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We propose a mechanism of coherent coupling between distant spin qubits interacting dipolarly with a

ferromagnet. We derive an effective two-spin interaction Hamiltonian and find a regime where the

dynamics is coherent. Finally, we present a sequence for the implementation of the entangling controlled-

NOT gate and estimate the corresponding operation time to be a few tens of nanoseconds. A particularly

promising application of our proposal is to atomistic spin qubits such as silicon-based qubits and nitrogen-

vacancy centers in diamond to which existing coupling schemes do not apply.
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I. INTRODUCTION

Quantum coherence and entanglement lie at the heart of
quantum-information processing. One of the basic require-
ments for implementing quantum computing is to generate,
control, and measure entanglement in a given quantum
system. This implementation is a rather challenging task,
as it requires us to overcome several obstacles, the most
important one being decoherence processes. These nega-
tive effects have their origin in the unavoidable coupling of
the quantum systems to the environment in which they
reside.

A guiding principle in the search for a good system to
encode qubits is the smaller the system, the more coher-
ence—or, more precisely, the fewer degrees of freedom, the
weaker the coupling to the environment. Simultaneously,
one needs to be able to coherently manipulate the individual
quantum objects, which is more efficient for larger systems.
These opposing requirements immediately force us to
compromise between manipulation and decoherence
requirements.

Following this principle, among the most promising
candidates for encoding a qubit, we find atomistic two-
level systems, such as nitrogen-vacancy (NV) centers and
silicon-based spin qubits [1–12]. The latter are composed
of nuclear (electron) spins of phosphorus atoms in a silicon
nanostructure. They have very long T2 times of 60 ms [13]
for nuclei and of 200 �s for electrons [14]. Recently, high-
fidelity single-qubit gates and readout have been demon-
strated experimentally [14]. Nitrogen-vacancy centers [15]
in diamond have also been demonstrated experimentally to
be very stable, with long decoherence times of T�

2 � 20 �s
and T2 � 1:8 ms [16]. Both types of spin qubit have the
additional advantage that noise due to surrounding nuclear
spins can be avoided by isotopically purifying the material.

Unfortunately, it is difficult to make these spin qubits
interact with each other in a controlled and scalable fashion
[17,18]. They are very localized, and their position in the
host material is given and cannot be adjusted easily.
Therefore, if, during their production, two qubits turn out
to lie close to each other, they will always be coupled,
while if they are well isolated from each other, they will
never interact. It is thus of high interest to propose a
scheme to couple such atomistic qubits in a way that allows
a high degree of control.
We fill this gap in the present work by proposing a setup

to couple two spin qubits separated by a relatively large
distance on the order of micrometers; see Fig. 1. The
coupling is mediated via a ferromagnet with gapped excita-
tions to which the spin qubits are coupled by magnetic
dipole-dipole interaction. Since the ferromagnet is gapped,
only virtual magnons are excited, but in order to obtain a
sizable coupling, one needs to tune the splitting of the qubit
close to ferromagnetic resonance (FMR). Another possibil-
ity could be to use magnonic crystals in place of the ferro-
magnet [19]. The on-and-off switching of the qubit-qubit
interaction is therefore achieved by tuning qubits on and
off resonance (see below). The resulting system is thus

FIG. 1. The schematics of the ferromagnetic coupler setup.
The orange dogbone shape denotes the ferromagnet that is
coupled via magnetic dipole interaction to spins of nearby
quantum dots (red spheres with green arrows). The ferromagnet
is assumed to be a monodomain, and its magnetization is
denoted by blue arrows (M) that can take arbitrary orientation.
L is the length of the quasi-1D ferromagnetic channel that is
approximately equal to the distance between the qubits. The
shape of the ferromagnetic coupler is chosen such that it enables
strong coupling to the spin qubits while maintaining the spatially
slowly decaying 1D susceptibility between the two disks.
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realizable with present state-of-the-art technologies. We
point out that our analysis is not restricted to a precise
type of spin qubit but is, in principle, applicable to any
system that dipolarly interacts with the spins of a ferromag-
net. In particular, our proposal is also applicable to an
electron spin localized in a semiconductor quantum dot or
in a double quantum dot [20], gate defined or self-assembled
[21,22]. While other schemes exist to couple such qubits
over large distances [23–27], none of them is applicable to
atomistic qubits. The main novelty of our proposal is thus
the possibility to also couple atomistic qubits that are of high
technological relevance.

Before we proceed with the quantitative analysis, let us
first give an intuitive picture of the qubit-qubit coupling.
The coupling between two distant qubits is mediated via a
coupler system. The relevant quantity of this coupler is its
spin-spin susceptibility—in order to have a long-range
coupling, a slowly spatially decaying susceptibility is
required. The dimensionality of the coupler plays an
important role since, in general, it strongly influences
the spatial decay of the susceptibility—this behavior can
be anticipated from purely geometric considerations.
Furthermore, since the coupler interacts with the qubits
via magnetic dipolar forces, we require that a large part of
the coupler lie close to the qubits. To this end, we imme-
diately see that the dogbone shape depicted in Fig. 1
satisfies these two requirements—strong dipolar cou-
pling to the qubits while retaining a slow, practically
1D, spatial decay of the susceptibility at separation
between the qubits.

II. MODEL

The system we consider consists of two spin- 1
2 qubits

coupled dipolarly to the ferromagnet, with the following
Hamiltonian:

H ¼ H� þHF þHI; (1)

where HF is the for now unspecified Hamiltonian of the
dogbone-shaped ferromagnet that is assumed to be polar-
ized along the x axis. We first assume that the qubits are

also polarized along the x axis H� ¼ P
i¼1;2

�i

2 �
x
i , while

the ferromagnet disk axes are along z; see Fig. 1. The
magnetic dipole coupling between the ferromagnet and
the spin qubits can be written as
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(2)

where �B is the Bohr magneton, Ms is the saturation
magnetization of the ferromagnet, and Ar, Br, and Cr are
given by

Ar ¼ rzrþ

r5
; (3)

Cr ¼ ðrþÞ2
r5

; (4)

Br ¼ 1

r3

�
2� 3rþr�

r2

�
; (5)

with S�r ¼ Syr � iSzr, �
� ¼ �y � i�z. Here, we denote the

real part of a complex number with a prime and the
imaginary part with a double prime. The operator Sr

describes the spin of the ferromagnet at the position r.
Next, we release the assumptions about the mutual

orientation of the disk axes, the axes of polarization of
the ferromagnet, and the direction of the qubit splitting and
assume that these axes can take arbitrary directions. Now,
the interaction Hamiltonian reads

HI ¼ �BMs

S

X
i¼1;2

Z
drS~zr½ai;r�z

i þ bi;r�
þ
i þ H:c:�

þ S ~þ
r ½ci;r�z

i þ di;r�
þ
i þ ei;r�

�
i � þ H:c:; (6)

where Sr has a quantization axis along ~z and �� ¼ �x �
i�y. The coordinate systems ðx; y; zÞ for the qubit � and
ð~x; ~y; ~zÞ for the ferromagnet can be different. The expres-
sions of the coefficients in Eq. (6) are now more compli-
cated; nevertheless, it is important to note that the integrals
of these coefficients are experimentally accessible. The
qubits can be used to measure the stray field of the ferro-
magnet, which is given by Bs ¼ �Msð2b0i;�2b00i ; aiÞ,
where fai; . . . ; eig ¼

R
drfai; . . . ; eigr. In order to measure

the remaining coefficients, one needs to apply the magnetic
field externally in order to sequentially polarize the ferro-
magnet along the two perpendicular directions to the fer-
romagnet easy axis. The coefficients are then obtained by
measuring again the stray fields (with the aid of the qubits)
that are now given by�Msð2d0i þ 2e0i; 2e00i � 2d00i ; 2c0iÞ and�Msð�2d00i � 2e00i ; 2e0i � 2d0i;�2c00i Þ. Furthermore, all the
results that we are going to obtain for the qubit-qubit
coupling as well as for the decoherence time will depend
only on the integrals of the coefficients, i.e., on fai; . . . ; eig
rather than on fai; . . . ; eigr. We point out that the stray
field Bs induces a splitting on the qubits that is incor-
porated into H�.

A. Coherent coupling

We proceed to derive the effective qubit-qubit coupling
by performing a Schrieffer-Wolff (SW) transformation [28].
We assume that the excitations in the ferromagnet are gapped
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because of somemagnetic anisotropy (e.g., shape anisotropy)
or externally applied magnetic field, with the gap being
denoted by �F. (For FMR dependence on an externally
applied magnetic field, see Ref. [29].) The presence of a
gap is important because when the qubit splitting � is below
the FMR frequency, flipping the qubit spin cannot excite
magnons in the ferromagnet; thus, there are only virtual
magnons excited via coupling to the qubits—otherwise,
such a coupling would lead to strong decoherence in the
qubits. Because of the presence of the gap in the ferromagnet,
its transversal susceptibility �?ð!; rÞ decays exponentially
below FMR (!< �F) with the characteristic magnetic

length lF / 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�F �!

p
; thus, we only take into account

terms with !� �F—see Eqs. (B22) and (B24) in
Appendix B. Straightforward application of lowest-order
SW transformation accompanied by tracing out the degrees
of freedomof the ferromagnet yields the effective qubit-qubit-
coupling Hamiltonian

Heff¼H�þ�2
BM

2
s

S2
�1D
? ð�1;LÞe1��

1 ðc2�z
2þd2�

þ
2 þe2�

�
2 Þy

þ1$2þH:c:; (7)

where �1D
? is the transverse susceptibility (i.e., transverse to

the ~z direction) of a quasi-1D ferromagnet, sincewe assume a
dogbone-shaped ferromagnet. We neglect the longitudinal
susceptibility �k since it is suppressed by temperature. We

note that
�2

BM
2
s

S2
�1D
? � �2

BM
2
s

Tc
lFe

�L=lF ; thus, ferromagnets with

high saturation magnetization and moderate Curie tempera-
ture are desirable for the strong coupling. Furthermore, it can
be seen from the above expression that in order to obtain a
sizable coupling between the qubits, we have to tune both the
qubits close to resonance�i � �F (see Sec. IIB). This tuning
can be achieved by applying an externalmagnetic field. Since
theg factor of the ferromagnet is not generally the same as the
g factor of the qubit, it is possible to tune the system on
resonancewith an external homogeneous magnetic field. The
fine-tuning can then be achieved by locally applying a small
externalmagnetic field fromacoil. Theon-resonance require-
ment offers an elegant way to switch on and off the coupling
between the qubits. The idea is to tune the qubit splitting close
to resonance for switching on the mediated interaction and to
tune it off resonance to switch off the mediated interaction.

The expression for the transverse susceptibility of a
ferromagnet is given in Eq. (B24) of Appendix B, assum-
ing HF to be of Heisenberg type. The derivation given
therein relies on the fact that the dispersion of low-lying
ferromagnetic excitations (i.e., spin waves) is quadratic
[30]. Note that for very long wavelengths (bigger than a
micron), the excitations are so-called dipolar spin waves
with dispersions very different from the quadratic one and
dependent on concrete boundary conditions [31]. Since we
are considering ferromagnets with dimensions not exceed-
ing microns, the relevant excitations are exchange-
spin waves with quadratic dispersion that is practically
independent of specific boundary conditions [31]. We

note here that the FMR can increase toward the edges of
the sample [32]; thus, one should use a ferromagnetic
coupler with lateral dimensions bigger than the one quoted
in Sec. IV in order to have a middle region with nearly
spatially independent FMR.
Special care has to be taken for the validity of the

perturbation theory employed herein, since we are working
close to FMR; i.e., �� �F has to be small but still much
larger than the coupling of a qubit to an individual spin of
the ferromagnet. For the perturbation theory to be valid, we
require the tilt of each ferromagnet spin to be sufficiently
small (i.e., hS�r i � 1). The tilt of the central spin of the
ferromagnetic disk can be estimated by the integral over
the dogbone disk D

hS�r i ¼ �B

a3

Z
D
�?ðrÞB?ðrÞdr; (8)

where a is the lattice constant of the ferromagnet and
B?ðrÞ is the perpendicular (to the magnetization direction)
component of the field produced at position r by the qubit.
Using cylindrical coordinates, we then obtain

hS�r i ��0�
2
B

a

Z R

0
�d�

1

ð�2 þ h2Þ3=2
S

D�
; (9)

where S
D� is the spatial decay of the transversal suscepti-

bility and 1
ð�2þh2Þ3=2 is the decay of the dipolar field that

causes the perturbation of the ferromagnet. For our
choice of parameters, we obtain a tilt hS�r i< 10�7 � 1.
Even though each spin is just slightly tilted, we obtain a
sizable coupling due to a big number of spins involved in
mediating the coupling.
For the sake of completeness, in Appendix D, we present

a detailed discussion of the effective coupling mediated by
the ferromagnet when the qubits are exchange coupled to
the ferromagnet, which requires a tunnel coupling between
spin qubit and ferromagnet.

B. Implementation of two-qubit gates

Two qubits interacting via the ferromagnet evolve
according to the Hamiltonian Heff; see Eq. (7). The
Hamiltonian is therefore the sum of Zeeman terms and
qubit-qubit interaction. These terms, by and large, do not
commute, making it difficult to use the evolution to imple-
ment standard entangling gates. In order to obtain sizable
coupling, we need to assume that the two qubits are on
resonance with each other �1 ’ �2. Now, H� acts only in
the subspace spanned by fj ""i; j ##ig and the Zeeman split-
ting of the qubits is much larger than the effective qubit-
qubit coupling; we can thus neglect the effect ofHeff in this
part of the subspace and approximate it by its projection in
the space spanned by the vectors fj "#i; j #"ig

H0
eff ¼ H� þ �ð�x

1�
x
2 � �y

1�
y
2Þ þ �ð�x

1�
y
2 þ �y

1�
x
2Þ;
(10)
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where � ¼ �8Reðe1e�2Þ and � ¼ �4Reðd1e�2 þ d2e
�
1Þ.

Within this approximation, the coupling in H0
eff and

the Zeeman terms now commute. From here, we readily
see that the stray field components ai and bi, as well as the
coefficient ci, do not determine the operation time of
the two-qubit gates—the operation time depends only on
di and ei. To proceed, we perform a rotation on the second
qubit around the z axis by an angle tan� ¼ �=� and arrive
at the Hamiltonian

H0
eff ¼ H� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
ð�x

1 ~�
x
2 � �y

1 ~�
y
2Þ: (11)

We consider the implementation of the iSWAP gate

UiSWAP ¼ eið�x
1
~�x
2
þ�y

1
~�y
2
Þ�=4, which can be used to implement

the controlled-NOT (CNOT) gate [33]. The HamiltonianH0
eff

can be transformed to the desired form by changing the
sign of the �x

1 ~�
x
2 term. This change is achieved with the

following sequence [34]:

UiSWAP ¼ �y
1e

iH�te�iH0
eff
t�y

1; (12)

where t ¼ �=ð4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
Þ. When iSWAP is available, the

CNOT gate can be constructed in the standard way [35]

UCNOT ¼ e�ið�=4Þ�z
1eið�=4Þ�x

2eið�=4Þ�
z
2

�UiSWAPe
�ið�=4Þ�x

1UiSWAPe
ið�=4Þ�z

2 : (13)

Since H0
eff is an approximation of Heff , the above

sequence will yield an approximate CNOT U0
CNOT when

implemented with the full the Hamiltonian. The success
of the sequence therefore depends on the fidelity of the gate
FðU0

CNOTÞ. Ideally, the fidelity would be defined using a
minimization over all possible states of two qubits.
However, to characterize the fidelity of an imperfect
CNOT, it is sufficient to consider the following four logical

states of two qubits [23]: jþ "i, jþ #i, j� "i, and j� #i.
These four states are product states that, when acted upon
by a perfect CNOT, become the four maximally entangled
Bell states j�þi, j�þi, j��i, and j��i, respectively. As
such, the fidelity of an imperfect CNOT may be defined as

FðU0
CNOTÞ ¼ min

i2fþ;�g;j2f0;1g
jhijjUy

CNOTU
0
CNOTjijij2: (14)

The choice of basis used here ensures that FðU0
CNOTÞ gives a

good characterization of the properties of U0
CNOT in com-

parison to a perfect CNOT, especially for the required task
of generating entanglement. For realistic parameters, with
the Zeeman terms 2 orders of magnitude stronger than the
qubit-qubit coupling, the above sequence yields a fidelity
for the CNOT gate of 99:976%.

To compare these values to the thresholds found in
schemes for quantum computation, we must first note
that imperfect CNOTs in these cases are usually modeled
by the perfect implementation of the gate followed by
depolarizing noise at a certain probability. It is known that
such noisy CNOTs can be used for quantum computation in
the surface code if the depolarizing probability is less than

1:1% [36]. Such probability corresponds to a fidelity, accord-
ing to the definition above, of 99:17%. The fidelities thatmay
be achieved in the schemes proposed here are well above
this value, and hence, although they do not correspond to the
same noise model, we can expect these gates to be equally
suitable for fault-tolerant quantum computation.

III. DECOHERENCE

In this section, we study the dynamics of a single qubit
coupled to the ferromagnet. In particular, we want to
answer the question of whether the two-qubit dynamics
studied in the previous section is coherent, i.e., whether the
decoherence time solely due to the dipolar coupling to the
ferromagnet is larger than the qubit operation time.
A ferromagnet has two types of fluctuations—longitudinal

and transverse. The longitudinal noise stems from fluctua-
tions of the longitudinal S~z component (we recall that the
ferromagnet is polarized along ~z), while the transverse one is

related to fluctuations of S ~�. In what follows, we study these
two noise sources separately. The general noise model that
describes both types of noise is then given by

H ¼ HF þ �

2
�z þ �z 	 Xþ �þ 	 Y þ H:c:; (15)

where the ferromagnet operators X (Y) with zero
expectation value couple longitudinally (transversally) to
the qubit. The noise model given in Eq. (15) leads to the
following relaxation and decoherence times within the
Born-Markov approximation [37]:

T�1
1 ¼ SYð! ¼ �Þ; (16)

T�1
2 ¼ 1

2T
�1
1 þ SXð! ¼ 0Þ; (17)

where we define the fluctuation power spectrum of
an operator A in the following way: SAð!Þ ¼R
dte�i!tfAyðtÞ; Að0Þg. In order to obtain an expression for

the decoherence times, we need a specific model for the
ferromagnet Hamiltonian, herein taken to be a gapped
Heisenberg model HF ¼ �J

P
hr;r0iSr 
 Sr0 þ �F

P
rS

z
r, J

being the exchange coupling and �F the excitation gap.

A. Longitudinal noise

The power spectrum of longitudinal fluctuations is given
by the following expression for !;�F � T [see
Appendix C and, in particular, Eq. (C8)]:

S3Dk ð!Þ ¼ 	
ffiffiffiffiffiffiffiffi

!

p
2
2D3

e�
�F ; (18)

where 	 ¼ ffiffiffiffi
�

p � e�Erfcð1Þ. For ! � T and T � �F

[see Appendix C, Eq. (C10)],

S3Dk ð!Þ ¼ expð�
�FÞ
8�
2D3

; (19)

where D ¼ 2JS. We study transverse (Y) and longitudinal
(X) couplings separately. In the case of longitudinal
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coupling, we solve the problem exactly, while we treat the
transverse coupling within the framework of perturbation
theory.

1. Transverse coupling to longitudinal noise

The part of the Hamiltonian that describes transverse
coupling to the longitudinal noise reads

H ¼ HF þMs

S
�þ

1 	
Z

drb1;rS
~z
r þ H:c: (20)

Using Eq. (17) and the inequality

S3Dk ð!; rÞ � S3Dk ð!; r ¼ 0Þ;
we obtain the relaxation time

T�1
1 ¼ M2

s

S2

Z
drdr0b1;rb1;r0S3Dk ð�; r� r0Þ

� M2
s

S2

Z
drdr0b1;rb1;r0S3Dk ð�; r ¼ 0Þ

¼ M2
s

S2
b21S

3D
k ð�Þ; (21)

where the expression for S3Dk ð�Þ is given in Eq. (18) since

� � T. The above expression readily shows that relaxa-
tion time can be tailored to be arbitrarily small by choosing
the ratio T=�F to be sufficiently small.

2. Longitudinal coupling to longitudinal noise

Here, we consider only longitudinal coupling to longi-
tudinal noise; thus, the Hamiltonian reads

H ¼ HF þ �z 	 V þ �

2
�z; (22)

with � the qubit splitting and V ¼ Ms

S

R
dra1;rS

~z
r. To sim-

plify the problem further [38], we substitute S~zr ! S~x
r , since

S~x
r is linear in magnon operators while S~z

r is quadratic.
When the final formula for the decoherence time is ob-
tained, we substitute back the power spectrum of S~z

r instead
of S~x

r .
In order to study decoherence, we have to calculate the

following quantity [38]:

h��ðtÞi ¼ ei�th��ð0Þi
�

�
~T exp

�
i
Z t

0
Vdt0

�
T exp

�
i
Z t

0
Vdt0

��
; (23)

with ( ~T) T the (anti-) time-ordering operator. The average
in the above expression can be evaluated using a cluster
expansion [39], and since the perturbation V is linear in the
bosonic operators, only the second-order cluster contrib-
utes. Therefore, the final exact result for the time evolution
of ��ðtÞ reads

h��ðtÞi ¼ ei�th��ð0Þie�1=2
R

t

0

R
t

0
Sðt2�t1Þdt1dt2 ; (24)

where SðtÞ ¼ h½VðtÞ; Vð0Þ�þi. After performing the Fourier
transformation, we obtain

h��ðtÞi ¼ ei�th��ð0Þi � exp

�
� 1

2

Z d!

2�
Sð!Þ sin

2ð!t=2Þ
ð!=2Þ2

�
:

(25)

Note that this expression is of exactly the same form as the
one for a classical Gaussian noise [40]. Now, we substitute
back S~x

r ! S~zr:

h��ðtÞi ¼ ei�th��ð0Þi � exp

�
�M2

s

2S2

Z d!

2�

�
Z

drdr0a1;ra1;r0S3Dk ð!; r� r0Þ sin
2ð!t=2Þ
ð!=2Þ2

�
:

(26)

For long times t � @=T, the dynamics is of the form

h��ðtÞi � e�a1M
2
s T

2e�
�F t=ð8�D3S2Þþi�t; (27)

where we have used the inequality S3Dk ð!;rÞ�S3Dk ð!;r¼0Þ.
Thus, this type of decoherence can be suppressed by
choosing the ratio T=�F to be sufficiently small.

B. Transverse noise

The power spectrum of transverse fluctuations of
the ferromagnet is gapped and thus vanishes for !< �F

[see Eqs. (B19) and (B23) in Appendix B]:

S3D? ð!Þ ¼ 0; ! <�F; (28)

S3D? ð!Þ ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!� �F

p
D3=2

cothð
!=2Þ; ! > �F: (29)

Since the transverse fluctuations are gapped and the pre-
cession frequency of the qubits is below the gap, this noise
source does not contribute in the second order (Born
approximation) because only virtual magnons can be ex-
cited. In this section, we choose the quantization axes such
that qubit splitting is along the z axis, while the ferromag-
net is polarized along the x axis (see Fig. 1); such a choice
of the axis is assumed solely for simplicity, and all the
conclusions are also valid for the most general case. The
Hamiltonian of the coupled system is of the form of
Eq. (15) with operators X (Y):

X ¼ iMs

2S

Z
drcrðSþr � S�r Þ; (30)

Yþ ¼ � iMs

8S

Z
drðarSþr þ brS

�
r Þ; (31)

with S�r ¼ Syr � iSzr and the definitions

ar ¼ Br þ 3Cr � 6Ar; (32)
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br ¼ Br þ 3Cr þ 6Ar; (33)

cr ¼ Br � 3A00
r ; (34)

where Ar, Br, and Cr are given by Eqs. (3)–(5). To proceed
further, we perform the SW transformation on the
Hamiltonian given by Eq. (15). We ignore the Lamb and
Stark shifts and obtain the effective Hamiltonian

H¼HFþ�

2
�zþ�z	 ~X2þ�þ	 ~Y�

2 þ��	 ~Yþ
2 ; (35)

where

~X2 ¼ X2 � hX2i; (36)

~Y�
2 ¼ Y�

2 � hY�
2 i; (37)

with the following notation:

X2 ¼ 4ðYþ
�Y

� þ YþY�
� Þ; (38)

Yþ
2 ¼ 2ðYþ

�X � X0Y
þÞ; (39)

X! ¼ iMs

2S

Z
drdr0�?ð!; r� r0ÞcrðSþr0 � S�r0 Þ; (40)

Yþ
! ¼ � iMs

8S

Z
drdr0�?ð!; r� r0ÞðarSþr0 þ brS

�
r0 Þ: (41)

The model given by Eq. (15) yields the following
expressions for the relaxation and decoherence times:

T�1
1 ¼ S ~Y�

2
ð! ¼ �Þ; (42)

T�1
2 ¼ 1

2T
�1
1 þ S ~X2

ð! ¼ 0Þ: (43)

After a lengthy calculation, we obtain the following
expressions for T1 and T2 (see Appendix E for a detailed
derivation):

T�1
1 � B4M4

s�
2
F

2D3S2

�
1

�F

þ 1

�F � �

�
2
f

�
�

�F

; 
�F

�
; (44)

T�1
2 � B4M4

s�
2
F

4D3S2

�
1

�F

þ 1

�F � �

�
2
f

�
�

�F

; 
�F

�

þ B4M4
s�

2
F

2D3S2ð�F ��Þ2 fð0; 
�FÞ; (45)

with the function fðx; yÞ defined as follows:

fðx; yÞ ¼
Z 1

1þx
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
eyz � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� x� 1

p
eyðz�xÞ � 1

: (46)

It is important to note that fðx; yÞ / e�y; i.e., we obtain,
as for the longitudinal noise, that the effect of transverse
fluctuations can be suppressed by choosing the temperature
to be much smaller than the excitation gap of the ferro-
magnet. As anticipated, Eq. (45) shows that the trans-
verse noise becomes more important as the resonance is
approached (�� �F).

IV. ESTIMATES

In this section, we give numerical estimates for the
coherent coupling mediated by the ferromagnet and the
associated decoherence times. These estimates are valid for
both silicon-based and NV-center qubits.
Let us assume that the qubits lie close to the disk axis at a

distance h ¼ 25 nm below the disk and that the ferromag-
net has in-plane polarization (along the x axis); for the
ferromagnet, we assume yttrium iron garnet (iron), that
the thickness of the disk is 20 nm, its radius is 50 nm, its
Curie temperature is 550 K (1041 K), its saturation magne-
tization is about 0.2 T (2.2 T), and the lattice constant is 12 Å
(3 Å). In this case, the stray field reaches values up to 10mT
(100 mT), and such a magnetic field strength is not detri-
mental since NV centers can tolerate such small fields
perpendicular to the polarization axis; stronger magnetic
fields would destroy the ability to manipulate NV centers
optically [41]. For these cases and when the qubit splitting
is brought close to resonance �F �� � 10�2 �eV
(0:1 �eV), we obtain operation times on the order of hun-
dreds (tens) of nanoseconds when the qubits are separated
by a distance of about 1 �m. The decoherence times T2

depend strongly on the ratio kBT=�F, and the additional
decoherence source can be made negligible if this ratio is
sufficiently small. For a magnon gap�F ¼ 100 �eV and a
temperature T ¼ 0:1 K, we obtain decoherence times
solely due to the coupling to the ferromagnet that are
much bigger than the operation times and the typical deco-
herence times of the qubits.

V. CONCLUSIONS

We propose a scheme to coherently couple two atomistic
qubits separated over distances on the order of a micron.
We present a sequence for the implementation of the en-
tangling CNOT gate and obtain operation times on the order
of a few tens of nanoseconds. We show that there is a
regime where all fluctuations of the ferromagnet are under
control and the induced decoherence is nondetrimental:
This regime is reached when the temperature is smaller
than the excitation gap of the ferromagnet. The main novel
aspect of our proposal is its applicability to the technologi-
cally very important silicon qubits and NV centers to
which previous coupling methods do not apply.
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APPENDIX A: HOLSTEIN-PRIMAKOFF
TRANSFORMATION

For the sake of completeness, we derive in this
Appendix explicit expressions for the different spin-spin
correlators used in this work:
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C�
ð!;qÞ ¼ hS�q ð!ÞS
�qð0Þi: (A1)

For this purpose, we make use of a Holstein-Primakoff
transformation

Szi ¼ �Sþ ni; S�i ¼ ffiffiffiffiffiffi
2S

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ni

2S

r
ai; and

Sþi ¼ ðS�i Þy; (A2)

in the limit ni � 2S, with ai satisfying bosonic com-

mutation relations andni ¼ ayi ai [42].The creationoperators
ayi and annihilation operators ai satisfy bosonic commutation
relations, and the associated particles are calledmagnons. The
corresponding Fourier transforms are straightforwardly de-

fined as ayq ¼ 1ffiffiffi
N

p P
ie

�iq
Riai. In harmonic approximation,

the Heisenberg HamiltonianHF reads

HF � X
q

�qa
y
qaq; (A3)

where �q ¼ !q þ�F ¼ 4JSf3� ½cosðqxÞ þ cosðqyÞ þ
cosðqzÞ�g þ �F is the spectrum for a cubic lattice with lattice
constant a ¼ 1 and the gap �F is induced by the external
magnetic field or anisotropy of the ferromagnet.

APPENDIX B: TRANSVERSE CORRELATORS
hSþ

q ðtÞS��qð0Þi
Let us now define the Fourier transforms in the harmonic

approximation

Sþq ¼ 1ffiffiffiffi
N

p X
i

e�iqriSþi ¼
ffiffiffiffiffiffi
2S

p
ffiffiffiffi
N

p X
i

e�iqriayi ¼ ffiffiffiffiffiffi
2S

p
ay�q;

S��q ¼ 1ffiffiffiffi
N

p X
i

eiqriS�i ¼
ffiffiffiffiffiffi
2S

p
ffiffiffiffi
N

p X
i

eiqriai ¼
ffiffiffiffiffiffi
2S

p
a�q: (B1)

From the above equations, it directly follows that

Cþ�ðt;qÞ ¼ hSþq ðtÞS��qð0Þi ¼ 2Shay�qðtÞa�qi
¼ 2Sei�qtnq; (B2)

with �q � Dq2 þ�F in the harmonic approximation.

The Fourier transform is then simply given by

Cþ�ð!;qÞ ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dte�i!tCþ�ðt;qÞ

¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dteið�q�!Þt2Snq

¼ ffiffiffiffiffiffiffi
2�

p
2S�ð�q �!Þ 1

e
! � 1
: (B3)

The corresponding correlator in real space is then simply
given by (q :¼ jqj)

Cþ�ð!; rÞ ¼ 1

ð2�Þ3=2
Z

dqeiqrCþ�ð!;qÞ ¼
ffiffiffiffiffiffiffi
2�

p

ð2�Þ3=2 2S
1

e
! � 1

Z
dq�ðDq2 þ �F �!Þeiqr

¼ 2S

e
! � 1

Z 1

�1

Z 1

0
dqdxq2�ðDq2 þ �F �!Þeiqrx ¼ 4S

r

1

e
! � 1

Z 1

0
dqq�ðDq2 þ�F �!Þ sinðqrÞ: (B4)

Let us now perform the following substitution:

y ¼ Dq2; (B5)

which gives for !>�F

Cþ�ð!; rÞ ¼ 4S=r

2Dðe
! � 1Þ
Z 1

0
dy�ðyþ �F �!Þ sin

� ffiffiffiffi
y

D

r
r

�
¼ 2S

D

1

e
! � 1

sin½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!� �FÞ=D
p

r�
r

: (B6)

We remark that

Cþ�ð!; rÞ ¼ 0; ! < �F: (B7)

We note the diverging behavior of the above correlation
function for �F ¼ 0 and ! ! 0, namely,

1

e
! � 1

sinð ffiffiffi
!
D

p
rÞ

r
! 1ffiffiffiffi

D
p




1ffiffiffiffi
!

p : (B8)

Similarly, it is now easy to calculate the corresponding
commutators and anticommutators. Let us define

S?ðt;qÞ :¼ 1
2fSþq ðtÞ; S��qð0Þg: (B9)

It is then straightforward to show that

S?ðt;qÞ ¼ Sei�qtð1þ 2nqÞ; (B10)

and therefore,

S?ð!;qÞ ¼ Sffiffiffiffiffiffiffi
2�

p
Z 1

�1
eið�q�!Þtð1þ 2nqÞ

¼ S
ffiffiffiffiffiffiffi
2�

p
�ð�q �!Þ

�
1þ 2

1

e
! � 1

�
: (B11)

Following essentially the same steps as the one performed
above, we obtain the 3D real-space anticommutator for
!>�F:
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S3D? ð!; qÞ ¼ S cothð
!=2Þ
�

Z 1

�1

Z 1

0
dxdqq2eiqrx�ð�q � !Þ (B12)

¼ S

D
cothð
!=2Þ sin½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!��FÞ=D
p

r�
r

: (B13)

Let us now finally calculate the transverse susceptibility
defined as

�?ðt;qÞ ¼ �i�ðtÞ½Sþq ðtÞ; S��qð0Þ�: (B14)

As before, in the harmonic approximation, one finds

�?ðt;qÞ ¼ i�ðtÞ2Sei�qt: (B15)

In the frequency domain, we then have

�?ð!;qÞ ¼ 2iSffiffiffiffiffiffiffi
2�

p
Z 1

0
dteið�q�!Þt�t

¼ � 2Sffiffiffiffiffiffiffi
2�

p 1

�q �!þ i
; (B16)

and thus, in the small q expansion,

�?ð!;qÞ ¼ � 2Sffiffiffiffiffiffiffi
2�

p 1

Dq2 þ �F �!þ i
: (B17)

In real space, for the three-dimensional case, we obtain

�3D
? ð!; rÞ ¼ � 2Sffiffiffiffiffiffiffi

2�
p 2�

ð2�Þ3=2
Z 1

0

Z 1

�1
dxdqq2

1

Dq2 þ�F �!þ i
eiqrx

¼ � 4Sffiffiffiffiffiffiffi
2�

p 2�

ð2�Þ3=2
1

r

Z 1

0
dqq

1

Dq2 þ�F �!þ i
sinðqrÞ: (B18)

Making use of the Plemelj formula, we obtain for !>�F

�3D
? ð!; rÞ ¼ � 2Sffiffiffiffiffiffiffi

2�
p 2�

ð2�Þ3=2
1

r

Z 1

�1
dqq

1

Dq2 þ �F �!þ i
sinðqrÞ

¼ � 2Sffiffiffiffiffiffiffi
2�

p 2�

ð2�Þ3=2
1

r
P
Z 1

�1
dq

q

Dq2 þ �F �!
sinðqrÞ þ i

2Sffiffiffiffiffiffiffi
2�

p 2�2

ð2�Þ3=2
1

r

Z 1

�1
dqq�ðDq2 þ�F �!Þ sinðqrÞ

¼ � S

D

cos½r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!� �FÞ=D
p �

r
þ i

S

2D

sin½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!��FÞ=D
p

r�
r

: (B19)

It is worth pointing out that the imaginary part of the
susceptibility vanishes

�3D
? ð!; rÞ00 ¼ 0; ! <�F; (B20)

and therefore, the susceptibility is purely real and takes the
form of a Yukawa potential:

�3D
? ð!; rÞ ¼ � S

D

e�r=lF

r
; ! < �F; (B21)

where

lF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D

�F �!

s
: (B22)

Note also that the imaginary part of the transverse suscep-
tibility satisfies the well-known fluctuation-dissipation
theorem

S3D? ð!; rÞ ¼ cothð
!=2Þ�3D
? ð!; rÞ00: (B23)

In three dimensions, the susceptibility decays as 1=r,
where r is measured in lattice constants. For distances of
the order of 1 �m, this decay leads to a reduction of 4
orders of magnitude.

For quasi-one-dimensional ferromagnets, such a reduc-
tion is absent and the transverse susceptibility reads

�1D
? ð!; rÞ ¼ � S

D
lFe

�r=lF ; ! <�F; (B24)

where lF is defined as above and the imaginary part
vanishes as above, i.e.,

�1D
? ð!; rÞ00 ¼ 0; ! < �F: (B25)

Similarly, for !>�F, we have

�1D
? ð!; rÞ ¼ S

sin
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið!� �FÞ=D
p

r
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð!��FÞ

p (B26)

and

�1D
? ð!; rÞ00 ¼ S

2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

!� �F

s
cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!��FÞ=D

q
r

�
: (B27)
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APPENDIX C: LONGITUDINAL CORRELATORS
hSz

qðtÞSz�qð0Þi
The longitudinal susceptibility reads

�kðt;qÞ ¼ �i�ðtÞ½SzqðtÞ; Sz�qð0Þ�
¼ ��ðtÞ 1

N

X
q0;q00

eitð�q0��q0þqÞh½ay
q0aq0þq; a

y
q00aq00�q�i:

(C1)

Applying Wick’s theorem and performing a Fourier
transform, we obtain the susceptibility in the frequency
domain

�kð!;qÞ ¼ � 1

N

X
k

nk � nkþq

!� �kþq þ �k þ i
; (C2)

where nk is the magnon occupation number given by the
Bose-Einstein distribution

nk ¼ 1

e
�k � 1
; (C3)

where �k is again the magnon spectrum (�k ¼
!k þ �F � Dk2 þ �F for small k). Note that the longi-
tudinal susceptibility is proportional to 1=S, due to the fact
that �k � �kþq ¼ !k �!kþq / S.

Since we are interested in the decoherence processes
caused by the longitudinal fluctuations, we calculate the
imaginary part of �kð!;qÞ that is related to the fluctuations
via the fluctuation-dissipation theorem. Performing a small
q expansion and assuming without loss of generality
!> 0, we obtain for the imaginary part

�3D
k ð!;qÞ00 ¼ �

ð2�Þ3
Z

dkðnk � nkþqÞ�ð!k �!kþq þ!Þ

¼ 1

4�

Z 1

0
dkk2

Z 1

�1
dx

�
1

e
ð�FþDk2Þ � 1
� 1

e
ð!þ�FþDk2Þ � 1

�
�ð!�Dq2 � 2DkqxÞ

¼ 1

4�

Z 1

0
dkk2

Z 1

�1
dx

�
1

e
ð�FþDk2Þ � 1
� 1

e
ð!þ�FþDk2Þ � 1

�
�

�
k�!�Dq2

2Dqx

��������� 1

2Dqx

��������
¼ 1

4�

Z 1

�1
dx

�������� 1

2Dqx

��������
�
!�Dq2

2Dqx

�
2
�

1

e
½�FþDð!�Dq2

2Dqx Þ2� � 1
� 1

e
½!þ�FþDð!�Dq2

2Dqx Þ2� � 1

�
�

�
!�Dq2

2Dqx

�

¼ 1

4�

Z 1

0
dx

1

2Dqx

�
!�Dq2

2Dqx

�
2
�

1

e
½�FþDð!�Dq2

2Dqx Þ2� � 1
� 1

e
½!þ�FþDð!�Dq2

2Dqx Þ2� � 1

�
: (C4)

Let us first consider the regime where ! � T (and thus 
! � 1); thus, we have nk � nkþq. Furthermore, we
approximate the distribution function nk ¼ e�
ð�Fþ!kÞ

1�e�
�Fþ
!k
(this approximation is valid when 
!k � 1) and arrive at the

following expression:

�3D
k ð!;qÞ00 ¼ 1

4�

Z 1

0
dx

1

2Dqx

�
!�Dq2

2Dqx

�
2 e�
½�FþDð!�Dq2

2Dqx Þ2�

1� e�
�F þ 
Dð!�Dq2

2Dqx Þ2

¼ � e1�e�
�F�
�F

4
D2q
Ei

�
e�
�F þ 1

4

�
�4� 
Dq2 þ 2
!� 
!2

Dq2

��
; (C5)

where EiðzÞ is the exponential integral function. We also
need the real-space representation obtained after inverse
Fourier transformation

�3D
k ð!; rÞ00 ¼

ffiffiffiffi
2

�

s
1

r

Z 1

0
dqq�3D

k ð!; qÞ00 sinðqrÞ: (C6)

In order to perform the above integral, we note that the
imaginary part of the longitudinal susceptibility, given by

Eq. (C5), is peaked around q ¼ ffiffiffiffiffiffiffiffiffiffiffi
!=D

p
, with the width of

the peak (1=
ffiffiffiffiffiffiffiffi

D

p
) much smaller than its position in the

regime in which we are working (! � T). For r ¼ 0, the
integration over q can then be performed approximately
and yields the following expression:

�3D
k ð!; r ¼ 0Þ00 ¼

ffiffiffiffi
�

p
e�e�
�F�3
�F=2

2
2D3

h
ee

�
�Fþ
�F=2 � e
ffiffiffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
�F � 1

p
Erfcðe�
�F=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
�F � 1

p
Þ
i ffiffiffiffiffiffiffiffi


!
p

; (C7)

where ErfcðzÞ denotes the complementary error function. It is readily observed from the above expression that the
longitudinal fluctuations are exponentially suppressed by the gap. Assuming that �F � T, we obtain the following
simplified expression:
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�3D
k ð!; r ¼ 0Þ00 ¼

ffiffiffiffi
�

p � e�Erfcð1Þ
2
2D3

e�
�F

ffiffiffiffiffiffiffiffi

!

p
: (C8)

Next, consider the behavior of the longitudinal susceptibility in the opposite limit, when 
! � 1. In this limit, the
difference of the two Boltzmann factors in Eq. (C4) can be expanded to the lowest order in the small quantity 
!:

�3D
k ð!;qÞ00 ¼

Z 1

0
dx

1

8�Dqx

�
!�Dq2

2Dqx

�
2 
!

ch½
�F þ 
Dð!�Dq2

2Dqx Þ2� � 1
¼ !

16�D2qðe
�Fþ
ð!�Dq2Þ2
4Dq2 � 1Þ

: (C9)

In order to calculate the Fourier transform to real space, we note that for ! � �F, the denominator of the
above expression depends only weakly on !; thus, we ignore this dependence and obtain the Fourier transform for r ¼ 0:

�3D
k ð!Þ00 ¼ lnð1þ nk¼0Þ

16�
D3
!: (C10)

From the above equation, we infer that the longitudinal noise of the ferromagnet behaves as an Ohmic bath.
Next, we calculate the longitudinal fluctuations for the case of a quasi-one-dimensional ferromagnet (�F � T) and

obtain

�1D
k ð!; r ¼ 0Þ00 ¼ 1

4�

Z 1

�1
dk

Z 1

�1
dq

�
1

e
ð�FþDk2Þ � 1
� 1

e
ð!þ�FþDk2Þ � 1

�
�ð!�Dq2 � 2DkqÞ

¼
Z 1

�1
dk

e�
Dk2

1� e�
�F þ 
Dk2
1

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ!=D

p ¼ �

D
ffiffiffiffiffiffiffiffi

!

p e�
�F ; (C11)

where � is a numerical factor of order unity.
Note that Skð!; rÞ is defined through the fluctuation-

dissipation theorem as

Skð!; rÞ ¼ cothð
!=2Þ�kð!; rÞ00: (C12)

APPENDIX D: EXCHANGE COUPLING
TO THE FERROMAGNET

1. Exchange coupling

The Hamiltonian we consider is of the following form:

H ¼ HF þH� þ A
X
i

�i 
 Sri ; (D1)

where A is the exchange-coupling constant between the
qubit spins and the ferromagnet. The ferromagnet is as-
sumed to be below the Curie temperature, with the magne-
tization pointing along the out-of-plane z direction. The
qubit Hamiltonian reads

H� ¼ 1

2
�
X
i

�x
i : (D2)

2. Coherent coupling

We proceed with the derivation of an effective two-
spin interaction Hamiltonian for A � J by employing a
perturbative Schrieffer-Wolff transformation [28] up to the
second order

Heff ¼ H� þ A2

8
�?ð�Þð2�y

1�
y
2 þ �z

1�
x
2 þ �x

1�
z
2Þ; (D3)

where we introduce the notation �?ð!Þ ¼ �?ð!;LÞ
(L ¼ jr2 � r1j) and �?ð!; rÞ is the transverse real-space
spin susceptibility of the ferromagnet. Note that we have
neglected �3D

? ð��Þ and �3D
? ð0Þ in comparison to �1D

? ð�Þ,
as well as the longitudinal susceptibility �k, since it is

suppressed by temperature. The real-space transverse sus-
ceptibility of the 3D ferromagnet is given by

�3D
? ð!; rÞ ¼ � S

D

e�r=lF

r
; ! < �F; (D4)

where �F is the gap induced via an applied external mag-
netic field or due to internal anisotropy of the ferromagnet

lF ¼
ffiffiffiffiffiffiffiffiffiffiffi

D
�F�!

q
andD ¼ 2JS. In what follows, we assume that

the external gap is always larger than the qubit splitting
�< �F, as this condition ensures that the transverse noise
is not contributing to decoherence in second order since
transverse noise is related to the vanishing imaginary part of
the transverse susceptibility �?ð!Þ00 ¼ 0 (!< �F). The
spatial dependence of the effective two-spin coupling given
by Eq. (D4) is of Yukawa type because of the presence of
the external gap. If we assume a realistic tunnel coupling to
the ferromagnet of 100 �eV [43,44], the Curie temperature
of 550 K (as, for example, for yttrium iron garnet) and a
gap of �F ¼ 100 �eV, and the qubit splitting close to
the resonance �F �� ¼ 3� 10�3 �eV (corresponding
to a magnetic field of about B ¼ 60 �T), we obtain for
the qubit-qubit-coupling strength a value on the order of
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4� 10�11 eV for a lattice constant of about 4 Å. This
coupling strength gives rise to the operation times of
50 �s—significantly below the relaxation and decoherence
times of the spin qubit T1 ¼ 1 s [45] and T2 > 200 �s [46],
respectively. Furthermore, the error threshold—defined as
the ratio between the two-qubit gate-operation time to the
decoherence time—we obtain with such an operation time
is about 10�2, which is good enough for implementing
the surface-code error correction [47]. Here, we use T2

instead of T�
2 since spin echo can be performed together

with two-qubit gates [48]. Alternatively, the decoherence
time of GaAs qubits can be increased without spin echo by
narrowing the state of the nuclear spins [49,50].

The dimensionality of the ferromagnet plays an impor-
tant role—if we assume a 10-nm width of the trench where
the ferromagnet is placed, then, for energies below 0.1 meV,
the ferromagnet behaves quasi-one-dimensionally (1D).
In this case, we obtain

�1D
? ð!; rÞ ¼ � S

D
lFe

�r=lF ; ! < �F; (D5)

from where it is evident that at distances r & lF, the
susceptibility of a quasi-1D ferromagnet is practically
constant, in contrast to the 3D case, where a 1=r decay
is obtained; see Eq. (D4). Additionally, we require lF &
D=ðASÞ ¼ 2J=A for the perturbation theory to be valid.
Thus, for the same parameters as above, but without the
need to tune very close to the resonance (we set herein
�F �� ¼ 0:5 �eV, corresponding to about B ¼ 10 mT),
a coupling strength of 10�8 eV is obtained.

For the 1D case, there is yet another rather promising
possibility—to use magnetic semiconductors [51]. These
materials are characterized by a particularly low Curie
temperature of 30 K or below [51], and the distance be-
tween the ions that are magnetically ordered via
Ruderman-Kittel-Kasuya-Yosida interaction is about
10–100 nm. Such a large lattice constant is very beneficial
for long-range coupling—if we take the lattice constant to
be 10 nm, the coupling to the ferromagnet A ¼ 15 �eV,
and the qubit splitting close to resonance (�F �� ¼
0:5 �eV, corresponding to about B ¼ 10 mT), the qubit-
qubit coupling becomes of the order of 1 �eV. Such a
coupling strength in turn leads to an error threshold on the
order of 10�8. Therefore, even the standard error-
correction protocol can be used in this case.

3. Derivation of the effective Hamiltonian
(exchange coupling)

Here, we give a detailed derivation of the qubit-qubit
effective Hamiltonian. As stated above, the total
Hamiltonian of the system reads

H ¼ HF þH� þ A
X
i

�
1

2
ð�þ

i S
�
ri þ ��

i S
þ
ri Þ þ �z

iS
z
ri

�
;

(D6)

where we identify the main part as H0 ¼ HF þH� and
the small perturbation as the exchange coupling V ¼
A
P

i�i 
 Sri . The Hamiltonian of the ferromagnet reads

HF ¼ �J
P

hr;r0iSr 
 Sr0 , while the Hamiltonian for the

two distant qubits is H� ¼ �
2

P
i¼1;2�

x
i .

The second-order effective Hamiltonian [28] is given by

Hð2Þ
eff ¼ H0 þU, where

U ¼ � i

2
lim
!0þ

Z 1

0
dte�t½VðtÞ; V�; (D7)

where VðtÞ ¼ eiH0tVe�iH0t.
We have

�þ
i ðtÞ ¼

1þ cosð�tÞ
2

�þ
i þ 1� cosð�tÞ

2
��

i � i sinð�tÞ�z
i

(D8)

and ��
i ðtÞ ¼ �þ

i ðtÞy.
Recalling that the longitudinal susceptibility can be

neglected and that only the transverse susceptibility
contributes, we obtain the following result from Eq. (D7)
U ¼ lim!0þ

R1
0 dte�t

P
ijUij:

Uij ¼ � iA2

8
ð½��

i ðtÞSþri ðtÞ; �þ
j S

�
rj � þ H:c:Þ

¼ � iA2

8
½��

i ðtÞ�þ
j ½Sþri ðtÞ; S�rj � þ H:c:�: (D9)

Finally, by rewriting cosð�tÞ ¼ ei�tþe�i�t

2 and sinð�tÞ ¼
ei�t�e�i�t

2i , and using the definition of the real-space trans-

verse spin susceptibility

�?ð!; ri � rjÞ ¼ �i lim
!0þ

Z 1

0
dte�ði!þÞt½Sþri ðtÞ; S�rj �;

(D10)

we obtain by inserting Eq. (D8) into Eq. (D9)

U ¼ A2

8

X
ij

�
�?ð0Þ
2

þ �?ð�Þ þ �?ð��Þ
4

�
��

i �
þ
j

þ A2

8

X
ij

�
�?ð0Þ
2

� �?ð�Þ þ �?ð��Þ
4

�
�þ

i �
þ
j

� A2

8

X
ij

�?ð�Þ � �?ð��Þ
2

�z
i�

þ
j þ H:c: (D11)

Since the decay length of the susceptibility �ð!; rÞ is large
only close to the resonance �F � �, we can simplify the
above equation by neglecting �ð��; rÞ and �ð0; rÞ in
comparison to �ð�; rÞ, which is assumed to be close to
the resonance. Within this approximation, we arrive at
Eq. (D3).
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APPENDIX E: FOURTH-ORDERCONTRIBUTIONS
TO DECOHERENCE

In this section, we determine the effect of the transverse
noise in the lowest nonvanishing order due to coupling
dipolarly to the ferromagnet. Here, we choose quantization
axes such that the qubit splitting is along the z axis, while
the ferromagnet is polarized along the x axis. The
Hamiltonian of the coupled system reads

H¼HFþ�

2
�zþ�z	Xþ�þ	Y�þ��	Yþ; (E1)

where the operator X (Y) that couples longitudinally
(transversally) to the qubit is linear in the transverse
operators of the ferromagnet

X ¼ iMs

2S

Z
drcrðSþr � S�r Þ; (E2)

Yþ ¼ � iMs

8S

Z
drðarSþr þ brS

�
r Þ; (E3)

with S�r ¼ Syr � iSzr and the definitions of the coefficients

ar ¼ Br þ 3Cr � 6Ar; (E4)

br ¼ Br þ 3Cr þ 6Ar; (E5)

cr ¼ Br � 3A00
r ; (E6)

Ar ¼ rzrþ

r5
; (E7)

Cr ¼ ðrþÞ2
r5

; (E8)

Br ¼ 1

r3

�
2� 3rþr�

r2

�
: (E9)

To proceed further, we perform the SW transformation on
the Hamiltonian given by Eq. (E1). We ignore the Lamb
and Stark shifts and obtain the effective Hamiltonian

H ¼ HF þ �

2
�z þ �z 	 ~X2 þ �þ 	 ~Y�

2 þ �� 	 ~Yþ
2 ;

(E10)

where

~X2 ¼ X2 � hX2i; (E11)

~Y�
2 ¼ Y�

2 � hY�
2 i; (E12)

with the following notation:

X2 ¼ 4ðYþ
�Y

� þ YþY�
� Þ; (E13)

Yþ
2 ¼ 2ðYþ

�X � X0Y
þÞ; (E14)

X! ¼ iMs

2S

Z
drdr0�?ð!; r� r0ÞcrðSþr0 � S�r0 Þ; (E15)

Yþ
! ¼� iMs

8S

Z
drdr0�?ð!;r� r0ÞðarSþr0 þbrS

�
r0 Þ: (E16)

The model given by Eq. (E10) yields the following
expressions for the relaxation and decoherence times:

T�1
1 ¼ S ~Y�

2
ð! ¼ �Þ; (E17)

T�1
2 ¼ 1

2T
�1
1 þ S ~X2

ð! ¼ 0Þ; (E18)

where, again, SAð!Þ ¼ R
dte�i!tfAyðtÞ; Að0Þg.

After a lengthy calculation, we obtain the expressions
for S ~X2

ð! ¼ 0Þ and S ~Y�
2
ð! ¼ �Þ:

S ~X2
ð0Þ ¼ M4

s

128S4

Z
d�dr1dr2dr3dr4dr5dr6C

�þð�; r3 � r4ÞCþ�ð��; r1 � r2Þ � ½ðar5a�r3 þ br3b
�
r1Þðar4a�r2 þ br6b

�
r4Þ�?

� ð�; r1 � r5Þ�?ð�; r2 � r6Þ þ ðar4a�r2 þ br5b
�
r4Þðar1a�r3 þ br6b

�
r1Þ�?ð�; r2 � r5Þ�?ð�; r3 � r6Þ

þ ðar6a�r2 þ br2b
�
r4Þðar5a�r3 þ br3b

�
r1Þ�?ð�; r1 � r5Þ�?ð�; r4 � r6Þ

þ ðar6a�r2 þ br2b
�
r4Þðar1a�r3 þ br5b

�
r1Þ�?ð�; r3 � r5Þ�?ð�; r4 � r6Þ�; (E19)
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S ~Y�
2
ð�Þ ¼ M4

s

64S4

Z
d�dr1dr2dr3dr4dr5dr6C

�þð�; r3 � r4ÞCþ�ð�� �; r1 � r2Þ
� ½cr3cr6ðar4b�r1 þ ar5b

�
r4Þ�?ð0; r2 � r6Þ�?ð�; r1 � r5Þ � cr3cr6ðar5a�r2 þ br2b

�
r1Þ�?ð0; r4 � r6Þ�?ð�; r1 � r5Þ

� cr4cr6ðar1a�r2 þ br5b
�
r1Þ�?ð0; r3 � r6Þ�?ð�; r2 � r5Þ þ cr1cr6ðbr5a�r2 þ br2a

�
r3Þ�?ð0; r4 � r6Þ�?ð�; r3 � r5Þ

þ cr4cr5ðbr3a�r2 þ br6a
�
r3Þ�?ð0; r1 � r5Þ�?ð�; r2 � r6Þ þ cr3cr4ðar5a�r2 þ br6b

�
r1Þ�?ð�; r1 � r5Þ�?ð�; r2 � r6Þ

� cr1cr5ðar4a�r3 þ br6b
�
r4Þ�?ð0; r2 � r5Þ�?ð�; r3 � r6Þ � cr1cr4ðbr6a�r2 þ br5a

�
r3Þ�?ð�; r2 � r5Þ�?ð�; r3 � r6Þ

� cr2cr5ðar6a�r3 þ br3b
�
r4Þ�?ð0; r1 � r5Þ�?ð�; r4 � r6Þ þ cr2cr5ðar6b�r1 þ ar1b

�
r4Þ�?ð0; r3 � r5Þ�?ð�; r4 � r6Þ

� cr2cr3ðar6b�r1 þ ar5b
�
r4Þ�?ð�; r1 � r5Þ�?ð�; r4 � r6Þ þ cr1cr2ðar6a�r3 þ br5b

�
r4Þ�?ð�; r3 � r5Þ�?ð�; r4 � r6Þ

þ cr5cr6ðar4a�r3 þ br3b
�
r4Þ�?ð0; r1 � r5Þ�?ð0; r2 � r6Þ � cr5cr6ðar4b�r1 þ ar1b

�
r4Þ�?ð0; r2 � r5Þ�?ð0; r3 � r6Þ

� cr5cr6ðbr3a�r2 þ br2a
�
r3Þ�?ð0; r1 � r5Þ�?ð0; r4 � r6Þ þ cr5cr6ðar1a�r2 þ br2b

�
r1Þ�?ð0; r3 � r5Þ�?ð0; r4 � r6Þ�:

(E20)

In order to obtain the lower bound of the relaxation and
decoherence times, we consider the ferromagnet to be in
the shape of an infinite plane. Furthermore, we are not
aiming at performing an exact evaluation of the integrals in
Eqs. (E19) and (E20) but rather at finding the lower bound
for the relaxation and decoherence times. To this end, we
note that jCþ�ð!; r� r0Þj � jCþ�ð!; r ¼ 0Þj and arrive
at the following inequalities:

S ~X2
ð0Þ � B4M4

s

8S2ð�F � �Þ2
Z 1

�F

d�Cþ�ð�Þ2; (E21)

S ~Y�
2
ð�Þ � B4M4

s

8S2

�
1

�F

þ 1

�F � �

�
2

�
Z 1

�Fþ�
d�Cþ�ð�ÞCþ�ð�� �Þ; (E22)

where we use the notation B ¼ R
drBr. Finally, we arrive

at the expression for the lower bound of the relaxation and
decoherence times

T�1
1 � B4M4

s�
2
F

2D3S2

�
1

�F

þ 1

�F � �

�
2
f

�
�

�F

; 
�F

�
; (E23)

T�1
2 � B4M4

s�
2
F

4D3S2

�
1

�F

þ 1

�F � �

�
2
f

�
�

�F

; 
�F

�

þ B4M4
s�

2
F

2D3S2ð�F ��Þ2 fð0; 
�FÞ; (E24)

with the function fðx; yÞ defined as follows:

fðx; yÞ ¼
Z 1

1þx
dz

ffiffiffiffiffiffiffiffiffiffiffiffi
z� 1

p
eyz � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z� x� 1

p
eyðz�xÞ � 1

: (E25)

Assuming the same parameters as in the main text, we
obtain decoherence times of about 0.5 h, while the relaxa-
tion time is on the order of 1000 h. It is worth noting that
this result depends sensitively on the ratio �F=T; thus, if
we assume a temperature of 4 K, we obtain T1  200 �s
and T2  30 �s.
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