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We report a method for nanometer-scale pulsed nuclear magnetic resonance imaging and spectroscopy.

Periodic radio-frequency pulses are used to create temporal correlations in the statistical polarization of a

solid organic sample. The spin density is spatially encoded by applying a series of intense magnetic field

gradient pulses generated by focusing electric current through a nanometer-scale metal constriction. We

demonstrate this technique using a silicon nanowire mechanical oscillator as a magnetic resonance sensor

to image 1H spins in a polystyrene sample. We obtain a two-dimensional projection of the sample proton

density with approximately 10-nm resolution.
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I. INTRODUCTION

Nuclear magnetic resonance imaging (MRI) is a power-
ful technique for noninvasive three-dimensional biological
and materials imaging [1]. In large part, MRI has proved so
successful because it offers a host of sophisticated methods
that can be used to image samples in a variety of informa-
tive ways. In general, all MRI techniques rely on accurate
determination of magnetic resonance frequencies. For
example, the locations of nuclear spins in a sample can
be determined by applying an external magnetic field
gradient, causing nuclear magnetic resonance (NMR) fre-
quencies to vary in space. Nuclear spins of different types
in the same sample can be distinguished because NMR
frequencies are chemically specific. Even nuclear spins of
the same type in different chemical environments can be
distinguished (e.g., protons in fat and protons in water) via
slight changes in resonance frequency as a result of the
chemical shift interaction [2]. MRI can also probe local
fluctuating magnetic fields through spin-relaxation
weighted imaging [2]. Other well-known spectroscopic
MRI techniques include functional magnetic resonance
imaging [3], diffusion tensor imaging [4], and tomographic
reconstruction [2], to name a few.

Each of these common MRI techniques, and indeed most
modernNMR spectroscopic techniques, use radio-frequency
(rf) pulses to generate a component of the sample magneti-
zation perpendicular to the external magnetic field. The
coherent precession of the magnetization is measured and
Fourier transformed to yield the sample NMR spectrum.
Since its discovery in 1966, pulsed Fourier-transform
magnetic resonance [5] has revolutionized both NMR

spectroscopy and MRI because it offers dramatically en-
hanced sensitivity over continuous-wave methods by allow-
ing the simultaneousmeasurement of all spectral components
[6]. In acquisition schemes such asFourier [7,8] orHadamard
encoding [9], all components of the sample spectrum are
averaged for the entire acquisition period. When detector
noise is the limiting factor, these techniques significantly
increase the signal-to-noise ratio (SNR) in what is known
as the multiplex advantage over methods that acquire each
element of the spectrum sequentially.
Because the nuclear magnetic moment is relatively weak

[1], however, the spatial resolution of inductive MRI re-
mains limited to millimeter length scales in common prac-
tice and a few micrometers in the highest-resolution
experimental instruments [10]. Nonetheless, there is con-
siderable interest in extending the resolution and sensitiv-
ity of magnetic resonance detection to enable spectroscopy
and imaging on the nanometer scale. Promising work in
this direction includes force-detected magnetic resonance
[11], which has been used to perform three-dimensional
imaging of single tobacco mosaic virus particles with
resolution below 10 nm [12], and nitrogen-vacancy-based
magnetic resonance [13,14], which has been used to detect
proton resonance in nanometer-sized volumes [15,16].
In spite of this remarkable progress, the application of

classic pulsed magnetic resonance techniques to nanoscale
systems remains challenging because of two primary
reasons. First, achieving high spatial resolution in nanoscale
MRI generally requires intense static magnetic field
gradients [12,17]. However, the presence of large static
gradients makes uniform spin manipulation using rf pulses
difficult and complicatesNMRspectra. Second, pulsedmag-
netic resonance techniques cannot be used per se because
statistical spin fluctuations exceed the Boltzmann spin polar-
ization in nanoscale samples [18,19]. When the statistical
polarization dominates, the projection of the sample mag-
netization along any axis fluctuates randomly in time. For
objects at the micrometer scale and above, where the
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Boltzmann polarization dominates, many pulsed magnetic
resonance techniques have been proposed [20] and demon-
strated [21–25] in force-detected experiments.

In the following, we present a new paradigm in force-
detected magnetic resonance that overcomes both chal-
lenges to enable pulsed nuclear magnetic resonance in
nanometer-size statistically polarized samples. In this
proof-of-concept work, we demonstrate Fourier-transform
spectroscopy and imaging with nanoscale resolution by
periodically applying rf pulses to create correlations in
the statistical polarization, or spin noise, of a solid organic
sample. Gradient pulses for imaging are generated using
ultrahigh current densities in a nanoscale metal constric-
tion, and the spin-noise correlations are recorded for a
set of pulse configurations and Fourier transformed to
give the spin density. A silicon nanowire oscillator is
used as a magnetic resonance sensor to reconstruct a
two-dimensional projection image of the proton density
in a polystyrene sample with roughly 10-nm resolution. We
also show that Fourier-transform imaging enhances sensi-
tivity via the multiplex advantage for high-resolution
imaging of statistically polarized samples. Most impor-
tantly, our protocol establishes a method by which all other
pulsed magnetic resonance techniques can be used for
nanoscale imaging and spectroscopy.

II. APPARATUS

Figure 1(a) shows a schematic of the apparatus. A key
element of the experiment is an ultrasensitive silicon nano-
wire force transducer [26], which acts as the magnetic
resonance sensor. The nanowire vibrates in response to
the force of interaction between the protons in the sample
and the time-varying inhomogeneous magnetic field
produced by a nanometer-size constriction in a current-
carrying metal wire. The sample consists of a thin polysty-
rene coating on the tip of the silicon nanowire [Fig. 1(b)].
The nanowire used in this study is grown epitaxially on a
Si[111] substrate using a controlled-diameter vapor-liquid-
solid approach with silane as a precursor at 600 �C [27].
The nanowire is roughly 15 �m long, with a tip diameter
of 50 nm. The fundamental flexural mode has a spring
constant k ¼ 150 �N=m, a resonance frequency!0=2� ¼
333 kHz, and an intrinsic quality factorQ ¼ 1:8� 104 at a
temperature of approximately 6 K. The displacement of
the nanowire is measured using a polarized fiber-optic
interferometer [26,28].

The current-carrying wire consists of a lithographically
patterned constriction in a Ag film [Fig. 1(c)]. The con-
striction focuses current passing through the film to den-
sities exceeding 3� 108 A cm�2. Such locally intense
current densities generate (1) large time-dependent mag-
netic field gradients that couple nuclear spins in the sample
to the resonant displacement of the nanowire, (2) rf mag-
netic fields to excite magnetic resonance in the sample, and
(3) pulsed gradients for imaging. The constriction used in

this study is 240 nm wide and 100 nm thick (see the
Supplemental Material [29]). Both the nanowire substrate
and constriction are cooled to 4.2 K in high vacuum, and
the sample is positioned 40 nm above the center of the
constriction. A small superconducting solenoid provides
the static field B0 ¼ 0:183 T along the z direction. We use
the MAGGIC (modulated alternating gradients generated
with currents) spin detection protocol [28] to measure the
longitudinal component of the proton statistical polariza-
tion in the sample near the constriction. In the MAGGIC
protocol, an oscillating electric current through the con-
striction generates a magnetic field gradient that alternates
at the nanowire mechanical resonance frequency. The force
of interaction between the spins in the sample and the
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FIG. 1. Experimental apparatus. (a) Schematic of the experi-
mental setup. A silicon nanowire coated with polystyrene is
positioned near the constriction in a Ag current-carrying wire.
The locally high current density through the constriction gen-
erates intense fields and gradients used for readout, spin ma-
nipulation, and spatial encoding. During imaging, the spin
density is encoded along contours of constant Larmor and
Rabi frequencies, which are illustrated as blue and green lines,
respectively. (b) Scanning electron micrograph of a representa-
tive nanowire and polystyrene coating prepared in the same
manner as the nanowire and sample used in this study. The
actual nanowire and sample used here were not imaged in order
to avoid electron damage. The dashed lines indicate the outer
diameter of the nanowire. (c) Scanning electron micrograph of
the constriction used in this study. The constriction, which
appears in light gray in the image, is 100 nm thick and
240 nm wide.
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alternating inhomogeneous magnetic field induces an
angstrom-scale vibration of the nanowire, which is
measured using the optical interferometer.

III. SPIN-NOISE ENCODING

Fourier-transform imaging and spectroscopy involve
measuring the transverse component of the sample mag-
netization as it precesses around an external magnetic
field after an rf excitation pulse. To detect the coherent
precession of the magnetization using the MAGGIC pro-
tocol, we use an encoding pulse sequence that is related
to a Ramsey-fringe measurement [30], which projects the
coherent evolution of the magnetization onto the longi-
tudinal axis. The sequence consists of an adiabatic
half-passage (AHP) [31], an evolution period te, and a
time-reversed AHP [Fig. 2(a)]. The first AHP rotates the
spins away from the z axis onto the xy plane. During the
period te, the spins precess about B0. The second AHP,
which is phase shifted by �ðteÞ ¼ ��B0te relative to the
first AHP, projects the magnetization back onto the z axis
[Fig. 2(b)]. Here, �=2� ¼ 42:6 MHz=T is the proton
gryomagnetic ratio. The time-dependent phase shift cre-
ates a longitudinal projection that oscillates at the Larmor
frequency as te varies.

Because the statistical polarization fluctuates randomly,
the encoding has no effect on the mean or variance of the
polarization. If, however, the sequence is inserted repeatedly
(e.g., every �p, where 1=�p is the repetition rate) in the

MAGGIC protocol, the encoding creates measurable
correlations in the force signal, provided that �p � �m,

where �m is the statistical spin-correlation time. In the
Supplemental Material [29], we show that the time-averaged
autocorrelation �Rffð�p; teÞ of the force signal at lag �p is

�Rffð�p; teÞ ¼ e��p=�m�2D2

2

Z
dr�ðrÞG2ðrÞMðte; rÞ: (1)

Here, � is the spin magnetic moment, D is the MAGGIC
gradient modulation duty cycle [28],�ðrÞ is the spin density,
GðrÞ is the gradient modulation strength, and Mðte; rÞ de-
scribes the effect of the encoding. In particular, Mðte; rÞ ¼
1� 2Pflipðte; rÞ, wherePflipðte; rÞ is the probability for a spin
located at r to reverse its orientation after a single encoding
sequence. For example, if a single encoding pulse has a unit
probability to invert the spin, then Mðte; rÞ ¼ �1; if the
encoding pulse has no effect on the spin orientation,
Mðte; rÞ ¼ 1. The method presented here of measuring cor-
relations in the spin noise is related to previous spectroscopic
approaches [19,32–34] that correlate the polarization before
and after an encoding pulse.
For the encoding sequence described above, Mðte; rÞ ¼

EvðteÞ cosð�B0teÞ. The free precession will decay with an
envelope EvðteÞ because of the fluctuating local fields
experienced by the spins. To verify the encoding proce-
dure, we measure the Larmor precession of the statistical
polarization by sweeping te [Fig. 3(a)]. The decay
envelope is reasonably well described by a Gaussian:

EvðteÞ ¼ e�ðte=T�
2 Þ2 , with T�

2 ¼ 14 �s [Fig. 3(b)], consis-
tent with previous measurements in polystyrene [35].
This relatively short spin-dephasing time is caused by
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FIG. 2. Spin-noise encoding. (a) Periodic encoding pulses are
inserted in the MAGGIC protocol every �p. For the free-

precession measurement, the sequence consists of two AHPs
separated by an evolution period te. (b) Illustration of the pulse
sequence showing the evolution of a spin initially oriented along
the z axis.
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FIG. 3. Free precession in a statistically polarized sample.
(a) Autocorrelation of the force signal Rffð�p; teÞ and fit to a

cosine. (b) Amplitude of the free precession and fit to a
Gaussian. From the fit, we infer that T�

2 ¼ 14 �s. Inset:

Proton NMR spectrum of the statistically polarized sample. To
obtain the spectrum, the data from (b) are linearly interpolated
between points to give the precession envelope. The envelope is
multiplied by a cosine at the measured precession frequency and
cosine transformed to yield the spectrum. We attribute non-
Gaussian features in the spectrum to deviations in the time
record from ideal Gaussian behavior, especially at short times.
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anisotropic dipole-dipole interactions in the solid polysty-
rene sample [36]. By cosine transforming the data, we
obtain the nuclear magnetic resonance spectrum of the
statistically polarized sample [Fig. 3(b)].

IV. FOURIER-TRANSFORM IMAGING

The essential feature of the free-precession encoding is
the use of repeated, identical pulse sequences to induce
correlations in the spin noise. Such a paradigm permits the
use of established pulsed magnetic resonance techniques
not only for spectroscopy but also for imaging of statisti-
cally polarized samples. Fourier encoding, for example,
uses a pulsed gradient during the free precession to encode
the location of a spin in the phase or frequency of its
Larmor precession. With the use of the constriction, which
enables the generation of pulsed gradients, this technique
can be adapted for nanoscale imaging.

Static current through the constriction produces a strong
gradient in the x direction of the total field BtotðrÞ.
Additionally, rf current through the constriction at fre-
quency �B0 produces a field in the rotating frame B1ðrÞ ¼
BxðrÞ=2, which varies strongly in the z direction. These
two independent gradients enable spatial encoding in two
dimensions [Fig. 1(a)]. To simplify notation, we set u �
!RabiðrÞ ¼ �B1ðrÞ and v � !LarmorðrÞ ¼ �B0ðrÞ. Because
neither u nor v varies appreciably with respect to y over the
dimensions of the sample for fixed x and z, we make the

reasonable assumptions that both u and v are independent
of y for the purposes of imaging, i.e., uðrÞ ¼ uðx; zÞ and
vðrÞ ¼ vðx; zÞ.
To encode the spin density along v contours, a pulse

sequence similar to the free-precession sequence is used,
except that a static gradient pulse of length tv is applied
during the evolution period [Fig. 4(a)]. To encode along u
contours, an rf pulse of length tu with center frequency �B0

is used to nutate spins about the effective field in the
rotating frame by an angle �B1ðrÞtu. By incrementing the
gradient pulse lengths, we record the Fourier transform of
the two-dimensional projection of the spin density.
For the sequence discussed above, Mðtu; tv; rÞ ¼

EuðtuÞEvðtvÞ cos½uðrÞtu� cos½vðrÞtv�, where EuðtuÞ de-
scribes the transverse spin relaxation in the rotating frame
[37]. Hence,

�Rffð�p; tu; tvÞ ¼ e��p=�mEuðtuÞEvðtvÞ�2D2

2

�
Z

dudvpðu; vÞ cosðutuÞ cosðvtvÞ; (2)

where pðu; vÞ ¼ G2ðu; vÞJðu; vÞR dy�ðy; u; vÞ is the pro-
jected signal density in the ðu; vÞ coordinate system, and
Jðu; vÞ is the Jacobian of the ðx; zÞ ! ðu; vÞ coordinate
transformation. We also assume that the gradient is inde-
pendent of y for fixed x and z in the sample, i.e., GðrÞ ¼
dBzðx; zÞ=dx.
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FIG. 4. Two-dimensionalMRI of the polystyrene sample. (a) Image encoding sequence. In thev-encoding step, the spins precess in the
presence of a gradient for a time tv. In the u-encoding step, the spins precess about the effective field in the rotating frame for a time tu.
(b) Rawdata. Cross sections corresponding toRffð�p; 0; tvÞ andRffð�p; tu; 0Þ are shown. (c) Signal density in the ðu; vÞ coordinate system
obtained by cosine transforming the raw data. The arrow indicates the position of�B0=2�. (d) Real-space reconstruction of the projected
spin density. The nanowire and gold catalyst are clearly visible through the polystyrene in the image as a reduction in the spin density. The
cross sections above and to the right of the image are taken along the lines indicated by the arrows. (e) Simulated signal density in ðu; vÞ
space calculated for the sample and nanowire geometry shown in Fig. 1(b). (f) Real-space reconstruction of the simulation in (e).
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To record an image, Rffð�p; tu; tvÞ is measured for 305

different ðtu; tvÞ configurations [Fig. 4(b)]. The data are
cosine transformed to obtain the frequency-space projec-
tion of the proton density [Fig. 4(c)] and the real-space
representation of the proton density [Fig. 4(d)] (see the
Supplemental Material [29]). The reconstructed spin den-
sity strongly resembles the expected shape of the polysty-
rene coating [Fig. 1(b)]. The nanowire and the gold catalyst
particle are clearly visible through the polystyrene in
the image as a reduction in the spin density. Figures 4(e)
and 4(f) are simulations based on the expected shape of the
sample [Fig. 1(b)]. Both simulations appear qualitatively
similar to the actual data and image.

To determine the spatial resolution in the image, we
simulate the image from a point source located near the
tip of the sample and find the resolution in the x and z
directions to be approximately 10 and 15 nm, respectively.
The spatial resolution is best at the tip of the sample where
the gradients from the constriction are the largest (see the
Supplemental Material [29]). The maximum imaging gra-
dients in this study are 2:0� 105 Tm�1 in z for 56 mA of
current through the constriction and 1:4� 105 Tm�1 in x
for 20 mA of current through the constriction. The
v-encoding pulse is limited to 20 mA to avoid artifacts
from the strong transverse field produced by the constriction
during the gradient pulse (22 mTat the tip of the sample for
20 mA). In the future, such artifacts can be avoided by
increasing B0. Nonetheless, these gradients are more than
104 times stronger than the highest gradients used in in-
ductively detected MRI [38]. During the readout, the peak
gradient is approximately 5:0� 105 Tm�1 for 71 mA (lim-
ited by our amplifiers) of current through the constriction,
corresponding to a current density of 3:0� 108 A cm�2.

While the primary aim of the present study is to dem-
onstrate a new technique for nanoscale pulsed magnetic
resonance, the spatial resolution achieved here is compa-
rable to the best resolution obtained in nanoscale MRI [12].
Here, the resolution could be improved by working at
higher static magnetic field strengths, which would enable
stronger v-encoding pulses. In addition, the readout gra-
dient could likely be increased by several times, which
would potentially improve the SNR and resolution by a
considerable amount. We have successfully tested several
smaller constrictions that we have fabricated at current
densities larger than 109 A cm�2 without failure. We typi-
cally observe, however, that nanowires experience a small
increase in force noise during operation of the constriction.
The origin of this excess force noise is not totally clear but
appears to be electrostatic in nature. To achieve the best
SNR, this excess noise should be minimized to enable
working at high current densities.

V. SENSITIVITY

When the measurement is dominated by detector
noise, multiplexed techniques, such as Fourier-transform

methods, greatly enhance sensitivity by allowing the si-
multaneous acquisition of multiple spectral components. In
general, such methods improve sensitivity by a factor offfiffiffiffi
N

p
over sequential-point methods, where N is the number

of image points. This sensitivity boost is known as the
multiplex advantage [6]. For inductively detected MRI of
thermally polarized samples, the dominant noise source is
voltage noise from the receiver circuitry, and Fourier en-
coding is commonly employed as an efficient method of
imaging [39]. The multiplex advantage has also been ex-
ploited for force-detected NMR and MRI of thermally
polarized samples [21–25], where force noise dominates.
If, however, the object of interest is statistically polar-

ized, as is the case for nanometer-size samples, spin noise
contributes to the total noise [40], and a new analysis is
required. Below, we argue that for high-resolution imaging
of statistically polarized samples, the detector noise effec-
tively dominates the total noise for small voxel sizes. In
this case, the multiplex advantage still holds, and Fourier-
transform techniques offer a significant sensitivity boost
for nanoscale MRI.
In the Supplemental Material [29], we show that in d

dimensions, the average SNR of an image acquired via
Fourier encoding is

SNR¼e��p=�m

�
2dN �A�p

T
þ2dNSF

T�2
spin

þ 2dNS2F
4T�p�

4
spin

��1=2
: (3)

Here, �2
spin is the variance of the spin component of the

force signal from the entire sample, SF is the oscillator
force-noise power spectral density, T is the averaging time
per point, and �A, which is approximately 2 for the present
experiment, characterizes the average error in the autocor-
relation integrated over the sample. Spin-relaxation effects
have been neglected in the above estimate. For compari-
son, the average SNR of an image in which each voxel is
measured sequentially is

SNR point ¼
�
2�m
T

þ 2S2FN
2

T�m�
4
spin

þ 2SFN

T�2
spin

��1=2
: (4)

Equation (4) assumes that the signal in each voxel is the
same (see the Supplemental Material [29]).
In both Eqs. (3) and (4), the first term in the parentheses

represents the spin noise, the second term represents the
oscillator force noise, and the last term is the covariance of
the force noise and the spin noise. In Fourier encoding, the
force-noise contribution scales more favorably withN than
in sequential-point imaging because all voxels in the image
are measured N times, compared with only once in the
sequential-point case. This sensitivity enhancement exem-
plifies the multiplex advantage when detector noise domi-
nates. The spin-noise contribution, however, scales less
favorably with N in Fourier encoding because spin noise
from the entire sample contributes to every data point.
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When the number of image points is large enough, such
that the force noise significantly exceeds the spin noise per
voxel, i.e., when NSF=2�m�

2
spin � 1, then SNRpoint /

1=N, in contrast to Fourier encoding, where SNR /
1=

ffiffiffiffi
N

p
. In this regime, the detector noise (i.e., force noise)

effectively dominates, and Fourier encoding can be
expected to offer better sensitivity. The present experi-
ment, for example, has benefited from multiplexing
because �2

spin 	 300 aN2, SF 	 10 aN2 Hz�1, and

NSF=2�m�
2
spin 	 13.

VI. CONCLUSION

In this work, we have demonstrated nanoscale pulsed
Fourier-transform magnetic resonance spectroscopy and
imaging. Our technique relies on creating correlations in
the spin noise of a nanoscale sample using rf and gradient
pulses generated by a metal constriction. We have also
argued that our technique provides a sensitivity enhance-
ment for high-resolution nanoscale imaging via the multi-
plex advantage.

We conclude by noting several possible extensions of
our work. First, our technique could be readily extended to
enable full three-dimensional encoding with constrictions
capable of producing two orthogonal static gradients. A
small coil could also be used to generate a uniform rf field
in the sample, which would enable the use of solid-state
decoupling sequences, such as the magic sandwich [22].
These pulse sequences could be used for high-resolution
spectroscopy and would permit longer encoding times and
better spatial resolution in imaging. Such a coil, together
with gradient pulses from the constriction, could also be
employed to perform nanoscale tomography. More gener-
ally, our approach serves as a model for leveraging these
and other sophisticated pulsed magnetic resonance tools to
aid nanoscale MRI in its progress toward atomic-scale
imaging.
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