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Strongly correlated fractional quantum Hall liquids support fractional excitations, which can be
understood in terms of adiabatic flux insertion arguments. A second route to fractionalization is through
the coupling of weakly interacting electrons to topologically nontrivial backgrounds such as in poly-
acetylene. Here, we demonstrate that electronic fractionalization combining features of both these
mechanisms occurs in noncoplanar itinerant magnetic systems, where infeger quantum Hall physics

arises from the coupling of electrons to the magnetic background. The topologically stable magnetic
vortices in such systems carry fractional (in general, irrational) electronic quantum numbers and exhibit
Abelian anyonic statistics. We analyze the properties of these topological defects by mapping the
distortions of the magnetic texture onto effective non-Abelian vector potentials. We support our analytical

results with extensive numerical calculations.
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L. INTRODUCTION

The discoveries of the integer and fractional quantum
Hall (QH) effects have revolutionized condensed matter
physics: The important concept of a topological invariant
was introduced to explain the quantized Hall conductivity
of the former [1], while the novel notion of topological
order, i.e., a type of nonlocal order with no Landau symme-
try breaking and no local order parameter, was introduced to
describe the latter [2]. Topological order goes hand in hand
with exotic phenomena such as fractional charge and sta-
tistics [2]. While the strongly correlated, topologically or-
dered fractional QH systems indeed have fractional
quasiparticles [3,4], their more traditional, weakly corre-
lated counterparts have quasiparticles with integer charge.

Here, we show that anomalous integer QH systems,
which can emerge even in the absence of external magnetic
fields in frustrated magnets, provide a new playground for
electronic fractionalization. While in conventional integer
QH systems (two-dimensional electron gas in a magnetic
field) fractional charge can only be induced artificially,
e.g., near superconducting vortices [5], we demonstrate
that intrinsic topological defects in the noncoplanar mag-
netic systems, which exhibit an anomalous integer QH
effect, naturally harbor fractional electronic quantum num-
bers. We also show that these defects exhibit an Abelian
anyonic exchange statistics.

The existence of fractional excitations in a QH liquid
can be deduced from Laughlin’s argument: Upon adiabatic
local “insertion” of a flux quantum, a fractional charge
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q = oye, where g, is the fractional Hall conductivity (in
units of e?/h), flows in from infinity [3,6]. Since an integer
flux quantum can be “gauged away” if its core is smaller
than the physical unit cell size, the charge ¢ is, in fact, the
charge of an elementary quasiparticle. Naturally, insertion
of a fractional flux can also lead to the same result with an
integer Hall response. Fractional fluxes, however, cannot
be gauged away, and thus cannot be naturally associated
with quasiparticles. It may thus appear that the existence of
intrinsic fractional excitations in a QH system requires a
fractional o .

There is, however, an alternative route to electronic
fractionalization through interactions between electrons
and topological defects in some order parameter, such as a
pattern of lattice distortions in polyacetylene or graphene-
like structures [7—12], a superconducting vortex [13-16], or
a meron in a QH bilayer system [17,18]. Here, we analyze
the scenario where the QH effect itself emerges as a result of
the coupling of itinerant electrons to chiral magnetic states.
Such states can form through spontaneous time-reversal
symmetry breaking [19-25], as well as with the assistance
of an external magnetic field that explicitly breaks the time-
reversal symmetry. Remarkably, the topologically stable
defects in such ordered magnetic media act as effective
fractional fluxes, giving rise to natural excitations with
fractional charge. (In a broader context, studying topologi-
cal defects in topological phases has attracted considerable
recent interest [26-30].)

The key ingredients of our model system are
(i) localized magnetic moments capable of forming a non-
coplanar state that can be smoothly distorted at low energy
cost and (ii) itinerant electrons that interact with the local
moments, and possibly induce this state. Unlike collinear
(such as the Néel) and coplanar (such as the ““120-degree’”)
order, noncoplanar magnetic states are rarely stabilized for

Published by the American Physical Society


http://dx.doi.org/10.1103/PhysRevX.3.031008
http://creativecommons.org/licenses/by/3.0/

ARMIN RAHMANI, RODRIGO A. MUNIZ, AND IVAR MARTIN

PHYS. REV. X 3, 031008 (2013)

classical magnetic moments with short-range interactions
(see Ref. [31] for an exception). However, when magnetic
moments are coupled to itinerant electrons, noncoplanar
states are quite common; i.e., the magnetic phase diagrams
of such itinerant systems seem to generically contain ener-
getically stable phases with noncoplanar magnetic ordering
[21,23,24,32-37]. The interplay of noncoplanar magnetic
moments and itinerant electrons can then lead to a sponta-
neous quantized integer quantum Hall effect as a result of
the nontrivial Berry phases imparted to the electrons by
the noncoplanar magnetic texture [21,23,24]. Such a spin-
chirality-driven Hall effect may be realized in a wide range
of materials such as manganites, CrO,, the element Gd,
cobaltates, and pyrochlore ferromagnets (see Ref. [38] and
the references therein). To illustrate the generic nature of
our results, here we consider two different models—the
triangular and kagomé Kondo lattices—both exhibiting
the same kind of electronic fractionalization.

The outline of this paper is as follows. In Sec. II, we
summarize our main results. In Sec. III, we briefly intro-
duce the two models on the triangular [24] and the kagomé
[21] lattice. In Sec. IV, we discuss the topologically stable
defects of noncoplanar magnetic states and give a general
argument for charge fractionalization. In Sec. V, we
present a microscopic theory of the fractional charge in
the limit of large Kondo coupling in the triangular lattice
model, where the system maps to a simple model of spin-
less fermions. In Sec. VI, we present numerical results for
the properties of individual vortices, confirming the ana-
lytical calculations. In Sec. VII, we discuss the exchange
statistics of the vortices and present extensive numerical
calculations, verifying our theoretical prediction of a rela-
tionship between the exchange statistics and the charge and
magnetization of the vortices.

II. SUMMARY OF RESULTS

Our results concern systems where local moments S;
form noncoplanar magnetic states, such as in Figs. 1(a) and
1(b). When itinerant electrons interact with these magnetic
states, for certain densities and ranges of interaction
strength, they exhibit an anomalous QH effect. The generic
Hamiltonian that leads to this behavior has the form

H:_tijc;'racja_Iu’c;'racia+JC;'raSi'0-a/,BCiB+HS1 (1)

where electrons hop on a two-dimensional (2D) lattice
and interact with the local magnetic moments via onsite
exchange interaction. Summation over repeated site
(roman) and spin (greek) indices is implied. Here, #;; is
the intersite hopping (in this work we only consider
nearest-neighbor hopping ¢;;), J is the exchange interaction
constant, S, is the local magnetic moment (assumed clas-
sical), ¢ = (0%, 0”, o%) is the vector of Pauli matrices, and
Cio 18 the operator of electron annihilation on site i with
spin a. Hyg is the classical Hamiltonian that only includes
spin variables.

FIG. 1.

(a) Chiral spin ordering on the triangular lattice. Four
orientations of the local magnetic moments form a regular
tetrahedron. (b) Chiral spin ordering on the kagomé lattice.
(c) Vortex configuration on the triangular lattice. (d) Vortex
configuration on the kagomé lattice.

The existence of topologically stable vortex defects in a
noncoplanar magnetically ordered medium follows from
the nontrivial fundamental homotopy group of the space of
energetically degenerate configurations (order-parameter
space). On the triangular lattice with Hg = 0, the time-
reversal symmetry can be broken spontaneously, leading to
a spontaneous QH ground state [Fig. 1(a)] for several
electron densities [24,32-34]. As the rotation of this tex-
ture around any axis keeps the energy unchanged, the
order-parameter space is the SO(3) group. In this case, the
nontrivial fundamental homotopy group (0(3)) =
71(SO(3)) = Z, [39] guarantees the existence of Z,
vortices. On the kagomé lattice with Hg representing
Heisenberg interactions between the local moments and
their coupling to an external Zeeman field, the time-
reversal symmetry is explicitly broken by the Zeeman
field. In this model, the degenerate ground-state manifold
has SO(2) symmetry (as the texture can be rotated around
the axis determined by the Zeeman field), and 7 (0(2)) =
71 (SO(2)) = Z results in vortices characterized by an in-
teger winding number.

An example of the vortex spin texture is shown in
Figs. 1(c) and 1(d). For instance, it can be obtained by
rotating the order parameter (every magnetic moment) by a
position-dependent angle

$(r) = varg(x + iy) 2

around the 7 axis (assuming the vortex core is at the origin);
v is the winding of the vortex. In the triangular (kagomé)
lattice case, the topological classes are set by the parity
(value) of v. Unless stated otherwise, here we consider the
v =1 case.

Our main result is that the topologically nontrivial vor-
tices have a fractional electric charge. If the vortex has a
fixed axis of rotation 7 (in the kagomé lattice case above,
the axis is pinned to the magnetization direction), the value
of the fractional charge is given by
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g=mE oG-l )
where m is an integer, and 0% is the usual QH conduc-
tance, which characterizes the charge current flowing in the
x direction in response to an electric field in the y direction.
Similarly, o9 characterizes the charge current flowing
in the x direction in response to a “‘spin-7i electric field”
(to be defined later on) in the y direction. For the textures
on the triangular lattice without a uniform magnetization,
the latter off-diagonal responses vanish, and for an integer
QH system with 0 = ¢?/h, the charge is given by
=m+ ! 4

q=m+3, “
independently of the axis of rotation.

We further show that vortices with a fixed axis of
rotation carry a net magnetization m,, in the direction of
this axis, which stems from the spins of itinerant electrons.
We also demonstrate that vortices have anyonic exchange
statistics, with a statistical angle that is related to both the
charge and the magnetization of the defect, which for ¢
given by Eq. (4) is

O =pr/2+ w/4+ 7m,, 5)

where p is an integer and m,, is the aforementioned mag-
netization of the vortex. In addition to analytical argu-
ments, we perform extensive numerical computations to
test our results.

III. MODELS AND INTEGER QUANTUM
HALL EFFECT

The energy of the classical configuration of magnetic
moments in Eq. (1) depends on the quantum electrons. The
configuration of the magnetic moments can be thought of
as a set of external parameters for a quadratic electronic
Hamiltonian, which uniquely determines the electronic
energy at zero temperature for a given filling fraction.

On the triangular lattice with nearest-neighbor hopping,
it has been shown that the magnetic moments spontane-
ously form an “all-out” noncoplanar texture around 1/4
and 3/4 filling fractions. At 3/4 filling, this instability can
be understood in terms of the perfect nesting of the Fermi
surface with the three ordering wave vectors corresponding
to the all-out state [24]. For general fillings, the lowest
energy states can be obtained by Monte Carlo simulations
[32-34]. At the filling fractions that correspond to an
electronically gapped all-out state, the system exhibits an
integer quantum Hall response.

Similarly, the integer QH appears on the kagomé lattice
with the moments forming an umbrella-like state where the
spins are canted away from a 120-degree ordered state [21],
at filling fractions 1/6,2/6, 4/6, and 5/6. This state can be
either induced by an external magnetic field in magnetic
systems with the nearest-neighbor antiferromagnetic
exchange interaction, or it can emerge spontaneously

because of spin-orbit coupling. Both ways correspond to
specific forms of the classical term Hg in Hamiltonian (1).
In the case of a nonzero external magnetic field, which we
consider here, H, has an SO(2) degenerate ground-state
manifold characterized by Y ;cxS; « H, where H is the
magnetic field, and Y ,c, indicates a vector sum of
the magnetic moments in a triangle. Classically, order by
disorder selects coplanar states at infinitesimal tempera-
tures [40]. By generating a large number of such coplanar
states satisfying the above constraint, and computing the
ground-state energy of the fermionic Hamiltonian, we have
verified that these generic configurations have a higher
energy than the umbrella-like noncoplanar state of Fig. 1
at zero temperature. This result indicates that in the pres-
ence of itinerant electrons, this noncoplanar state is selected
out of the classical degenerate manifold. In the following,
we therefore assume that the spins form an umbrella state
with the canting angle arctan(ﬁi) with respect to the plane

of the lattice [chosen so that, as shown in Figs. 1(a) and 1(b),
the three magnetic moments point to three corners of a
tetrahedron, similarly to the all-out structure of the triangu-
lar lattice case].

The integer quantum Hall response in both cases
described above stems from the interaction between elec-
trons and the noncoplanar magnetic state. Electrons hop-
ping in a noncoplanar magnetic state are subject to an
effective Berry phase, which results in a gapped integer
quantum Hall liquid. This result can be understood most
simply in the limit of large exchange coupling J [41]. In
this limit, the problem can be projected to a spinless
hopping model, with each spinless electron representing
an electron that is spin polarized in the direction of the
local magnetic moment. The (gauge-dependent) hopping
amplitude can be constructed as shown in Fig. 2. Even
though each individual hopping phase is gauge depen-
dent, the flux

Dyp3 = arg[(xi L x2 X x2 L xa)Xxslx)]

through every triangular plaquette is gauge invariant and
is given by half the solid angle subtended by the three

magnetic moments §,~ [42]. This flux is generically non-
trivial for noncoplanar textures: In the particular case of
Ref. [24] (see Fig. 1), e.g., we have a flux 7r/2 through
each triangular plaquette.

This Berry phase has a similar effect to an external
magnetic field and gives rise to bands with nontrivial
Chern numbers. As seen in Fig. 3, the spectrum of the

§1 §2
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FIG. 2. The projection of the Kondo-lattice model onto a
spinless hopping model. Here, y; is a spinor in the direction of

Si’ i.e., Si * 0‘le> = |Xl>
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triangular J/t = 3

kagomé J/t =6

FIG. 3. The band structure of the Hamiltonian [Eq. (1)] for the
triangular and kagomé lattice models with textures as in Fig. 1.
The Chern numbers of the individual bands are indicated to their
right. Here, k = k;Q; + k,Q,, with Q; = (1, —1/\/3_) and
Q. = (0,2/+3).

triangular lattice model consists of four doubly degenerate
bands with Chern numbers +1, —1, —1, and +1.
Similarly, the spectrum of the kagomé lattice model [21]
consists of six bands with Chern numbers —1,0, +1, +1,0
and —1.

IV. TOPOLOGICAL DEFECTS AND
FRACTIONALIZATION

A. Topological defects from homotopy theory

As mentioned before, the spin-rotational symmetry
can be broken either explicitly or spontaneously, which
affects the structure of the degenerate manifold (‘“‘the
order-parameter space’’). In our kagomé lattice model,
the out-of-plane direction of the magnetic field is fixed,
but all the magnetic moments can be simultaneously ro-
tated around this axis while preserving energy. Therefore,
the order-parameter space is given by SO(2), which can be
geometrically represented by a unit circle. A loop in real
space then maps to a loop in the order-parameter space,
giving rise to regular SO(2) vortices, which, as illustrated
in Fig. 4(a), are characterized by an integer winding num-
ber 7,(SO(2)) = Z.

On the other hand, in the triangular lattice model, there
is no such preferred axis in the absence of an external

(a)

FIG. 4. (a) The SO(2) order-parameter space and a vortex of
winding number 2. (b) The SO(3) order-parameter space and the
two types of topologically distinct loops: a trivial loop and a
vortex. The loops can lie on the surface of (black) or inside
(gray) the solid sphere. The loops corresponding to a vortex
connect two antipodal points on the surface of the sphere.
(c) The nontrivial loop corresponding to the vortices shown in
Figs. 1(c) and 1(d).

Zeeman field or spin-orbit coupling. Then, the order-
parameter space corresponds to a full rotation matrix in
3D, which can be parametrized by an angle and an axis.
This space can be geometrically represented by a solid
sphere of radius 7, with antipodal points on the surface
identified: The distance from each point to the center of the
sphere represents the angle of rotation, while the vector
connecting the point to the center gives the axis of rotation.
The identification of antipodal points follows from the fact
that clockwise and counterclockwise rotations around the
same axis by angle 7 are equivalent. A one-dimensional
(1D) loop in real space maps onto a 1D loop in the order-
parameter space, which, as seen in Fig. 4(b), can fall
into two distinct topological categories: contractible
(topologically trivial) and noncontractible (topologically
nontrivial). Mathematically, this classification is encoded
in the fundamental homotopy group of the 3D rotations
m(SOQ)) = Z, [43].

The noncontractible loop corresponds to a nontrivial
vortex. For example, the vortex configuration of Fig. 1(d),
which has a well-defined axis of rotation in the Z direction,
corresponds to the following noncontractible loop: a
straight line passing through the north pole, the center of
the sphere, and the south pole (which is identified with the
north pole) as shown in Fig. 4(c).

B. Fractionalization from Laughlin’s argument

Vortices are inhomogeneities in the magnetic texture,
which correspond to a position- and possibly time-
dependent distortion of some reference state, S; =
R(r;, 1)SY. These inhomogeneous states can be mapped
onto a state with a homogeneous order parameter, but in
the presence of an effective (in general) non-Abelian
vector potential as follows. The rotation of the order pa-
rameter in the classical spin space can be transformed into
a unitary rotation U(r;, t) = U; of the electron spinors,
according to U;ro' -S;U; = o - SY. Introducing new fermi-
ons ¢; = U(r; )¢, (the spin index is suppressed), the
Hamiltonian (1) becomes

H= _i‘//:rUlT&zUi'ﬁi - lij'vszUiTUjL//j - M‘//,T'ﬁi
+JSY - yloy, + Hs. (6)

This mapping allows one to conveniently calculate the
charge and spin currents in response to the order-parameter
distortions. In particular, the vortex configuration corre-
sponds to a spatially localized non-Abelian flux, which can
be used to determine the charge of the vortex.

Assuming that the variation of the texture is slow on the
lattice constant scale, we can make an expansion, U IT U =
U;r[Ui + (r; —r;) - VU;]. It is convenient to introduce
the SU(2) vector potential AY = —iUt9"U = A’o,,
with the indices v = {z, x, y} representing the space-time
components and a = {1, 2, 3} the SU(2) generators. The
Hamiltonian can then be written as
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H = H,— J A (7

where H, is the Hamiltonian corresponding to the static
undistorted spin state, i.e., Eq. (1) with the substitutions
c— i and S; — SY, and the currents are defined as

= w(ri: t)‘ra-a w(ri’ t)’ (8)
Jy = it;j(x; — x;) ¥ (x;, nto, #(r;, 1), &)
Jo = it;j(yi =y (e, Vo g (x), 0). (10)

Denoting the 2 X 2 unit matrix by o, for a =0 the defini-
tions above also give the charge density and current
operators [44].

What is the vector potential that corresponds to a vortex?
The vortex texture is necessarily singular near the core;
therefore, the transformation to unwind the vortex is sin-
gular as well. The simplest transformation that takes the
vortex texture (with the z axis as the axis of rotation) into a
uniform one is ¢3?®/2 where ¢(r) is the angle of
rotation [see Eq. (2)] around the z axis. However, since
upon going around the vortex, ¢@(r)— ¢(r) + 27,
the unitary changes sign, this would correspond to anti-
periodic boundary conditions for fermions along a line
connecting the vortex to infinity. To avoid this complica-
tion, the above SU(2) transformation can be augmented by
a U(1) one [45]. The combined transformation U(r)=
ei(73+1)6M/2 s only acting on up fermions. Its associated
vector potential is

1+0";
2

which has a field strength of zero everywhere except for the
vortex core.

Because of the singular nature of the vector potential, we
cannot directly apply the linear-response formalism in the
vicinity of the vortex core. To calculate the vortex quantum
numbers, we can instead invoke an analog of the Laughlin
argument [3,6]. The flux of the non-Abelian gaugelike field
through the vortex core is

AV =—=0"¢,

d = fAdr =1+ oy)m. (1D

Now, suppose that the flux is turned on adiabatically from
zero to ®. This will generate a non-Abelian electromotive
force (emf) acting on electrons, which, at large distances
from the core, will be nearly uniform (tangential to any
circle centered at the vortex). The vortex quantum numbers
are then obtained by integrating the associated currents
generated in response to this emf.

If the texture is slowly varying in time (compared with
the inverse energy gap in the spectrum), as well as in space,
the vector potential A2 will be small and the expectation
values of the current operators defined in Eqs. (9) and (10)
can be calculated with the linear-response theory. The

charge and spin current are related to the vector potential
through (J7) = o€, ,,d* A}. The Laughlin argument
yields the charge by integrating the current in a dynamical
process where the vortex is created adiabatically (the lat-
tice provides an underlying regularization). This argument
relies on two conditions: First, we need to have a continu-
ous sequence of gapped Hamiltonians connecting the one
with flux zero to the one with ®. Second, we need a
continuity equation relating the currents that we can
calculate in linear response to quantum-number densities.
We have explicitly identified a sequence of gapped
Hamiltonians in the limit of large J, and we thus expect
that an adiabatic process exists for an arbitrary J as well.
The quantum numbers of interest for us are charge and
magnetization. Since the total electron number commutes
with the Hamiltonian, the charge current strictly satisfies a
continuity equation, and we can use the Laughlin argument
to compute the charge quantum number. We do not have
such a continuity equation for the spin current, and thus our
vortex defects do not have a well-defined spin quantum
number that would be independent of the exact vortex
configuration.

We are now in a position to state our main result [Eq. (3)]
for the fractional charge. If we have a fixed axis of rotation,
say Z as in Eq. (11), the charge current ﬂowing toward the
vortex core gets contrlbutlons from 0% = — &% and, simi-
larly, from 0 3 and 0' . Note that, in general the under-
lying lattice could break rotation symmetry, and the last
two response functions could be different. Using
Laughlin’s argument, we immediately obtain the second
term in Eq. (3): An “electric field” £ in the tangential
direction gives a current J = (o€ cosh, — 0, Esinf) at
polar angle 6. The current flowing toward the vortex core is
then given by J, = —o,,Ecos?6 + o, Esin?. Since the
average of both sin’# and cos?# is 1/2, Eq. (3) (modulo the
integer m) follows upon integration over 6.

The origin of an undetermined additive integer can be
understood as follows. There are many possible choices for
the gauge transformations that unwind the vortex; e.g., one
choice could lead to the vector potential A” =
(=1 + 03)3”¢/2. While such different choices do not
change the magnetization, the charge accumulated in the
vortex core changes sign. This ambiguity is naturally
understood in terms of the electron occupancy of a par-
ticular localized electronic state, g, inside the spectral
gap. When this state is empty, the charge of the system is
g, and when it is occupied, the charge is ¢ + 1, all relative
to the uniform state. In general, there can be more than one
localized state inside the vortex core. Occupying any of
these states increases the vortex charge by one electron
charge [this corresponds to more general choices, A” =
(1 +2n + 03)3"¢/2, with n any integer]. In the case
when the order-parameter space is SO(3), as is the case
for a triangular lattice model in a zero magnetic field, by
direct calculation we can verify that 0'0“ vanishes for
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a # 0, and the charge of the vortex remains half-odd-
integer for an odd vorticity. On the other hand, for an
even vorticity, the charge induced according to the
Laughlin argument will be integer. For Z, vortices, this is
consistent with the homotopy classification that states that
the double vortex can be smoothly connected to a uniform
state, and thus the charge of the quasiparticle associated
with the double vortex can only be integer.

Through an explicit calculation described in Appendix B,
we can compute the necessary linear-response functions.
As stated before, for the triangular lattice model we find

triangular: 00 = — 00 =—¢?/h, 0% =0%=0, a#0.
(12)

The signs of both conductivities are flipped by switching
between 3/4 and 1/4 fillings, or by changing the sign of the
chiral ordering.

The kagomé lattice model, on the other hand, has net
magnetization. The lack of full spin-rotational symmetry
leads to the appearance of off-diagonal responses, in addi-
tion to o) = —oY) = ¢?/h. In particular, for the spin
configuration shown in Fig. 1(b), we numerically find
o% =02, o) = —0ol, while 9}, = o)) = 0. This re-
sults in the same g = 1/2 charge for an axis of rotation in
the xy plane, but if the axis of rotation has a component in
the Z direction (the direction of the overall magnetization),
we get nonuniversal J-dependent fractional charge. Note
that in the kagomé case, only the Z-axis vortices correspond
to an energy equilibrium.

Additionally, the adiabatic creation of the vortex gener-
ates a spin current through nonvanishing responses such as

ol for a # 0. For example, in the triangular lattice model,
we find oYy = % % As we stated before, there is no con-
tinuity equation for spin. However, since the divergence of
the induced current is zero far from the vortex core, it is
expected that the spin current will be nearly conserved
everywhere, except near the vortex core where spin density
accumulates. This suggests that the magnetization attached
to a vortex might still be close to the expected value
obtained from integrating the spin current. With the as-
sumptions above, since the final flux in both spin-o; and
charge channels is half of the flux quantum, the accumu-
lated magnetization for the triangular lattice may be close
to [46] m, = 1/12. (The extra 1/2 for m, =1 X 1x1is
due to the fact that the electron spin is ¢/2.) We will
numerically examine this approximate result for m, in
the subsequent sections, and we find that it underestimates
the average magnetization by up to 40% because of spin
nonconservation.

V. MICROSCOPIC DERIVATION FOR J —

In this section, we present a direct microscopic deriva-
tion of the fractional charge in the limit of J — co. We
only consider the triangular lattice model for brevity. This

calculation is illuminating, as it provides a step-by-step
derivation of the charge accumulation directly on the lat-
tice. As stated before, because of the alignment of the
electron spin with local moments, in this limit we have a
model of spinless fermions coupled to U(1) fluxes [for
arbitrary values of J, we have spinful fermions coupled
to SU(2) fluxes]. Therefore, this calculation also sheds
light on the mechanism for the emergence of fractional
flux.

The 7;; — t;; = (x;| x;» mapping, where | ;) is a spinor
in the S, direction, modifies both the magnitude and phase
of the hopping amplitude. As we will see, however, the
important physics stems from the change in phase. The
following effective Hamiltonian then captures the physics
of the problem in the large-J limit:

H= _IZMCJrC'-‘FH.C. (13)

i~

Consider a chiral texture of magnetic moments on the
triangular lattice as in Fig. 1(a). We write the components
of the local moments in a given coordinate system as in
Fig. 5(a) below. To find the hopping amplitudes in Eq. (13),
we need to calculate the spinors Ix,) for a=1,...,4,
which, in terms of the angle B = arccos(1/+/3), are

given by

) cosg ) sing

X1 = . , X2) = . ,
sing eim/4 cosge_”’/4

| sing
Xs) = cos§e3”7/4 '

S, S5 S, .
(a) S =(1,L1)/V3
§,=(01,-1,-1/V3
R A A S3=(-1.1,-1)/V3
S 52 51 Sy =(-1,-1,1)/ V3
cl
a (pab b
&/ \®
\
—n/A+6,/2 nmlh+6,/2 aj

FIG. 5. (a) Spin components for the texture of Fig. 1(a).
(b) The phases ¢, of the hopping amplitude on different links
of the lattice. The hopping Hamiltonian can then be written
as a 2 X 2 matrix in the basis represented by ¢, ,. (c) The phases
¢4 of the hopping amplitude in the presence of a vortex [see
Eq. (14)], and the lattice vectors a;.
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We then obtain the phases ¢ ,;,, which are defined through

% = ¢/®w and are graphically represented in Fig. 5(b).

In the basis W = (¢f, ¢, ). with the annihilation
operators ¢; and ¢, shown in Fig. 5(b), the Hamiltonian
can be written as a 2 X 2 matrix Hy(k) in momentum
space, i.e., H = ¥, W] Hy(k)¥,.

We are interested in the effect of an SO(3) vortex in the
magnetic order on the itinerant electrons. Consider a vortex
obtained by rotating each magnetic moment S; around the
Z axis by an angle 6 equal to the polar coordinate of site i
(in a planar polar coordinate system with the vortex core at
the origin). The rotation angles are not small, but their
difference for two nearby magnetic moments is small far
away from the vortex: It scales as r~'. We have chosen a
convenient gauge here such that the spin rotations due to
the vortex give a small perturbation to the Hamiltonian far
away from the vortex core.

Our approach is then to calculate the expectation value
of the current flowing toward the vortex core—in a region
of size € depicted in Fig. 6, which is much larger than the
lattice spacing a and much smaller than its distance r from
the vortex core—while turning on the vortex adiabatically.
Note that the lattice provides short-distance regulariza-
tions, so the singularity of the vortex at the core is not an
issue (unless the core is sitting right on a lattice site). The
condition a K ¢ < r allows us to treat the problem in the
region of size € as approximately translationally invariant
(analogous to gradient expansion methods [10,47]).
Through a Laughlin-type argument, we can then find the
charge bound to the vortex by integrating this current.

The first step to carrying out the above procedure is to
find the first-order correction to ¢, in the region shown in
Fig. 6. The correction for each bond depends on the dif-
ference between the rotation angles of the magnetic mo-
ments at the two ends of the bond, which we represent by
045 To leading order, in a region labeled by r and 6 as in
Fig. 6, 6, depends only on the direction of the bond. There
are three types of bonds corresponding to the three lattice
vectors a;, i = 1, 2, 3, so we get three types of 6,, = J;,
i=1,23:

1
0; = 9r+a,~ — 0, = —(cos#, sinf) X a;. (14)
r

aktlkr

FIG. 6. In a region of size € far away from the vortex, the
perturbation Hamiltonian is translationally invariant.

We can then compute the correction to ¢, to first order
in §; using simple Taylor expansions. The results of these
calculations are represented graphically in Fig. 5(c). We
observe that even in the presence of the variations §;, the
Hamiltonian can be written as a 2 X 2 matrix in the same
basis as before:

H(k) = Ho(k) + V(k),

where V(K) is the perturbation to the Hamiltonian due to

the presence of the vortex (which depends on 6 and r and is

valid to leading order in the region shown in Fig. 6).
Moreover, we can represent the current operators

J. (k) = %k(k) and J, (k) = %}f") as 2 X 2 matrices and

write the tangential and radial current operators as
Jg = —J,sinf + J, cos®, J, = J,cosf + J,sinf.

We are now ready to state the key result of this section. By

explicitly writing out V(k) (see Appendix A for details),

we find a relationship between the current operator and the
perturbation to the Hamiltonian:

V(k) = —Jy(k)/2r + const. (15)

This relationship was derived in a fixed (global) gauge and
at an operator level. Let us now consider a flux 7 = — 7
inserted locally in the system. In the continuum limit,
this local flux corresponds to a tangential vector potential
Ay = 7/27r = 1/2r along a circle of radius r and pe-
rimeter 2777 in some gauge. As A, also couples to J,, we
find that the vortex effectively acts like a (fractional) flux
7. Now, we know that if a flux 7 is adiabatically inserted
into an integer quantum Hall system with o, = e’/h, a
fractional charge 1/2 will be transported to the flux tube
according to Laughlin’s argument. Since the charge is half
the Hall conductance—which is a topological invariant—
any small variation in the magnitude of the hopping am-
plitude, which we neglected earlier, cannot change it.

One subtle issue with the above argument is that,
although we have a (gauge-dependent) operator relation-
ship suggesting that the vortex effectively acts as a frac-
tional flux, the gauge-invariant fluxes induced by the vortex
are completely different from a localized flux 7. In fact,
the vortex corresponds to an intricate pattern of fluxes that
only decays with the distance from the vortex core as 1/r.
The fractional charge does not correspond to a well-defined
magnetic flux bound to the vortex. This means that the total
flux through any closed loop around the vortex depends on
the geometry of the loop and does not converge by increas-
ing the loop size. Despite this intricate flux pattern, we can
perform a direct linear-response calculation for a dynami-
cal process where the perturbation V(k) is turned on
adiabatically, and as expected, we do obtain g = 1/2.
This direct calculation is presented in Appendix A.
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VI. NUMERICAL RESULTS FOR CHARGE
AND MAGNETIZATION

We now check the above results numerically. We plot, in
Fig. 7, the charge and magnetization distribution in the
vicinity of the vortex core for the triangular lattice model
(the kagomé lattice gives a similar distribution). As ex-
pected, the charge localized in the core is half odd integer
for odd winding and integer for even winding. The agree-
ment between the vortex magnetization obtained numeri-
cally and what we would obtain with Laughlin’s argument
is not perfect because the spin current is not conserved.
Nevertheless, particularly for large J, the discrepancy is
not too large, and we verify that the vortex spin polariza-
tion approximately scales with the vortex winding, as
shown in Fig. 8(b).

We have also considered deviations from the fully sym-
metric assumptions. In particular, we added a Zeeman field
h along the Z axis acting on electrons, i.e., H—H+
hzic;raa'gﬁc,-ﬂ. We verified that as long as the spectral
gap does not close, the charge Hall conductivity does not
change. However, in contrast to the fully symmetric case,
new nonzero response functions emerge, namely, 0'23,
0'8)36 # 0, which correspond to the charge response to A3,
the o3 component of the vector potential. In Fig. 8(a), we

(a) charge (b) magnetization

15 .
= .
10
5 10
T

FIG. 7. Charge (a) and magnetization (b) density distributions
around a vortex. The vortex is indicated by the green dot at the
center. The system parameters are as follows: J — oo, L = 30,
h = 0 at 3/4 electronic filling.

0.02
! 0

—0.02

5 10
x

(a) charge [e] (b magnetization
J/t=40,L=40,v=1 JJt =00, L=30,h=0
T A 00 708 03\ on 33
0k ——%e’—g [022 + (022 - 022) /2] — 1] 04 3”‘%:'9/4 : .

o vortex charge ¢

—0.54

—0.58

0.0 0.4 0.8 1.2 1.6 —4 -2 0 2 4

FIG. 8. (a) Zeeman-field dependence of the vortex charge.
Blue circles were obtained by exact diagonalization. The red
solid line is the expected result from a Laughlin adiabatic argu-
ment. (b) Net magnetization accumulated near the vortex for
different windings and with rotations around the z axes. Both
results were obtained for 3/4 electronic filling.

plot the dependence of the vortex charge on /4. The solid line
isqg=—0,/2— (0% — 0)3)/4— 1, which directly follows
from the application of the Laughlin argument. Note that the
charge is generally irrational and determined modulo an
integer. The agreement is very good, all the way to the value
of h where the gap in the electronic spectrum closes.

For the kagomé lattice case, we numerically computed
the charge bound to a vortex with an 72 = Z rotation axis,
which is the only allowed axis for a bare texture with
magnetization in the z direction. Figure 9(a) shows the
charge of a vortex in the kagomé lattice for several
coupling strengths. The horizontal axis does not have a
linear scale, so both the variations at small J and the
saturation for large J can be displayed. The results com-
puted from the Laughlin argument show very good agree-
ment with the numerical ones. Interestingly, using an
ad hoc vortex with the X axis of rotation also gives a
charge consistent with the Laughlin argument (such an
ad hoc vortex will not be stable, and the charge will
change once the vortex relaxes). Figure 9(b) shows the
charge ¢ trapped by a vortex in the kagomé lattice as a
function of the Zeeman field along the Z axis acting on
electrons. Just as in the triangular lattice case, we find that
0'28 does not change as long as the spectral gap remains
open. The off-diagonal responses 3, on the other hand,
change as a function of A, resulting in a continuously
changing fractional charge. The results computed from
the Laughlin argument again show excellent agreement
with the ones obtained by numerical diagonalization on
finite lattices of size 24 X 24.

(@ h=0v=1 b))  J=6t,v=1
0.12
[ T e S e T S S — =L 0% /2+ (0% — 092)/4]
0.4} T numerical g: 0.09 ] numerical gs

1 numerical ¢z

&7 — N2+ el -/ | & 0.06
0.2 7%[022/2 + (U% - 03%)/4]

0.03
01f, 5+ .

0 0

2 3 4 8 20 1001000 0 05 1 15 2 25
J/t h/t
FIG. 9. (a) Vortex charge for the kagomé lattice for different

coupling strengths in the absence of a magnetic field. Red (blue)
dots were obtained by exact diagonalization for a vortex with
rotations around the Z (%) axis. The solid lines are the analytical
predictions from the Laughlin argument. As stated in the main
text, the kagomé lattice has a net magnetization (in the z
direction), and stable vortices must have an axis of rotation
pinned to the z axis. Despite agreement with the Laughlin
argument, the charge of the vortex with the % axis is not stable
and will change with the relaxation of the vortex. (b) Zeeman-
field dependence of the vortex charge for the kagomé lattice. Red
dots were obtained by exact diagonalization. The solid line is the
result expected from Laughlin’s adiabatic argument. The elec-
tronic filling is 5/6 in both cases.
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VII. EXCHANGE STATISTICS

We now turn to the exchange statistics of the vortices,
considering the case of a triangular lattice in a zero Zeeman
field for concreteness. There are two distinct possibilities
for a combination of two vortices: (1) The total charge of
the two vortices is even, or (2) the total charge is odd. The
former case will be realized if the vortices are pulled apart
from the uniform “vacuum”: Since the initial state has
total charge zero (relative to the uniform background), the
state with two vortices will keep the same charge. Since the
charge of an individual vortex is half odd integer, for large
intervortex separation there are two energetically equiva-
lent ground states that correspond to vortex charge con-
figurations (1/2, —1/2) and (—1/2, 1/2). This degeneracy
can lead to non-Abelian exchange statistics, but unlike the
Majorana states in the p-wave superconductorlike systems
[15,16], there is no topological protection. In other words,
any local disorder can shift the bound-state energy in a
given vortex and lift the degeneracy.

Case (2) can be obtained, e.g., upon electron or hole
doping of vortex-bound states in the system with equally
charged (half-odd-integer) vortices. In this case, there is no
ground-state degeneracy, and exchanging two vortices can
only give rise to an Abelian Berry phase. We argue that, in
this case (absence of degeneracies), the vortices have any-
onic statistics with a phase determined by the fractional
charge and the magnetization of the vortex. Since magne-
tization can depend on microscopic details such as the
location of the vortex core with respect to the lattice, the
statistical angle has path-dependent contributions. Despite
these subtleties, we verify in this section, through extensive
numerical calculations, that the statistical angle is indeed
linearly related to the magnetization.

Consider vortices obtained by spin rotations along
the Z axis. As argued in the previous sections, such
vortices produce a non-Abelian flux ® = §Adr =
(1 +2m + o3)7, which is a 2 X2 diagonal matrix
coupled to spin-dependent density

()

Therefore, we expect the total Berry phase accumulated
upon adiabatically taking one vortex all the way around the
other to be equal to

tr(®Pn) = 2m + V(g + n)) + w(ny — ny)
= (2m + 1)mwq + 27m,.
Noting that ¢ is half odd integer, we obtain
tr(®n) = pr + 7/2 + 27m,, (16)

where p is an integer that depends on microscopic details
such as the occupation of midgap states.

Let us comment that the above relationship is an
exotic feature of noncoplanar textures coupled to spinful

electrons. In the more traditional case, often discussed in
the literature, fractional particles of charge 1/2 usually
have statistical angle 7/4. Indeed, from our discussion in
Sec. V, we may naively expect such statistics. In the spin-
less model, we found that one vortex effectively acts as a
U(1) flux 7. Now, taking another vortex of charge 1/2
around this vortex should result in a Berry phase of /2
and ® = 77/4. What is wrong with this argument? In the
spinless case, we write a model and construct wave func-
tions in a basis labeled by lattice sites. Each of the lattice
sites, however, represent the projection of the electron spin
along the direction of the magnetic moment. As long as the
vortices are static, we do not need to worry about this
additional information, which is lost in the spinless model.
However, if we have moving vortices, working with a
spinless model amounts to working in a time-dependent
basis.

To verify Eq. (16), we numerically compute the statisti-
cal angle through exact diagonalization (for technical de-
tails, see Appendix C). To find the statistical angle, we
compute the Berry phase ¢, acquired by taking a vortex
along a closed path, which does not enclose another vortex,
and the Berry phase ¢,qx Obtained by taking it around
another vortex (on the same path). The statistical angle is
then given by [12]

0= (d)vortex - ¢bare)/2'

For efficiency, we have done our numerics in the limit of
large J. This allows us to diagonalize smaller matrices (by
a factor of 2), but to compute the overlaps, we need to put
back in the information regarding the local magnetic mo-
ments and expand our spinless wave functions in a spinful
basis: If we have amplitude ¢; on site i in the spinless wave

function, and local moment S ; on that site, the amplitude in
the spinful basis is simply ¢,| x;), where | x;) is a spinor in
the direction of § i

We have performed our calculations for three system
sizes, L = 40, 50, 60 lattice spacing (see Fig. 12), with
open boundary conditions (for brevity, we only present
data for L = 60, but similar conclusions can be drawn
from smaller sizes). We have used path radii r/L = 0.22,
0.24, 0.26, 0.28, and for each system size and path radius,
we have used several numbers of particles, all inside the
quarter-filling spectral gap with unoccupied and occupied
vortex-bound midgap states. We found that, as expected,
changing the particle number by filling edge modes does
not affect the Berry phase. Thus, we present results for only
two particle numbers: one with all vortex-bound states
empty and one with a filled bound state. We have per-
formed our calculations with 512 and 1024 discretization
points, and obtained good convergence. The results are
shown in Table. I.

The results above do show path-dependent fluctuations
of around 10%-15%. However, there is good stability for
different system sizes. Since we expect the Berry phase to
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TABLE I. Berry phases for taking one vortex around another.
The results are not completely path independent but show
reasonable stability.

L N V/L ¢bare ¢V0rtex ¢Vorlex - ¢bare
60 1796 0.22 3.81 2.85 5.32
60 1796 0.24 0.70 5.65 495
60 1796 0.26 5.96 4.98 5.00
60 1796 0.28 2.08 1.08 5.29
60 1816 0.22 3.58 5.98 2.40
60 1816 0.24 4.44 0.32 2.17
60 1816 0.26 0.76 2.81 2.05
60 1816 0.28 0.32 2.58 2.26

depend on the magnetization (which is not a sharp quantum
number and can fluctuate), this is not surprising. Moreover,
our results suffer from finite-size effects: The density
profiles of the charges bound to the two vortices may
overlap with each other and with the charges accumulated
at the edge of the finite system.

As a benchmark for our method, we also performed
calculations for the Berry phase accumulated by taking
the vortex around a local flux 7 inserted in one triangular
plaquette. The results are shown in Table. II. In this case,
for a vortex of charge ¢, we expect a Berry phase of
D ety — Prare = (2n + 1)7rq, where n is an integer.
With (without) an occupied vortex-bound state, the charge
of the vortex is 1/2 ( — 1/2). Interestingly, for both cases,
we found a Berry phase close to + /2, which is consistent
with the above expression for n = 0 and n = —1, respec-
tively (flux 7 is equivalent to flux —a). The benchmark
above shows that, while our numerical method is capable
of reproducing established results, there is an error of order
a few percent in the finite-size numerical lattice
calculation.

We now present direct measurements of n; + n; and
ny — ny in a box of size 3.5 X 3.5 centered at the core of
the moving vortex. The results are shown in Fig. 10. We see
that the measured charge exhibits some fluctuations (a few

TABLE II. Berry phases for taking a vortex around a local flux
7. The results show good agreement with the theoretical pre-
diction of @ ,-ux — Pvare = 7/2. For each system size, we have
two different values of the number of particles N. We have ¢ =
1/2 (¢ = —1/2) for the larger (smaller) of the two values of N.

L N V/L d)bare ¢7T-flux (»bw-ﬂux - ¢bare
60 1796 0.22 3.81 5.34 1.53
60 1796 0.24 0.70 223 1.53
60 1796 0.26 5.96 1.20 1.53
60 1796 0.28 2.08 3.61 1.53
60 1816 0.22 3.58 5.20 1.62
60 1816 0.24 4.44 6.05 1.62
60 1816 0.26 0.76 2.38 1.62
60 1816 0.28 0.32 1.94 1.62

L=60,0.20<r/L<0.28

0.5
ny—nj nT+nl
oA
Iy ny —ny
+H 0
<
N=1796 | N = 1816
ny+ny
0 500 1000 500 1000

discretization point discretization point

FIG. 10. Charge and magnetization of the vortex as it moves
around another vortex in a system of L = 60 for different path
radii r/L = 0.20, 0.22, 0.24, 0.26, 0.28.

percent) as a function of the position of the vortex core (on
a single path and between different paths) due to the finite-
size effects. The fluctuations of the magnetization are
larger due to the nonconservation of spin. In particular,
when a vortex-bound state is occupied, the local physics
can strongly affect the magnetization of a vortex. Despite
all these issues, the Berry phases we measured directly
show good agreement with Eq. (16). In particular, if we
average the fluctuating magnetization over the full cyclic
path, the result is independent of the path. We can now
compute the expected Berry phases from Eq. (16). The
results are shown below, and their agreement with Table 1
strongly supports the correctness of Eq. (16).

L N q ny — 7 ¢ = m(q +7ny—ny)
60 1796 -1/2 0.28 5.59
60 1816 +1/2 0.23 2.29

VIII. CONCLUSION

In summary, we have shown that integer quantum Hall
systems, which emerge from the interplay of itinerant
electrons and noncoplanar magnetic ordering, generically
support topologically stable excitations with fractional
charge and anyonic statistics. We showed, through exten-
sive numerical calculations, that the statistical angle of
these anyons has a simple relationship with their charge
and magnetization.

The energetics of Z, vortices is similar to that of the
usual Z vortices for an SO(2) order parameter [39]: i.e., the
energy of an isolated vortex scales logarithmically with
the system size. Nevertheless, pairs of log-confined vortex
pairs will appear because of thermal fluctuations at finite
temperatures. In addition, inclusion of quantum spin dy-
namics may lead to an intriguing possibility that the quan-
tum fluctuations transform the noncoplanar ordered state
into a chiral spin liquid [48-50] at zero temperature.
Therefore, the fractionally charged Z, vortices discussed
above may turn into deconfined pointlike excitations.
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Promising candidate materials that may exhibit this
physics could be systems of Na,CoO, type, which near
x = 0.5 are known to have a noncollinear order, as well as
anomalously large Hall response [51]. The fractional
charge predicted in this work may be accessible through
direct imaging of the local charge profile, as shown in
Fig. 7, e.g., by scanning force microscopy. Also, anyonic
exchange statistics may have unusual consequences in real
materials. Perhaps the most intriguing is the possibility of
anyonic superconductivity [50,52,53]. When a system is
doped away from the chiral Mott insulating state, it may
energetically prefer to accommodate the carriers by creat-
ing vortices with intragap states. As we have just argued,
such occupied vortex states are anyons, which, at finite
density and low enough temperature, may go into a super-
conducting state [53].
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APPENDIX A: DETAILS OF THE J — »
MICROSCOPIC DERIVATION

1. Derivation of Eq. (15)

Here, we show the details of the derivation of Eq. (15) by
explicitly writing out the terms appearing in two sides of
this relationship. First, Eq. (14), for the three lattice vectors
a;, gives

V3

1 1
81 =0p4a, — O, =—sinb/r, 8,=01, — 6, = (— cosf — 3 sinH)/r, 03=10r1a — Or = (7 cosf + 3 sinH)/r.

2

(A

The Hamiltonian in the presence of the above 6, can then be written as

cos(k -a, + @52>

e cos(k - = 8,/2) + e cos(k a3 — 53/2)

HKk)= -2 ,
e~im4cos(k-a; — 8,/2) + e *cos(k - a3 — 85/2) —cos(k cay — @89
(A2)
which, upon expanding to linear order in §;, gives H(k) = Hy(k) + V(k) with
Hyk) — —2 | cos(k - a?) ei/*cos(k - a;) + e ™4 cos(k - a3) (A3)
e"im/*cos(k - a;) + e™* cos(k - a3) —cos(k - a,)
and
Vi) = ( | (+/3 — 1) sin(k ; a,)d, —e'™4sin(k - a;)8, — e ™/ *sin(k - a3)8; ) (Ad)
_e_”T/4 Sin(k . 31)81 - €”T/4 Sin(k . 33)83 (\/§ + 1) Sin(k . 32)82
The current operators can be obtained by differentiating Hy(k) with respect to Kk, and they are given by
J.(k) = sin(k - a,) 2¢4sin(k - a;) — e”"/*sin(k - a5)
! 2¢" "4 sin(k - a;) — ¢"™/*sin(k - a;) —sin(k - a,) ’
3sin(k - 3e i/ 4sin(k -
7,() = ( fsm( a,) NRY: sin(k - a3) ) (A5)
Ve sin(k - a3) —+/3sin(k - a,)
Inserting Eq. (Al) into Eq. (A4) and comparing with J, (k) and J,(k) above leads to Eq. (15):
) sinf cosf
V(k) = \/gsll'l(k . 32)82 X1+ Z—JX(k) - Z—Jy(k) (A6)
r r
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2. Asymptotic flux pattern

As mentioned before, despite the relationship (15), the
flux pattern is different than a localized flux 7 at the center
of the vortex. Here, we explicitly show this intricate pat-
tern. Far away from the vortex, the flux pattern has trans-
lational invariance (to leading order) within local regions
defined in Fig. 6 and can be easily calculated for a vortex
with any axis of rotation I (so far, we have only focused on
[= Z). Consider a triangular plaquette with three magnetic

moments S ab.c- 1f the effective flux through the plaquette
is ¢, we have the solid-angle formula

y

1+S,-S,+
cot(¢) = . 3

| o (A7)

Cfu M¢

where |S,5,S, | indicates the determinant of a matrix A; ;=
S;(j) (the jth component of S;). It is easy to see that the
numerator vanishes for any triangle in the unperturbed
magnetic structure of Fig. 5(a), as it should for 77/2 flux
per triangular plaquette. Now, if a moment S ; 1s rotated by
an angle 6; around 7, we can show after some algebra
that §,-S,—8,-S,c088,,+1-(S,%8,)sind,+(I-S,)x
(I-§,)(1—cosd,;). For small 8,,=6,— 6, [see Eq. (14)],
the leading correction comes from the second term. The
leading correction to the flux then follows from the solid-

angle formula [see Eq. (A7)], and the results are shown in
Table III.

TABLE III. Asymptotic additional fluxes in triangular pla-
quettes due to the presence of a vortex.

Type (a, b, c) 8o
c N
L\, (1,2, 4) —31-(0, = 0,,0.—0,,0.—6,)/2
c .
aAb (27 1, 3) 7\/31 : (ga - 6[7’ 0;, c’ a -0 )/2
¢ >
S\, @3 =Bl (0,—6,6,—6.,60,—6,)/2
C -
L\b (3,4,2) —31- (0, — 04, 0. — 0,0, —0.)/2
N @3 VA0, - 0,6, 0,0, 0.)/2
NG 4B (0, 0y 0, 0,0, — 0,))2
N B0, 0,0, 0.0, 0)/2
V@ VB0, 0,0~ 6,6, 6,)/2

3. Direct linear response

Given the intricate flux pattern, it is helpful to give a
more microscopic derivation of the fractional charge using
Eq. (15) and the Laughlin argument. Basically, we want to
compute the expectation value of the current flowing to-
ward the vortex core (i.e., —(/,)) in linear response. Instead
of adiabatically inserting a local flux, however, in this case,
we insert an intricate pattern of fluxes globally. In the
region of Fig. 6, inserting this flux pattern corresponds to
adiabatically turning on the perturbation V(k) of Eq. (15)
from zero to its final value. Let us consider a linear-in-time
protocol with total time T as follows:
V(Kk, 1) (A8)

V() = SWiv(k, 0w, - %V(k).
k

It is worth mentioning that it is common in the literature to
add a term of the form e“’H’ with € — 0% to the
Hamiltonian in order to model adiabatically turning on a
final perturbation H' from # = —oo to any finite 7. Here, we
use the above linear protocol, which is convenient for the
case of quantum Hall response.

Note that, to invoke adiabaticity, we need the spectral
gap to remain open during this process. We have checked
numerically that the gap remains open if all the additional
fluxes (due to the presence of the vortex) in each triangular
plaquette are turned on linearly in time. The linear-
response expression for the expectation value of an opera-
tor (in the present case J,) at time ¢ is given by

t A A
G0y =i [ aroive. Lol 49)
where |0) is the initial state (in this case, the ground state of
H, in the absence of a vortex) and the ‘hat” notation
represents an operator in the interaction picture with the
bare Hamiltonian H, e.g., V(') = e’ V(¢')e~ " | with
V(¢') defined in Eq. (A8).

To proceed, we
Ho = Yk .a=1,28k Ylm’ak,
+24/cos’k - a; + cos’k - a, + cos’k - a; are the eigen-
values of Hy(k) with corresponding orthonormal eigenvec-
tors |1y) and |2, ). We can now write Eq. (A9) as

diagonalize H, as
12 _

follows: where gy

wi= 5 [ dr's ><<0|[ymkewiffvm"<k>ynk

X e~ ek ’,'y , ,e'ak/’Jm’"’(k)yn/k,e"E ’]|0> (A10)

where O™*(k) indicates (my|O(Kk)|ny). Summation over
m, n, m', n' gives 16 types of commutators. It turns out,
however, that only the following two types of commutators
have a nonvanishing contribution (i.e., reduce to y'y):

[V;Fk?’zk’ 'y;k/YIk’] = 51(1(/(7;[1(711( - Vérk?’zk),

and a similar commutator with 1 and 2 indices switched.
Defining nj! = (Olyjnk v,k |0), this leads to
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t t/ H m n /
) =13, [ e g =)V 4T ),

kmn

The integral over ¢ can be simply done by integration by
parts. We then need to integrate the resulting expression,
which is independent of time, over time from O to 7 and
over a circle of radius r for 0 < § < 277, which, putting
back the factors of e and 7, gives

2 1
g = 1T f 404, 0) = 5 ey =e/2 (AL
0 e

where the quantized Hall conductance o, is given by

_o g Brank) o,

&2

X,
y m n\2
h 2m & (e — &})

—nl) =", (Al2)

=

in the case of the integer quantum Hall effect, as in our
system.

APPENDIX B: EXPLICIT FORM OF
HAMILTONIAN AND CURRENT OPERATORS
FOR THE TRIANGULAR AND KAGOME LATTICE

All conductivities a’j‘}){’ can be computed from the general

expression (A12), but with the charge currents replaced by
the appropriate charge or spin current Ji7'(k) and J" (k).
This expression is applicable to translationally invariant
systems where momentum k is a good quantum number.
For a unit cell of M sites, the momentum-space
Hamiltonian JH{ (k) can be generically written as a 2M X
2M matrix. (The factor of 2 accounts for electron spin.) For
each momentum k, we can diagonalize this 2M X 2M
Hamiltonian and obtain its eigenvalues and eigenvectors:
H (k) = &}'lmXmy|, m = 1...2M. The eigenvalues &}
give the 2M energy bands. If we have symmetries, as in the
triangular lattice case discussed below, these bands can be
degenerate. The matrix elements J?”(k) can be con-
structed explicitly using the eigenvectors |my) and |ny),
where J(K) is an appropriate current operator written as a
2M X 2M matrix in the same basis as H (k).

The only ingredients for computing 0';15 are then the
2M X 2M Hamiltonian HH (k) and the corresponding
2M X 2M charge and spin current operators J,;” (k) for
a =0,...,3. With these ingredients, one can diagonalize
H (k) to obtain the eigenvalues and eigenvectors, use the
eigenvectors to construct the matrix elements of the current
operators, perform the sum over m and n, and finally
integrate the resulting expression over momenta k in the
Brillouin zone.

Based on the above prescription, our main task is to
write J{ (k) and J3” (k). We first choose an explicit tetra-
hedral magnetic ordering represented as in Fig. 5. As in the
main text, we also assume an additional Zeeman field % in
the z direction. We choose the following basis:

T (.1 T t t T t t T
Yy = (an’ ke Stk Coke C3tke €3k Carko c4lk)’

to write the Hamiltonian as Hy = Zk‘lfl H (k)W
where the subscript T indicates the triangular lattice. We
can then write

S;c¢ 0 0 0
o) = g 0 S0 Qo 0
0 0 S;¢ 0
0 0 0 S,c
+ E4(k) ® 0 + hl ® o3, (B1)
where
0 k) ek ek)
fl(k) 0 fz(k) 63(k)
Er(k) = B2
= e el 0 am|
Ez(k) 63(k) 61(k) 0

with €;(k) = —2rcos(k - a;). Charge (@ = 0) and spin
(a =1, 2, 3) current operators can then be simply written
in the same basis as

Jg(k):akhgr(k)®0'a, JZ(k)ZGkaT(k)®0"’ (B3)

An almost identical expression can be written
for the kagomé lattice by choosing explicit components
for the magnetic moments and a basis \If;g = (ch, cﬂk,

c;er, c;rlk, c;er, c;rlk) as shown in Fig. 11:

S o 0 0
Hik)=Exk)®a®+J| 0 S, o 0
0 0 S0
+1® 7, (B4)
where
0 (k) e(k)
Ex(k) =] (k) 0 e(k) (B5)
6 (k) Es(k) 0

Si 82 Si S2 S g2 (vVEVE-VE-13)

S?clACz §y = (V2/V3,-V2/3,-1/3)
ANVAN A

3. S, S 5 S, - §3=(0,2v2/3,-1/3)

FIG. 11. An explicit chiral configuration of magnetic
moments on the kagomé lattice. For site i in sublattice a =
L,...,3,S; = 51,, as shown in the figure. The vectors a; are the
lattice vectors.
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APPENDIX C: TECHNICAL DETAILS OF THE
BERRY PHASE CALCULATION

The idea is to simulate the adiabatic motion of the vortex
along a path by discretizing the path and computing the
many-body ground-state wave function of the system for
the vortex core lying on each such discrete point along the
path [54] (see also Ref. [12]). Let us represent these wave
functions by |W¥;), with i = 1...N + 1, and the periodic
identification |Wy,;) = |¥,). We can then approximate
the Berry phase §(W|a,|W)ds by [55]

o= arg[f[(‘l’imfmﬁ],

i=1

which is a convenient expression for numerical calcula-
tions, as it is explicitly gauge invariant [each ground-state
wave function obtained from exact diagonalization has an
arbitrary U(1) phase; however, that phase obviously drops
out from this expression]. The only underlying assumption
for the validity of the above expression is 1 —
[(W;| P, )] << 1, which requires having close discretiza-
tion points so the overlaps [(¥;|¥,, )| are close to 1.

For the case of hard-core vortices in a noncoplanar
magnet, the wave functions can exhibit violent changes if
the ““moving” vortex core approaches very near a magnetic
moment (i.e., a lattice site). Thus, in order for the Berry
phase to converge faster, it is important to use more dis-
cretization points in regions of the path close to a lattice
site or, alternatively, distort the path in the vicinity of sites
SO as to maintain a minimum distance from them. Here, we
choose the latter approach with a typical path shown in
Fig. 12. We first consider equally spaced discretization
points (core of the moving vortex) on a circle centered at
the other (fixed) vortex. For each discretization point, we
then find the distance to the closest lattice site and, if
necessary, distort the path by shifting the point along the
radial direction to the distance of 1/4 away from the site.
This simple trick results in large [(¥;|¥;, ;)| overlaps.

° lﬂOVil’lg vortex core

X fixed vortex core

L

FIG. 12. A typical path in a system of L = 40 with radius
r = 0.2L. The discretization points are distributed at uniform
angular coordinates, but the radial coordinate is shifted to
maintain the minimal distance of 0.25 (in units of lattice spacing)
from the lattice sites.

To obtain reliable Berry phases from such numerics, we
must have convergence in the number of discretization
points (which requires large overlaps of consecutive
wave functions). Also, because of the presence of edge
modes for open boundary conditions, we must be careful
about level crossings at the Fermi level. We work at a
chemical potential inside the gap, but as the energy of
the intragap states depends on microscopic details (like
the current location of the moving vortex core inside a unit
cell), for some trajectories at fixed particle number, the last
filled level can switch from an edge mode to a bound state,
rendering the results unreliable. This can be easily checked
a posteriori by keeping track of the energies of the intragap
levels as the vortex moves along the path.
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