation theory about black holes.
In the following section, we review the gravity/fluid

correspondence in more detail. We sketch the perturbative
derivation from general relativity, and we write down the
relevant equations for our work. The dissipative relativistic
hydrodynamic equations are closely related to those of
Israel and Stewart [16–18] and are thus suitable for nu-
merical implementation [3]. In Sec. III, we proceed to
describe our numerical setup, as well as the initial data.
We work in Minkowski spacetime on R� T2, which is
dual to a (periodically identified) black brane2 in a
Poincaré patch of AdS. Our initial data consist of a shear
flow, which corresponds, on the gravity side, to a hydro-
dynamic shear quasinormal mode of the black brane.
Because of the presence of viscosity, the shear flow is
expected to decay exponentially in the absence of turbu-
lence, until the fluid reaches an equilibrium state, corre-
sponding to a (uniformly boosted) black brane.
We present our results in Sec. IV. Our simulations con-

firm that turbulent behavior and the inverse cascade con-
tinue to manifest beyond a critical Reynolds number Rc,
which we determine numerically. For R> Rc, the back-
ground decaying shear flow is linearly unstable to pertur-
bations. Such perturbations can grow until they reach the
amplitude of the background shear flow, at which point
fully developed turbulence is attained. As in the inviscid
case [9], an inverse cascade of energy is observed, even-
tually leaving two large counter-rotating vortices. On the
other hand, for R< Rc, the shear flow is stable to pertur-
bations, and it decays exponentially.
Finally, in Sec. V (as well as Appendixes A and B), we

use the gravity/fluid correspondence to relate our results
for the fluid to the AAdS black brane. The case of laminar
shear flow corresponds directly to the ordinary decay of the
hydrodynamic shear quasinormal mode of the black brane.
However, for R> Rc, the instability of the fluid flow
corresponds to an instability of the quasinormal mode.
(We stress that this does not imply an instability of the
black brane, since an overall decay continues to occur.)
Once the growing mode becomes of order the original
quasinormal mode, the original decay is interrupted and

1This definition of the Reynolds number is of a nonrelativistic
nature; for highly relativistic fluids, it would be desirable to have
an improved definition. However, we will use this definition in
this paper, as we deal with relatively low fluid velocities.

2Similar results are expected to hold for fluids dual to black
holes in global AdS, as already indicated in Ref. [9].
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the overall behavior is strongly modified by a fully devel-
oped turbulent behavior. In the four-dimensional bulk, the
energy cascades to the longest wavelength that fits within
our torus.3

We conclude that ordinary perturbation theory about the
uniform black-brane background is not the most suitable
method of analysis for capturing such effects analytically.
In fact, the instability is only clearly apparent if one
linearizes the Einstein equation about the decaying quasi-
normal mode solution itself. (Perturbation theory about the
uniform black brane would have to be implemented to
higher orders before the exponential growth could be rec-
ognized.) Physically, the reason for this behavior is that, for
high-temperature black branes in AdS, the lowest-lying
quasinormal modes become very long lived. Thus, for a
given perturbation, as the temperature is increased, the
linear viscous damping term becomes small compared
with nonlinear terms in the Einstein equation. The regime
of applicability of linear perturbation theory is thus pushed
to very small metric perturbations. On the fluid side, such
properties are conveniently captured by the Reynolds num-
ber (although, as noted above, a relativistic generalization
is desirable for relativistic fluids). Thus, it would be very
interesting to obtain a geometrical realization of the
Reynolds number, in order to predict the onset of turbu-
lence in gravity [19].

More generally, the unstable nature of certain long-lived
quasinormal modes suggests that the decay of a sufficiently
perturbed black brane can deviate from the picture sug-
gested by ordinary perturbation theory. Rather than being
describable by quasinormal mode decay, the black brane
can undergo a turbulent cascade with a power-law decay.
Only after the energy cascades to long wavelengths will a
quasinormal mode decay take hold.

In this work, we follow all notation and sign conventions
of Ref. [20]. We use lowercase Greek letters ð�; � ¼
0; 1; . . . ; d� 1Þ for indices of boundary quantities, and
we use uppercase Latin letters ðM;N ¼ 0; 1; . . . ; dÞ in the
bulk. Boundary indices are raised and lowered with the
boundary Minkowski metric ���.

II. GRAVITY/FLUID CORRESPONDENCE

In this section, we review the basic results of the
gravity/fluid correspondence. We sketch the derivation
from Einstein’s equation in the bulk. We also discuss
issues concerning the well posedness of viscous
relativistic fluids, and we write down suitable equations
of motion that will be used in our simulations [3]. The
derivation that we review below follows that of
Bhattacharyya et al. [4].

As noted in the Introduction, we restrict our study to
boundary fluids in Minkowski spacetime, which are dual to
perturbed AAdS black branes. Our simulations adopt d ¼
3, but in this section we keep d arbitrary. We also take the
boundary manifold to be R� T2; that is, we impose peri-
odic boundary conditions along boundary spatial direc-
tions. Results in d ¼ 3 were derived in Ref. [6], while
the arbitrary d case, whose equations we write down, was
analyzed in Refs. [5,21].
The starting point for the derivation of the gravity/fluid

correspondence is a uniform boosted black-brane space-
time, which, written in ingoing Eddington-Finkelstein
coordinates, reads

ds2½0� ¼ �2u�dx
�drþ r2

�
��� þ 1

ðbrÞd u�u�
�
dx�dx�:

(2.1)

Here, the fields b and u� (satisfying u�u� ¼ �1) are

constants. This is a solution to the bulk Einstein equation,

GAB þ�gAB ¼ 0; (2.2)

with the cosmological constant � ¼ �dðd� 1Þ=2. The
boosted black brane is related to the static black brane by
a coordinate transformation. The coordinates x� ¼ ðt; x; yÞ
are to be thought of as ‘‘boundary’’ coordinates, while the
coordinate r is the ‘‘bulk’’ radial coordinate.
For each asymptotically AdS bulk solution, there exist

an associated metric and a conserved stress-energy tensor
on the timelike boundary of the spacetime at r ! 1 (see,
e.g., Ref. [22] or Appendix A for the precise definition).
The boundary metric, in the case of (2.1), is ���, while the

boundary stress-energy tensor is

T½0�
�� ¼ 1

16�Gdþ1b
d
ðdu�u� þ ���Þ: (2.3)

This is a fluid stress-energy tensor, so one may read off the
energy density and pressure,

� ¼ d� 1

16�Gdþ1b
d
; (2.4)

P ¼ 1

16�Gdþ1b
d
: (2.5)

The stress-energy tensor is traceless, with equation of state

P ¼ �

d� 1
; (2.6)

as required by conformal invariance. Imposing the first
law of thermodynamics, d� ¼ Tds, as well as the relation
�þ P ¼ sT, gives the entropy density s and fluid tem-
perature T,

s ¼ ATd�1; (2.7)

3We expect that for black holes, as opposed to black branes,
this corresponds to a transfer of energy to the lowest l mode.
Such behavior has already been anticipated by the analysis in
Ref. [9].
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� ¼ d� 1

d
ATd: (2.8)

Here, A is a constant of integration. This is fixed to A �
ð4�Þd=ð16�Gdþ1d

d�1Þ by equating T with the Hawking
temperature THawking ¼ d=ð4�bÞ of the black brane.4

To move beyond the uniform fluid, b and u� are pro-

moted to functions of the boundary coordinates x�, which
are slowly varying; that is, if L is the length scale of
variation of these fields, then L � b. At this point, the
metric (2.1) is no longer a solution to Einstein’s equation.
However, because the fields are slowly varying, it is pos-
sible to systematically correct the metric order by order in a
derivative expansion so that Einstein’s equation is solved to
any given order in derivatives. One can then compute the
boundary stress-energy tensor corresponding to the metric
at each order and take this as defining the boundary fluid.

In this setup, the boundary metric is fixed to ���

throughout. This can be thought of as a ‘‘Dirichlet condi-
tion’’ on the boundary. The Einstein equation reduces to a
set of ‘‘constraints’’ along the timelike boundary of
AdS, as well as evolution equations into the bulk. The
‘‘momentum constraint’’ gives rise to conservation of
boundary stress energy, while the ‘‘Hamiltonian con-
straint’’ ensures tracelessness. The ‘‘evolution equations’’
reduce to ordinary differential equations along r.
Regularity at the future black-brane horizon is imposed
as one of the boundary conditions for these ordinary dif-
ferential equations. This corresponds to the imposition of
an ingoing boundary condition, and it is responsible for the
breaking of time-reversal symmetry inherent in the fluid’s
viscosity term. The ‘‘Landau frame’’ gauge condition

u�T�� / u� (2.9)

is also imposed.
After a rather long, but direct, calculation, the resulting

boundary stress-energy tensor—to second order in deriva-
tives—is found to be

T½0þ1þ2�
�� ¼ �

d� 1
ðdu�u� þ ���Þ þ���; (2.10)

where the viscous part ��� is [see Eq. (3.11) of Ref. [3],

Eq. (1.5) of Ref. [21], or Eq. (1.3) of Ref. [5]]

���¼�2����

þ2���

�
hu�@����iþ 1

d�1
���@�u

�

�

þh	1�����
�þ	2���!�

�þ	3!��!�
�i: (2.11)

The shear and vorticity tensors are given by

��� � h@�u�i; (2.12)

!�� � P�
�P�


@½�u
�: (2.13)

The angled brackets denote the symmetric traceless part of
the projection orthogonal to u�,

hA��i �
�
Pð�

�P�Þ

 � 1

d� 1
P��P

�


�
A�
; (2.14)

while P�� is the spatial projector orthogonal to u�,

P�� � ��� þ u�u�: (2.15)

It may be verified that ��� is symmetric and satisfies

��
� ¼ 0; (2.16)

u���� ¼ 0: (2.17)

The transport coefficients f�; ��; 	ig have been worked out
explicitly in various dimensions [5,6,21],

� ¼ s

4�
; (2.18)

�� ¼ b

�
1�

Z 1

1

yd�2 � 1

yðyd � 1Þ dy
�
���!d¼3

b

�
1� 1

2
log3þ �

6
ffiffiffi
3

p
�
;

(2.19)

	1 ¼ �b

2
; (2.20)

	2 ¼ �2�b
Z 1

1

yd�2 � 1

yðyd � 1Þ dy���!
d¼3 � �b

�
log3� �

3
ffiffiffi
3

p
�
;

(2.21)

	3 ¼ 0: (2.22)

Thus, the boundary fluid has a nonzero shear viscosity �,
but the bulk viscosity vanishes so that the stress-energy
tensor remains traceless. Conformal invariance can also be
used to deduce the presence of the particular nonzero
second-order transport coefficients directly [3]. For
completeness, we note that conservation of the boundary
stress-energy tensor leads to the equations of motion for �
and u�,

0 ¼ u�@��þ d

d� 1
�@�u

� � u�@����; (2.23)

0 ¼ d

d� 1
�u�@�u

� þ 1

d� 1
@��� d

ðd� 1Þ2 u
��@�u

�

þ 1

d� 1
u�u�@���� þ P��@����: (2.24)

It is easy to see that in this derivative expansion, ��� is

subleading in b=L, as compared with the perfect fluid4Our simulations use units where A ¼ 1.
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stress-energy tensor Tð0Þ
��. Thus, given a fixed L, the viscous

part may be neglected for small b or, equivalently, large T.
This is the limit that was taken in Ref. [9]. In this work,
however, we wish to move beyond the T ! 1 limit, so
viscosity must be included in our simulations. As ex-
plained in the Introduction, this corresponds, on the gravity
side, to the effects of energy losses through the horizon.

At this point, one may wonder why we have bothered to
include terms to second order in derivatives, since the
shear viscosity appears at first order. The reason is that
relativistic viscous fluid formulations that are first order in
derivatives, as originally laid out by Eckart [23], lead to
acausal propagation and are generally ill posed [16]. It
turns out to be possible to resolve these issues and to
produce a hyperbolic system by including second-order
terms: in particular, the term involving �� [16–18,24].
The second-order terms that appear in Eq. (2.11) resolve
the problems introduced by the viscosity, but they bring
about analogous issues at higher order. To fully resolve
these difficulties, it is necessary to promote ��� to an

independent field. Then, one reduces the order of the
system of equations by substituting �2���� ! ��� on

the second and third lines of (2.11). This substitution is
consistent to the order to which we are working in the
derivative expansion. Furthermore, this assumption will
remain valid in 2þ 1 dimensions under time evolution
by virtue of the expected inverse cascade [9]. Therefore,
following Baier et al. [3], we obtain

��� ¼ �2���� � ��

�
hu�@����i þ d

d� 1
���@�u

�

�

þ
�
	1

�2
�����

� � 	2

�
���!�

� þ 	3!��!�
�

�
:

(2.25)

The formulation we have described above also includes
additional second-order terms with coefficients f	ig. We
have decided to include these in the interest of complete-
ness, although we find that they have no effect on our
results. Indeed, as discussed by Geroch [25,26], all hyper-
bolic relativistic theories of fluids with viscosity should be
physically equivalent. By this, one means that any addi-
tional terms in the equations of motion, when evaluated
within the domain of applicability of the theory, should be
small, as compared with the lower-order terms. That is, if
the higher-order terms became important, then there would
be no justification in not including even-higher-order
terms, and the perturbative expansion would break down.
This also means that the specific value of �� is unimpor-
tant, so long as it is sufficiently large that the theory is
causal. (We will use this fact later to increase its value in
order to speed up our numerical simulations.)

To summarize, the system of interest is described
by Eqs. (2.23), (2.24), and (2.25). These equations,
however, require further manipulation prior to numerical

implementation. For comparison, we recall that in the con-
text of inviscid hydrodynamics, it is convenient to express
the hydrodynamic equations in conservation form (see, e.g.,
Ref. [27]). That is, t derivatives of energy and momentum
density are equated with xi derivatives of fluxes. Such a
form of the equations is particularly advantageous when
studying solutions that can develop sharp gradients or dis-
continuities, and this form was employed in Ref. [9].
However, a simple extension of this approach is not pos-
sible in the presence of viscosity since the evolution equa-
tion (2.25) for��� is not of the desired form. In particular,

sinceP�� projects orthogonally to u
� rather than to @�t , this

equation contains a t derivative of u� in addition to that of
���. However, since the presence of viscosity prevents the

development of steep gradients and discontinuities in our
solutions, adopting a conservative form is not necessary.
We therefore follow an approach similar to that em-

ployed in Refs. [28,29] within the context of heavy-ion
collisions. To begin, we note that in d ¼ 3 the conditions
u�u

� ¼ �1, u���� ¼ 0, and ��
� ¼ 0 reduce the num-

ber of dynamical variables to 5. We take these to be U �
ð�; ux; uy;�xx;�xyÞ. Equations (2.23), (2.24), and (2.25)

are quite complicated when expressed in terms of U, and
in order to evolve the equations numerically, one must
solve for the t derivatives of the fields. Using computa-
tional algebra software, we can write our equations in the
desired form,

@tU ¼ F ðU; @iUÞ; (2.26)

these are the equations we implement in our code.

III. SIMULATIONS

In this section, we describe our choice of initial data and
details of our numerical setup.

A. Initial data

As described in the Introduction, we choose initial data
corresponding to a shear hydrodynamic quasinormal mode
of the black brane. Our studies concentrate on nonlinear
phenomena described by the system; however, for future
reference, in this subsection we analyze the evolution
under the linearized equations of motion.
Consider perturbations about a uniform fluid solution,

�ð0Þ ¼ constant; (3.1)

u�ð0Þ ¼ ð1; 0; 0Þ; (3.2)

�ð0Þ
�� ¼ 0; (3.3)

which is dual to a nonboosted uniform black brane in the
bulk. Solutions to the linearized equations of motion whose
only nonzero perturbed fields are uxð1Þ ¼ uxð1Þðt; yÞ and

�ð1Þ
xy ¼ �ð1Þ

yx ¼ �ð1Þ
xy ðt; yÞ describe shear flow, that is, fluid
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flow orthogonal to the velocity gradient [3]. The linearized
equations of motion for shear flow reduce to

0 ¼ 3

2
�ð0Þ@tuxð1Þ þ @y�

ð1Þ
xy ; (3.4)

�xy ¼ ��ð0Þ@yu
ð1Þ
x � �ð0Þ� @t�

ð1Þ
xy ; (3.5)

which may be solved by expanding in Fourier modes.
Considering one mode, with spacetime dependence of
the form �e�i!tþiky, Eqs. (3.4) and (3.5) give [3]

0 ¼ !2 þ i

�ð0Þ�

!� 2k2�ð0Þ
3�ð0Þ�

ð0Þ
�

: (3.6)

This equation has two solutions for small k,

!1 � �i
2k2�ð0Þ
3�ð0Þ

¼ �i
k2

4�Tð0Þ
; !2 � � i

�ð0Þ�

; (3.7)

both of which describe pure exponential decay. The first
solution corresponds, in the bulk, to the hydrodynamic
shear quasinormal mode of the black brane [3,4,15]. (The
second solution shows that �� is the decay time scale for
��� to approach �2����.)

Thus, since we are interested in understanding the cor-
responding black-brane quasinormal mode in a nonlinear
context, we choose initial data with

�ðt ¼ 0Þ ¼ �0 ¼ constant; (3.8)

uxðt ¼ 0Þ ¼ v0 sin

�
2�ny

D

�
; (3.9)

and all other fields zero.5 We vary the background energy
density �0, velocity amplitude v0, the number of modes n,
and the torus size ½0; D�2. The reason n and D are varied
separately (rather than as the wavelength 	 ¼ D=n) is that
effects due to the finite size of the box can come into play
for small n.

Moving from the linear to nonlinear level, we expect the
pure decay of this shear flow to persist, at least for small
velocities. That this is the case will be verified in Sec. IV.
We also keep the velocities small in most of our simula-
tions in order to match to the linear predictions.

Our main reason for setting up this flow, of course, is to
study its stability. In order to do so, we also initially seed ux
with a very small random perturbation.6 By studying the
effects of this perturbation, one can learn about the robust-
ness (or lack thereof) of pure quasinormal mode decay.

B. Numerical setup

Equation (2.26) was solved numerically using the
method of lines. To perform the spatial discretization,
fourth-order-accurate spatial derivatives were used, while
a third-order Runge-Kutta algorithm was used for time
integration (see, e.g., Refs. [30,31]). Consequently, third-
order convergence is expected when turbulence does not
arise. To confirm that this is the case, we studied laminar
flows (with �0 ¼ 107, v0 ¼ 0:02, n ¼ 10, and D ¼ 10)
and adopted grid spacings �xN ¼ �yN ¼ 0:1=N, with
N ¼ 1, 2, 4. We computed the convergence rate kUðN ¼
1Þ �UðN ¼ 2Þk2=kUðN ¼ 4Þ �UðN ¼ 2Þk2 � 2p and
found p � 3. Typical simulations were thus performed on
201� 201 grids (with periodic boundary conditions). With
the torus size D (typically, D ¼ 10), the corresponding
grid spacing was then �x ¼ �y ¼ ðD=10Þ � 0:05.
We note that the presence of the short viscous time scale

�� [see Eq. (3.7) in the previous subsection] imposes a
harsh constraint on the time-step length for an explicit
integration method,

�t / ��: (3.10)

For our simulations, this is a much stronger constraint than
that arising from the finite propagation speeds of the solu-
tion (i.e., the CFL condition). However, as we discussed in
Sec. II, the precise value of �� should not have physical
significance, as long as the equations of motion remain
hyperbolic. Therefore, to allow for a more efficient nu-
merical integration, we increased �� by a factor of 100 for
many of our runs. We verified that this had no significant
effects on any of the physical properties we measured.

IV. RESULTS AND ANALYSIS

In this section, we present and analyze results. We first
define the Reynolds number for the shear flow, which we
find to accurately predict the onset of instability. We then
describe the three observed ‘‘phases’’ of a fully developed
turbulent flow: initial growth of instabilities, inverse
turbulent energy cascade, and final exponential decay
(see Fig. 1 for a preview). Our results are largely consistent
with expectations drawn from solutions to the Navier-
Stokes equations in 2þ 1 dimensions.

A. Reynolds number

For steady flows, the Reynolds number is a useful di-
mensionless quantity that can be used to predict stability
(see, e.g., Ref. [32]). It is generally true that for sufficiently
low Reynolds numbers, the flow is stable with respect to
small perturbations, in which case it is said to be laminar.
In contrast, for large Reynolds numbers, the flow is un-
stable, which eventually leads to turbulence. The critical
Reynolds number that separates these two regimes depends
upon the particular flow under consideration.

5These initial data were also chosen in the Appendix of
Ref. [9] because, in the inviscid case, they lead to a stationary
solution.

6In Ref. [9], this same effect was achieved via small numerical
errors.
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(a) t = 0 (b) t = 350

(c) t = 500 (d) t = 900

(e) t = 2500 (f) t = 7000

FIG. 1. Vorticity field at various times for a turbulent run (�0 ¼ 1010, v0 ¼ 0:05, D ¼ 10, n ¼ 10). The inverse cascade behavior is
evident, leading to two counter-rotating, and slowly decaying, vortices at late times.
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The shear flow that we study is not steady, causing the
Reynolds number to change with time. [The shear viscosity
causes it to decay according to Eq. (3.7).] Nevertheless, it is
a useful quantity to consider, as the decay can be treated in
a quasistationary manner.7 In this case, the stability prop-
erties of the flow depend only upon the instantaneous value
of the Reynolds number.

For our flow, we define the Reynolds number to be8

R � �	

�
maxðuxÞ: (4.1)

Substituting for � and 	,

R ¼ 6�T
D

n
maxðuxÞ ¼

�
3

2A

�
1=3

6��1=3 D

n
maxðuxÞ: (4.2)

Thus initially,

Rðt ¼ 0Þ ¼
�
3

2A

�
1=3

6��1=3
0

D

n
v0; (4.3)

and with time, R decays with maxðuxÞ. (�, D, and n are all
either constants or nearly constant.) Later in this section,
we will verify that there exists a critical Reynolds number
Rc, and we will determine its value.

Strictly speaking, flows that have different values of n
are not geometrically similar, meaning that they are not
related by a universal scaling of distances. This is because
of the presence of two independent associated length scales
(the wavelength 	 and box sizeD). So, one should exercise
caution when comparing the Reynolds numbers of two

such flows. However, for large values of n, the finite box
size should not play an important role in governing stabil-
ity, and our definition (4.1) makes sense. (We will address
effects at small n later in this section.) Our definition of R,
and our decision to compare flows at different n, is moti-
vated both by simplicity and by the desire to address the
infinite brane limit (n, D ! 1 while holding 	 fixed).
We note that, for fluids dual to black holes with compact

spatial sections, one should also be careful when using a
value of Rc for high angular quantum-number flows, to
predict stability of low-l flows. In particular, as we will
discuss further, we expect l ¼ 2 shear modes to be stable
for any value of R.

B. Stability of shear flow

In this subsection we analyze the early stages of the flow,
where the overall properties are governed by the shear
decay in ux.
Recall that, in addition to the shearing configuration, the

initial data are seeded with a small-amplitude random
perturbation. This random perturbation has the potential
to grow or decay, depending on the Reynolds number of the
flow. To track the presence of growing instabilities, we
monitored the uy field. In the linear analysis of Sec. III A,

uy remains exactly zero so its growth reflects the growing

unstable mode. (In addition, even for stable flows, uy
becomes nonzero due to nonlinearities, but it remains
small.) As expected, as we varied the initial data, we found
that the various solutions could be categorized into several
groups, based on the growth of kuyk2.
At one extreme, the typical turbulent run is illustrated in

Fig. 1. This figure shows the vorticity field at several times.
In Fig. 2, we show the corresponding L2 norms of the
vorticity and the components of ui. We see that initially,
the vorticity and ux decay exponentially in the manner
expected for shear flow. However, during that time, kuyk2

10 100 1000
time

0.01

0.1

||d
[x

u y]
|| 2

(a)

0 500 1000 1500
time

1×10-02

1×10-03

1×10-04

1×10-05

1×10-06

1×10-07

1×10-08

||u
i|| 2

u
x

u
y

(b)

FIG. 2. L2 norms of (a) vorticity and (b) ui, as a function of time for turbulent flow (same run as Fig. 1). In (a) there is an initial
exponential decay, followed by a power law during the inverse cascade, followed by a slower exponential decay. In (b) uy grows

exponentially until it is of similar amplitude to ux.

7For nonsteady flows, one can also consider the Strouhal
number, but this adds nothing new unless the fluid is externally
forced [32].

8As noted in Footnote 1, it would be desirable to define a
Reynolds number suitable for highly relativistic flows. However,
we restrict our study to small velocities, so Eq. (4.1) is adequate
for our purposes.
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undergoes exponential growth until it reaches the same
amplitude as kuxk2. This growth brings the solution into
an equipartition of energy between ux and uy. At this point,

the initial decay has been disrupted, and turbulence sets in,
as we will describe in more detail in the following sub-
sections. The onset of this behavior is known as the Kelvin-
Helmholtz instability in fluid dynamics.

Visual inspection of the uy field (see Fig. 3) indicates

that the growing mode itself is also very roughly a shear
mode,

uy � fðtÞ sin
�
2�my

D
þ�

�
; (4.4)

typically with n=2<m< n. As we have alluded to earlier,
the finite box size plays a role at small n, and it comes into
play here. For example, we find that the n ¼ 1 case is
stable, even for large R, because the box does not admit a
mode withm< 1. This is the expected behavior, as there is

no room for an inverse cascade, given an n ¼ 1 initial
configuration. For large n, there is no obstacle in fitting
the growing mode into the box, and the box sizeD plays no
role. Thus, fixing 	 and extrapolating to the infinite box
(D ! 1), the instability should be present for sufficiently
large R.
At the other extreme, at low values of R, the flow is

laminar. This is illustrated in Fig. 4. In contrast to the
turbulent case, kuyk2 remains small throughout the run.

(uy is being continuously driven nonlinearly by ux, so its

amplitude decays with ux.) With small initial velocities,
the linear analysis of Sec. III A is applicable, and the
measured decay rate should be consistent with the predic-
tion (3.7). Figure 4(a) shows that this is indeed the case.
Between these two extremes, we found that there were

certain intermediate flows that provided important physical
information. Such an example is illustrated in Fig. 5. In this
case, the flow begins at high Reynolds number, but it
decays before turbulence can fully develop. The plot of
kuyk2 shows initially small perturbations growing nearly

exponentially for some time—as in the turbulent case—
before peaking and then decaying exponentially.
The time dependence of R in such runs is clearly evi-

dent, as it is directly proportional to maxðuxÞ (also plotted
in Fig. 5). Initially, R> Rc, but as time progresses, R
decreases. Since the background flow is slowly varying,
we assume that the instantaneous growth rate of kuyk2
depends only on the background value of maxðuxÞ. Thus,
at the peak of kuyk2, R ¼ Rc, while for R< Rc, kuyk2
decays. This allows us to extract Rc. Indeed, in Fig. 5(b),
we plot the growth rate of kuyk2 versusmaxðuxÞ. Where the

curve crosses through zero corresponds to the peak of
kuyk2 in Fig. 5(a), and the value of Rc may be read off.

Thus, such intermediate runs provide detailed information
on the stability of the background flow.
By searching for such critical runs (by adjusting v0) for

different values of ð�0; D; nÞ, we find that the critical
Reynolds number of the shear flow is

FIG. 3. The uy field at t ¼ 300 for the same run as Fig. 1.

0 500 1000 1500
time

||d
[x

u y]
|| 2

simulation
linear prediction

0 500 1000 1500
time

||u
i|| 2

u
x

u
y

1×10-02

1×10-02

1×10-04

1×10-06

1×10-08

1×10-10

1×10-12

1×10+00

1×10-04

1×10-06

1×10-08

1×10-10

FIG. 4. L2 norms of (a) vorticity and (b) ui, as a function of time for a laminar flow. The norm of uy remains small throughout the
decay (�0 ¼ 107, v0 ¼ 0:02, D ¼ 10, n ¼ 10).
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Rc �
�
3

2

�
1=3

6�� 0:7ð1þ 0:07nÞ: (4.5)

The dependence upon n (see also Fig. 6) is due to the finite
size of the box, as discussed above. We measured this
within the range 6 � n � 20. (We verified, by also varying
�0 and D, that Rc is independent of these quantities.) For
large n, we expect Rc to approach a limit, as the finite box
size should play no role.

Figure 5(b) also provides some information about the
growth rate of uy away from its zero value at R ¼ Rc.

Fixing n and �0, this shows that for R> Rc, higher R
[higher maxðuxÞ] gives faster growth. For R � Rc, the
growth rate is linear in maxðuxÞ. In contrast, as R is
lowered, there is a bound on the decay rate. This can be
understood as a competition between a driving effect from
the background shear flow in ux and a viscous decay (3.7)
associated with the shear mode (4.4) in uy. Once the

driving term drops to the point of irrelevancy, all that is
left is the decay term, which gives a fixed decay rate, as it is
a property of the mode in uy. Indeed, the asymptotic value

of the growth rate of kuyk2 in Fig. 5(b) is �0:0013. This

matches very nicely the prediction from Eq. (3.7) using the
observed m ¼ 6.
We also find that for large R, the growth rate of kuyk2 is

inversely proportional to 	, at fixedmaxðuxÞ. Together with
the above results, this points to the contribution of the
driving term to the growth rate as being proportional to
@yux.

C. Turbulent regime

We now turn our attention back to the turbulent case, at
the point where equipartition of energy is reached between
uy and ux [i.e., just subsequent to Fig. 1(b)]. As seen in

Fig. 1(c), the overall flow is completely disrupted, and the
vorticity field displays a number of turbulent eddies. The
exponential decay of vorticity in Fig. 2(a) ceases and is
replaced with a power-law decay. We typically observe
k!k2 / t��, with � ’ 1:2	 0:2. There have been several
previous studies of unforced turbulent decay of Navier-
Stokes fluids in d ¼ 3, which have also found power-law
decays (e.g., Refs. [33–35]).
During the power-law decay, the eddies merge into

vortices, which continue to merge into increasingly large
vortices [Figs. 1(d) and 1(e)]. This inverse energy cascade
can be attributed to the conservation of enstrophy [11].
Corotating vortices merge, while counter-rotating vortices
repel. Thus, one is finally left with two counter-rotating
vortices, as in the inviscid case [9].

D. Late time decay

The vortices that form are the relativistic analog of the
Oseen vortex, which is an attractor solution to the Navier-
Stokes equation [36]. Its functional form is

v� ¼ C1

r
ð1� e�r2=C2ðtÞ2Þ; (4.6)

0 1000 2000 3000 4000
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(a) (b)

max (u
x
)
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FIG. 5. Intermediate flow: (a) ui, as a function of time for laminar flow and (b) growth rate of kuyk2 versus maxðuxÞ. The zero of (b)
corresponds to the critical Reynolds number (�0 ¼ 107, v0 ¼ 0:015, D ¼ 4, n ¼ 10).
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FIG. 6. Critical Reynolds number as a function of wave num-
ber n (dark circles). The solid line is the linear fit (4.5).
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where the parameter C2ðtÞ ¼
ffiffiffiffiffiffiffiffi
4�t

p
, and the kinematic

viscosity � ¼ �=�. A fit for the parameters C1 and C2 is
shown in Fig. 7. We see that the vortex is close to, but does
not match exactly, the Oseen profile. We attribute this to
differences between Navier-Stokes fluids and the relativ-
istic compressible fluids we study.9 Fitting also in time, it is
possible to extract � from these profiles. As with the profile
fit, we find a value of � that, while not quite the predicted
value, is within a factor of 2.

At late times, the two vortices continue to decay in
amplitude until the fluid finally becomes linear. The solu-
tion is then the sum of long-wavelength shear and sound
modes, which decay exponentially. We measured the decay
rates at late times. The decay was slightly faster than the
linear prediction, although the measured difference de-
creases at later times.

As a result of the increased wavelength, the decay rate at
late times is lower than the decay rate of the initial flow.
Thus, the presence of the turbulent cascade drastically
lengthens the time period before the fluid settles down
from its initial state to a uniform flow. In contrast, for
d > 3, where we expect a direct cascade, turbulence
causes a more rapid decay than the linear behavior. This
is due to higher modes decaying faster and strong dissipa-
tion at the viscous scale.

V. DISCUSSION: BLACK BRANES
AND TURBULENCE

In the previous section, we established conditions for the
onset of turbulent phenomena in conformal, viscous rela-
tivistic fluids in 2þ 1 dimensions, as well as the subse-
quent behavior once this develops. Having studied

solutions to the dual hydrodynamic theory, we turn, in
this section, to general relativity and to the behavior of
perturbed AAdS black holes and black branes.

A. Decay of perturbations and turbulence in the bulk

The decay properties of the shear fluid flow that we have
analyzed in Sec. IV carry over directly to the shear hydro-
dynamic quasinormal mode of the black brane. Indeed, as
described in the Introduction, the gravity/fluid correspon-
dence naturally captures the behavior of the lowest-lying
shear and sound families of quasinormal modes. (As illus-
trated in Ref. [12], the higher-order quasinormal modes
typically decay very rapidly, and the metric produced via
the duality is a very good approximation to a solution of
Einstein’s equation.)
Translating to the black-brane language, our results

imply that, for R> Rc, hydrodynamic shear quasinormal
modes are unstable to small perturbations (the ‘‘instabil-
ity’’ refers to the quasinormal mode, not to the black
brane). More precisely, certain deviations from the pure
quasinormal mode undergo exponential growth until either
they reach the amplitude of the quasinormal mode (fully
developed turbulence) or the Reynolds number—which
decays in time—becomes smaller than Rc and an
exponential decay ensues. Once turbulence sets in, for
four-dimensional AAdS black branes, energy is transferred
to longer-wavelength modes and a power-law decay is
induced. Eventually, when metric deviations about the
uniform black brane become small enough, exponential
decay resumes. In both cases, the final decay is at a slower
rate than the original decay, as the perturbation is of longer
wavelength.
On the other hand, for R< Rc, the quasinormal mode is

stable, so it exhibits the usual clean exponential decay. We
stress that in all cases described, the global norm of the
solution decays in time.
More generally, one is interested in the behavior of a

generic black-brane perturbation, containing many modes
of small but comparable magnitude. The standard picture
states that if the amplitude of the perturbation is small
enough, then at sufficiently late times it asymptotically
approaches10 a sum of quasinormal modes, which evolve
in time independently. However, the question of how small
the amplitude must be for this to be realized can be
determined by the Reynolds number. At high Reynolds
number, certain quasinormal modes are unstable, and an
unstable mode will never be realized in a decay. The new
picture that emerges is that of both laminar and turbulent
phases. The laminar phase corresponds to the standard

0 1 2 3 4
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0

0.005

0.01

0.015

0.02

||u
|| 2

Measured profile

Oseen fit

FIG. 7. Velocity profile of one of the vortices in Fig. 1(f). The
solid line is the fit to the Oseen vortex profile.

9Evslin and Krishnan have found exact vortex solutions to the
relativistic fluids we study here. However, as a result of imposing
stationarity, these solutions are singular and do not describe ours
at late times [37].

10Quasinormal modes do not, in general, form a complete basis
for solutions, so one cannot write an arbitrary solution as a
converging sum of modes, except in an asymptotic sense. This
was recently demonstrated for two-dimensional AAdS black
holes [38].
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quasinormal mode picture. At high Reynolds number,
however, the decaying perturbation immediately enters
the turbulent phase that has been uncovered through the
gravity/fluid correspondence.

This new turbulent phase displays a far richer phenome-
nology. Our results indicate that turbulence, when it devel-
ops, induces eddies. Eddies with vorticity of the same sign
merge, leading to increasingly large vortices as time
proceeds [39]. The form of the bulk metric [to leading order,
Eq. (2.1)] indicates that the boundary fluid structure is carried
unperturbed along ingoing null geodesic ‘‘tubes’’ [5], con-
necting the boundary at spatial infinity to the black-brane
event horizon. Thus, the Oseen-like vortices present at late
times in the turbulent-fluid solution describe rather compact
distributions of gravitational radiation connecting the asymp-
totic and black-hole regions. They can be regarded as natural
realizations of ‘‘extended geons,’’ which extend through the
bulk as ‘‘gravitational tornadoes’’ or ‘‘funnels.’’11 The struc-
ture that we describe is illustrated in Fig. 8, wherewe plot the
curvature invariants I1 and I2 (see Appendix B).

As discussed in Appendix A, a possible way to under-
stand this behavior is related to the fact that a map to
relativistic hydrodynamics is also possible away from the
boundary, at suitably defined timelike surfaces in the bulk.
Thus, the solution can also be analyzed at these surfaces to

show, in particular, that a conserved quantity related to the
enstrophy can be defined away from the boundary. Such a
quantity is a key element needed to argue that an inverse
energy cascade occurs.
Naturally, as already pointed out in Ref. [19], it would be

very useful to develop a spacetime definition of the
Reynolds number. This definition would provide an intrin-
sic way to predict the onset of turbulence in gravity and
could thus be applied in broader contexts. Using the grav-
ity/fluid correspondence, this definition would also lead to
a Reynolds number suitable for relativistic hydrodynamics.
Based upon the form of the bulk metric (2.1), and the fluid
Reynolds number (4.1), the form of the Reynolds number
for black-hole perturbations is, roughly,

RGR / THawking

					hAB
�
@

@r

�
B
					L; (5.1)

where we have substituted (certain components of) the

metric perturbation hAB � gAB � gð0ÞAB for the velocity fluc-

tuation, and L is the characteristic length scale of the
perturbation. Of course, whether or not this is applicable
in more general contexts would require further investiga-
tion. In particular, a suitable definition of R should be
gauge invariant.
As a final comment, we point out an important applica-

tion of the fact that the inverse cascade guarantees that the
system stays within the domain of validity of the gravity/
fluid correspondence. The relativistic hydrodynamic equa-
tions in 2þ 1 dimensions are dual to (long-wavelength)
perturbed black branes in the bulk. Thus, a Newtonian
limit in the bulk—where time derivatives are taken to be

FIG. 8. Contour plots of principal invariants of the Weyl tensor in the bulk (rescaled with suitable powers of r as per Appendix B),
computed from the zeroth-order metric (2.1), from the simulation snapshot in Fig. 1(e). Notice that (a) is representative of the energy
density �, while (b) is representative of the vorticity, as expected from Eq. (B6).

11These should not be confused with ‘‘black funnels’’ [40],
which are bulk black holes with a horizon that connects to the
conformal boundary of the spacetime. Evslin [19] has conjec-
tured that these black funnels correspond to singular-fluid
vortices.
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one-order subleading to space derivatives and velocities
are taken to also be small12—corresponds to a Navier-
Stokes limit on the boundary. Since we know that the
Navier-Stokes equation admits global, well-behaved solu-
tions [43], one can surmise that general relativity is simi-
larly well behaved in the bulk.

B. Connection to ordinary perturbation theory

Linear perturbation theory predicts that small-amplitude
metric perturbations can be decomposed (asymptotically)
into independent modes that undergo simple exponential
decay. On the other hand, the picture described in the
previous section indicates the presence of a qualitatively
distinct, turbulent behavior for sufficiently high Reynolds
numbers, regardless of the perturbation amplitude. How are
these two notions reconciled? The short answer is that at
very high black-hole temperatures (in AdS), the regime of
applicability of linear perturbation theory is very small. To
study this further, we take a closer look at perturbation
theory.

In ordinary perturbation theory, the full metric is
expanded as

gAB ¼ gð0ÞAB þ hð1ÞAB þ hð2ÞAB þ 
 
 
 ; (5.2)

where gð0ÞAB is taken to be the background metric—in our

case, the uniform AdS black brane. The first-order metric

perturbation hð1ÞAB satisfies the homogeneous partial differ-

ential equation

Gð1Þ
ABðgð0Þ; hð1ÞÞ þ�hð1ÞAB ¼ 0; (5.3)

where Gð1Þ
ABðgð0Þ; hð1ÞÞ is the linearized Einstein tensor. For

the black brane, the symmetry properties admit a mode
decomposition, and by solving Eq. (5.3), the quasinormal-
mode spectrum is determined. All of the modes decay for
the AdS black brane [13,14].

At second order in perturbation theory,

Gð1Þ
ABðgð0Þ; hð2ÞÞ þ�hð2ÞAB ¼ �Gð2Þ

ABðgð0Þ; hð1ÞÞ; (5.4)

where the second-order Einstein tensor on the right-hand

side is quadratic in the first-order perturbation hð1ÞAB. Since

the homogeneous part of this equation is unchanged from

the first-order case, the quasinormal-mode spectrum of hð2ÞAB

is also unchanged. These decaying modes are excited by
the inhomogeneous source term. At any finite order in
perturbation theory, the same applies. Thus, the growth
we describe can only be captured by carrying out the
analysis to sufficiently high orders in perturbation theory
to recognize the underlying exponential behavior.

If, rather than taking the background metric gð0ÞAB to be the
uniform AdS black brane, it is instead taken to be the AdS
black brane plus the shear hydrodynamic quasinormal

mode, then the growth is easily seen to be possible at the
linearized level (5.3). This is best illustrated through a
simple toy model of ordinary differential equations (in-
spired by a local analysis of the Navier-Stokes equations),
which exhibits similar mode-coupling properties, namely,

dx

dt
þ �x ¼ 0; (5.5)

dy

dt
þ 
y� 
xy ¼ 0; (5.6)

with �, 
, and 
 all positive constants. The variable xðtÞ in
this system corresponds to uy in the black-brane system,

which initially describes a shear mode. On the other hand,
yðtÞ corresponds to the initially zero uy. Both x and y are

subject to dissipation (in the black-brane case,� � 
), and
we have included a mode coupling 
xy in Eq. (5.6).
Let us solve the system (5.5) and (5.6) perturbatively in

two different ways.13 We expand both x and y as

x ¼ xð0Þ þ xð1Þ þ xð2Þ þ 
 
 
 ; (5.7)

y ¼ yð0Þ þ yð1Þ þ yð2Þ þ 
 
 
 : (5.8)

The exact solution to (5.5) is x / e��t. In a manner analo-
gous to perturbation theory about the uniform black brane,
we take the ‘‘background solution’’ to be xð0Þ ¼ yð0Þ ¼ 0,
while the ‘‘linearized solution’’ corresponds to the quasi-
normal mode, i.e., xð1Þ ¼ a1e

��t. Then, the equation for

yð1Þ is
dyð1Þ
dt

þ 
yð1Þ ¼ 0; (5.9)

with the solution yð1Þ ¼ b1e
�
t. At second order,

dyð2Þ
dt

þ 
yð2Þ ¼ 
xð1Þyð1Þ ¼ 
a1b1e
�ð�þ
Þt: (5.10)

The solution to this equation is yð2Þ ¼
�a1b1
e

�ð�þ
Þt=�þ b2e
�
t; higher-order corrections

can be computed in a similar manner. At each order in
perturbation theory, the solution is a sum of decaying
exponentials.
Suppose instead that we take xð0Þ ¼ a0e

��t and yð0Þ ¼ 0.
This is analogous to taking the black brane perturbed by a
quasinormal mode as the background solution. Then, at
linear order we have

dyð1Þ
dt

þ 
yð1Þ ¼ 
xð0Þyð1Þ ¼ 
a0e
��tyð1Þ; (5.11)

which has the solution yð1Þ ¼ b1 exp½�
tþ a0
ð1�
e��tÞ=��. In the limit of small �, this solution becomes

yð1Þ ���!�!0
b1e

�ð
�a0
Þt: (5.12)

12For some alternative discussions, see, e.g., Refs. [41,42].

13We note that Eqs. (5.5) and (5.6) can easily be solved exactly.
Nevertheless, the perturbative methods described here carry over
directly to more complicated systems.
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Thus, if the ‘‘background’’ is long-lived, the growth rate of
y depends upon a competition between the driving term

xy and the dissipative term 
y. For finite �> 0, the
driving term decreases with time relative to the dissipative
term. In this case, yð1Þ is eventually dominated by the

exponential decay (cf. Fig. 5).
One can define a ‘‘Reynolds number’’ of the flow xðtÞ in

the toy model by taking the ratio of the mode-coupling
term 
xy to the linear dissipative term 
y in Eq. (5.6). If
this Reynolds number, 
a0e

��t=
, is large, then the non-
linear term 
xy should be kept in any perturbative analysis,
and one should solve Eq. (5.11)—rather than Eq. (5.9)—to
determine y.

A similar situation holds for black-brane perturbations
in general relativity. The problem with trying to analyze
high-Reynolds-number perturbations by performing ordi-
nary perturbation theory about the uniform black-brane
background is that this drops certain large nonlinear terms
while keeping small linear terms. For the black brane, the
dissipation rate (the analog of � � 
) depends inversely
on the temperature. So, increasing the temperature while
keeping the amplitude and wavelength of a perturbation
fixed (i.e., increasing the Reynolds number), the linear
term eventually becomes small relative to nonlinear
terms. Thus, the regime of validity of ordinary perturba-
tion theory is reduced as the Reynolds number is
increased.

C. Beyond 4D AAdS black branes

Here, we discuss some possible implications and exten-
sions of this work.

1. Higher dimensions

Based upon our results for four-dimensional bulk space-
times, together with the gravity/fluid correspondence es-
tablished in arbitrary dimensions, as well as numerical
results confirming the expectation of direct-energy cas-
cades for inviscid conformal relativistic fluids [10], it is
possible to anticipate properties of five-dimensional (and
higher) spacetimes (for an early discussion, see Ref. [6]).
Three immediate consequences are as follows:

(i) First, as with the four-dimensional case, at suffi-
ciently high Reynolds number, the quasinormal
mode description fails to accurately describe the
decay of black-brane perturbations.

(ii) Second, in contrast to the four-dimensional case,
turbulence is characterized by a direct-energy cas-
cade to short wavelengths. Since shorter wave-
lengths have a more rapid decay rate,
thermalization in five dimensions will be attained
in a shorter time scale than in an analog four-
dimensional case. Notice that a potential concern
here is that the cascade to short wavelengths may
cause the solution to exit the regime of validity of
the gravity/fluid correspondence. Two comments

are relevant here. (a) Even if this were the case,
perturbations initially satisfying LT � 1 (as re-
quired by the correspondence) still undergo turbu-
lent dynamics that induces structure at shorter
wavelengths. Thus, at the moment of ‘‘exiting’’
the regime of validity, many modes would be
present, and their subsequent behavior should be
studied within general relativity. (b) It is also pos-
sible for the cascade to occur completely within the
regime of validity of the correspondence if the
viscous scale (again defined as in the nonrelativistic

case) L� ¼ ð�3=�Þ1=4 (where � is the rate of energy

dissipation by viscosity) satisfies L�T � 1. Notice

that L� grows with temperature, so at sufficiently

high T, this condition is satisfied. In this case,
energy would be expected to cascade down to the
viscous scale and then dissipate.
As a consequence of the turbulent behavior on the
hydrodynamical side—which is self-similar—one
would expect a similar (fractal) structure for
black-hole perturbations on the gravitational
side.14 This structure is expected to smooth out in
time, yielding a slightly hotter, uniform black brane.
If this is the case, then in this high-temperature limit
[case (ii)], a global solution to the dual relativistic
hydrodynamics problem would seem to be a natural
consequence. As in the d ¼ 2þ 1 fluid case, this
would have obvious implications for global solu-
tions to the Navier-Stokes equation. Establishing
this decay result rigorously on the gravity side
amounts to determining nonlinear stability15 of
large black holes in AdS.

(iii) Finally, a word of caution with regards to nonlinear
numerical studies of gravitational perturbations in
five dimensions: Because of the high computa-
tional cost of such simulations, symmetries are
usually imposed on the solution, effectively reduc-
ing the number of dimensions that are actually
simulated. However, this may restrict or affect the
development of turbulence. In particular, five-
dimensional spacetimes that are dimensionally
reduced to four dimensions will give rise to an
inverse energy cascade—rather than a direct
one—while three-dimensional treatments will
eliminate turbulence altogether. As one is often
interested in using the AdS/CFT correspondence
to describe high-temperature CFTs through a gravi-
tational analysis, it is important to bear in mind that

14This was very recently observed for four-dimensional black
holes [12]. Black holes with a fractal structure have also been
recognized as a class of unstable black holes in higher dimen-
sions [44], although any connection to turbulence is yet to be
understood.
15Related work in the linear case has been presented in
Refs. [45,46].
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the imposition of computation-saving symmetries
can impact the extracted physics.

2. Black holes

We have investigated the decay of black branes in a
Poincaré patch of AdS with torus topology. However, it
is also of interest to study black holes in global AdS. Based
on earlier work in the inviscid case [9], we expect a
qualitatively similar turbulent behavior. One primary dif-
ference, though, is the final number of vortices that remain
(e.g., fluids dual to Kerr-Schwarzschild settle down to two
clockwise and two counterclockwise rotating vortices,
while Kerr-AdS settles to just one of each sign). Other
particular details, such as the power-law decay rate during
turbulence and the critical Reynolds number, may also
differ. The power-law behavior k!k2 / t�� can also be
estimated in the inviscid case. An examination of results
presented in Ref. [9] indicates that for black holes, the
decaying behavior is realized with a similar exponent to
that observed for black-brane decay, in the range
0:5<�< 1:5.

3. Beyond AdS

At a speculative but certainly tantalizing level, gravity
displaying turbulent behavior in AAdS spacetimes sug-
gests that more general asymptotic conditions should also
be investigated. Is this a special property of AdS, or could it
arise in the asymptotically flat or de Sitter cases? What
about Dirichlet boundary conditions, but without a cosmo-
logical constant? There are two elements to consider: the
boundary conditions imposed on the solutions to the
Einstein equation and the presence of the cosmological
constant in the equation of motion. From a partial differ-
ential equations point of view, the cosmological constant
introduces a lower-order term in the equations, which does
not affect local propagation.

On the other hand, it is well known that linearized
perturbations of AAdS black-hole spacetimes have a fam-
ily of very slowly decaying modes (the hydrodynamic
modes), which (as we have shown) play a key role in terms
of being unstable to perturbations. Such modes are also
present in certain vacuum solutions bounded by an accel-
erating mirror, which have been shown to be dual to
Navier-Stokes fluids [42]. Interestingly, at least some hy-
drodynamic modes can also be connected to quasinormal
modes of asymptotically flat spacetimes [47]. However, in
this regime, the modes decay rapidly and therefore do not
govern the long-term behavior of the system. However,
they could play a role in channeling energy in the transient
stages. Furthermore, it is well known that massive fields
introduce effective boundaries that could induce the long-
lived mode behavior and thus allow for turbulent phe-
nomena. As discussed earlier, if a Reynolds number can
be suitably defined for gravity, it would help predict the
onset of turbulence in these varied scenarios.

D. Final words

As we have stressed throughout this work, the gravity/
fluid correspondence translates intuition of fluid behavior
into the realm of gravity. This has allowed us to identify
key features of the behavior of perturbed AAdS black
holes, including a new dynamical phase where fully devel-
oped ‘‘turbulence’’ gives rise to a power-law decay.
Furthermore, turbulent behavior also indicates that per-
turbed black holes can behave in a strongly dimensionally
dependent way, both qualitatively and quantitatively.
Establishing that gravity can behave in a turbulent manner
opens new doors to searching for other situations where
this can take place. For instance, it provides motivation to
look for scenarios where slowly decaying perturbations
might give rise to interesting nonlinear interactions.
Finally, insights from turbulence may shed new light on
particular systems known to exhibit related behavior, such
as the chaotic behavior of spacelike singularities in early-
universe mixmaster dynamics [19].
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APPENDIX A: SPACETIME TURBULENCE—BULK
BEHAVIOR AND RADIALMAP TO RELATIVISTIC

HYDRODYNAMICS

The gravity/fluid correspondence indicates that the
boundary behavior is manifested throughout the bulk.
Consequently, one expects in the bulk an inverse cascade
behavior that mirrors the behavior at the boundary. Here,
we provide further details on how this behavior can be seen
to arise. In particular, we show how a conserved current (in
the high-temperature limit that approaches the inviscid
case) gives rise to a conserved enstrophy.

1. Preliminary considerations:
Boundary quantities and enstrophy

To first order, and now with an arbitrary boundary metric

��, the bulk metric can be written in the form [5]
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ds2½0þ1� ¼�2u�dx
�ðdrþrA�dx

�Þþr2
�

��þ 1

ðbrÞdu�u�

þ2bFðbrÞ���

�
dx�dx�: (A1)

Here, A� � a� � 1
2�u�, where � � r�u

� is the expan-

sion of the velocity field u� and a� its acceleration.
At the AdS boundary, the following quantities can be

defined:
(i) The stress-energy tensor [22,48],

T�
� � lim

r!1
rd

8�Gdþ1

ðK�
� � ��

� KÞ; (A2)

where K�
� is the extrinsic curvature of a constant-r

hypersurface. To first order in the derivative expan-
sion, this is

T½0þ1�
�� ¼ ð�þ PÞu�u� þ P
�� � 2����: (A3)

(ii) Conserved currents. In the high-temperature limit,
the effects of viscosity are subleading. Thus, if 
��

admits a timelike Killing vector field ��, then in this
limit, conservation of stress energy gives rise to
conservation of the energy current [9],

J
�
� � 1

2
�ð
�� þ 3u�u�Þ��: (A4)

Again in the inviscid limit, there is also a conserved
enstrophy current [9],

J�Z � !�
!�
u
�: (A5)

2. Bulk behavior: Radial map and enstrophy

The steps above can be extended into the bulk by con-
sidering r ¼ constant timelike hypersurfaces.16 Within the
regime of validity of the gradient expansion, such hyper-
surfaces are timelike outside the black-brane horizon.

It is possible to project the Einstein equation onto a
constant-r hypersurface, in order to obtain a fluid descrip-
tion on the hypersurface [50,51]. As in the r ! 1 limit
addressed earlier, the ‘‘momentum constraint’’ gives rise to

a conserved stress-energy tensor T̂��. It turns out to be of

the same form as the boundary stress energy, with

T̂ �� ¼ ð�̂þ P̂Þû�û� þ P̂
̂�� � 2��̂�� þ 
 
 
 : (A6)

These new (hatted) fields 
̂��, p̂, û�, �̂, and �̂�� are

related to the original fields at the boundary through a map,
which, to first order in derivatives, gives [50,51]


̂ �� ¼ 
�� þ
�
1� 1

�2

�
u�u� þ 2bFðbrÞ���

� 2

r
uð�A�Þ þ 
 
 
 ; (A7)


̂�� ¼ 
�� þ
�
1� �2 � �4�

r

�
u�u� � 2bFðbrÞ���

þ 2�2

r
uð�a�Þ þ 
 
 
 ; (A8)

û � ¼
�
1� �2�

2r

�
u�
�

þ �

r
a�; (A9)

û � ¼
�
1þ �2�

2r

�
�u� þ 
 
 
 ; (A10)

�̂ ¼ 2�

�þ 1
�; (A11)

P̂ ¼ �

�þ 1
ð3�� 1ÞP; (A12)

!̂ �� ¼ 1

�
!��; (A13)

where � � ð1� 1
ðbrÞ3Þ�1=2 ¼ ð1� 8�G4

r3
�Þ�1=2.

A crucial difference with respect to the boundary fluid is
that now the fluid ‘‘lives’’ on a background 
̂��, which is

dynamical. In addition, this fluid obeys a more complicated
equation of state,

P̂ ¼ ð3�ð�̂Þ � 1Þ
4

�̂; (A14)

where �ð�̂Þ ¼ ð1� 4�G4

r3
�̂Þ�1. Connected with this last

point, the stress tensor is no longer traceless,

T̂ �
� ¼ 3�ð�� 1Þ

ð�þ 1Þ � ¼ �r
d�̂

dr
: (A15)

This result has been interpreted as a renormalization-group
flow [50–52], in which the radius r plays the role of an
energy scale from the field-theory perspective.
Keeping in mind these differences, it is still the case that

each constant-r timelike hypersurface contains a relativis-
tic fluid description, just like the AdS boundary. Thus,
similar conservation laws can be derived. Of particular
interest is the existence of an enstrophy that, in the
high-temperature limit, is conserved. To define this quan-

tity for a general equation of state, P̂ð�̂Þ, only a slight
generalization of the previous derivation is required.
We begin with the inviscid fluid equations,

u�@�� ¼ �ð�þ PÞr�u
�; (A16)

P��@�P ¼ �ð�þ PÞu�r�u
�: (A17)

16For a related treatment for the null hypersurface correspond-
ing to the horizon, see Ref. [49].
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Next, we will require a function ~�ð�Þ such that the two-
form ��� � 2r½�ð~�u��Þ satisfies ���u

� ¼ 0. This result

is accomplished by choosing

~�ð�Þ / ð�þ PÞ exp
�
�

Z d�0

�0 þ Pð�0Þ
�
; (A18)

where the exponent contains an indefinite integral, and we
assume that the integration can be performed for a given
equation of state, Pð�Þ.

Notice that ���, is strongly conserved by the flow by

virtue of Cartan’s identity. In other words,

L 	u� ¼ 	u 
 d�þ dð	u 
�Þ ¼ 0: (A19)

Motivated by this observation, we can construct a current
of the form J

�
Z � 	�2u�, where we have denoted

��
�
�
 � �2 and 	 a scalar field to be fixed by the

conservation requirement. Computing the divergence of
J�, one obtains

r�J
�
Z ¼ �2½	r�u

� þ u�@�	� þ 2	��
u�@���


¼ �2½	r�u
� þ u�@�	� � 4	��
���ðr
u

�Þ
¼ �2½u�@�	� 	r�u

��: (A20)

We have used the definition of the Lie derivative and
Eq. (A19) on the second line, and the third line follows
from

�����
 ¼ 1

2
�2P�


; (A21)

an identity that is valid in two spatial dimensions [9].

Clearly, the divergence in Eq. (A20) vanishes if 	ð�Þ /
exp½�R d�0

�0þPð�0Þ�.
Notice also that �2 is related to the square vorticity

(!2 � !��!
��) by �2 ¼ 4~�2!2. Finally, by integrating

the current J�Z over a constant-t hypersurface �t, the ex-
pression for the enstrophy takes the form

Z �
Z
�t


ð�þ PÞ2 exp
�
�3

Z d�0

�0 þ Pð�0Þ
�
!2dS2: (A22)

It is straightforward to check that this expression reduces
to the one reported previously in Ref. [9] for the conformal
fluid on the boundary,

Zboundary ¼
Z
�t


!2dS2; (A23)

when the equation of state is given by Pð�Þ ¼ 1
2�.

We are now in a position to evaluate the enstrophy on an
arbitrary r ¼ constant timelike hypersurface in terms of
boundary variables,

ZðrÞ ¼
Z
�tðrÞ

!̂2ð�̂þ P̂Þ2 exp
�
�3

Z d�̂0

�̂0 þ P̂ð�̂0Þ
�
û�d�̂�:

(A24)

From Eqs. (A14) and (A11), we get

ð�̂þ P̂Þ2 exp
�
�3

Z d�̂0

�̂0 þ P̂ð�̂0Þ
�
¼

�
3

8

�
2
�2; (A25)

while for the square vorticity, we find that

!̂ 2 ¼ 1

�2
!2: (A26)

As a final remark, let us note that to zeroth order in the
gradient expansion, the transformation from one surface
element to the other is given by

û �d�̂� ¼ u�d��: (A27)

Consequently, the enstrophy calculated at any given radius
r is not only conserved but is also equivalent (up to an
unimportant constant factor that can be trivially absorbed
into the definition) to the enstrophy of the boundary fluid.
In other words,

ZðrÞ � Zboundary: (A28)

The fact that it is possible to define an enstrophy for the
fluid on each slice of the bulk geometry, and that it has the
same expression in all cases, is a natural consequence of
the ultralocal character of the map. Thus, in a sense, the
dynamics occurring at the boundary is reproduced through-
out the bulk geometry (in a slightly distorted manner). At
first sight, this enstrophy construction in the bulk seems to
indicate that one could define an interesting local quantity
from the spacetime perspective in the bulk. However, since
this quantity is defined on a distorted (and dynamical)
surface, one should exercise caution, especially in highly
distorted scenarios.

APPENDIX B: BULK
BEHAVIOR—GEOMETRICAL QUANTITIES

It is also instructive to examine the bulk through geo-
metrical quantities. This is particularly appealing, as it
could provide a geometrical way to understand fluid phe-
nomena. Such a program, however, is delicate, since an
unambiguous definition of local quantities is generally not
possible in general relativity. One possible way to do so is
to construct gauge-invariant quantities, together with a
judicious choice of coordinates to specify the points at
which these quantities are evaluated. Two useful scalars
can be constructed via the Riemann tensor. These are the
Kretschmann K1 � RABCDR

ABCD and the Chern-
Pontryagin K2 � �RABCDR

ABCD scalars. Related to these,

the principal invariants of the Weyl tensor are I1 �
CABCDC

ABCD and I2 � �CABCDC
ABCD. In addition,

Newman-Penrose scalars are useful to describe particular
characteristics of the solution.
Here, we evaluate these quantities in the case of a single

vortex on the boundary. Since the vortices we have seen
are approximately axially symmetric, it is convenient to
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introduce boundary coordinates ðt; %;�Þ. The boundary
functions then take the form � ¼ �ð%Þ, u% ¼ 0, u� ¼
u�ð%Þ, where we set % ¼ 0 at the center of the vortex.

With this assumption, the zeroth-order bulk metric (2.1)
takes the form

ds2½0� ¼ �2u�dx
�drþ ðr2P�� � Fðr; %Þu�u�Þdx�dx�:

(B1)

Here, Fðr; %Þ ¼ �ð%Þ
r , and the horizon is located at r ¼

�ð%Þ to zeroth order.
We also introduce the following null tetrad:

lA ¼ @Ar ; (B2)

nA ¼ u0@
A
t � 1

2
ðr2 � Fðr; %ÞÞ@Ar � u�

%2
@A�; (B3)

mA ¼ u�ffiffiffi
2

p
r%

@At þ i
1ffiffiffi
2

p
r
@A% � u0ffiffiffi

2
p

r%
@A�; (B4)

which satisfies �lAnA ¼ mA �mA ¼ 1. With the
tetrad, we construct the Newman-Penrose scalars,
�0 ¼ CABCDl

AmBlCmD, �1 ¼ CABCDl
AnBlCmD, �2 ¼

CABCDl
AmB �mCnD, �3 ¼ CABCDl

AnB �mCnD, �4 ¼
CABCDn

A �mBnC �mC, which are related to the mass aspect,
angular momentum, and radiation in the system.

We evaluate all of these quantities for our vortex solu-
tion to leading order, and in the nonrelativistic case,

K1 � 12

�
2þ �ð%Þ2

r6

�
; K2 � 36

�ð%Þ2
r7

!; (B5)

I1 � 12
�ð%Þ2
r6

; I2 � 36
�ð%Þ2
r7

!; (B6)

�0 ¼ 0; �1 �
ffiffiffi
2

p
8%r3

!;

�2 ���ð%Þ
2r3

� i
3�ð%Þ
4r4

!;

�3 ��
ffiffiffi
2

p ðr3 þ �ð%ÞÞ
8%r4

!;

�4 ��i
3�ð%Þ
4r2%2

ð%2!� 2u�Þ (B7)

[evaluation of the horizon is obtained by r ! �ð%Þ1=3].
Notice that �4 is purely imaginary, which implies a single
polarization of gravitational waves due to the axisymmet-
ric structure of the vortex.
Notice that most of these curvature quantities depend to

leading order on the vorticity. In fact, they are related
through the identity I1 � iI2 ¼ 16ð3�2

2 þ�0�4 �
4�1�3Þ. Thus, there is some freedom in choosing which

FIG. 9. Contour plots for �1, =ð�2Þ, and �3 (left to right) illustrating the vortex structure from the horizon to the boundary. Note
that the ‘‘conical’’ structure is a result of the dependence upon the radial coordinate of the plotted quantities [see Eq. (B6)]. (In contrast
to Fig. 8, we are not rescaling here by any powers of r.)

FIG. 10. Radial profile of the enstrophy at the horizon, for a
vortex solution, as calculated by Eq. (A24), the square of the
Pontryagin density [12], and ½=ð�2Þ�2 [49] ( labeled Z1, Z2, and
Z3, respectively). Each curve has been rescaled by a trivial
constant factor for easier comparison.
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curvature quantities to use to analyze the structure that
arises in the bulk. Figure 9 displays the behavior of �1,
=ð�2Þ, and �3 as functions of ðr; %;�Þ at fixed t, while
Fig. 8 illustrates the behavior of I1 and I2 for one of the
solutions that we obtained in our simulations. Recent
works have proposed several different curvature quantities
to represent the enstrophy. For instance, at the horizon, the
squares of K2 and =ð�2Þ, respectively, have been sug-
gested in Refs. [12,49]. These quantities can be extended
throughout the bulk and compared with the quantity intro-
duced in Appendix A 2. Figure 10 illustrates the radial
profile of the three quantities, showing good agreement.
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