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We present a powerful and versatile technique that enables exquisite spatial and temporal control over

local solution chemistry in microfluidic devices. Using a microscope and a UV lamp, we use projection

lithography to photopolymerize thin (10–25 �m) hydrogel membrane ‘‘microwindows’’ (HMMs) into

standard microfluidic devices. These microwindows are permeable to solute and solvent diffusion and to

electric fields, yet act as rigid walls from the standpoint of fluid flow. Reservoirs of solution may thus be

rapidly imposed, switched, and maintained on one side of a HMM using standard microfluidic techniques,

provoking changes in solution conditions on the other side without active mixing, stirring, or diluting. We

highlight three paradigmatic experimental capabilities enabled by HMMs: (1) rapid dialysis and swapping

of solute and/or solvent, (2) stable and convection-free localized concentration gradients, and (3) local

electric permeability. The functional versatility of hydrogel microwindow membranes, coupled with the

ease and speed of their fabrication and integration into simple microchannels or multilayer devices, will

open a variety of novel applications and studies in a broad range of fields.
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I. INTRODUCTION

Provoking the response of cells, organisms, solutions, and
materials to environmental changes is a nearly ubiquitous
demand in biology, chemistry, physics, and materials sci-
ence. Microfluidic devices enable such studies to be per-
formed on micron scales [1–5], with precise geometric and
fluidic control over small sample volumes [6,7]. Techniques
for microfluidic logic [8] have enabled large-scale integra-
tion ofmicrofluidic devices capable of complex experiments
and high-throughput parameter sweeps [9]. Robust and ver-
satile methods for sculpting local chemical environments in
space and time, however, have remained elusive.

The vertebrate circulatory system provides an ideal
model for the rapid and precise chemical delivery to soft
targets, by using a stepwise method of convection followed
by diffusion. Gas, nutrients, and other solutes are con-
vected rapidly over large distances through arteries and
vessels until they reach smaller capillaries, which are
distributed densely enough that solute can diffuse rapidly
across membranes or pores and into tissues and cells.

Here,wedescribe a powerful, versatile, yet simple element
for microfluidic systems—hydrogel microwindow mem-
branes (HMMs)—that enable an analogous stepwise
convective-diffusive chemical delivery in microfluidic sys-
tems. HMMs provide an unparalleled combination of rapid
delivery, spatial control, optical accessibility, simple and

rapid device fabrication, and integration with standard
devices. HMMs are compatible with existing microfluidic
materials and fabrication techniques, and they enable the
rapid imposition and switching of localmicrochemical envi-
ronments, without introducing convective flows near the
sample that might disrupt or wash away fragile or unbound
materials. Moreover, HMMs can operate scalably within
complex microfluidic devices, as each HMM functions inde-
pendently, without interfering with others in the network.
The core HMM strategy is illustrated in Figs. 1 and 2. A

‘‘reservoir channel’’ (which will contain the solution to be
delivered) is made to run alongside a ‘‘sample’’ channel (to
which the solution will be delivered), with a gap in the wall
separating them. A thin (10–25-�m-wide) hydrogel mem-
brane microwindow placed in this gap then allows local
microdialysis. Its pores are small enough that it acts like an
impermeable wall from the standpoint of fluid flow, yet is
permeable to electric fields, solute, and solvent. A solution
flowing through the reservoir channel establishes andmain-
tains a steady reservoir of solute, which subsequently dif-
fuses through the membrane and into the sample channel.
The thinness of the membrane, and the small dimensions
characteristic of microfluidic devices, renders a short time
scale for diffusive delivery (�D � L2=D). Dissolved salts
(D� 103 �m2=s), for example, require �D � 100 ms to
diffuse 10 �m, and �D � 10 s to diffuse 100 �m.
Several essential features are readily apparent.

(1) HMMs are exceptionally thin, which enables fast dif-
fusive delivery. (2) Microdevices can be designed with
multiple microwindow membranes, each with a distinct,
independently controlled reservoir channel. Almost arbi-
trarily complex solution microenvironments can thus be
designed into microfluidic systems, e.g., with multiple
components, introduced at multiple locations and/or times,
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as well as sharp concentration gradients (e.g., several molar
over tens of �m). (3) HMMs are permeable to electric
fields, enabling localized electrokinetic effects (e.g., selec-
tive electroporation, electrophoresis, sorting, and separa-
tions) to be incorporated into complexmicrofluidic devices.
(4) Integration with microfluidic plumbing and logic
(including elastomeric valves in polydimethylsiloxane

(PDMS) devices [10]) enables rapid switching of reservoir
solutions and, consequently, of the local solution chemistry
within the sample chamber. (5) HMMs hydrodynamically
isolate reservoir and sample channels in complex-device
geometries, without requiring pressures to balance as in
laminar-flow strategies. Each HMM can thus operate inde-
pendently, without interfering with upstream or down-
stream HMMs. (6) The fabrication strategy is relatively
simple, requiring little more equipment than is standard in
most research laboratories. (7) HMMs do not interfere with
optical access to the sample, whereas, e.g., track-etched
membranes used to introduce solute to a channel from
above or below [11] interfere with the optical path.
Instead, sample and reservoir channels can lie entirely
within a single focal plane, allowing high-resolution gra-
dient visualization within microscale regions and improved
synchronization with reservoir channel flow switching.
Hydrogel microwindow membranes can be integrated into
conventional microfluidic channel materials, and hydrogel
chemistries can be readily adapted as needed for particular
chemical demands, e.g., to be permeable to a range of
solutes and solvents. We therefore anticipate that HMMs
will enable a broad range of capabilities for microfluidic
studies and applications that demand precise spatial and
temporal control over solute and solvent distribution.
We begin with a brief discussion of existing techniques

for microfluidic solution manipulation in Sec. II, then
continue with a brief description of a HMM fabrication
procedure in Sec. III. Section IV presents the basic opera-
tion and properties of HMMs, with Sec. IVA showing
HMM functions for the flow-free introduction of solute
(pH buffers, evidenced with a fluorescent pH indicator;
Fig. 2) and solvent (triggering local antisolvent crystalli-
zation; Fig. 3). Section IVB details methods to measure

FIG. 2. (See Video 1.) HMMs are permeable to small-
molecule solutes, yet admit no measurable hydrodynamic flow.
Here, we use the three-channel device shown in Fig. 1(b) and
specifically show the same close-up view as Fig. 1(c). All
channels contain a fluorescent pH indicator at the same concen-
tration, and each channel is buffered at a different pH: 8.1 (left,
bright), 6.3 (center, intermediate), and 4.7 (right, dark), with
ionic strengths balanced. Fluorescent tracer particles (bright
lines) travel in straight lines past the center channel, indicating
no convective inflow through either the left or right HMM.
Diffusion of pH buffers through the membrane is clearly evident.
Insets: Contrast-enhanced and enlarged images showing tracer
particle paths. Scale bar: 20 �m.

FIG. 1. Fabrication of HMMs. (a) AUV-polymerizable solution of poly(ethylene-glycol)-diacrylate and photoinitiator initially fills a
three-channel microfluidic device (b), with gaps in the walls between channels. Patterned UV light is used to cross-link the hydrogel in
two specified rectangular regions (width: 10–20 �m) filling the gaps in the walls. (c) After flushing the unreacted solution, hydrogel
microwindow membranes remain (phase contrast, scale bar ¼ 20 �m). (d) Simplified microscope schematic for fabricating HMMs.
The microfluidic device is placed on the microscope stage, and a photomask is inserted into the microscope field aperture. A computer-
controlled mechanical shutter exposes the PEG-DA solution to UV irradiation for the desired exposure time. Inset: Natural
fluorescence of NOA-81 optical glue enables the patterned UV light to be aligned.
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and control the diffusive and convective permeabilities of
the microwindows. We then present paradigmatic experi-
ments that highlight the versatility and range of capabilities
afforded byHMMs. SectionV shows rapid dialysis of solute
and solvent, Sec. VI shows local electric permeability and
field sculpting, and Sec. VII shows rapid imposition of
localized concentration gradients, which enables the first
direct visualization of colloidal solvophoresis [Fig. 7(c)].
Alongwith these demonstrations, we describe several novel
methods yielded by HMMs to manipulate and visualize
colloids and solutions at the microscale.

II. PREVIOUS WORK

Steady chemical gradients have been created convec-
tively, by using T junctions [12] to bring two solutions into
coflowing contact. These can be used to expose surface-
fixed samples to chemical gradients or dynamic environ-
ments [13,14]. However, resulting shear may disrupt or
perturb soft samples (e.g., cells or tissues, soft materials, or
growing crystals), and flow itself may displace unbound
samples (including material precursors, existing solutions,
particles, or cells) or disrupt gradients. Although shear may
be reduced using channel networks for gradient generation
[15], all flow-based strategies require precise pressure
balances to properly align flows [16], as well as relatively
large device areas [17]. Therefore, they become increas-
ingly impractical as devices become more complex.
Coflowing techniques are well suited for certain experi-
ments but do not represent a versatile, robust technique to
rapidly introduce, controllably vary, or precisely sculpt
local chemical microenvironments. Convective solution
modification has also been achieved by adding ingredients
sequentially, via a rotary mixer [18], enabling automated

batch preparation of solutions [19], yet each added aliquot
necessarily flushes out an equal volume of the existing
sample. In some cases, this flushing is advantageous—
e.g., in maintaining a stable microbial population in a
microchemostat [20]—but continuous dilution is undesir-
able in other experiments.
Introducing solute or solvent diffusively can alleviate

some of the issues associated with flow, but it poses separate
challenges. Diffusive transport becomes prohibitively slow
over long distances: The time �D for a species with diffusiv-
ityD to diffuse a distance L scales like �D � L2=D, and any
flow U—stray or otherwise—overwhelms this diffusive
delivery beyond a critical length scale Lc �D=U. Batch
diffusive mixing has been enabled through free-interface
diffusion, initiated by opening PDMS valves between micro-
chambers [21–24] or sliding lubricated substrates to bring
loaded microchambers on opposite sides into contact
[25–27]. Such strategies, however, cannot maintain steady
gradients. Steady gradients have been produced by control-
lably contacting flowing source and sink solutions with large
(L� 1 mm, �D * 1000 s) flow-free channels [28] or cham-
bers [29], but reductions in chamber size (and �D) would
result in increased stray convection.
Methods for embedding or fabricating membranes within

microfluidic channels have employed stepwise convection-
diffusion into microfluidic devices, allowing diffusive solute
delivery [30,31]. Contact photolithography has been used to
photopolymerize hydrogels [32] to create permeable plugs
or microchamber walls [33–37]. At standard device thick-
nesses, contact lithography exhibits limited resolution [38],
which was overcome by projecting shaped laser beams into
microchannels using custom optics [38–40]. Besides photo-
polymerization, membrane fabrication has been achieved via
interfacial polymerization [41] and evaporative assembly of
packed beds [42]. Embedding opaque track-etched mem-
branes between multiple microchannel layers [11,17,43,44]
allows precise control of pore size and visualization of the
bottomchannel layer,while polymerization of suspendedgels
enables membranes in capillary-filled channels [45]. Devices
made entirely of solute-permeable materials [46–49] allow
diffusive delivery along entire channels. Previous works have
not, however, demonstrated the rapid (seconds) and localized
(20 �m) flow-free solution swapping and strong gradient
generation afforded by HMMs, which exploit the rapid dif-
fusive equilibration across thin, high-porosity hydrogel
membranes.

III. MICROWINDOW FABRICATION

To make HMMs, we employ microscope projecton pho-
tolithography (MPP) [50], in which a standard microscope
provides high-resolution photopatterning with UV illumi-
nation. In MPP, a photomask is placed within the field
conjugate plane, usually in the microscope’s field dia-
phragm, yielding patterned UV illumination in the focal
plane. The photomask pattern is also magnified by the

FIG. 3. Antisolvent diffuses from the reservoir channels across
HMMs into a saturated aqueous salt solution in the sample channel,
depicted in the three-channel device of Figs. 1(b) and 1(c).
(a-c) Upon stopping KCl flow in the sample channel, ethanol
diffuses through theHMMs.As ethanol concentration progressively
increases near the HMM, KCl solubility decreases, triggering nu-
cleation and growth of KCl crystals. (d-f) Resuming convective
delivery of fresh aqueous KCl solution flushes away the ethanol,
restoringKCl solubility to its bulk aqueous value, and dissolving the
crystals. (SeeVideos 2 and 3.) (Phase contrast, scalebar ¼ 20 �m.)
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objective, resulting in enhanced resolution. The technique
has recently become common for flow lithography, wherein
hydrogel particles are synthesized within flowing solutions
of UV-curable molecules through PDMS channels [51–56].
The polymerization reaction is inhibited by oxygen that
permeates through the PDMS walls, resulting in freely
flowing hydrogel particles [57]. MPP has also been used
to pattern 150-�m-wide gel barriers [58] and hydrogel
posts [59] on glass surfaces in glass/PDMS channels.

Using MPP, we pattern the photopolymerization of poly
(ethylene-glycol)-diacrylate (PEG-DA) precursor solutions
to form hydrogel membranes that are much thinner than
would be possible using standard methods such as contact
lithography. (See Fig. 1 and Appendix A 1 for experimental
details.) Owing to its versatile chemistry, PEG-DA has been
widely used in continuous-flow lithography (e.g., [52]) and
in gel-based microfluidic devices (e.g., [47]). We focus on
the fabrication, operation, and capabilities of HMMs poly-
merized into devices made from microfluidic ‘‘stickers’’
(Norland Optical Adhesives, NOA-81, thiol-ene–based
photopolymer) [60], which we found to be straightforward
because of the fast templating, oxygen impermeability, and
reactivity [61] of these microchannels. We have also devel-
oped techniques for fabricating HMMs in PDMS channels
through surface modifications, which will be described in a
later work. Either device type can be integrated with PDMS
microvalves, if desired, to achieve precise flow control and
rapid switching (e.g., Fig. 5).

IV. OPERATION AND PROPERTIES

A. Solution sculpting

For HMMs to function appropriately, they must be
permeable to the diffusive transport of solute and solvent,
yet concurrently act as rigid, impermeable walls from the
standpoint of fluid flow. These twin demands require a
hydrogel that is chemically inert, with pores that are large
enough to admit molecular diffusion, yet small enough to
prevent appreciable flow.

Figure 2 and related Video 1 demonstrate the successful
operation of HMMs. Each of the three channels contains
25 �M fluorescein, which functions as a pH indicator be-
cause of its increasing fluorescence intensity between pH 5
and 9. Solutions buffered at different pH are driven through
the three channels: The left (reservoir) channel is maintained
at pH 8.1 by a 10-mM tris buffer and appears bright; the right
(reservoir) is held at pH 4.7 by a 10-mM acetate buffer and
appears dark; and the center (sample) channel is held at pH
6.3 by a 1-mM 2-(N-morpholino)ethanesulfonic acid (MES)
buffer along with 9-mMKCl to balance ionic strength, and it
appears grey. Fluorescent polystyrene beads are also present
in the center solution and serve as flow tracers (Bangs Labs
FS03F, 500nm, 0.02wt%). All channel outlets were con-
nected to a waste reservoir, the two reservoir channel inlets
were pressurized at 150 mbar using compressed air, and the
sample channel inlet was held at 2 mbar with hydrostatic

pressure, giving a transmembrane pressure �Pm ¼ 75 mbar
and flow velocities that are 75 times faster in reservoir
channels than in the sample channel. Buffers in the reservoir
channels visibly diffuse into the sample channel, as indicated
by the change in fluorescence intensity, and are convected
downstream by the sample channel flow. Tracer particles
in the sample channel follow straight trajectories past the
HMMs, indicating the absence of detectable hydrodynamic
flow through the membrane, despite the trans-HMMpressure
difference. Transport of buffer through the HMM from the
reservoir to the channel is thus predominantly diffusive.
HMMs are also permeable to solvents that are miscible

with water, allowing solvent, as well as solute, to be intro-
duced from reservoirs. Ethanol, for example, reduces the
solubility of KCl in water and can be delivered through
HMMs to trigger antisolvent crystallization. Figure 3 shows
a three-channel device, where ethanol flows through the
two outer reservoir channels, and saturated KCl flows
through the central sample channel. When the KCl flow
stops [Fig. 3(a)], ethanol diffuses into the quiescent KCl
solution in the sample channel, provoking the nucleation
and growth of salt crystals [Figs. 3(b) and 3(c) and related
Video 2]. Flushing the antisolvent by restarting KCl
flow [Fig. 3(d)] causes the KCl crystals to gradually
dissolve [Figs. 3(e) and 3(f) and related Video 3]. Such
crystallization-dissolution experiments can be repeated in-
definitely, so long as the sample channel is not completely
blocked by crystals, and can thus be flushedwith KCl flows.

B. Permeability properties

To examine HMMs with different polymer network den-
sities (Fig. 4), we photopolymerized HMMs from different
precursor solutions within a single, three-channel device:
the left HMM using a 50% v/v PEG-DA solution and the
right HMM from the standard 20% v/v solution.

FIG. 4. (a) In the three-channel device [Figs. 1(b), 1(c), and 2],
the amount of convection admitted by HMMs at large trans-
membrane pressure drops, here �Pm ¼ 1:5 bar, is lower for a
highly cross-linked HMM (50% v/v, left) than for a lightly cross-
linked HMM (20%, right). Tracer particles are focused towards
the center of the channel by transmembrane flow from the side
channels. (b) The diffusive flux through a lightly cross-linked
membrane (20% v/v, right) is nearly identical to that through a
highly cross-linked (50% v/v, left) membrane. (c) After diffusing
through each HMM, the pH buffer is convected downstream,
forming a boundary layer whose thickness decreases with Peclet
number (flow velocity) like Pe1=2, as expected for 2D
convection-diffusion. Scale bars: 20 �m.
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We first look at permeability to trans-HMM flow, which
is undetectable (Fig. 2) under typical pressures (e.g.,
�Pm ¼ 75 mbar). Twentyfold higher trans-HMM pres-
sures (�Pm ¼ 1:5 bar), however, drive trans-HMM flows
strong enough to displace tracer particles by some distance
�f from each wall [Fig. 4(a)]. A mass balance relates the

fluid velocity uL;Rm through the left and right HMMs to the

downstream particle-free widths �L;M
f , and the maximum

downstream tracer velocity ubot, according to

uL;Rm � 0:67
�L;R
f ubot

Lm

; (1)

under the assumption that the downstream flow profile has
developed to the standard Poiseuille flow profile [see the
derivation in the Supplemental Material (SM) [62]; see
also [63]]. Trans-HMM flows obey Darcy’s law [64],

um ¼ ��
�Pm

�wm

; (2)

where � is the fluid viscosity and wm is the membrane
thickness. The Darcy permeability � can be used to esti-
mate the typical pore size lp �

ffiffiffiffi

�
p

[65], which is, in turn,

set by the cross-link density and entanglement spacing
(typically 3–8 nm for many polymers [66]). We found
�L;R for the left and right HMMs to be 4.4 and 11 nm2,

giving lL;Rp � 2 and 3 nm for the 50% and 20% HMMs,
respectively. We note that the pore size would change for
different exposure times; the exposure times were selected
as the minimum required for the solution to gel, which does
not occur immediately, possibly because of an oxygen
depletion time [57]. Larger exposure times result in wider,
more diffuse gel membranes and smaller pores.

Despite the lower Darcy permeability of the 50% HMM,
its diffusive flux is indistinguishable from that of the 20%
HMM. In Fig. 4(b), both reservoir channels are buffered at
pH 9.8 with 10-mM Na2CO3 and pressurized to 150 mbar,
as done previously, whereas the sample channel is held at
pH 6.3 by a 1-mM MES buffer. We set the flow velocity in
the sample channel by controlling the hydrostatic pressure
[67]. All solutions contain 25-�M fluorescein as a pH
indicator, revealing a bright boundary layer alongside
each HMM [Fig. 4(b)], with width � defined when the
intensity drops to 20% of its maximum value. Boundary
layer widths for 20% and 50%HMMs are nearly identical at
all channel velocities measured [Fig. 4(c)]. This indicates
either identical effective diffusivity or solution-dominant
mass transfer resistance for Na2CO3 in PEG-DA, since
wm is nearly identical for the two HMMs. Larger solutes,
however, have been shown to have decreased diffusivity in
high-concentration PEG-DA gels [47].

The shape of the boundary layer reflects the competing
effects of diffusion and convection and thus depends upon
the Peclet number Pe ¼ Uws=D, where U is the average
velocity (calculated from the pressure head and hydraulic
resistance [63]),ws is the sample channelwidth, andD is the
solute diffusivity (e.g., D¼103�m2=s for Na2CO3 [68]).

Depth-averaged ‘‘Hele-Shaw’’ flows in low-aspect ratio
channels (here, 10 �m tall by 150 �m wide) have approxi-
mately uniform profiles. Solute diffusing perpendicular to
such uniform flows at high Pe establishes boundary layers

with thickness �=ws � Pe�1=2, as observed here [Fig. 4(c)].
The detailed, three-dimensional concentration profile, how-
ever, will reflect the inhomogeneous (parabolic) flow across
the channel [69].

V. RAPID DIALYSIS

We now describe HMM-rapid dialysis (HMM-RaD) ex-
periments, in which HMMs are used to rapidly change a
chemical microenvironment. We expect that HMM-RaD
will enable a broad range of new studies in a variety of
disciplines, with examples including provoking the re-
sponses of cells, embryos, organisms, and microbes to
morphogens, chemokines, signaling proteins, drugs, or
toxins [31]; modifying colloids and surfaces (e.g., for
sample sorting, binding assays, or fundamental surface
studies) [70]; and provoking the transient response of
complex and soft materials [71].
We start with reversible HMM-RaD in a 150-�m-wide

sample channel [Fig. 5(b) and related Video 4]. Fabrication
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FIG. 5. (a) Device geometry for prompt reservoir solution
swapping using PDMS valves and rapid dialysis in the sample
channel using an HMM. Panel (b) and Video 4: Swapping
between 250-mM-NaCl (bright) and 0-mM-NaCl (dark) solu-
tions in a 150-�m-wide sample channel, with a fluorescent NaCl
indicator. (c) Swapping time is greatly decreased by decreasing
sample-channel width (here, 23 �m wide). Inset graph: Semilog
plot of HMM intensity shows exponential decay of salt concen-
tration in HMM. Panel (d) and Video 5: Observed dynamics of
NaCl concentration along the x axis of the sample channel are
well predicted by the one-dimensional diffusion equation.
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details appear in Appendix A 2. NaCl was chosen as
solute because of its relatively high diffusivity (D ¼
1:6� 10�5 cm2=s [68]) among salts with an available
indicator dye (CoroNa Green, Invitrogen). Solutions were
prepared consisting of 40-�M CoroNa Green, a 10-mM
3-(N-morpholino)propanesulfonic acid buffer (MOPS,
pH 7), and 0-mM NaCl (dark) or 250-mM NaCl (bright).
The fluorescence intensity of CoroNa was found to in-
crease linearly with NaCl concentration in this range.
Three 300-�m HMMs were polymerized to form a
900-�m-long HMM. The reservoir solutions were periodi-
cally switched every 40 seconds, and the relative fluorescence
intensity ðIðtÞ�IfÞ=ðI0�IfÞ was averaged over the sample

channel region adjacent to the middle 300-�m HMM. The
fluorescence intensity changes exponentially with a time
scale �meas � 20 s, which is slower than the �D ¼ 7 s pre-
dicted from simple diffusion through an inert HMM,

�min
RaD � �D � 4ðwm þ wsÞ2

�2D
(3)

(or, if solute was introduced from both sides and reservoirs
synchronized, a factor of 4 faster). This result suggests that the
HMM introduces a mass transport resistance comparable to
that of the sample channel, discussed below.

By decreasing the width of the sample channel, even
faster solution swapping could be performed (see
Video 5). A HMM-RaD device with a sample channel of
widthws ¼ 23 �m and aHMMofwidthwm ¼ 17 �m [for
which Eq. (3) predicts �D ¼ 0:4 s] was fabricated for this
purpose. Figure 5(c) shows the relative intensity averaged
over the entire sample channel width and 1 �m of HMM at
the sample interface. The intensity in the sample chamber
closely follows that in the HMM, which changes exponen-
tially with time constant �m ¼ 2:5 s. Swapping between
250 mM and 0 mM NaCl results in 90% NaCl removal in
5.6 seconds. Given the much faster �D from Eq. (3), the
HMM-RaD is limited by theHMM itself. Figure 5(d) shows
excellent agreement between the experimental concentra-
tion profile cðx; tÞ and analytical theory within the sample
chamber, imposing the experimentally observed �m as a
boundary condition, but introducing no other free parame-
ters (see the SM [62] for theoretical profile derivation; see
also [72]). We anticipate that faster switching (of order �D)
will be possible by optimizing HMM chemistry.

Several mass transport processes may lengthen the time
required for HMM-RaD beyond Eq. (3): (i) diffusion across
the boundary layer between the reservoir and the HMM

(with resistivity <R � �R=D, where �R � Pe�1=2
R Lm),

(ii) diffusion across the sample chamber (<s � ws=D),
and (iii) diffusion through the HMM itself (<m � wm=
ðDmPÞ). Here, P is the partition coefficient,

P ¼ ½C�m
½C�s ; (4)

which expresses the ratio between equilibrium concentra-
tions in the HMM and in the solution. The diffusivity Dm

may be slower within the HMM than in solution, with
corrections due to lower porosity or mesh size that are often
minor, or corrections that are more significant when the
species adsorbs and desorbs from the gel. In addition to
these steady-state mass transport limitations, highly parti-
tioning solutesP � 1 require a finite time �C � PwmCs=jD
to ‘‘fill’’ the HMM, before even quasisteady diffusive
permeation occurs.

VI. LOCAL ELECTRIC PERMEABILITY

Most microfluidic walls are electrically insulating, in-
cludingNOA-81. The electric permeability of hydrogels, by
contrast, suggests that HMMsmay be used to sculpt electric
fields in microfluidic systems, using electrodes in solutions
that are physically distinct from the solution of interest.
To demonstrate the electrical behavior near HMMs, we

electrophoretically oscillated 500-nm fluorescent polysty-
rene colloids [73] (Bangs Labs, FS03F) in a 1-mM NaCl
solution in the sample channel of our standard three-
channel device by imposing a 5-Hz, 400-Vpp, potential

difference between stainless-steel pins at the inlets of the
two reservoir channels. A 0.4-s exposure (Fig. 6) shows
colloids tracing the local electric-field lines, much like iron
filings in a magnetic field, confirming that the electric field
passes through HMMs but not microchannel walls.
Integrating HMMs into electrode systems alleviates

many issues that arise in conventional electrokinetic mi-
crofluidic systems. First, HMMs require no additional
cleanroom processes, unlike photolithographically pat-
terned electrodes, which require cleanroom metal deposi-
tion steps and separate masks. Second, electrochemical

FIG. 6. (a) An ac potential applied between reservoir
channel inlets drives an electric field that only crosses the sample
channel through the HMMs. Fluorescent colloids in the sample
channel oscillate electrophoretically, tracing local electric-field
lines much like iron filings align with magnetic fields. Panels
(b-c) and Video 6: Continuous-flow electrophoretic separations
of negatively charged colloids by applying a dc electric field E
transverse to the flow. Scale bars: 20 �m.
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(Faradaic) reactions change solution composition near
electrodes, e.g., generating gas bubbles or introducing
gradients in pH or metal ions, potentially fouling nearby
samples of interest. Instead, placing metal-pin electrodes in
flowing electrolyte reservoirs behind HMMs allows unde-
sirable electrochemical-reaction products or bubbles to be
continually flushed away, thus maintaining steady electro-
lyte solutions and unfouled sample environments. No
cleanroom time is required for the electrokinetic systems
in Fig. 6, other than initial silicon master fabrication,
although photopatterned electrodes could obviously be
deposited onto channel floors using standard cleanroom
techniques, if desired.

Figures 6(b) and 6(c) and related Video 6 show a
continuous-flow particle separation enabled by HMMs. A
dc field is applied across the HMMs, transverse to a pressure-
driven flow, causing the flowing particles to move electro-
phoretically to one side of the channel. The direction of
colloidal motion and downstream width-fraction containing
colloids can be controlled by changing the voltage.

This ability to sculpt electric fields naturally suggests
novel capabilities for a variety of experiments, including
electrophoretic separations [74], local electrophoretic de-
livery [75], microfluidic salt bridges (e.g., for maintaining
separate reference and working electrode solutions [76]),
and localized or selective electroporation of cells, organ-
isms, or vesicles [77]. While electrically permeable gels
could also be made with contact lithography for these
applications (and have been, in some cases [78–81]),
HMMs enable closer electrode spacing, allowing higher
currents and smaller dimensions to be obtained. With
further development, HMM electrophoresis could be used
for detection of changes in electrophoretic mobility (e.g.,
from binding of analyte) or cell sorting (cell separation
based on an upstream measurement).

VII. LOCALIZED CONCENTRATION GRADIENTS

Steady microfluidic concentration gradients can be used to
expose samples and surfaces to impose continuous concen-
tration gradients across a sample, allowing high-throughput
experiments (e.g., for optimization of reaction conditions,
cellular response [82,83], or other concentration-dependent
phenomena [84,85]). Chemical gradients also drive interest-
ing and useful microscale phenomena such as diffusiophore-
sis [48,49,86–92], chemotaxis [46,93–95], and biological
signaling [96–99].

The locally integratable nature of HMMs allows novel
design capabilities for concentration fields, e.g., gradient
shaping and integration into more complex chips without
stringent demands on overall pressure balances. Multiple
HMMs, each with its own distinct and individually ad-
dressable reservoir channel, enable the creation of almost
arbitrarily complex chemical microenvironments com-
posed of multiple species. The speed, ease, and small
chip area of the HMMs makes them particularly appealing

for producing on-chip concentration gradients, compared
to other microfluidic methods.
Using our standard three-channel geometry, we apply

HMMs to suddenly impose a fluorophore concentration
gradient [Fig. 7(a)]. All three channels contain a 10-mM
MES buffer, but each carries a different concentration of
the fluorophore Oregon Green 488 (Invitrogen)—0 mM,
0.5 mM, and 1 mM, respectively—so that flowing channels
appear dark, medium, and bright. Within several minutes
of injecting these solutions, flow in the sample channel is
quickly stopped using PDMS valves (0 s). A linear gradient
is quickly established (20 s) and maintained at a steady
state. The predicted diffusion time [�D ¼ ð2wm þ wsÞ2=
ð�2DÞ ¼ 9 s, based on D ¼ 4� 10–10 m2=s [100]]
agrees well with the transient time scale (i.e., t � 2�D
for the transient to decay by 90%).
Solute gradients drive colloids into diffusiophoretic mo-

tion [Figs. 7(b) and 7(c)]. Nonetheless, it has been difficult
to directly visualize colloidal diffusiophoresis, as concen-
tration gradients strong enough to drive diffusiophoresis
generally give rise to hydrodynamic instabilities in macro-
scopic experiments. By contrast, the small dimensions of
microfluidic systems enable even strong gradients to remain
hydrodynamically stable. Recent microfluidic experiments
have visualized diffusio-electrophoresis in salt gradients
[48,49,91,92]. Complementing these studies, here we
demonstrate localized diffusio-electrophoresis along the
sculpted gradients enabled by HMMs. Figure 7(b) and
related Video 7 show the diffusiophoretic migration of
colloids up a NaCl gradient established in a three-channel
geometry (�D ¼ 2:3 sec ). Channel solutions were initially
established and maintained by flowing solutions of 10 mM
NaCl (left reservoir), 5 mMNaCl with 500-nm polystyrene
beads (sample), and DI water (right reservoir). Flow was
quickly eliminated in the sample channel by submerging
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FIG. 7. Concentration gradients created locally within micro-
channels. (a) Direct gradient visualization with Oregon Green
fluorescent dye at 0 (black), 10 (red), and 20 (blue) seconds after
stopping flow. Panel (b) and Video 7: Diffusiophoretic motion of
fluorescent colloids up a NaCl gradient. Panel (c) and Video 8:
Solvophoreticmotiondownanethanolgradient. Scale bar:20 �m.
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both inlet tubes in a small beaker [101], and the following
8.3 s of fluorescence imageswere superposed. Beads clearly
migrate diffusiophoretically up the gradient in NaCl, even
tracking the two-dimensional (2D) ‘‘fringing’’ shape once
the gradient is established.

HMMs can also be used to establish solvent gradients,
which can drive colloidal diffusio-chemiophoresis [87,90]
or ‘‘solvophoresis’’ [102]. While solvophoresis has been
seen in macroscopic aggregation experiments [102], it has
never been visualized experimentally. Exploiting the sol-
vent compatibility of HMMs and NOA-81 devices, we
show the first direct visualization of colloids moving
solvophoretically [Fig. 7(c)].

To generate solvophoresis using HMMs, we start with
flows of (left to right) 50%, 25%, and 0% v/v ethanol
solutions in DI water (�D ¼ 2:9 s), with 10 mM KCl in
each to balance ionic strength, and we superpose 10.4 s of
images once the central flow is stopped. Polystyrene col-
loids migrate down the ethanol gradient solvophoretically
[Fig. 7(c) and Video 8].

VIII. CONCLUSION

We have demonstrated a simple method for making thin
(10–25-�m) hydrogel membranes that can be integrated
into specified locations inside standard microchannels.
HMMs enable exquisite control, in space and time, over
local chemical microenvironments in microfluidic systems.
Because of their high-diffusive and low-hydraulic perme-
ability, reservoirs of constant composition can be established
on one side of a HMM, driving diffusion of solute and
solvent to the other side. Established techniques for micro-
fluidic logic and flow control allow reservoirs to be switched
quickly, resulting in rapid diffusive delivery to samples due
to the short length scales typical in microfluidic systems.
HMMs are permeable to a broad range of solutes and sol-
vents, and their chemical or physical properties can be tuned
for many applications. Integrating multiple HMMs, each
with its own independently controlled reservoir channel,
will enable strong gradients of multiple species to be im-
posed and, more broadly, spatiotemporal sculpting of local
chemical microenvironments. Permeability of HMMs to
electric fields opens avenues for electrokinetic studies and
electrophoretic (rather than diffusive) delivery of solute.

We anticipate that this basic HMM strategy will enable a
broad range of novel experimental capabilities in the sci-
ence and engineering of physical, biological, chemical,
medical, and material systems. To aid in adapting the
HMMs for new applications, we note that the chemical
and mechanical properties of the microwindowmembranes
themselves can be modified simply by adjusting the pre-
cursor solution composition, taking advantage of the ver-
satile acrylate chemistry. One such method was described
here, wherein the hydraulic permeability was decreased by
increasing the PEG-DA precursor concentration. Other
methods to tune hydrogel properties have appeared in the

flow lithography and UV-curable hydrogel literature,
including enabling permeability to larger solutes (e.g.,
polymers, proteins, quantum dots), e.g., by introducing a
porogen in the precursor solution [103] or novel photoli-
thography techniques [104]; modifying hydrogel chemis-
try by polymerizing in the presence of other reactive
molecules (e.g., acrylate-functionalized charged groups
or receptors for specific ligands [105,106]), magnetic
nanoparticles [107], or degradable components for con-
trolled release [108]. Photopolymerizing within parallel
laminar streams of distinct precursors [52] or in the pres-
ence of gradients [109,110] would generate anisotropic
HMMs. Electrical conductivity of HMMs can be enhanced
by photopolymerization of highly conductive polymers
[79–81]. More generally, nearly any UV-curable solution
can be patterned using this method, as long as the curing
time is fast compared to the diffusion time for reactive
species in the precursor solution (i.e., Dämkohler number
Da � 1). Incorporating reactive species with lower diffu-
sivities within the precursor solution may also decrease the
HMM width.
New HMM applications and experiments will likely

require new channel and membrane designs. Various pho-
tomask geometries could be used to make other HMM
shapes, as long as uncured precursors can be flushed
away or removed. The ultimate resolution of HMMs is
set by the optical properties (e.g., depth of focus) of the
microscope, as well as the optical wavelength used for
photocuring. In particular, sharply defined HMM features
can be attained within channels whose maximum height is
no taller than the objective’s depth of focus at a desired
magnification [50,52]. To cross-link HMMs uniformly
throughout taller channels (e.g., to accommodate larger
samples), an increased depth of focus is required. This
depth of focus can be attained with a lower magnification
objective, but at the expense of HMM resolution in the
sample plane. More complex, multiheight silicon masters
could be fabricated to preserve this high resolution.
To conclude, hydrogel membrane microwindows pro-

vide exquisite control over microscale chemical transport,
at low expense and with little fabrication time required.
Few barriers exist for incorporating the technique in a wide
variety of experiments, as they can be integrated into
standard microfluidic devices, equipment, and techniques.
The combination of simple fabrication, facile integration,
versatile chemistry, independent control of multiple,
noninterfering HMMs, and tight spatiotemporal control
suggests broad impact across physics, chemistry, biology,
and materials studies.
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APPENDIX A: FABRICATION DETAILS

1. Standard HMM fabrication

Our standard HMM fabrication procedure (Fig. 1; see
the SM [62] for details, with Refs. [9,10,60,67,111–113]
therein) builds on recent techniques involving in situ
photopolymerization of UV-curable hydrogels [52–56]. An
aqueous hydrogel precursor solution was prepared using
20% v/v polyethylene glycol diacrylate (PEG-DA, n ¼
400, Polysciences Inc.), 2% v/v photoinitiator (2-hydroxy-
2-methylpropiophenone, Sigma Aldrich), and silica tracer
beads (1 mg/mL, Bangs Labs, 500 nm diameter). Just prior
to use, this mixture was vortexed for 3 min; then, com-
pressed air was bubbled through for 10 min to increase
dissolvedO2 and prevent excess cross-linking.A photomask
(a 60-�m-wide transparent slit in 1.5-cm-diameter trans-
parency, CAD/Art Services) was inserted into the field stop
of an invertedmicroscope (NikonTE-2000U). PatternedUV
light was magnified through a 20x extra-long working-
distance (NA ¼ 0:45) objective and aligned to the device
and fluorescence camera (Andor iXon 885). Then,
10-�m-tall microchannelsmade ofNOA-81 [60]were filled
using a syringe connected to the central channel. The focus
was adjusted to the center of the channel height. The flow
was slowed to& 10 �m=s by adjusting the syringe pressure
to balance any stray flows and viewing the resulting tracer-
bead motion under phase contrast. Cross-linking was
achieved using 550 ms of UV illumination from a mercury
lamp (X-Cite 200DC, LumenDynamics) sent through aUV-
filter cube (Nikon UV-2A, UV intensity after filtering:
30 mW=cm2). Leak-free HMMs were verified by gently
pressurizing the syringe and checking for bead motion on
the other side of the membrane. If no leaks were found, the
channels were promptly flushed with more precursor to
prevent excess cross-linking. The cross-linking was re-
peated for each additional HMM. Precursor solution
was then removed by flushing channels with DI water for
several minutes.

To fabricate the higher-density HMM described in
Sec. IVB, the same procedure was used, except the pre-
cursor solution contained 50% v/v PEG-DA and 5% v/v
photoinitiator, and 110-ms exposure time was used.

2. HMM-rapid dialysis device fabrication

To investigate the temporal response of HMM-RaD
experiments, we designed and fabricated trilayer devices

[Fig. 5(a); see the SM [62] for the fabrication diagram]. The
fluidic layer, cast in NOA-81, consisted of a sample channel
(width ws either 150 �m or 23 �m), separated from a
reservoir channel (300 �m wide) by a HMM of width wm

of 17 �m. Solutions were delivered to the sample and
reservoir channels through channels in a PDMS layer
bonded atop the NOA-81 layer [112], and flows within the
PDMS delivery channels were controlled with multilayer
soft lithography ‘‘pushup’’ valves [10] at intersections of
the control and injection channels. In order to rapidly
change between two reservoir solutions, two valved injec-
tion channels met over the NOA-81 reservoir inlet; all other
inlets had a single valved injection channel for eliminating
flow. The single-layerNOA-81 device and two-layer PDMS
device were fabricated separately according to standard
‘‘stickers’’ [60] and multilayer-soft-lithography [9] proto-
cols, respectively, then ozone-bonded together. To achieve
precise valve timing, PDMS control channels were filled
from sealed fluid containers, which were switched between
0 and 750 mbar using computer-controlled solenoid valves
(Pneumadyne S10MM-30-12-3) [9], while the two reser-
voir solutions were pressurized to 250 mbar.
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