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Device-independent quantum key distribution (DIQKD) is a formalism that supersedes traditional

quantum key distribution, as its security does not rely on any detailed modeling of the internal working

of the devices. This strong form of security is only possible using devices producing correlations that violate

a Bell inequality. Full security proofs of DIQKD have recently been reported, but they tolerate zero or small

amounts of noise and are restricted to protocols based on specific Bell inequalities. Here, we provide a

security proof of DIQKD that is both more efficient and noise resistant, and also more general, as it applies

to protocols based on arbitrary Bell inequalities and can be adapted to cover supraquantum eavesdroppers

limited by the no-signaling principle only. It is formulated, however, in the bounded-quantum-storage

model, where an upper bound on the adversary’s quantummemory is a priori known. This condition is not a

limitation at present, since the best existing quantum memories have very short coherence times.
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I. INTRODUCTION

Quantum key distribution is the art of distilling a secret
key between two distant parties, Alice and Bob, who have
access to an untrusted quantum channel [1]. In this sce-
nario, one typically assumes that the equipment in Alice
and Bob’s labs can be trusted and, moreover, that its
behavior is accurately described by a given theoretical
model. Unfortunately, this assumption is so strong that it
is often not justified in practice [2]. In particular, many
loopholes can be exploited by an eavesdropper to get
around the usual security proofs: For instance, the state
preparation might be imperfect [3] or the eavesdropper
might perform a blinding attack to take control of the
detectors at a distance [4].

One way around such problems consists of exhaustively
listing all the potential mismatches between the theoretical
model and the real implementation and taking care of each
one of them individually. However, this approach is dubi-
ous as it is impossible to be sure that all loopholes have
really been addressed. Another, more promising approach
is inspired by the recent framework of device-independent
quantum information processing [5,6]. Here, the idea is
that if Alice and Bob are able to experimentally violate a
Bell inequality [7], it means that their data exhibit intrinsic
randomness as well as secrecy [8,9], independently of the

internal operation of the devices [5]. In recent years, this
framework has been used to prove the security of device-
independent key distribution [10–17]; to certify random-
ness expansion [18–22] and the self-testing of quantum
computers [23] and states [24,25]; and to guarantee the
presence of entanglement [26].
In the presentwork,we focus on the cryptographic task of

key distribution, which has been the subject of many very
recent developments. Until recently, security proofs were
restricted to scenarios where Alice and Bob have access to a
pair of memoryless devices or n independent pairs of de-
vices, thus ensuring that the measurements inside their own
labswere causally disconnected [10] or commuting [12,13].
This restriction is reminiscent of the notion of collective
attacks in standard quantum key distribution, where some
independence assumption is required. Ideally, one would
like a protocol where only one device is required per party
and for which no assumption is needed for the device.
Achieving this improvement is indeed the motivation for
doing device-independent cryptography in the first place.
Recent results have been able to address this issue. In

Ref. [14], the authors introduced a protocol based on the
chained Bell inequality [27] and established its security
against arbitrary adversaries. The protocol, however, only
produces a single secret bit and does not tolerate any noise.
In Refs. [15,16], the authors proved a strong converse of
Tsirelson’s optimality result for the Clauser-Horne-
Shimony-Holt (CHSH) game, based on the CHSH inequal-
ity [28]: The only way to use quantum resources to win the
game as predicted by Tsirelson’s bound is to use a strategy
close to the optimal one for independent and identically
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distributed states, that is, to apply the optimal measure-
ments on copies of a two-qubit maximally entangled state.
This theorem provides a security proof for device-
independent quantum key distribution (DIQKD) based on
the CHSH inequality. Unfortunately, the security proof
also does not seem resistant to any constant amount of
noise. While this work was completed, Vazirani and Vidick
gave a universally composable security proof of DIQKD
against arbitrary attacks [17]. Their protocol, based again
on the CHSH inequality, is both reasonably efficient (the
key length scales linearly with the number of measure-
ments) and tolerant to a constant fraction of noise. A
drawback, however, is that the maximum amount of noise
tolerated is of the order of 1%, significantly lower than the
bounds obtained for protocols using n pairs of devices.

In the present paper, we present a security proof that
(i) works for only two devices, that is, does not require
commuting measurements or memoryless devices, (ii) can
be applied to generic DIQKD protocols based on arbitrary
Bell inequalities, and (iii) has the same efficiency and toler-
ance to noise as previous proofs using memoryless devices.

All these nice properties, however, come at the price of
working in the so-called bounded-quantum-storage (BQS)
model, where one assumes that an upper bound is known
for the quantum memory of the adversary [29,30]. While
this assumption might appear as a strong limitation, we
point out that an even stronger requirement, corresponding
to the situation where the bound on the quantummemory is
zero, can actually be easily enforced in any realistic im-
plementation by delaying the reconciliation process, since
the best existing quantum memories have very short co-
herence times [31]. Another advantage of our general
framework is that it can also provide security beyond
quantum theory, that is, against eavesdroppers that are
only limited by the no-signaling principle.

The outline of the paper is the following. We first give a
brief reminder of the relation between nonlocality, that is,
violation of a Bell inequality, and randomness, as well as a
short description of the BQS model. We then describe the
protocol of quantum key distribution and present its secret
key rate. We prove the security of the protocol in the BQS
model. We conclude by briefly comparing our results with
the existing security proofs and discussing some rather
natural follow-up questions.

II. NONLOCALITYAND RANDOMNESS

In the following, we consider a bipartite scenario where
Alice and Bob input random variables X and Y in their
respective devices and obtain classical outputs A and B,
respectively. We denote �A, �B, �X, and �Y the sizes of the
alphabets of A, B, X, and Y, respectively. Moreover, we
denote by Pða; bjx; yÞ the probability of getting the specific
results A ¼ a and B ¼ b when the inputs are X ¼ x and
Y ¼ y, and by PðA; BjX; YÞ the vector with components
Pða; bjx; yÞ.

A Bell inequality can be written as

I½PðA;BjX;YÞ� :¼ X
a;b;x;y

�ða;b;x;yÞPða;bjx;yÞ� Icl; (1)

where Icl is the classical upper bound. To any such Bell
inequality, one can associate a bound on the randomness of
the output A, given the input X ¼ x through a function �x
such that

PðajxÞ � �xðI½PðA; BjX; YÞ�Þ for all a 2 �A: (2)

Such a function can be computed using the techniques
given in Ref. [32], as explained in Ref. [19]. Without loss
of generality, this function can be assumed to be monotoni-
cally nonincreasing and such that � log½�xð�Þ� is convex.
(Throughout this article, all log functions are in base 2.)
For simplicity, we consider the casewhere there exists an

input-independent bound, i.e., a function � such that �ðIÞ ¼
�xðIÞ for all x 2 �X. Examples of Bell inequalities satisfy-
ing this property are the CHSH inequality [28], the chained
inequality [27], and the Collins-Gisin-Linden-Massar-
Popescu inequality [33]. Our results, however, can easily
be generalized to cover the case of input-dependent bounds.

III. BOUNDED-QUANTUM-STORAGE MODEL

The bounded-storage model was first introduced in the
classical setting by Maurer [34], who considered a key
expansion scenario where the key is obtained from a short
secret key initially shared by the legitimate parties and a
large amount of randomness, which is public but only
available for a short time. The adversary, who does not
know the initial key, needs to store all the public random-
ness in order to learn the final key, a task impossible to
perform when her memory is bounded.
Such a model can be translated in the quantum regime,

where restrictions on the size of a quantum memory appear
quite reasonable, given present-day technology. In addition
to their limited size, quantum memories also suffer from a
relatively short coherence time, after which they essen-
tially become classical memories. Depending on which
aspect one focuses on, two different models can be con-
sidered: In the bounded-quantum-storage model [29,30],
one assumes that after a certain waiting time T, an upper
bound on the size (expressed in qubits) of the quantum
memory Q of the adversary applies. We denote this bound
by H0ðQÞ :¼ log2rankð�QÞ, the max-entropy of the quan-

tum system Q held by the adversary. In the more realistic
noisy-storage model [35,36], one assumes that after the
waiting time T, the quantum memoryQ of the adversary is
degraded by the noise, which is represented by a certain
quantum channel. Apart from these restrictions on the
quantum memory Q, the adversary can store an unlimited
amount of classical information E in both models.
In this work, we study the BQS model. The main ad-

vantage of postulating a bound of the size of the quantum
memory of the adversary is that it allows us to treat her side
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information as classical and simply take into account her
quantum features through H0ðQÞ. Indeed, consider the
scenario where an adversary tries to guess a key K
from classical information denoted by E and her quantum
memory Q, possibly correlated to E. This correlation
scenario is described by a classical-classical-quantum state
�KEQ ¼ P

k;ePðk; eÞjkihkj � jeihej � �ke
Q . Then, the chain

rule for min-entropy [37], together with the operational
interpretation of the guessing probability Pguess established

in Ref. [38], implies that

PguessðKjEQÞ � PguessðKjEÞ � 2H0ðQÞ; (3)

where PguessðKjEÞ :¼P
emaxkPðk;eÞ and PguessðKjEQÞ :¼

maxMk

P
k2KPðkÞtrðMk�EQÞ, where fMkgk2K defines a

measurement on EQ. This identity allows us to bound
the guessing probability, given the classical-quantum side
information EQ, by simply bounding a purely classical
guessing probability.

IV. DESCRIPTION OF THE PROTOCOL

The DIQKD protocol that we consider in this paper is
very general in the sense that it is compatible with arbitrary
Bell inequalities, in particular, with the various examples of
Bell inequalities mentioned above. Our protocol consists of
four steps: measurements, estimation of the Bell violation,
error correction, and privacy amplification. We denote by n
the number of times each device is used during the protocol.

(1) Measurements.—Alice and Bob, respectively,
generate the random variables Uj; Vj 2 f0; 1g with
distribution PrfUj ¼ 1g ¼ PrfVj ¼ 1g ¼ q ¼ n�1=8

for j ¼ 1; . . . ; n. If Uj ¼ 0, then Alice measures

round j with input 0, obtaining outcome Aj. If Uj ¼
1, then Alice generates Xj with uniform distribution

PðxjÞ ¼ 1=�X and measures round j with input Xj,

obtaining outcome Aj. Bob does the analog with Vj,

input Yj, and outcome Bj. In other words, events

where Uj ¼ Vj ¼ 0 are used to establish a raw key,

while events whereUj ¼ Vj ¼ 1 are used to test the

Bell inequality and guarantee that a secret key can
indeed be extracted from the raw key.

(2) Estimation.—Alice and Bob publish ðuj; vjÞ for all j
and discard the data corresponding to the rounds
with uj � vj. The data corresponding to the m

postselected rounds ðuj; aj; bj; xj; yjÞ with vj ¼ uj
are relabeled with the index i ¼ 1; . . . ; m, keeping
the time order. The data corresponding to the rounds
of the set E :¼ fijUi ¼ Vi ¼ 1g are also published
and used to estimate the Bell-inequality violation.
More specifically, Alice and Bob can use the public
data to compute the following quantity:

Iest :¼ �X�Y

jEj
X
i2E

�ðai; bi; xi; yiÞ: (4)

The data of the rounds not in E constitute the raw
keys of Alice R ¼ ðAiÞi=2E and Bob S ¼ ðBiÞi=2E .

(3) Error correction.—Alice and Bob publish nC bits
in order to correct Bob’s errors S ! S0. In the fol-
lowing, we consider the worst case, where all the
messages published within the error-correction step
are a function � of Alice’s raw key R. This public
communication is denoted C :¼ �ðRÞ. For suffi-
ciently large nC, all errors are corrected as S0 ¼ R
with high probability. Note that some of the pub-
lished bits are used to estimate how many more bits
need to be published for a successful error correc-
tion. For large n, publishing nC � nHðAjBÞ bits is
enough. For more details about the functioning of
error correction, we refer to Ref. [37].

(4) Privacy amplification.—Alice generates and pub-
lishes a two-universal [39] random function F that
maps R onto an nK-bit string K ¼ FðRÞ. The num-
ber nK depends on the published information and on
the bound on the quantum memory size H0ðQÞ as

nK :¼max

�
0;

�
�mlog2�

�jEj
m

ðn1=8�1Þ2Iest�n�1=8

�

�nC�H0ðQÞ�2jEjlog2ð�A�BÞ�
ffiffiffi
n

p ��
; (5)

where b�c is the largest integer not bigger than �.
Alice and Bob then compute ½FðRÞ; FðS0Þ�, obtain-
ing two copies of the secret key.

As we already pointed out, our security proof assumes a
bound H0ðQÞ on the quantum memory of the adversary
after a certain waiting time T. The honest parties should
therefore implement the protocol in two steps: (i) They
receive the quantum systems from the source and perform
the measurements, and (ii) a time T later, they perform the
rest of the protocol involving the public communication for
the estimation, error correction, and privacy amplification.
In particular, according to current and near-future technol-
ogy, by taking T of the order of a few minutes [31], the
state stored in the memory has completely decohered, and
we can enforce a situation where H0ðQÞ ¼ 0, which cor-
responds to the case of an eavesdropper possessing only
classical-side information. In that case, the max-entropy
H0ðQÞ can be taken equal to zero in Eq. (5).
More generally, from the discussion in Sec. III, in order

to deal with an adversary whose quantum memory is
bounded by H0ðQÞ, it is sufficient to consider the case of
purely classical-side information and to subtract the quan-
tity H0ðQÞ from the final key size. In the remainder of this
paper, we will therefore consider for simplicity the case
when H0ðQÞ ¼ 0 in Eq. (5).

V. SECURITYAND EFFICIENCY

To prove security, we will not make any assumption on
the behavior of the devices of Alice and Bob, except that
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they do not broadcast information about the inputs and
outputs toward the adversary (a condition without which
there is no hope of ever establishing any secret). Modulo
this requirement, we can even assume for simplicity that
the devices have been built by the adversary. The eaves-
dropper could, in particular, hold quantum systems that are
entangled with the systems in the users’ devices. However,
our proof of security will hold under the condition that the
eavesdropper cannot store this quantum information past
the measurement step of the protocol. After this step, she
should thus perform a measurement M on her quantum
system, which would give her some classical informationE
about the behavior of Alice and Bob’s devices. But, since
until this point no public communication has been ex-
changed between Alice and Bob, we can also assume
that the eavesdropper has performed her measurement
before the users received their devices from the source.
The fact that our proof of security holds independently of
the behavior of the devices then implies that it holds
independently of the prior classical information E that
Eve holds on the devices, and we can thus forget E in the
following.

At the end of the protocol, Alice holds the secret key K
and Eve holds the information published in the estimation
step W ¼ ½ðU1; . . . ; UmÞ; ðAi; Bi; Xi; YiÞi2E�, in the error-
correction step C ¼ �ðRÞ, and in the privacy-amplification
step F. Let Pðk; f; w; cÞ be the probability distribution for
these random variables.

We say that K is an ideal secret key if it is uniformly
distributed and uncorrelated with all the rest:

Pðk; f; w; cÞ ¼ 2�nKðwÞPðf; w; cÞ for all k; f; w; c: (6)

Note that since E and Iest are functions of w, so is nK. It is
unrealistic to expect that a protocol can generate an ideal
secret key. Instead, what we demand is that the distribution
generated by the above protocol be indistinguishable from
an ideal secret key. It is known that the optimal success
probability when discriminating between the two distribu-
tions is [37]

psucc ¼ 1

2
þ 1

4

X
k;f;w;c

jPðk; f; w; cÞ � 2nKðwÞPðf; w; cÞj: (7)

The main result of this work (see the theorem below) is to
show that

psucc � 1
2 þ �e��2

0n
1=8
; (8)

where �0 ¼
ffiffiffi
8

p
�X�Ymaxa;b;x;yj�ða; b; x; yÞj and � is a

constant. For large n, the success probability (8) tends to
1=2, which makes the optimal discriminating strategy no
better than a random guess.

Let us now discuss the efficiency of the protocol in the
asymptotic limit, where n tends to infinity. For large n, one
expects

m � n PrfU ¼ Vg � n� 2n7=8;

jEj � n PrfU ¼ V ¼ 1g � n3=4;

with high probability. These scalings give an asymptotic
secret key rate RK of

RK :¼ lim
n!1

nK
n

¼ log
1

�ðIestÞ �HðAjBÞ: (9)

This rate is the same as the one given in Ref. [12]
for memoryless devices but with security against full
quantum adversaries. Note that as soon as the bound
�ðI½PðA; BjX; YÞ�Þ is nontrivial, that is, strictly less than
1, there exists a regime for the noise where the secret key
rate is positive asymptotically.
In the case of the CHSH inequality �ða;b;x;yÞ¼

ð�1Þa�b�x�y, we define �QM and �NS such that pðajxÞ �
�QMðI½PðA; BjX; YÞ�Þ holds against an adversary limited by

quantum theory and pðajxÞ � �NSðI½PðA; BjX; YÞ�Þ holds
against an adversary limited by the no-signaling principle.
The specific values of these functions were derived in
Refs. [12,19]:

�QMðIÞ ¼ 1

2

0
@1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� I2

4

s 1
A; (10)

�NSðIÞ ¼ 1

4
� I

4
: (11)

In Fig. 1, we plot the asymptotic secret key rate RK

as a function of the visibility of the Werner state �� ¼
�j�ih�j þ ð1� �Þ1=4 shared by Alice and Bob. For this

state, the asymptotic value of Iest is 2
ffiffiffi
2

p
� and the quantum-

bit error rate is q :¼ 1��
2 , meaning that the conditional

entropy HðAjBÞ is given by the binary entropy of q,
namely, hðqÞ :¼ �q logq� ð1� qÞ logð1� qÞ.

0 0.02 0.04 0.06 0.08 0.1
1 ν

0.2

0.4

0.6

0.8

1
RK

FIG. 1. Asymptotic secret key rate RK vs noise 1� � for the
CHSH protocol and a state �� ¼ �j�ih�j þ ð1� �Þ1=4, where
j�i is maximally entangled. The upper curve corresponds to a
quantum adversary, while the lower one considers an adversary
only limited by the no-signaling principle.
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VI. PROOF

We now proceed with a detailed security proof for the
protocol described above. Before we present and prove our
main result, which is an explicit bound on psucc, we need
three technical lemmas.

Let us introduce a more compact notation:

ti :¼
�
ai if i =2 E

ðai; biÞ if i 2 E;
(12)

zi :¼
�
ui if i =2 E

ðui; xi; yiÞ if i 2 E
(13)

for i ¼ 1; . . . ; m. Variables with superindex i represent the
chain of variables associated with time steps equal to or
earlier than i, that is, ti ¼ ðt1; t2; . . . ; tiÞ. Recall that the
information made public in the estimation step is w ¼
½um; ðai; bi; xi; yiÞi2E� and that the raw key is r ¼ ðaiÞi=2E.

Let g¼ðai;biÞi2E and note that t
m¼ðr;gÞ and w ¼ ðzm; gÞ.

Lemma 1.—The no-signaling constraints imposed by the
causal structure of the protocol imply

PðtmjzmÞ � �mð �I½tm; zm�Þ (14)

for all ðtm; zmÞ, where �m refers to the mth power of � and

�I½tm; zm� :¼ 1

m

Xm
i¼1

I½PðAi; BijXi; Yi; t
i�1; zi�1Þ�: (15)

Note that above, in PðAi; BijXi; Yi; t
i�1; zi�1Þ, the symbols

Ai, Bi, Xi, and Yi are uppercase, while ti�1 and zi�1 are
lowercase, meaning that PðAi; BijXi; Yi; t

i�1; zi�1Þ is the
vector with components Pðai; bijxi; yi; ti�1; zi�1Þ for all
values of ai, bi, xi, and yi but fixed ti�1 and zi�1.

Proof: This proof is based on an argument introduced in
Ref. [19]. A useful observation is that bound (2) implies

Pða;bjx;yÞ� �ðI½PðA;BjX;YÞ�Þ for all a;b;x;y: (16)

The following chain of equalities and inequalities follows
from the Bayes rule, no signaling to the past, bounds (2)
and (16), and the concavity of the function log½�ð�Þ�:

PðtmjzmÞ ¼ Pðt1jzmÞPðt2; t3; . . . jzm; t1Þ
¼ Pðt1jz1ÞPðt2; t3; . . . jzm; t1Þ

¼ Ym
i¼1

Pðtijzi; ti�1Þ

� Ym
i¼1

�ðI½PðAi; BijXi; Yi; z
i�1; ti�1Þ�Þ

� �mð �I½tm; zm�Þ: (17)

h
Lemma 2.—The numbers jEj, Iest, and �I are functions of

the random variable ðTm; ZmÞ and satisfy

Pr

�
�I� jEjIest

mPrfU¼1jU¼Vg�n�1=8

�
� expð�mn�3=4��2

0 Þ;
(18)

where �0 ¼
ffiffiffi
8

p
�X�Ymaxa;b;x;yj�ða; b; x; yÞj.

[Here, a comment is in order. Actually, �I is not only
a function of ðTm; ZmÞ but also depends on the global
probability distribution PðTm; ZmÞ. But, we think of this
distribution as given, fixed, and unknown. This dependence
prevents the straight generalization of the results in this
paper to a quantum adversary.]
Proof: The function

	ðt; zÞ :¼
(
0 if u ¼ 0

�ða;b;x;yÞ
Pðx;yÞPrfU¼1jU¼Vg if u ¼ 1

satisfies

Xm
i¼1

	½ti; zi� ¼ Iest½tm; zm�jEj
PrfU ¼ 1jU ¼ Vg (19)

and

E½	ðTi;ZiÞjti�1;zi�1�¼ I½PðAi;BijXi;Yi;t
i�1;zi�1Þ� (20)

for all i. Consider the sequence of functions of ðtm; zmÞ
defined by


lðtl; zlÞ ¼
Xl
i¼1

	ðti; ziÞ � E½	ðTi; ZiÞjti�1; zi�1� (21)

for l ¼ 1; . . . ; m. The fact that

E ½
lðTl; ZlÞjtl�1; zl�1� ¼ 
l�1ðtl�1; zl�1Þ (22)

implies that the sequence of random variables 
lðTl; ZlÞ
is a martingale [40] with respect to the sequence
ðTl; ZlÞ. Also, using the fact that Pðx; yÞ ¼ ð�X�YÞ�1 and
PrfU¼1jU¼Vg¼q2=½q2þð1�qÞ2��q2, the differences

j
lðtl;zlÞ�
l�1ðtl�1;zl�1Þj

�2max
t;z

j	ðt;zÞj�2maxa;b;x;yj�ða;b;x;yÞj
ð�X�YÞ�1q2

¼:� (23)

are bounded for all values of ðtm; zmÞ. Constraints (22) and
(23) constitute the premises for Azuma’s inequality [40]

Prf
lðTl; ZlÞ � l�g � exp

��ðl�Þ2
2l�2

�
(24)

for any �> 0. Using Eqs. (19)–(21), we obtain

SECURITY OF DEVICE-INDEPENDENT QUANTUM KEY . . . PHYS. REV. X 3, 031007 (2013)

031007-5



�I½tm; zm� ¼ 1

m

Xm
i¼1

I½PðAi; BijXi; Yi; z
i�1; ti�1Þ�

¼ 1

m

�Xm
i¼1

	½ti; zi� � 
mðtm; zmÞ
�

¼ 1

m

� jEjIest
PrfU ¼ 1jU ¼ Vg � 
mðtm; zmÞ

�
;

and setting � ¼ q ¼ n�1=8 gives Eq. (18). h
Lemma 3.—There is a good event G with probability

PðGÞ � 1� 3 expð�mn�3=4��2
0 Þ � ð�A�BÞ�jEj; (25)

such that

Pðrjw;GÞ�2ð�A�BÞ2jEj�m
� jEjIestðwÞ
mPrfU¼1jU¼Vg�n�1=8

�
(26)

for all w such that PðwjGÞ> 0.
Proof: This proof uses a trick introduced in Ref. [21].

The values of ðtm; zmÞ in the set

G1 :¼
�
ðtm;zmÞj �I� jEjIest

mPrfU¼1jU¼Vg�n�1=8

�
(27)

are the good ones, since Alice and Bob correctly lower
bound �I (and hence nK) from the values jEj and Iest
determined in the estimation step. In the condition defining
G1 above, every symbol is a constant except for �I, jEj, and
Iest, which are functions of ðtm; zmÞ. Note that �I also
depends on the global distribution Pðtm; zmÞ, which pre-
vents the generalization of these results to the case of
quantum adversary. Fortunately, according to Lemma 2,
the probability of G1 is large:

PðnotG1Þ< expð�mn�3=4��2
0 Þ: (28)

Note the abuse of notation PðG1Þ ¼ PrfðTm; ZmÞ 2 G1g.
Define the set

G 2 :¼ fwjPðG1jwÞ � 1=2g; (29)

and note that PðnotG1jnotG2Þ> 1=2. Using this bound
and PðnotG1Þ�PðnotG1jnotG2ÞPðnotG2Þ, we obtain
PðnotG2Þ<2PðnotG1Þ.

Recall G ¼ ðAi; BiÞi2E and note that Tm ¼ ðR;GÞ and
W ¼ ðZm;GÞ. Define the set

G 3 :¼ fðg; zmÞjPðgjzmÞ � ð�A�BÞ�2jEjg; (30)

and note that

PðnotG3Þ ¼
X

ðg;zmÞ=2G3

PðzmÞPðgjzmÞ <P
g;zm

PðzmÞð�A�BÞ�2jEj

(31)

where we have used
P

g1 ¼ ð�A�BÞjEj. The good event

mentioned in the statement of this lemma is G ¼
ðG1 andG2 andG3Þ and has probability PðGÞ�1�
PðnotG1Þ�PðnotG2Þ�PðnotG3Þ, as in Eq. (25).
We assume ðg; zmÞ 2 G2 \ G3, since it is a premise of

the lemma. If ðr; g; zmÞ =2 G1, then Pðrjg; zm;G1Þ ¼ 0.
Hence, the nontrivial case happens for ðr; g; zmÞ 2 G1,
which we assume in what follows. Using the Bayes rule,
the definitions of G2 and G3, Lemma 1, and Eq. (27), we
obtain

Pðrjg;zm;G1Þ

� Pðrjg;zmÞ
PðG1jg;zmÞ�

Pðr;gjzmÞ
PðG1jg;zmÞPðgjzmÞ

�2ð�A�BÞ2jEj�mð �I½r;g;zm�Þ

�2ð�A�BÞ2jEj�m
� jEjIestðg;zmÞ
mPrfU¼1jU¼Vg�n�1=8

�
; (32)

which shows the lemma. h
Theorem.—The distance between the secret key

generated by the protocol and an ideal key is

X
k;f;w;c

jPðk; f; w; cÞ � 2�nKðwÞPðf; w; cÞj

� 2ð1�n1=2Þ=2 þ 6e�mn�3=4��2
0 þ 2ð�A�BÞ�jEj:

Proof: Using definitions (5) and (A2), Lemma 3, andP
c1 ¼ 2nC , we obtain

PguessðRjC;w;GÞ
¼ X

c

max
r

Pðr; cjw;GÞ ¼ X
c

max
r

�ðrÞ¼c

Pðrjw;GÞ

� X
c

2ð�A�BÞ2jEj�m
� jEjIestðgÞ
m PrfU ¼ 1jU ¼ Vg � n�1=8

�
;

¼ 21�nKðgÞ�
ffiffi
n

p
:

The symbol PguessðRjC;w;GÞ denotes the knowledge of R
with respect to C (see the Appendix) when the statistics is
conditioned on the events W ¼ w and G. Next, we use the
identity

Pðtm; zmÞ ¼ PðGÞPðtm; zmjGÞ þ PðnotGÞPðtm; zmjnotGÞ
(33)

with the event G introduced in Lemma 3. Noticing
that ðK;F;W;CÞ is a function of ðTm; Zm; FÞ, using
Eq. (33), the triangular inequality, and Lemma 4, we
see that
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X
k;f;w;c

jPðk; f; w; cÞ � 2�nKðwÞPðf; w; cÞj � X
k;f;w;c

jPðk; f; w; cjGÞ � 2�nKðwÞPðf; w; cjGÞj þ 2PðnotGÞ

� X
k;f;w;c

PðwjGÞjPðk; f; cjw;GÞ � 2�nKðwÞPðf; cjw;GÞj þ 2PðnotGÞ

� X
w

PðwjGÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nKðwÞPguessðRjC;w;GÞ

q
þ 2PðnotGÞ

� X
w

PðwjGÞ2ð1�n1=2Þ=2 þ 2PðnotGÞ

¼ 2ð1�n1=2Þ=2 þ 6 expð�mn�3=4��2
0 Þ þ 2ð�A�BÞ�jEj;

which concludes the proof. h

VII. CONCLUSIONS

In this work, we provide a novel security proof for
DIQKD. Contrary to most of the existing proofs, it
applies to the situation in which Alice and Bob generate
the raw key using two devices. In particular, it does not
need to assume that the devices are memoryless or,
equivalently, that each raw-key symbol is generated us-
ing a different device. While there exist other recent
proofs that also work without this assumption, they
tolerate zero [14–16] or rather small amounts of noise
[17]. Another important feature of our proof is that it can
also be applied to no-signaling supraquantum eavesdrop-
pers. All these advantages come at the price of working
in the bounded-storage model, where a bound on the size
of Eve’s quantum memory is assumed to be available.
This model is actually a relaxation of a scenario where
Eve does not have access to a long-term quantum mem-
ory, and, therefore, effectively she cannot store quantum
information. While these features may at first be consid-
ered a strong assumption, it is a very realistic assump-
tion, taking into account current technology. An
interesting follow-up question would be to see whether
our technique could be adapted to the noisy-storage
model [35,36].

Another natural open question is to understand how
assumptions on the memory can be completely removed
within the framework presented here, or alternatively
how the other existing proofs [14–17] could be im-
proved to tolerate realistic noise rates. In the case of
no-signaling eavesdroppers, there is some evidence
suggesting that the fact that Eve can store information
and delay her measurement prevents any form of
privacy amplification between the honest parties [41].
However, the recent results of Ref. [17] imply that
privacy amplification is indeed possible against quan-
tum eavesdroppers. A good understanding of privacy
amplification in the device-independent quantum
scenario is probably the missing ingredient to get
robust and practical fully device-independent security
proofs.
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APPENDIX

A random function F:R!f0;1gn is two-universal [39]
if

PrfFðrÞ ¼ Fðr0Þg � 2�n

for all r; r0 2 R, with r � r0. The following is a simple
extension of the main result in Ref. [39].
Lemma 4.—Let R and E be two (possibly correlated)

random variables, where R takes values in the set R, and
let F: R ! f0; 1gn be a two-universal random function
[39]. The random variable K ¼ FðRÞ satisfies

X
k;f;e

jPðk; f; eÞ � 2�nPðf; eÞj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nPguessðRjEÞ

q
; (A1)

where

PguessðRjEÞ ¼
X
e

max
r

Pðr; eÞ: (A2)

Proof: Using the convexity of the square function, the
fact that F is independent of R and E, and two-universality,
we obtain
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�X
k;f;e

jPðk; f; eÞ � 2�nPðf; eÞj
�
2 � X

k;f;e

Pðf; eÞ2�n

�
2n
X
r

PðrjeÞ�k
fðrÞ � 1

�
2

¼ X
f;e

Pðf; eÞ2�n

�
22n

X
r;r0

PðrjeÞPðr0jeÞ�fðr0Þ
fðrÞ þ 2n � 21þn

�

¼ �1þ 2n
X
f;e

Pðf; eÞ
�X
r�r0

PðrjeÞPðr0jeÞ�fðr0Þ
fðrÞ þ

X
r

PðrjeÞ2
�

� 2n
X
e

PðeÞX
r

PðrjeÞ2

� 2nPguessðRjEÞ: h
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