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In numerical simulations, spontaneously broken symmetry is often detected by computing two-point

correlation functions of the appropriate local order parameter. This approach, however, computes the

square of the local order parameter, and so when it is small, very large system sizes at high precisions are

required to obtain reliable results. Alternatively, one can pin the order by introducing a local symmetry-

breaking field and then measure the induced local order parameter infinitely far from the pinning center.

The method is tested here at length for the Hubbard model on honeycomb lattice, within the realm of the

projective auxiliary-field quantum Monte Carlo algorithm. With our enhanced resolution, we find a direct

and continuous quantum phase transition between the semimetallic and the insulating antiferromagnetic

states with increase of the interaction. The single-particle gap, measured in units of Hubbard U, tracks the

staggered magnetization. An excellent data collapse is obtained by finite-size scaling, with the values of

the critical exponents in accord with the Gross-Neveu universality class of the transition.

DOI: 10.1103/PhysRevX.3.031010 Subject Areas: Computational Physics, Mesoscopics, Strongly

Correlated Materials

I. INTRODUCTION

Detecting spontaneous symmetry-broken phases in nu-
merical simulations often relies on the measure of correla-
tion function. For instance, the magnetically ordered phase
is characterized by long-ranged spin-spin correlations,
whereas the superconducting state exhibits long-ranged
pair correlations in the appropriate symmetry channel. A
fundamental caveat with such an approach is that one
measures the square of the order parameter. If the latter
quantity is small, the quantity one attempts to obtain by
extrapolating numerical data to the thermodynamic limit is
quadratically smaller. As a consequence, very large system
sizes at high precision are required in addition to an appro-
priate finite-size extrapolation formula.

The aim of this article is twofold. We will document a
simple and very efficient alternative method to detect mag-
netically ordered phases in SU(2)-invariant Hubbard-type
models in the realm of projective quantum Monte Carlo
methods. With the enhanced resolution, we will revisit the
semimetal-to-insulator transition on graphene’s honey-
comb lattice, which has recently been under considerable
debate [1,2].

Honeycomb lattice is a bipartite, nonfrustrated lattice,
which at half-filling and small Hubbard repulsion U hosts
the semimetallic state of electrons, as in graphene. When
the repulsion is increased, one eventually expects a phase

transition into an insulating state with antiferromagnetic
order [3–5] which, because of gapless Dirac fermionic
excitations being present on the semimetallic side, should
belong to a particular Gross-Neveu universality class [5,6].
Starting from the strong coupling limit and noting that

the insulator-to-metal transition occurs at values of the
Hubbard interaction lesser than the bandwidth allows for
the proliferation of higher-order ring-exchange terms in an
effective spin model aimed at describing the magnetic
insulating state in the vicinity of the transition [7]. This
point of view opens the possibility that the melting of the
magnetic order is unrelated to the metal-insulator transi-
tion. Recent quantum Monte Carlo calculations [1] sug-
gested that there is an intermediate spin-liquid phase with a
single-particle gap but nomagnetic ordering, separating the
semimetal and magnetic insulator. Similar results have
been put forward for the related�-flux model on the square
lattice [8]. The results of Ref. [1] have been challenged by
recent studies. Entropy calculations do not favor ground-
state degeneracy, as expected for the Z2 spin liquid [9].
Moreover, Ref. [2] shows that extrapolating from signifi-
cantly larger system sizes would suggest almost complete
disappearance of the spin liquid from the phase diagram.
The latter conclusion is reinforced here, where we find
excellent data collapse and identical finite-size scaling of
both the single-particle gap and staggered magnetization,
with the distinct values of critical exponents, in accord with
the Gross-Neveu universality class [5,6].
From the technical point of view, our approach is very

similar in spirit to an approach considered in Ref. [10]. By
introducing a local magnetic field at, say, the origin, we
explicitly break the SU(2) spin symmetry. In the presence
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of long-range order and in the thermodynamic limit, any
field will pin the order along the direction of the external
field. Thereby, order can be detected by computing directly
the magnetization infinitely far from the pinning field. The
upside of such an approach is that one measures directly
the order parameter rather than its square. This procedure
amounts to evaluating a single-particle quantity, which is
often much more stable than correlation functions. The
downsides are threefold. One explicitly breaks SU(2)
spin symmetry such that spin sectors mix and it becomes
computationally more expensive to reach the ground state.
Since the computational cost scales linearly with the pro-
jection parameter, this problem is tractable. The second
difficulty lies in the ordering of limits. To obtain results
that are independent on the magnitude of the pinning field,
it is important to first take the thermodynamic limit and
then the limit of infinite distance from the pinning field. In
a practical implementation, this ordering of limits has, as a
consequence, some leftover dependence of the magnetiza-
tion on the magnitude of the pinning field. This feature is
particularly visible when the pinning field is small. The
final drawback is that it is not always possible to introduce
a pinning field without generating a negative sign problem.
For instance, in the Kane-Mele-Hubbard model [11–13],
the spin order lies in the x-y plane. Adding a magnetic field
along this quantization axis introduces a sign problem. On
the other hand, the method is applicable to SUðNÞ sym-
metric Hubbard-Heisenberg models [14].

The organization and main results of the article are the
following. We focus on the Hubbard model on honeycomb
lattice at the filling one-half, for which the presence of an
intermediate spin-liquid phase has been controversial [1,2].
After introducing and testing the approach in the next
section, we provide a phase diagram of the Hubbard model
in Sec. III. The data point to the fact that the staggered
moment follows rather precisely the single-particle gap,
when the gap is measured in the natural units of the
Hubbard U, suggesting a direct quantum phase transition
between the semimetallic and the insulating antiferromag-
netic phases. Furthermore, an excellent finite-size scaling
of the data for both the staggered magnetization and the
single-particle gap is found by assuming the values of the
critical exponents � ¼ 0:79 and � ¼ 0:88. These values
are the ones found in the first-order expansion for the
Gross-Neveu-Yukawa field theory of this quantum phase
transition [6], around its upper critical (spatial) dimension
of three. Altogether, the data strongly support the existence
of a single quantum critical point separating the semime-
tallic and the insulating antiferromagnetic phases of the
Hubbard model, with the quantum criticality belonging to
the Gross-Neveu universality class [5].

II. MODEL AND METHOD

As in Ref. [1], we will consider the half-filled Hubbard
model on the honeycomb lattice

HtU ¼ �t
X

hi;ji;�
cyi;�cj;� þU

X
i

ðni;" � 1=2Þðni;# � 1=2Þ:

(1)

The hopping is restricted to nearest neighbors, so that the
bipartite nature of the lattice allows us to avoid the negative
sign problem.
Generically, to detect antiferromagnetic ordering, we

compute spin-spin correlations:

m ¼ lim
L!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

eiQ�ihS0 � SiiHtU

vuut : (2)

Here, N ¼ 2L2 corresponds to the number of orbitals,
and L is the linear length of the lattice. A finite value of
m signalizes long-range order and is equivalent to sponta-
neous symmetry breaking. In particular, including
a magnetic-field term with an appropriate Fourier
component

Hh ¼ h
X
i

eiQ�iSzi (3)

gives

m ¼ lim
h!0

lim
L!1

1

L2

X
i

eiQ�ihSzi iHtUþHh
: (4)

The ordering of limits is crucial. One first has to take the
thermodynamic limit to allow for the collapse of
Anderson’s tower of states and then the limit of vanishing
magnetic field h. Such an approach was, for instance, used
in Ref. [15].
It is more convenient to consider a local field since, as

we will see below, this trick lifts the burden of taking the
limit h ! 0 numerically. The local pinning field is given by
the term

Hloc ¼ h0S
z
0 (5)

in the Hamiltonian. Using the representation �i;0 ¼
1
L2

P
qe

iq�i of the Kronecker symbol shows that each

Fourier component comes with an amplitude h0=L
2, so

that taking the thermodynamic limit is equivalent to taking
the amplitude of the relevant Fourier component to zero.
With the local field construction, the appropriate ordering
of limits for an L� L lattice reads

m ¼ lim
i!1

lim
L!1 eiQ�ihSzi iHtUþHloc

: (6)

That is, one first has to take the thermodynamic limit—
again to guarantee the collapse of the tower of states in the
presence of long-range order—and only then can one take
the distance from the pinning center to infinity [16]. In
other words, the distance from the pinning center sets an
energy scale that has to be larger than the finite-size spin
gap. As an efficient estimator for the evaluation of the
ordered moment, we thus propose
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m ¼ lim
L!1

1

L2

X
i

eiQ�ihSzi iHtUþHloc
: (7)

We have tested the above approach for the Hubbard
model on the honeycomb lattice. Ground-state calculations
were carried out with the projective auxiliary-field quan-
tum Monte Carlo (QMC) algorithm, which is based on the
equation

hOiH ¼ lim
�!1

h�Tje��H=2Oe��H=2j�Ti
h�Tje��Hj�Ti

: (8)

Here, � is a projection parameter, and the trial wave
function is required to be nonorthogonal to the ground
state. For H ¼ HtU þHloc, the inclusion of the magnetic
field does not generate a negative sign problem. We have
chosen the trial wave function to be the ground state of the
noninteracting Hamiltonian HT ¼ Ht þHloc in the S

z ¼ 0
sector. The implementation of the algorithm follows
closely Refs. [1,17]. The major difference is the use of a
symmetric Trotter breakup, which ensures the hermiticity
of the imaginary time propagator for any value of the time
discretization��. It also leads to smaller systematic errors.

Figure 1(a) plots the local moment at U=t ¼ 5 using
different methods. In this case, magnetic ordering is robust,
such that various approaches can be compared. The data set
at h0 ¼ 0 corresponds to the correlation functions of
Eq. (2). For this set of runs, we use a spin-singlet trial
wave function, and the projection parameter �t ¼ 40 suf-
fices to guarantee convergence to the ground state. This
quick convergence stems from the fact that the trial wave
function is orthogonal to the low-lying spin excitations
[18]. The runs at finite values of the pinning field corre-
spond to the quantity of Eq. (7). In the presence of a finite
pinning field, SU(2) spin symmetry is broken and the trial
wave function overlaps with all spin sectors. Consequently,
a large value of the projection parameter �t ¼ 320 is
required to guarantee convergence to the ground state
within the quoted accuracy. Note that the CPU time scales
only linearly with the projection parameter, so that such
large projection parameters are still numerically tractable.
It is also worth pointing out that the observable of Eq. (7)
corresponds to a single-particle quantity and shows very
little fluctuation. As is evident in Fig. 1(a), finite-size
effects are strongly dependent on the specific choice of
the pinning field. Nevertheless, convergence to values
consistent with the generic approach based on Eq. (2) is
obtained for relatively large values of the pinning field. If
the pinning field is chosen too small, larger lattices are
apparently required to ensure that the finite-size spin gap,
set by v=L with v the spin-wave velocity, is smaller than
the energy scale set by the pinning field. This expectation is
confirmed by the data, which show a systematic upturn as a
function of the system size for smaller values of the
pinning field. Such a nonmonotonic finite-size behavior
complicates a finite-size scaling analysis. For this reason,

we propose to use a relatively large value of the pinning
field [19].
At U=t ¼ 4, the local moment is smaller and hard to

detect. The h0 ¼ 0 data set of Fig. 1(b) compares our
results for the correlation function of Eq. (2) to those of
Ref. [2]. As is apparent, the agreement up to our largest
lattice size L ¼ 18 is remarkable. Without the largest
lattice sizes L ¼ 24 and L ¼ 36, extrapolation to the ther-
modynamic limit is hard because of the downward turn
present in the finite-size results. The data sets stemming
from the pinning-field approach provide an alternative
perspective and, on the whole, confirm the result of
Ref. [2]. For the considered field range, there is consider-
able scatter in the finite-size results, but nevertheless the
extrapolation to the thermodynamic limit seems to be field
independent, as expected from the above considerations.
We conclude this section by mentioning that we have

tested the approach for the noninteracting case and the
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FIG. 1. Comparison of the pinning-field and correlation-
function approaches to determine the staggered moment at
(a)U=t ¼ 5 and (b)U=t ¼ 4. The data sets at h0 ¼ 0 correspond
to the correlations functions, and values of �t ¼ 40 are sufficient
to converge to the ground state. For nonvanishing pinning fields,
projection parameters �t ¼ 320 are required to guarantee con-
vergence. We use ��t ¼ 0:1, which for the symmetric Trotter
decomposition yields converged results within our numerical
accuracy. At U=t ¼ 4, comparison with the results of Ref. [2]
shows excellent agreement. Lines corresponds to least-squares
fits to the form aþ b=Lþ c=L2.
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method successfully demonstrates the absence of long-
range magnetic order. Hence, both for critical states as
well as for magnetically ordered phases, the pinning-field
approach does provide an efficient tool. Further testing of
this approach for Heisenberg bilayers is presently in
progress [20].

III. PHASE DIAGRAM OF THE HUBBARD
MODEL ON HONEYCOMB LATTICE

We have used the above approach to revisit the magnetic
phase diagram of the Hubbard model on the honeycomb
lattice. At weak couplings, the model is known to have a
stable semimetallic state. In the strong coupling limit and
because of the absence of frustration, an antiferromagnetic
Mott insulator is present. The nature of the transition be-
tween these two states has been studied in the past [3–5] and
is presently controversial [1,2].

A. Single-particle gap

To pin down the coupling strength beyond which the
single-particle gap opens, we have repeated calcula-
tions for the time-displaced single-particle imaginary

time Green function at the nodal point: GðK; �Þ ¼P
�hcyK;�ð�ÞcK;�ð� ¼ 0Þi. As is evident in Fig. 2 and with

the symmetric Trotter decomposition, the Trotter system-
atic error is negligible within our accuracy. Fitting the data
to an exponential form allows us to extract the single-
particle gap, which we plot as a function of system size
in Fig. 2. Assuming a polynomial form for the extrapola-
tion to the thermodynamic limit, we find a small but finite
single-particle gap for U=t � 3:7. This finding is particu-
larly interesting when compared to the results of Sorella
et al. [2] that at U=t ¼ 3:8 point to the absence of long-
range magnetic order. This result can be taken as an
indication for a possible intermediate phase. However,
the analysis that we present below suggests a different
interpretation.

B. Magnetization from pinning fields

We have used the pinning-field approach to compute
the staggered moment as a function of U=t. The results at
h0 ¼ 5t are reported in Fig. 3. The extrapolation to the
thermodynamic limit is carried out using a polynomial
scaling up to second order in 1=L. Figure 4 plots the so-
obtained staggered moment for two choices of the pinning
field as well as the single-particle gap. Several comments
are in order.
(i) Within our accuracy, and maybe most importantly,

with the polynomial fit used in extrapolating the data
to the thermodynamic limit, it appears that the
single-particle gap opens right when magnetic order-
ing sets in. The only mismatch is at U=t ¼ 3:7,
where we do not detect magnetic ordering but we
do detect a small single-particle gap.
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FIG. 2. Single-particle gap. (a) The raw data at U=t ¼ 3:8. As
is apparent, the systematic error stemming from the finite Trotter
step is negligible within our accuracy. The data support a large
imaginary time range consistent with a single exponential decay.
Lines are least-squares fits of the tail of the imaginary time
Green function to the form Ze��sp�. Here, Z corresponds to the
single-particle residue and �sp to the single-particle gap. (b) Size

dependence and extrapolation of the single-particle gap.
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(ii) The QMC data in Fig. 4 show that over a wide
parameter range, the single-particle gap, measured
in units of the Hubbard U, tracks the staggered
magnetization. We take this fact as a strong indica-
tion that the magnetization provides the only rele-
vant scale in the problem, determining directly the
single-particle gap. We will see below that this
conclusion, based here on a simple, polynomial
extrapolation of the finite-size data, is also obtained,
if a more refined data analysis is performed.

(iii) The data in Fig. 4 exhibit an unusual inflection
point at approximately U=t ¼ 4:1. Such an inflec-
tion point is clearly absent at the mean-field level
(see the inset of Fig. 4). We will discuss the impli-
cations of this inflection point in the next section.
Let us finally note that in previous calculations [1],
we were unable to resolve staggered moments
lesser than m ’ 0:03. We thereby missed this in-
flection point in the polynomially extrapolated
magnetization curve and concluded the presence
of an intermediate phase [21].

C. Finite-size scaling

As mentioned above, one of the particularities of the
data presented in Fig. 4 is the occurrence of an inflec-
tion point atU=t ¼ 4:1. It is a natural question to ask if this
rather peculiar feature may be an artifact of using a simple
polynomial fitting procedure that one would indeed
expect to fail close to criticality. The polynomial procedure
could result in an overestimation of the magnetization in
the vicinity of the critical point between the semimetallic
and the insulating phases of the Hubbard model. As we
explain next, arguments in favor of this conjecture are
provided by the large-N treatment of the Gross-Neveu
model [5] and the � expansion around three spatial dimen-

sions in the equivalent Gross-Neveu-Yukawa field theory,
formulated in Ref. [6]. Given the order parameter exponent
�, as well as the correlation length exponent �, the stag-
gered magnetization scales as

m ’ jU�Ucj� ’ 	��=�: (9)

Using the standard scaling laws [22], the exponent �=�
may conveniently be expressed in terms of the anomalous
dimension for the order parameter 
 as

�

�
� 1

2
ð½dþ z� � 2þ 
Þ; (10)

where dþ z is the effective dimensionality of the system.
If we assume that the Lorentz invariance is emergent at the
critical point, as it indeed is close to the upper critical
dimension dup ¼ 3 of the Gross-Neveu-Yukawa theory

[6], and maybe even more generally [23], the dynamical
critical exponent is z ¼ 1. If, then, the anomalous dimen-
sion of the order parameter is such that 
< 3� d, we find
that the combination of the exponents �=� < 1 and our
polynomial fitting procedure in the previous section could
very well overestimate the value of the staggered magne-
tization. In fact, both the large-N approach [5] and the
expansion around the upper critical dimension [6] suggest
such an overestimation. Within the first order of the ex-
pansion in the parameter � ¼ 3� d, for example, 
 ¼
4�=5, so that

�

�
¼ 1� �

10
þOð�2Þ: (11)

In two dimensions, then, �=� ’ 0:9.
To look for the signs of the Gross-Neveu criticality in the

Hubbard model, we carry out a finite-size scaling analysis
based on the usual scaling form

m ¼ L��=�F½L1=�ðU�UcÞ�: (12)

Figure 5(a) plots mL�=� versus U for the magnetization
data at the fixed field h0 ¼ 5. [We will omit at this point
the second scaling variable h0L

y�d, since the scaling di-
mension y� d ¼ ð�� 
Þ=2 � 1. This second argument
of the scaling function, present in principle, is therefore
effectively constant at a fixed h0, and its inclusion does not
visibly affect the quality of scaling. For further discussion
of this point, see the Appendix.] As a guide, we have used
the first-order �-expansion value of �=� ¼ 0:9. Five
curves then all cross at a single point Uc=t ’ 3:8, thereby
providing a first nontrivial indication of the critical point.
This value of Uc is slightly larger than that obtained with
the polynomial fit. The �-expansion value of the correla-
tion length exponent reads [6]

� ¼ 1
2 þ 21

55�þOð�2Þ: (13)
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With this value of �, again at � ¼ 1, we obtain an excellent
data collapse, as is shown in Fig. 5(b).

In accord with the Gross-Neveu-Yukawa theory, the
numerical data of Fig. 4 support the interpretation that
the magnetization is the only scale in the problem. To
further check this interpretation, we have scaled the
single-particle gap to the form

�sp

U
¼ L��=� ~F½L1=�ðU�UcÞ�; (14)

again using the �-expansion exponents in two
dimensions. Figure 6(a) shows that the crossing point of

the
�sp

U L�=� curves again occurs at Uc=t ’ 3:8, and

Fig. 6(b) shows the collapse. It is quite remarkable that
within our precision, the two scaling functions are equal:
~F ¼ F.
Hence, the scaling analysis of our QMC within the

Gross-Neveu scenario is consistent with a single continu-
ous quantum phase transition between the semimetal and
the antiferromagnetic insulators, and suggests that the first-
order expansion around the upper critical dimension in the

Gross-Neveu-Yukawa theory may already yield rather
accurate values of the critical exponents.

IV. DISCUSSION AND CONCLUSIONS

We have introduced an alternative method to compute
the staggered magnetization. By introducing a local mag-
netic field, we pin the quantization axis of the ordered state.
The staggered magnetic moment then corresponds to the
local magnetization infinitely far away from the pinning
center. The approach has the major advantage that we
compute directly the magnetization as opposed to its
square when measuring correlation functions. We can
therefore expect improved resolution when the local mo-
ment is small. One advantage of the approach is an internal
cross-check that requires the staggered moment to be
independent on the numerical value of the pinning field.
We have been able to reach this internal cross-check only
in the case of large pinning fields, which is consistent with
the approach proposed by Ref. [10], where the pinning
field is set to infinity on the boundary of the lattice. If the
pinning field is too small, the approach suffers from large
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and nonmonotonic size effects, since the energy scale set
by the local magnetic field is unable to overcome the finite-
size spin gap. Under these circumstances, the extrapolated
value of the magnetization has the tendency of underesti-
mating the order. In this article, we have only considered a
very specific form of the pinning field. The number of
different choices of pinning fields provides a playground
for optimization of the approach and for minimization of
the size effects.

The application to the Hubbard model on the honey-
comb lattice sheds new light on the phase diagram of this
well-known problem. The enhanced precision in compari-
son to Refs. [1,2] reveals that the staggered moment has
the same functional form as the single-particle gap (as
measured in units of U). Remarkably, an excellent data
collapse onto a single universal curve is found in the finite-
size scaling of both quantities, with the values of the
critical exponents characteristic of the Gross-Neveu criti-
cality between the semimetallic and the magnetic insulat-
ing phases.
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APPENDIX

Strictly speaking, the finite-size scaling form for the
magnetization in the presence of the external field is

m ¼ L��=�G

�
L

	
; h	y

�
¼ L��=�G

�
L

	
;
h0
Ld

	y

�
; (A1)

where GðX; YÞ is the scaling function of two variables, and
	 is the (diverging) correlation length. Here, we have used
the fact that the relevant Fourier component of the local

pinning field scales as h0
Ld . The dimension y of the uniform

external field is [22]

y ¼ dþ zþ 2� 


2
: (A2)

Away from criticality, 	 is bounded, and in the thermo-
dynamic limit, the magnetization scales to its field-
independent value. The data in Fig. 1 confirm this feature

and show that the extrapolated value of the magnetization
is h0 independent, provided that for the considered lattice
sizes, h0 is chosen to be large enough. It is also interesting
to point out that for values of h0 in the range 1t < h0 < 5t,
the finite-size value of the magnetization is next to inde-
pendent on the value of the pinning field.
At criticality, we can replace 	 by L to obtain

m ¼ L��=�Gð1; h0Ly�dÞ: (A3)

With the Lorentz symmetry at the critical point, the value
of the dynamical critical exponent is pinned to z ¼ 1, and
the scaling dimension of the local field h0 is

y� d ¼ 3� d� 


2
: (A4)

In the � expansion, then,

y� d ¼ �

10
þOð�2Þ; (A5)

and rather small, presumably even for � ¼ 1 (d ¼ 2).
For a fixed value of h0, therefore, the second
argument of the scaling function G is almost constant.
To be more precise, we can use the asymptotic form

Gð1;YÞ/Y1=� with 1
� ¼ �

�y [22], such that in the large-L

limit, m / h1=�0 L��=�þ½ðy�dÞ=��. Within the � expansion,
ðy�dÞ
� ’0:05, which results in a very small correction for

considered lattice sizes.
Hence, on the whole, the scaling function G depends

rather weakly on the second argument, and for practical
purposes, it suffices to neglect it.
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