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In this work, we describe a scheme to execute all-optical control of the routing or switching of photonic

information where, by optically controlling the internal quantum state of a individual scatterer coupled to

two independent cavity modes, one can dynamically and rapidly modulate the intermode coupling. This

allows all-optical modulation of intercavity couplings via ac Stark or shuffle (stimulated Raman adiabatic

passage) control of the scatterer’s internal states, and from this modulation, we show that we can perform

all-optical switching and all-optical routing with near-unit switching contrast and with high bandwidth.
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I. INTRODUCTION

The dynamic control of the interaction between optical
cavity modes is essential for the advanced functioning of
photonic and quantum photonic devices such as optical
delay based on the optical analog of electromagnetically
induced transparency [1–3], all-optical switching [4], and
all-optical routing [5,6]. Popular methods to control the
couplings between cavity modes involve tuning the cavity
resonance either by laser-assisted carrier-induced nonline-
arities [1,7–9] or by thermal-optical effects [2]. By detun-
ing two cavities out of resonance with each other, one can
indirectly decouple two cavity modes that are arranged to
strongly couple when on resonance. However, tuning
methods that rely on media possessing a small nonlinear
refractive index require intense optical control fields. An
interaction between cavity modes can also be controlled
slowly by moving a scatterer [10] or by tuning a spatial gap
between the cavities [2,3]. All of the current methods to
modulate the coupling between separate optical cavities
suffer from various drawbacks; i.e., they are slow, may
require nonlinear optical media, do not operate at the
single-photon level, and require sophisticated physical set-
ups, etc. In the following, we propose a new scheme, via
controlling a three-level scatterer placed within or nearby a
cavity, that allows rapid all-optical control of cavity cou-
plings and permits the routing of optical signals (including
single photons) between multiple cavities and via these
cavities into many input-output waveguides with nearly
perfect switching fidelity. Our proposal is essentially dif-
ferent from previous methods in that we are able to directly
modulate the coherent intermode interaction strength.

Routing of photons plays a key role in optical commu-
nication networks and quantum information processing.
One can demonstrate all-optical switching via the satura-
tion of a single emitter in a cavity [11,12], but the contrast
achieved is very low. The aforementioned method of tun-
ing the resonance of a nonlinear optical cavity [7,9,13,14]
or the evanescent coupling between waveguides [15] with
an intense laser has been proposed for all-optical switching
and routing, but these methods require high-pump-laser
powers due to the very weak optical nonlinearity. By using
a high-Q cavity or a high carrier-induced nonlinearity, one
can decrease the intensity of the pump laser, but these
methods also slow down the switching speed, as either
the cavity exhibits a long ring-down time [14] or the carrier
relaxation time becomes very long [1,9].
Cavity quantum electrodynamics (cQED) offers a

powerful toolkit to control the transmission of light
through a cavity or waveguide system where the cavity
resonantly interacts with an emitter or scatterer [4–6,16]. A
single scatterer strongly coupled to a one-dimensional
waveguide can scatter a single photon in the waveguide
into either the forward (transmission) or the backward
(reflection) mode [17,18]. This discovery has been used
to propose a single-photon transistor [19,20]. However,
previous cQED schemes using on-resonance interaction
with a single emitter and single-photon transistor only
allow one to route a single photon into either the forward
path or the backward path. To date, multiport all-optical
routers formed from the composition of two-port routers
[15] or optical switches [9] suffer from large insertion
losses, in particular, when extended to provide multipath
routing. Although the formalism of a �-type atomic scat-
terer interacting with a cavity mode has been widely
studied [18,21–23], using this three-level system to dy-
namically modulate the coupling between cavities has
never been addressed, to the best of our knowledge.
In this paper, we theoretically propose a method to

control the coupling (or coherent scattering) between
two optical cavity modes using a �-type three-level
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system (scatterer) that dispersively interacts with both
cavity modes simultaneously in the strong-coupling re-
gime. This dispersive coupling induces a coherent inter-
action between the two cavity modes that depends on the
common detuning and the quantum state of the scatterer.
To modulate the strength of this intercavity coupling, we
must thus develop ways to either control the size of the
common detuning or directly change the internal quantum
state of the scatterer. We show how both of these control
routes are possible. We show that one can modulate the
interaction strength by (i) tuning the detuning via an
optical Stark shift or (ii) transferring [via stimulated
Raman adiabatic passage (STIRAP) [24] ] one internal
ground state of the scatterer to another internal ground
state, which does not interact with either cavity, to effec-
tively turn off the intercavity coupling. We show that both
methods can rapidly switch on or off the coupling be-
tween the two cavity modes with very high (near-unit)
switching contrast. This control also allows for the dy-
namic cancellation of scattering in a toroidal cavity if the
dynamic coupling is set to be the same number of the
scattering but the opposite sign.

II. SETUP

Before discussing in detail the setup for optical switch-
ing and routing, we explain the basic idea behind our
method. In summary, we show that when two optical
modes with identical frequencies couple to the same tran-
sition in the � system, these two modes are indirectly
coupled together.

Now, we go on to find an expression for the strength of
this coupling and see that one can modulate this strength in
two ways. As a potential photonic crystal realization, we
refer to Fig. 1 and consider how one can create a tunable
coherent coupling between two cavity modes using a
�-type three-level system [e.g., a single nitrogen-vacancy
(NV) center in a nanodiamond or a quantum dot] denoting
the three level’s internal energies and associated quantum
eigenstates as !j and jji, j 2 f1; 2; 3g. We arrange for two

cavity modes â and b̂ to simultaneously off-resonantly
couple to the transition j1i $ j3i with the coupling
strengths ga=b. We assume that these two modes have

identical frequencies and thus suffer identical detunings,
i.e.,�a ¼ �b ¼ �, and couple identically to the qubit, i.e.,

ga ¼ gb ¼ g. We observe that both quantum fields â and b̂
induce Stark shifts on levels j1i and j3i. The value of this
shift �ð13Þ

Stark is given by �
ð13Þ
Stark ¼ jgj2hðây þ b̂yÞðâþ b̂Þi=�.

In the situation of j�j2 � jgj2hâyâi, jgj2hb̂yb̂i, state j3i is
negligibly populated, i.e., h�33i � 0, where we set �̂ij ¼
jiihjj with i; j 2 f1; 2; 3g. This Stark shift effectively yields
a coherent interaction hðâyb̂þ b̂yâÞ between the two cav-
ity modes with a strength

h ¼ jgj2h�̂11i=�; (1)

and it is this expression that is at the crux of our scheme.
From Eq. (1), we see that to tune the strength of this
coupling, we can either (A) change� (via the Stark effect),
whichwe denote as Stark control, or (B) change the value of
h�̂11i (via shuffling around the internal population of the�
system), which we denote as shuffling control. To achieve
(A), we must temporally change the detuning �, and this
change of tuning can be achieved by using a strong classical
optical field on the j2i $ j3i to impose a large ac Stark shift
on j3i. To achieve (B), we propose using classical optical
fields to shuffle the internal state j1i $ j2i, and when the
entire internal population is in state j2i, then h�̂11i ¼ 0 and
the cavity coupling is effectively switched completely off.
The two degenerate coupled-cavity modes could either

be two counterpropagating modes of a ring resonator [see
Fig. 1(b)] or two photonic crystal-cavity modes [see
Fig. 1(c)]. In addition, tunable coupling enables photon
routing. This capability to route can be seen in the follow-
ing manner: Since we can control the interaction between
two cavities, we can selectively transfer the field energy
from one cavity to another and then feed it into the selected
output waveguide. Using a waveguide to input or output

(a)

(b)

FIG. 1. Control of switching and routing via a �-type qubit
interacting with a cavity. By controlling the three-level system,
we can alter the transmission of the combined qubit-cavity
system. (a) Energy level diagram of a �-type three-level scat-
terer. Two cavity modes â and b̂ drive the same transition j1i $
j3i with strength and detuning fga;�ag and fgb;�bg, respec-
tively. The classical field �pð�sÞ drives transition j1i $ j3i
(j2i $ j3i) with detuning �pð�sÞ. The field �s shifts the energy

of level j3i or in combination with �p is used to swap quantum

states between j1i and j2i. (b) Optical switching via the control
of the transmission. The waveguide overcouples to
the cavity. Via tuning the coherent coupling h created by the
scatterer (the �-type qubit), both forward and backward trans-
missions Ta and Tb can be switched on or off. (c) Optical router
to control the output path. The photonic crystal cavity â couples
to a one-dimensional waveguide. The coupling between two
photonic crystal cavities a and b is controlled by a scatterer
such as a NV center or a quantum dot. (d) The setup for an all-
optical router. The cavity â can individually couple to each
cavity b̂l mediated by the individual scatterers. The field stored
in cavity b̂l couples out to the lth waveguide �l.
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the field from the cavity, a realization of an all-optical
router can be suggested, as shown in Fig. 1(d). We use
tilted oriented waveguides to optimally output fields from

the cavities b̂ [25].

III. MODEL

Now, we discuss in some detail the general setup shown
in Fig. 1(d), where we choose the router output among the

ports �out and �
ðlÞ
out. After going to the frame defined by the

unitary transformation Û¼expf�i!intâ
yâ�i

P
l½!inb̂

y
l b̂lþ

23 �̂
ðlÞ
33þð23�!inÞ�̂ðlÞ

11þð23�!sÞ�̂ðlÞ
22�tg and making the

rotating-wave approximation, the dynamics for the system
can be written in the form

@hQ̂i
@t

¼ ih½Ĥ; Q̂�i þ L̂Q̂q þ L̂Q̂r; (2)

with

Ĥ ¼ Ĥin þ Ĥ0 þ Ĥcc þ Ĥsc þ Ĥc; (3a)

Ĥin ¼ i
ffiffiffiffiffiffiffiffiffiffi
2�ex

p ð�inâ
y � ��

inâÞ; (3b)

Ĥ0 ¼ �X
l

½ð�ðlÞ
a þ �inÞ�̂ðlÞ

11 þ�ðlÞ
s �̂ðlÞ

22�

þ�inâ
yâþX

l

ð�in þ �lÞb̂yl b̂l; (3c)

Ĥcc ¼
X
l

hðlÞ0 ðâyb̂l þ b̂yl âÞ; (3d)

Ĥsc ¼
X
l

�̂ðlÞ
31ðgaâþ gðlÞb b̂lÞ þ H:c:; (3e)

Ĥc ¼
X
l

½�ðlÞ
p ðtÞe�i~�ðlÞ

p t�̂ðlÞ
13 þ�ðlÞ

s ðtÞ�̂ðlÞ
23� þ H:c:; (3f)

where Q̂ denotes any operator within the enlarged system
of scatterer and modes, and h�i denotes the quantum aver-

age value of an operator. L̂Q̂q=r describes the decoherence

of the scatterer or cavities. For ease of reading, the various
terms in Eq. (3) are described in detail in Table I.

We also model the decay of the scatterer and cavities via
the Linblads in Eq. (4). We assume that the excited
state j3il of the lth scatterer decays to the ground state

jji (j 2 f1; 2g) at the rate �ðlÞ
3j , while we assume decay rates

�A for cavity modes A (A 2 fâ; b̂lg) (@ ¼ 1):

L̂Q̂q ¼ �3j

2
f2h�̂ðlÞ

3jQ̂�̂ðlÞ
j3i � hQ̂�̂ðlÞ

33i � h�̂ðlÞ
33Q̂ig; (4a)

L̂Q̂r ¼ �A

2
f2hÂyQ̂Âyi � hQ̂ÂyÂi � hÂyÂ Q̂ig: (4b)

The decay rate �A of each cavity consists of two contribu-

tions, �A ¼ �ðaÞ
i þ �ex for cavity a and �A ¼ �ðlÞ

i þ �ðlÞ
ex for

bl. �
ðaÞ
i ð�ðlÞ

i Þ represents the intrinsic loss in cavity aðblÞ,
while �ðlÞ

ex describes loss due to the coupling of modes aðblÞ
to waveguides.

The overlap of the cavity evanescent fields with the
waveguides leads to a coupling that is dependent on their
gap, which is normally fixed. Only the cavity mode â
couples to the input waveguide with strength �ex. There
is also bare cross-talk coupling between the cavities, i.e., in
the absence of any scatterers. The âmode couples to the lth

cavity b̂l with strength hðlÞ0 . Both of these strengths can be

adjusted by engineering the spacing between the wave-
guides or cavities. However, for our scatterer-mediated
modulation to be fast, we require that the bare intercavity
cross-talk coupling is much smaller that the coupling by
each cavity to the scatterer. To achieve small cross talk is
obviously not easy, but we suggest a method to do this in
the later section on implementation.
Our goal is to optically control the effective couplings

hl¼gag
�
bl
h�̂ðlÞ

11i=�ðlÞ
a via the application of classical coherent

fields�ðlÞ
p;s that are selectively applied to implement one of the

above-mentioned tuning methods: (A) Stark tuning is imple-
mented by shifting the transition frequency of the lth scatterer
or (B) Shuffle tuning is implemented by implementing
STIRAP shuffling of the scatterer’s internal population [24].
According to the input-output relation of an optical

cavity [5,26–28], the output field operators for the â and

b̂l cavities are given in terms of the input and intracavity
field operators as

âout ¼ �âin þ
ffiffiffiffiffiffiffiffiffiffi
2�ex

p
âðtÞ; (5a)

b̂ðlÞout ¼ �b̂ðlÞin þ
ffiffiffiffiffiffiffiffiffiffi
2�ðlÞ

ex

q
b̂lðtÞ; (5b)

where ½ÂðtÞ; Âyðt0Þ� ¼ �ðt� t0Þ with Â ¼ fâin-out; b̂ðlÞin-outg,
and �ðlÞ

ex is an extrinsic contribution to the decay rate from

cavity b̂l due to coupling to the output �ðlÞ
out. The coherent

amplitudes of the input fields are given by hâini ¼ �in and

hb̂ðlÞin i ¼ 0. The transmission amplitudes are defined here as

ta ¼ hâouti=�in and tl ¼ hb̂ðlÞouti=�in. Therefore, the corre-
sponding transmission coefficients are TaðTlÞ ¼ jtaj2ðjtlj2Þ
for a coherent input �in.
Both optical switching and routing rely on the realization

of coupling between cavities â and b̂l. Compared with an
optical router withmultiple ports, it ismuch easier to realize

an optical switch. For a switch, we have only one b̂ mode
and one scatterer. The setup is depicted either via Fig. 1(b)
or Fig. 1(c). As a natural extension of optical switching, an
all-optical router can be realized using the setup shown in

Fig. 1(d), where many cavities b̂l couple to the main cavity
mode â. The coupling strength hl is individually modulated

by the lth scatterer. Each cavity b̂l couples out to a unique

output waveguide that forms an output port �ðlÞ
out. Thus, the

input field�in can be routed into various output waveguides

via the intermediate cavities â and b̂.
For a transparent description of how one can engineer a

coherent interaction between cavity modes â and b̂, we first
adiabatically eliminate the internal excited state j3i of the
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scatterer to obtain a reduced Hamiltonian Ĥred. This reduc-
tion is justified, as we will work far off resonance, and the
excited-state population will be negligible. To do this elimi-

nation, we drop the last term Ĥc in Eq. (3a) and assume

that ga ¼ gb ¼ g and !a ¼ !b ¼ !, j�j � ð!b þ!aÞ.
Applying the rotating-wave approximation, the reduced
Hamiltonian takes the following form (please refer to
Appendix A for more details):

Ĥ red ¼
�
�in � jgj2

�
�̂11

�
âyâþ

�
�in � jgj2

�
�̂11

�
b̂yb̂þ

�
h0 � jgj2

�
�̂11

�
ðb̂yâþ âyb̂Þ þ i

ffiffiffiffiffiffiffiffiffiffi
2�ex

p ð�inâ
y � ��

inâÞ; (6)

where we have an effective coherent coupling hheffi ¼
hh0 � jgj2

� �̂11i � ðh0 � jgj2
� Þh�̂11i þ h0h�̂22i. For j�j2 �

jgj2hâyâi, jgj2hb̂yb̂i, the population in state j3i is negli-
gible. Throughout our investigation below, state j3i is
assumed to be adiabatically eliminated and is negligibly
populated. For the sake of simplicity, we neglect the in-

trinsic scattering or coupling h0 ¼ 0. Thus, heff¼�jgj2
� �11.

We assume the same intrinsic decay rate �ðaÞ
i ¼ �ðlÞ

i ¼ �i

and the same external coupling �ex ¼ �ðlÞ
ex as well. Then,

�a ¼ �b. In numerical simulations, we assume

hÔsÔa=bi � hÔsihÔa=bi for a coherent input, where Ôs,

Ôa, and Ôb are operators related to the scatterer, mode â,

and mode b̂, respectively. The resulting semiclassical
equations of motion for the mean values of the observables

are valid when the scatterers are weakly driven by the
cavity modes and also excited by a coherent input field.
This approximation has been widely used in the study of
cQED systems [5,29,30].

IV. STEADY-STATE SOLUTION

We now work to obtain expressions for the transmission
Ta, where light is routed out of the exit waveguide con-
nected to cavity a, and Tb, where light is routed out of the

exit waveguide connected to cavity b. Setting h ¼ jgj2
� 	

h�̂11i, we redefine the detuning as �0
in ¼ �in � h. We now

calculate the steady-state transmission using the reduced
Hamiltonian Eq. (6). We assume the maximum coupling
hmax ¼ 8�i and a minimum hmin ¼ 0, such that 0 
 h 

hmax. Such maximum coupling strength is easy to realize,

TABLE I. Description of Hamiltonians.

Input Ĥin Represents the driving of the cavity mode â with resonant frequency !a via the input field �in

of frequency !in through the waveguide, where �in corresponds to the coherent amplitude of

the input field and �ex describes the extrinsic loss due to coupling of the modes to the waveguides.

Self-energy Ĥ0 Is the free Hamiltonian of the cavity mode â and output modes b̂l, where the latter modes

have resonant frequencies !ðlÞ
b . Relative to the incoming drive, the â mode is detuned by

�in ¼ !a �!in and the bðlÞ mode by �in þ �l, with �l ¼ !ðlÞ
b �!a. Ĥ0 also includes the free

energy of the two ground states of all of the l scatterers with the detunings

�ðlÞ
a ¼2ðlÞ

3 � 2ðlÞ
1 �!a and �ðlÞ

s ¼2ðlÞ
3 � 2ðlÞ

2 �!ðlÞ
s , where !ðlÞ

s is the frequency of the classical

control field shown in Fig. 1(a) between states j2i $ j3i in the lth scatterer. The detuning

between the mode bl and the lth scatterer is given by �ðlÞ
b ¼2ðlÞ

3 � 2ðlÞ
1 �!ðlÞ

b . We take 2ðlÞ
j to be

the eigenenergy of state jji of the lth scatterer, with j 2 f1; 2; 3g.
Intrinsic coupling Ĥcc Describes the intrinsic cross coupling among the cavity modes â and b̂l, with small rates hðlÞ0 due to,

e.g., evanescent coupling and Rayleigh, Brillouin, and Raman scattering.

Scatterer coupling Ĥsc Describes the coherent coupling between the cavities modes â and b̂l and scatterers via the j1i $ j3i
transition, with coupling strengths ga and gðlÞb .

External controls Ĥc For tuning method (A) or Stark control, we omit the classical fields required by method (B)

[set �ðlÞ
p ðtÞ ¼ 0] and define �ðlÞ

s ðtÞ as the intense classical Stark optical fields. For tuning

method (B) or shuffling control, we set both �ðlÞ
p ðtÞ and �ðlÞ

s ðtÞ to be nonzero and finite in

amplitude and duration to form a pair of STIRAP pulses. To distinguish between the two tuning

methods, we denote the control fields by ½�ðlÞ
s ðtÞ� for (A) Stark control and by

½ ~�ðlÞ
p ðtÞ; ~�ðlÞ

s ðtÞ� for (B) shuffling control. Each classical control field only drives one scatterer

and for the Stark control has an oscillation, with the Rabi frequency f!ðlÞ
s ;�ðlÞ

s g driving the

j2i $ j3i transition, while for the state swap, the control field has a Rabi frequency of

f!ðlÞ
p ; ~�ðlÞ

p g (f!ðlÞ
s ; ~�ðlÞ

s g), driving the j1i $ j3i (j2i $ j3i) transition of the lth scatterer. Both �ðlÞ
a

and �ðlÞ
b are assumed to be red detuned, while the control fields are blue detuned

�ðlÞ
s ¼2ðlÞ

3 � 2ðlÞ
2 �!ðlÞ

s , �ðlÞ
p ¼2ðlÞ

3 � 2ðlÞ
1 �!ðlÞ

p , and ~�ðlÞ
p ¼ �ðlÞ

a þ�in ��ðlÞ
p . In this case, we

can avoid generating any Raman transition involving the cavity mode when the controlling

Stark or STIRAP fields are applied.

KEYU XIA AND JASON TWAMLEY PHYS. REV. X 3, 031013 (2013)

031013-4



using the current experimental technology. Note that h ¼ 0
is achievable in practice only if h0 is zero for the shuffling

control or a small h0 is canceled by jgj2
� h�̂i11 in heff for the

Stark control. In the steady state, the transmission ampli-
tudes ta and tb are given by

ta ¼ �0
inð�0

in � 2i�iÞ þ �2
ex � ð�2

i þ h2Þ
ði�0

in þ �ex þ �iÞ2 þ h2
; (7a)

tb ¼ � 2ih�ex

ði�0
in þ �ex þ �iÞ2 þ h2

: (7b)

The corresponding transmission coefficients are Ta ¼ jtaj2
and Tb ¼ jtbj2. When the transmission of signal is high, the
state of channel is ‘‘on’’ and the transmission is denoted by
Ton. On the contrary, Toff indicates a low-level output. The
performance in switching the output on or off can be
evaluated using the switching contrast

SC ¼ ðTon � ToffÞ=ðTon þ ToffÞ:
In our system, the external coupling �ex is fixed once the

setup is fabricated. However, by changing the detuning �
using a strong Stark pulse, we can change the intermode
coupling strength h. As there is no fixed value for this
coupling strength h, there is no fixed critical coupling �ex.
To demonstrate optical switching with high performance,

we choose a critical coupling �m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2max þ �2

i

q
for the

maximum hmax. The steady-state transmission coefficients
Ta ¼ jtaj2 and Tb ¼ jtbj2 are shown in Fig. 2.

We see that in Fig. 2, as we turn on the intermode cavity
coupling (solid blue to dashed red lines), the input light is
blocked from exiting via the ‘‘straight-through’’ port a
[Fig. 2(a)] and now exits via port b [Fig. 2(b)]. We also
note that in comparison with the situation of critical cou-
pling for h ¼ 0, the spectral window for switching is broad
and flat in our overcoupled regime, the bandwidth being
determined by hmax. This wide bandwidth promises a fast
switching speed. For a large coupling h ¼ hmax, almost all
of the input field is reflected [in the setup of Fig. 1(b)] or

transmitted to another waveguide through cavity b̂ [in the
setup of Fig. 1(c)]. As seen in Fig. 2, the straight-through
transmission Ta is flat and vanishing (‘‘off’’ state), but Tb is
large, about 0.8 (on state). On the contrary, for h ¼ hmin,

the incident field exits mainly from the straight-through
output port �out (Ta ¼ 0:8), whereas Tb ¼ 0. In contrast to
previous works [4,6,11], for the case of an off state in both
output ports, the transmission is vanishingly small in our
system. This near extinction in the off state indicates a
significant advantage of our scheme: a nearly unit switch-
ing contrast.

V. TIME-DEPENDENT CONTROL

To verify our analysis and study the temporal switching
behavior, we numerically solve Eq. (2). Since the popula-
tion of the excited state j3i is negligible throughout the
protocol, the decay of the scatterer is neglected, i.e., �31 ¼
�32 ¼ 0. Throughout the modeling below, we use � ¼ 0,
� ¼ 800�i, g ¼ 80�i, and h0 ¼ 0, yielding an effective
coherent coupling h ¼ 8�i when h�11i � 1, and�in ¼ 8�i.
The change in transmission due to a small static coupling,
e.g., h0 ¼ �i between cavities, is negligible, and in addi-
tion, this static coupling can be canceled via the Stark

control according to Eq. (6) if jgj
2

� h�11i ¼ h0 and h�22i � 0.

We take the controlling optical fields to be a train of

pulses, either on �s (Stark control) or pulse pairs ~�p and
~�s (STIRAP fields for shuffle control).
For Stark control, we choose the form of the Stark field

for each pulse to be

�sðtÞ ¼ �0

�

�
arctan

�
t� �d

�

�
� arctan

�
t� �d � �w

�

��
;

where the Stark field with an amplitude of �0 is blue
detuned with respect to the transition j3i $ j3i, �dðwÞ is
the delay (width) of the pulse, while � is a parameter
characterizing the rise or fall time of the pulse. For the
Stark control protocol, we choose �0 ¼ 3200�i and � ¼
10�3��1

i . Since for Stark control the populations in states
j2i and j3i are negligible, the detuning �s can be much
smaller than �0, �s ¼ �0=10, in order to provide a large
Stark shift �2

0=�s ¼ 3:2	 104�i.

For shuffle control, we use the technology of STIRAP,
which is robust against noise in the fields to swap the
group-state internal populations of the scatterer. To avoid
the disturbance from the cavity modes, the fields are blue
detuned again but on a two-photon resonance. The

STIRAP pulses ~�p and ~�s have the same profile as the

above-mentioned Stark control pulse but have different
widths and delays and are given by

~� p;sðtÞ ¼ �0
0e

�ðt��p;sÞ4=2�2w ;

where �0
0 is the amplitude, �w characterizes the width of

the pulses, and �p;s the delay. Control fields with �w ¼
10�3��1

i , which operate much faster than the ring-down
time of the cavity, effect a nearly instantaneous turning on
or off of the intermode coupling.
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FIG. 2. Steady-state transmissions Ta and Tb as a function of
detuning in the case of overcoupling. The solid blue line in-
dicates the case for h ¼ 0, the dashed red line for h ¼ 8�i;
�ex ¼ �m.
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A. All-optical switching

First, we demonstrate all-optical switching of the trans-
mission Ta in the two schemes: (A) Stark control and
(B) shuffle control. We take the initial state of the scatterer
to be j1i, i.e., h�11i ¼ 1. Referring to the numerical results
shown in Fig. 3, both schemes yield a short initial burst in
transmission that is due to a short starting process of the
system �it < 0:2. Because the cavity is empty, the forward
transmission Ta is large during this period, according to the
input-ouput relation Eq. (5). To demonstrate an example of
switching behavior, we consider the output when �it � 1.
From the results shown in Fig. 3, we observe that the output
closely follows the controlling Stark field [see the dashed
blue line in Fig. 3(a)], while the STIRAP control toggles
the output in Fig. 3(b) (see the solid blue lines). The 1=e
switching time is short, about 0:1��1

i , and the transmission
remains constant, 0.8, for both schemes in the steady state.
These numerical results agree closely with our analysis
given in Eq. (7) and Fig. 2.

In the Stark control protocol, a Stark field �sðtÞ is used
to switch on or off the induced coherent coupling between

cavity modes â and b̂. The amplitude �0 of the applied
Stark field is 3200�i. This value can be reduced if the
detuning �s is reduced. If the intrinsic quality factor Q0

of the cavity exceeds �106, corresponding to a total qual-
ity factor Q> 105 because of the overcoupling to wave-
guides, then the coupling strength and control pulse can be
reduced, g < 10 GHz and �0 < 320 GHz corresponding
to an intensity of I� 2	 105 W=cm2 if the dipole mo-

ment of the scatterer is typically ~d� 3	 10�29 C �m. For
�s ¼ 0, the coherent interaction h is maximum hmax. As a
result, the straight-through output is off and the transmis-
sion Ta � 0. When�s is applied, the induced Stark shift is
large enough to switch off h. This vanishingly small hmin

leads to Ta ¼ 0:8when the system reaches the steady state.
Our numerical simulations show that the transmission Ta

can be turned off at its peaks before it reaches the steady
states. Thus, one can encode information more densely
within the same duration.
In the shuffle control protocol, the STIRAP pulse fields

are used to swap the internal population of the scatterer
between states j1i and j2i. The scatterer is initially pre-
pared in j1i, i.e., h�̂11i ¼ 1, and the transmission Ta is
negligible. When the population is swept to j2i, the coher-
ent coupling h vanishes because of h�̂11i ¼ 0, and sub-
sequently the system yields a large straight-through
transmission Ta ¼ 0:8. Each pair of STIRAP fields enco-
des 1 bit of information into the output �out and toggles the
output on and off. In comparison with the Stark control
protocol, an important advantage of the shuffle control
protocol is that the applied classical control fields are
much weaker, about �0

0 ¼ 100�i.

It is important in practice to look into the performance of
devices under the situation of nonzero intrinsic coupling h0.
The switching contrast is used in Fig. 4 to show the robust-
ness of our devices against small h0. It can be seen that the
switching contrast decreases slowly as h0 increases. For a
reasonably small coupling h0 < 2�i, SC> 0:8 for the Stark
control and SC> 2=3 for the shuffling control. If we apply

an optimal control scheme (dashed red lines), �ex ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhmax � h0Þ2 þ �2

i

q
and�in ¼ hmax � h0, then the switch-

ing contrast can be larger than 0.8 for two protocols.

B. All-optical router

Using our routing concepts, we can control not only the
forward transmission but also the output �out from the

waveguide coupled to the cavity mode b̂, as shown in
Fig. 2(b). In contrast to previously published works, our
scheme can route photons to many different output ports.
One possible setup for an all-optical router is illustrated in
Fig. 1(d). Here, the photons can be selectively sent out to

ports �out or �
ðlÞ
out. Unlike Ref. [9], which demultiplexed
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FIG. 3. All-optical switching controlled via (A) Stark control
and (B) shuffle control. The dashed red lines indicate the
normalized controlling fields [Stark field for (A) and STIRAP
field for (B)]. The STIRAP fields are offset for clarity. The solid
blue line represents the transmission Ta. �s ¼ �320�i and
�0 ¼ 10�s for (a), and �p ¼ �s ¼ �200�i, �0

0 ¼ 100�i,

and �s � �p ¼ 0:025��1
i for (b). The switching time is about

0:1��1
i . In (A), we observe that the straight-through transmission

closely follows the Stark pulse, while in (B), we see that this
transmission is toggled on and off by the shuffle control pulses.
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FIG. 4. Switching contrast as a function of the intrinsic cou-
pling for (a) Stark control and (b) shuffle control. The time
averages of transmissions Ton and Toff in Fig. 3 are used. Ton is
evaluated over the time period from �it ¼ 1:5 to 2 in (a)
and from �it ¼ 1:4 to 1.6 in (b), while Toff is calculated
from �it ¼ 2:5 to 3 in (a) and from �it ¼ 1:8 to 2 in (b).
The solid blue lines indicate the fixed external coupling

�ex¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2maxþ�2

i

q
, while the dashed red lines present the optimal

critical coupling �ex¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhmax�h0Þ2þ�2

i

q
and �in ¼ hmax � h0.
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the total field energy into several ports and then controlled
the output of each port, each output port in our scheme
withdraws light separately from a common cavity. So, the
switching fidelity of each output in our setup is indepen-
dent of the number of ports.

To illustrate this independence, we refer the reader back
to the router schematic setup with two possible output ports
in addition to the straight-through port, as illustrated in
Fig. 1(d). This arrangement now uses two scatterers, one

common cavity â, and two coupled cavities b̂1 and b̂2.
Following numerical modeling, we depict the operation of
this dual-output all-optical router in Fig. 5 with output

ports �ð1Þ
out (solid blue line) and �

ð2Þ
out (dashed red line) either

controlled by the Stark tuning [Figs. 5(a) and 5(b)] or via
shuffling tuning [Figs. 5(c) and 5(d)]. We switch off the
output �out due to the large hl when tuning on the coupling

to ports�ðlÞ
out. The profiles of controlling laser pulses are the

same as in Fig. 3, but the delays are different. The scat-
terers are individually controlled by the corresponding
laser pulse trains. In the Stark control, scatterers always
stay in state j1i, i.e., h�11i ¼ 1, but strong Stark fields are
applied to eliminate the effective coupling h. In the shuf-
fling control, all scatterers are initially populated in state

j2i. Thus, the ports �ðlÞ
out are initially isolated from the input

field. As a result, all � ports are initially off. The coupling
h for each scatterer is sequentially switched on, to hmax,
when the Stark field is turned off [see Fig. 5(a)] (Stark

control) or the scatterer is swept into state j1i [see Fig. 5(c)]
(shuffling control). Therefore, the input field is routed to
either waveguide �1 (T1 � 0:8) or �2 (T2 � 0:8), which
means that either output turns on. As shown in Figs. 5(b)
and 5(d), the binary optical information ‘‘1010’’ and

‘‘0101’’ is encoded into ports �ð1Þ
out and �ð2Þ

out, respectively.
Unlike the demultiplexer-type router [9], the output of

each port is similar because the energy of the input light is
only transferred to the port that is switched on. This setup
promises a small insertion loss of 20% independent of the
number of output ports. If two output ports simultaneously
turn on, the light energy will be evenly fed into two ports.
Our optical routers are also robust against the small h0, as

shown in Fig. 6. The outputs �ð1Þ
out and �

ð2Þ
out decrease slightly

in both protocols. For example, for h0 ¼ 2�i, the switching

contrast of �ð2Þ
out is still 0.84, and that of �ð1Þ

out slightly
decreases to 0.75 in the Stark control, while it can remain
0.85 in the shuffling control. Such a level of switching
contrast allows for routing quality larger than 0.75 in optical
communications up to an intrinsic coupling of h0 ¼ 2�i.

VI. DISCUSSION OF IMPLEMENTATION

The implementation of our scheme requires a strong
coupling between a three-level �-type solid-state quantum
system and a single photon in a ‘‘good’’ optical cavity. A
coupling strength of GHz is already available in quantum-
dot–cavity systems [4,31,32], in NV center-cavity systems
[33], and in Bose-Einstein condensate-cavity systems [34].
The deep strong-coupling regime of g ¼ 80�i requires that
the cavity has an intrinsic quality factor Q0 > 106 but a
total quality factor Q> 105. This requisite can be met
using either photonic crystal cavities [9,35–37] or toroidal
cavities [38,39]. If the state-of-the-art technique can
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FIG. 5. All-optical routing in output channels (a),(b) Stark
control and (c),(d) shuffling control. Parts (b) and (d) show the
light in the output channels and prove that one can reroute the
light into the two separate output channels with a near-perfect
contrast (bright and dark). Parts (a) and (c) depict the Stark and
STIRAP classical control pulses used. Initially, h�̂11ð0Þi ¼ 1 in
Stark control protocol but h�22ð0Þi ¼ 1 in shuffling control. The

parameters and the profiles for the control fields ~�ðlÞ
p and ~�ðlÞ

s are

the same as in Fig. 3. The solid and dashed lines in (a) and (c)
indicate the field applied to control scatterers 1 and 2, respec-

tively. The solid blue lines in (b) and (d) are for the output �ð1Þ
out,

but the dashed red lines are for �ð2Þ
out. The blue lines in (c)

represent the field ~�ðlÞ
p ; the red lines are ~�ðlÞ

s .
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FIG. 6. Switching contrast as a function of the intrinsic cou-
pling for (a) Stark control and (b) shuffle control. The solid blue

lines indicate the output �ð1Þ
out, while the dashed red lines are for

the output �ð2Þ
out. The time averages of Ton and Toff in Fig. 5 are

used to evaluate the switching contrast. In (a), Ton is evaluated

from �it ¼ 1:5 to 2 for �ð1Þ
out and from �it ¼ 2:5 to 3 for �ð2Þ

out; Toff

is calculated from �it ¼ 2:5 to 3 for �ð1Þ
out and from �it ¼ 3:5 to 4

for �ð2Þ
out. In (b), Ton is the average transmission between �it ¼

0:8 and 1.1 for �ð1Þ
out and between �it ¼ 1:8 and 2.1 for �ð2Þ

out; Toff

is averaged over the time period from �it ¼ 1:5 to 2 for �ð1Þ
out and

from �it ¼ 2:5 to 3 for �ð2Þ
out. The fixed external coupling �ex ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2max þ k2i

q
is applied in all cases.
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combine strong coupling [31] and a high-Q cavity [38], the
rate g=�i can reach 10

4 [40]. The�-type scatterer can be a
single NV center in nanodiamond at low temperature
[41–43], quantum dot [44], or rare-earth ion-doped crystals
[45,46]. Therefore, our scheme for all-optical switching or
routing can be realized on a chip in various kinds of
systems using current experimental techniques.

Another important requisite is to effectively couple the
scatterer to two cavities simultaneously but greatly sup-
press the intrinsic coupling or the natural cross-talk cou-
pling between the modes (coupling without the scatterer
present). This issue has been solved in recent state-of-the-
art experiments. If we consider the two degenerate modes
to be counterpropagating modes in a toroidal cavity, many
groups can make toroidal cavities with a negligible intrin-
sic scattering (2h0 < �i þ �ex) using existing technology
[38,39,47]. If one now inserts quantum dots or nanodia-
monds into a cavity, their geometric profiles cause addi-
tional scattering or cross talk between modes in the cavity.
This cross talk is unwanted—we only wish to have cross
coupling mediated by the dipole coupling to the internal
states of the scatterer. The geometrical scattering rate
caused by a nanoparticle decreases quickly (/ r3) as the
size (radius r) of particle decreases [10]. Therefore, the
effects of geometric scattering can be neglected for a
scatterer with r < 10 nm. Experiments have demonstrated
that the scattering of a toroidal cavity embedding a nano-
particle only causes negligible broadening of the linewidth
of the cavity mode, even with a Q factor Q> 108 [38]
much larger than that which we require.

Rather than use degenerate modes in a toroidal cavity,
one instead seeks to use two spatially separated cavities,
e.g., two photonic crystal cavities, and one can also de-
couple these cavities from each other if their mode fields

are orthogonally polarized in the Êx and Êy in planes [48],

respectively. In Ref. [48], the authors have demonstrated
experimentally spatially overlapping one-dimensional
(1D) photonic crystal cavities that are individually tunable
and that are engineered to have very little cross-talk
coupling. In this arrangement, by positioning the scatterer
at the spatial crossing point of the two 1D photonic
crystal (PC) cavities and arranging that the dipole moment
of the nanoscatterer is oriented along the direction of

Êx þ Êy, one can couple the scatterer to each cavity

mode with little intrinsic cross talk between the cavity
modes. This configuration of orthogonal polarized
cavities can be extended for our multiport optical routers
(see Appendix B).

Now, we estimate the energy cost of our setup.

Assuming a typical transition dipole moment of ~d ¼ 3:0	
10�29 C �m and a refractive index of n� 3, the required
electric field E is about 105 V=m, which corresponds to an
intensity of I ¼ 2	 105 W=cm2 required to achieve the
strong Stark field �0 ¼ 320 GHz. Because of the large
dipole moment [49], the intensity required to drive a

quantum dot can be lower [44]. Classical binary informa-
tion can be encoded at 100-MHz rates. To neglect the
creation of any cavity excitations, the Stark pulse energy
can be as low as 2 pJ=bit if the field is tightly focused to
1 	m2. Optical control of nanoscale scatterers like NV
centers or quantum dots can also avoid exciting the optical
cavity. Therefore, the required energy cost can be reduced
to 24 fJ=bit if we focus the fields into a nanosized area
15	 80 nm2 using plasmons [50–52]. If we drive the
scatterers via the excitation of another cavity mode [4],
the laser power incident into the waveguide can be 50 nW
(refer to the Supplemental Material of Ref. [4]). This
energy cost is comparable to recent work using InGaAsP
materials [9]. More interestingly, our second proposed
scheme, involving shuffle control, where one routes pho-
tons via the coherent control of the ground-state popula-
tions, requires vastly lower control powers than the Stark
control scheme. The intensity (I� 200 W=cm2) of the
STIRAP fields can be three orders lower than the intensity
required for the Stark fields (�0 ¼ 3200�i), thus indicat-
ing that the shuffle protocol will be far more economical to
control from a practical viewpoint.

VII. CONCLUSION

In conclusion, we present a protocol to dynamically
control the coupling between two cavity modes. Using
this protocol, all-optical switching and routing are demon-
strated using numerical simulations. The wide bandwidth
of transmission promises a short switching time and dense
encoding capability. Because the photonic output while in
the off state vanishes, a unit switching contrast is obtained.
The output of the router is high and independent of the
number of ports. If two scatterers are entangled in their
ground states, our proposal will be able to create entangled
coherent output fields.

APPENDIX A: DERIVATION OF THE REDUCED
HAMILTONIAN Ĥred IN EQ. (6)

Here, we provide greater detail regarding the intermedi-
ate steps to obtain Eq. (6) from Eq. (3) in the main text. We
enable optical routing by modulating the coupling strength
between two cavity modes, thus allowing the directed
transmission of an incoming signal through the coupled-
cavity system and out to an exit waveguide. To study the
routing, we only need to consider one switching or routing
node that consists of two cavity modes, the atomic scat-
terer, the input signal, and the associated classical control
fields. The control fields serve to control the dynamics of
the scattering either via (a) Stark tuning via a rapid tuning
of the transition energy of the scatterer through the appli-
cation of an intense Stark pulse or via (b) shuffling by
turning on or off the intercavity coupling by transferring
the scatterer’s internal atomic state to an internal state that
does not couple to either cavity.
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In our setup, depicted in Fig. 1(a), the arrangements
of classical and quantum fields are far from two-photon
resonance, and thus any Raman transitions induced by
these fields between the two ground states of the scatterer

are greatly suppressed. Thus, we can neglect the term Ĥc in
Eq. (3f) (due only to the classical control fields). As we are
only considering a single node, we drop the index

ðlÞðl ¼ 1Þ in Eq. (3) and replace ð�ðlÞ
a ;�ðlÞ

s ; �l; h
ðlÞ
0 ; gðlÞb ; b̂l;

�ðlÞ
11; �

ðlÞ
22; �

ðlÞ
13Þ by ð�a;�s; �; h0; gb; b̂; �11; �22; �13Þ.

To proceed, we assume that ga ¼ gb ¼ g and that!a ¼
!b, which gives � ¼ 0. In the dispersive coupling regime,
the population of the excited state j3i is negligible. We can
therefore adiabatically eliminate this excited state from the

original Hamiltonian Ĥ0 ¼ Ĥ � Ĥc and derive an effective

reduced Hamiltonian Ĥred. Ĥ and Ĥc are given by Eq. (3).

Using @Q
@t ¼ i½Ĥ0; Q� and applying the rotating-wave ap-

proximation, we obtain

_̂� 13 ¼ �ið�þ �inÞ�̂13 þ igð�̂33 � �̂11Þðâþ b̂Þ:
Note that the detuning �in is introduced because of the
external driving of the cavity, which is independent of the

scatterer. This detuning causes the operators ð�̂13; â; b̂Þ to
oscillate at frequency �in. The oscillation can be elimi-

nated from the equation by replacing ð�̂13; â; b̂Þ by

ðe�i�int ~̂�13; e
�i�int ~̂a; e�i�int ~̂bÞ.

Since h ~̂�13i varies slowly and the population in j3i is
small, it is reasonable to assume _̂�13 � 0 [53–55]. This
assumption gives

�̂ 13 � g

�
ð�̂33 � �̂11Þðâþ b̂Þ: (A1)

Substituting Eq. (A1) into the cavity-scatterer interaction

Hamiltonian Ĥsc (3e), we obtain

Ĥ0
sc � �jgj2

�
�̂11ðâyâþ b̂yb̂Þ � jgj2

�
�̂11ðâyb̂þ b̂yâÞ:

(A2)

Here, we have dropped the terms from Ĥ0 that only asso-

ciate with �̂11 or �̂22, which commute with Ĥred, and also
drop the terms associated with small �̂33. We also correct

the effective Hamiltonian Ĥ0
sc by dividing by 2. The neces-

sity of this renormalization is verified by numerically
comparing the Raman transition of a full three-level
�-type system and its effective two-level counterpart
when the excited state is eliminated. This correction has
also been justified by other works [54,55]. After substitut-
ing Eq. (A2) into Eq. (3), the reduced Hamiltonian given
by Eq. (6) is obtained.

APPENDIX B: IMPLEMENTATION
OF OPTICAL ROUTERS

Here, we present a configuration for the optical router
with one forward input-output port and two cross output

ports. This configuration uses either the 1D nanobeams
[48] or 1D or 2D PC cavities [56,57] in a planar configu-
ration. The possible realizations of a three-port optical
router are shown in Figs. 7(a) and 7(b). These designs
are used to show the main idea of how to suppress the
intrinsic coupling between cavities and allow one to con-
struct multiport devices, but are not meant to be a detailed
study of the optimal configuration.
We suggest three structures for our multiport optical

router. The light is always incident into cavity 1 and is
routed into the � output ports [not shown in Fig. 7(b)]
mediated by the associated cavities 2 and 3. The polariza-
tion of the electric field of a cavity mode is perpendicular to
the 1D cavity axis [48,56–60]. Therefore, one can engineer
the orientation of the polarization of the cavity mode. In
structures (a) and (b), cavity 1 is y polarized, but the other
two cavities are polarized along x axis. In this configura-
tion, cavities 1, 2, and 3 decouple from each other, and
their couplings can be only mediated by the scatterers.
Unlike structures (a) or (b), in the side-by-side configura-
tion (c) [61], cavity 1 can be z polarized if it is thick in the z
direction [58,60], while cavities 2 and 3 are y polarized.
There, three arrangements can suppress the intrinsic cou-
pling between cavities but allow interactions that are only
mediated by the scatterers. Since the mode volume of a
nanobeam nanocavity or a PC nanocavity is very small, the
cavity-scatterer interaction can still be strong enough, even
if two nanocavities (e.g., cavity 1 and cavity 2 or 3) is
spatially separated. So, our multiport optical router can be
experimentally realized using the geometry structures
shown in Fig. 7.
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Vučković, Efficient Photonic Crystal Cavity-Waveguide
Couplers, Appl. Phys. Lett. 90, 073102 (2007).

[26] J. Chan, T. P. Mayer Alegre, A.H. Safavi-Naeini, J. T. Hill,
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