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Recently, several authors have investigated topological phenomena in periodically driven systems of

noninteracting particles. These phenomena are identified through analogies between the Floquet spectra of

driven systems and the band structures of static Hamiltonians. Intriguingly, these works have revealed

phenomena that cannot be characterized by analogy to the topological classification framework for static

systems. In particular, in driven systems in two dimensions (2D), robust chiral edge states can appear even

though the Chern numbers of all the bulk Floquet bands are zero. Here, we elucidate the crucial

distinctions between static and driven 2D systems, and construct a new topological invariant that yields

the correct edge-state structure in the driven case. We provide formulations in both the time and frequency

domains, which afford additional insight into the origins of the ‘‘anomalous’’ spectra that arise in driven

systems. Possibilities for realizing these phenomena in solid-state and cold-atomic systems are discussed.
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I. INTRODUCTION

The discovery of the quantized Hall effect [1] revealed
the existence of a powerful new class of extremely robust
quantum phenomena that can be observed with high fidel-
ity, largely independent of sample size, shape, and compo-
sition, up to macroscopic (millimeter) scales. The robust
nature of these phenomena can be linked to the presence of
energy gaps for bulk excitations, combined with the exis-
tence of nontrivial topological structures associated with
the systems’ ground-state wave functions [2]. Recently,
these ideas were used to predict the existence of new
classes of materials [3,4], the topological insulators, which
were found experimentally [5,6] shortly thereafter.

Meanwhile, a wide variety of new experimental tools
has been developed for actively controlling and probing the
behavior of electronic, cold-atomic, and purely photonic
systems. For cold atoms, various methods have been pro-
posed for creating ‘‘synthetic gauge fields,’’ which mimic
the effects of magnetic fields [7–9] or spin-orbit coupling
[10,11] for neutral atoms. Several groups have also sug-
gested the possibility of using microwave and optical
techniques in solids to realize topologically nontrivial
effective band structures in ‘‘trivial’’ materials [12–19].
Topological phenomena have been identified for strongly

driven [20–28] or dissipative quantum systems [29,30], as
well. Analogues of topological phenomena in driven sys-
tems have even recently been observed in photonic experi-
ments [31,32]. These advances motivate the detailed study
of topological phenomena in periodically driven systems.
Here, we focus our attention on topological features of

the single-particle properties of two-dimensional (2D)
translationally invariant tight-binding systems. In the static
case, where the Hamiltonian is constant in time, the topo-
logical properties of these systems are well understood.
When no additional symmetries are present, a complete
topological characterization is provided by the set of values
of an integer topological invariant, the Chern number,
evaluated for each band [2,33,34].
One of the most striking applications of this topological

characterization is to the edge physics of these systems. In
a geometry with an edge, a two-dimensional system may
support chiral edge modes that propagate at energies
within a bulk band gap. Remarkably, the values of the
Chern numbers can be used to predict the net number of
chiral edge modes traversing each bulk gap (counted ac-
cording to their chirality). This edge-state count is signifi-
cant because it is a robust property that is independent of
the fine details of the system and of the edge. In the case of
the quantized Hall effect, the guaranteed existence of these
modes provides a powerful framework for explaining a
variety of complex phenomena [35].
Given the power of this approach, we seek to generalize

these results to periodically driven systems. In the driven
case, the analogue of the energy spectrum is the Floquet
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spectrum—the set of eigenvalues of the time evolution
operator, evaluated over one complete cycle of driving.
The eigenvalues of the unitary evolution operator are unit
modulus complex numbers, which are defined on a circle.
We express them in terms of a ‘‘quasienergy’’ " as e�i"T ,
where T is the driving period. The spectrum is thus 2�=T
periodic in ".

There are many close analogies between static and
periodically driven systems. In particular, the Floquet
spectrum can be organized into quasienergy bands with
associated Chern numbers, just as in the static case. Also,
driven systems may exhibit chiral edge modes when de-
fined in a finite geometry with a boundary. Despite these
similarities, however, the Chern numbers employed in the
static case do not give a full characterization of the
topological properties of periodically driven systems. In
particular, for driven systems, these invariants do not
uniquely determine the number of chiral edge modes
within each bulk band gap.

Recently, new types of edge modes, which cannot be
accounted for using the invariants developed for static
systems, were discovered in the Floquet spectra of
one- and two-dimensional periodically driven systems
[22,23,31]. A schematic picture showing an example of
such ‘‘anomalous’’ edge modes in a two-band two-
dimensional system is shown in Fig. 1. Here, two sets of
copropagating chiral edge modes are found, despite the
fact that the Chern numbers associated with both bands are
zero. This situation cannot occur in static systems, where
such edge modes are only produced at the boundaries of
systems characterized by nonzero Chern numbers.

In this paper, we develop a more complete understanding
of this behavior and identify appropriate topological

invariants (winding numbers) for characterizing these
new phenomena. In contrast to the Floquet band Chern
numbers, which only depend on the evolution operator
evaluated over one complete driving cycle, the winding
numbers utilize the information in the evolution operator
for all times within a single driving period. We show that
the winding numbers fully determine the chiral edge-mode
counts in each of the Floquet gaps. Thus, our construction
provides a complete ‘‘bulk-edge correspondence’’ for peri-
odically driven, two-dimensional, single-particle systems.
The paper is organized as follows. Section II gives a

general discussion of the bulk-edge correspondence for
both static and periodically driven systems. In Sec. III, we
introduce a simplemodel of a strongly driven system, similar
to the one considered in Ref. [22], which supports a Floquet
band structure like the one depicted in Fig. 1. Then, in
Sec. IV, we provide a general analysis and construct the
winding numbers of the time-dependent evolution operator,
which fully characterize the topological features of the sys-
tem. The relationship between the winding numbers and the
Chern numbers of the Floquet bands is discussed in
Sec. IVC. In Sec. V, we give a complementary approach
for deriving the edge-state spectrum, which utilizes an analy-
sis in the frequency domain. We demonstrate this approach
for the case of weak, harmonic driving, as considered in
Refs. [12,13,15–17]. Finally, in Sec. VI, we discuss possible
experimental realizations of these new topological spectra
and prospects for future investigation. Technical aspects of
the derivations are provided in the Appendixes.

II. BULK-EDGE CORRESPONDENCE
IN STATIC AND DRIVEN SYSTEMS

One of the main goals of this paper is to explain how the
standard correspondence between the edge-state spectrum
and the values of bulk topological invariants is modified for
periodically driven systems. Specifically, our goal is to
identify topological invariants for bulk systems (i.e., for
systems without edges) that give the numbers of protected
modes that appear in geometries with edges. Toward this
aim, we begin this section with a brief review of Floquet
band theory in order to define what we mean by the ‘‘band
structure’’ of a periodically driven system. We then com-
pare and contrast the static and driven cases, and give a
concrete example that demonstrates the situation where
intuition from the static case breaks down.
In general, the evolution of a system governed by a time-

dependent Hamiltonian HðtÞ may be quite complicated.
However, in the case where the Hamiltonian depends
periodically on time, Hðtþ TÞ ¼ HðtÞ for some driving
period T, Floquet theory provides a powerful framework
for analysis. In analogy with the usual expansion in terms
of stationary eigenstates of a static Hamiltonian, here the
evolution is conveniently described in terms of a basis
of Floquet states. These states are solutions to the
time-dependent Schrödinger equation of the form

FIG. 1. Topologically protected Floquet edge modes in a two-
band system with trivial Chern indices C ¼ 0. This situation is
made possible due to the periodicity of the quasienergy ": In
addition to the edge modes that cross the gap near " ¼ 0, a
second branch of edge modes crosses through " ¼ �=T, thus
connecting the top of the upper Floquet band to the bottom of the
lower Floquet band and closing the quasienergy cycle. The
Chern numbers correctly yield the differences between the
numbers of chiral modes above and below every band but cannot
be used to uniquely determine the edge-state spectrum of a
periodically driven system.
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jc ðtÞi ¼ j�ðtÞie�i"t, where j�ðtþ TÞi ¼ j�ðtÞi. Under
the action of the evolution operator UðTÞ over one com-
plete period of driving, each Floquet state is mapped onto
itself up to a phase: jc ðTÞi ¼ UðTÞjc ð0Þi ¼ e�i"Tjc ð0Þi.
In a stroboscopic sense, the Floquet states play the role of
stationary states for UðTÞ. The parameter ", called the
quasienergy, is uniquely defined up to integer multiples
of ! ¼ 2�=T: Any given solution with quasienergy " can
also be associated with a quasienergy ~" ¼ "þ p!, where

p is an integer, through the relation j ~�ðtÞi ¼ eip!tj�ðtÞi.
Similar to the crystal momentum of a system with discrete
translational symmetry, the quasienergy can be thought of
as a periodic variable defined on a quasienergy Brillouin
zone��=T < " � �=T. When a system has both discrete
time and spatial translation symmetries, the Floquet states
are labeled by " and the crystal momentum k. The Floquet
spectrum then consists of a set of bands f"nðkÞg, where n is
a band index.

We now explore the ways in which the topological
properties of Floquet bands are similar to, and different
from, those of the conventional bands of static systems.
Consider first a static (nondriven) two-band system, such
as the Haldane model [36], which exhibits a well-defined
band gap. A Chern number can be defined for each band n
by integrating the Berry curvature associated with the two-
component spinor eigenstates fjunðkÞig over the Brillouin
zone [2]. If the parameters are such that the Chern numbers
of the two bands are nonzero, we will find chiral edge
modes traversing the band gap when the system is defined
in a geometry with an edge. The existence of these edge
modes is ‘‘protected,’’ in the sense that the modes cannot
be destroyed by any continuous changes of parameters
unless the band gap closes.

Mathematically, the Chern number of a band is equal to
the difference between the numbers of chiral edge modes
entering the band from below and exiting above. Because
the spectrum of a static system is bounded, there can never
be any chiral edge modes extending beyond the bottom of
the lowest band or above the top of the uppermost band.
Therefore, in a static two-band system, the Chern number
uniquely defines the net number of chiral edge states cross-
ing the band gap.

Now, consider a periodically driven system. We can
define a Chern number for each Floquet band n in the
same way as in the static case: The Chern number is
obtained by integrating the Berry curvature associated
with the Floquet states fjc nðk; tÞig, evaluated at any fixed
time t, over the crystal-momentum Brillouin zone (see
Sec. IVC for a precise definition). For concreteness, we
typically evaluate the Chern numbers using the Floquet-
state wave functions at time t ¼ 0. However, the Chern
number is in fact independent of the time at which the
Floquet states are evaluated [12,22].

Like the static case, the Chern number of a Floquet band
is equal to the difference between the numbers of chiral

modes above and below a given Floquet band. However,
due to the periodicity of quasienergy, the Floquet spectrum
is not bounded. In particular, in a two-band system, a chiral
edge mode that extends out above the top of the ‘‘upper’’
band can pass through the quasienergy Brillouin-zone edge
at " ¼ �=T and enter the bottom of the ‘‘lower’’ band from
below. Using the rule that the Chern number gives the
difference between the numbers of edge states above and
below a band, we see that chiral edge states can be found
between the two bands of a system with zero Chern num-
bers, provided that a ‘‘winding’’ edge state also connects
them through the quasienergy-zone edge.
To understand how such a situation can arise in a peri-

odically driven system, it is useful to consider the follow-
ing thought experiment. Suppose we start with a system in
which the Floquet bands have vanishing Chern numbers,
and in which there are no chiral edge modes in a finite
geometry. An explicit model for such a system will be
described in Sec. III (see Fig. 2). The band structure of a
strip, as a function of the momentum kk along the strip,

may resemble the one shown schematically in Fig. 3(a).
Note that, as discussed above, there are two gaps to con-
sider between the two bands: the gap centered at zero
quasienergy and the gap centered at " ¼ �=T. Now, imag-
ine that we tune some parameters in the Hamiltonian. As
parameters are changed, one of these gaps, e.g., the one at
" ¼ �=T, may close and reopen, in such a way that the
Chern numbers of both bands become nonzero. After the
reopening of the gap, the quasienergy spectrum will look
like the one in Fig. 3(b), with chiral edge modes crossing
the " ¼ �=T gap. As parameters are varied further, the
" ¼ 0 gap may close and reopen, bringing the Chern
numbers of both bands back to zero. However, the chiral
edge modes in the " ¼ �=T gap cannot disappear during
this process, since the " ¼ �=T gap remains open through-
out it. Therefore, after reopening the " ¼ 0 gap, another
chiral edge mode must appear around " ¼ 0 [Fig. 3(c)]
such that the difference of the number of chiral edge modes
below and above each band is zero. Thus, we may obtain
the situation where chiral edge modes exist, despite all
Chern numbers being zero.
The example above shows that the bulk Floquet operator

UðTÞ does not carry sufficient information to predict the
number of chiral Floquet edge modes. [Note that the edge-
state spectrumwill of course be exhibited explicitly ifUðTÞ
is evaluated directly for a system with boundaries.] Here,
we construct new invariants defined in terms of the full
time-dependent bulk evolution operatorUðtÞ, evaluated for
all intermediate times within the driving period. These
invariants contain the missing information needed to pre-
dict the complete Floquet edge-state spectrum.

III. MODEL OFANOMALOUS EDGE STATES

In this section, we illustrate the breakdown of the tradi-
tional bulk-edge correspondence for a Floquet system by
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analyzing an explicit two-dimensional tight-bindingmodel.
This model is chosen for conceptual simplicity; a more
realistic model for experimental implementations will be
discussed in Sec. V. Consider a tight-binding model on a
bipartite square lattice, with hopping amplitudes varied in a
spatially homogeneous but time-periodic way, as shown in
Fig. 2(a). In addition to the cyclic modulation of hopping
amplitudes, a constant sublattice potential �AB ¼ "A � "B
that distinguishes between A and B sites (filled and empty
circles, respectively) may be applied. The system’s evolu-
tion is generated by the time-dependent Hamiltonian

HðtÞ ¼ X
k

cyk;A cyk;B
� �

Hðk; tÞ ck;A

ck;B

 !
;

Hðk; tÞ ¼ �X4
n¼1

JnðtÞðeibn�k�þ þ e�ibn�k��Þ þ �AB�z:

(1)

Here, cyk;� creates a particle in a Bloch state with crystal

momentum k on sublattice � ¼ fA; Bg, and Jn controls
hopping from each B site to its neighboring A site along
the highlighted bond in step n, shown in Fig. 2(a). The Pauli
matrices �z and �� ¼ ð�x � i�yÞ=2 act in the sublattice

space. The vectors fbig are given byb1 ¼ �b3 ¼ ða; 0Þ and
b2 ¼ �b4 ¼ ð0; aÞ.

One driving cycle consists of five segments of duration
T=5 each, where T is the driving period. During the nth
segment of the cycle, where n ¼ 1; . . . ; 4, the hopping

amplitude Jn is set to a value J, while the other three
hopping amplitudes are set to 0. During step 5, all hopping
amplitudes are set to 0, but the sublattice potential is still
allowed to act. This ‘‘holding period’’ is needed in order to
ensure that the model has a sufficiently rich phase diagram
to fully illustrate the topological classification that we will
develop below. The driving protocol is inherently chiral,
as the cycle can be executed in two inequivalent patterns
(1� 2� 3� � � � or 5� 4� 3� � � � ).
For an infinite system (or a finite system with periodic

boundary conditions), translational invariance can be
exploited to reduce the problem of finding the Floquet
operator for this system to multiplying a small number of
Pauli matrices. The simplest case, illustrated in Figs. 2(b)
and 2(c), occurs when JT=5 ¼ �=2 and �AB ¼ 0. Here, a
particle moves with probability 1 between neighboring
sites during each hopping step of the cycle. As shown by
the light blue trajectory in Fig. 2(b), over one complete
driving cycle, each particle makes a loop around a pla-
quette and returns to its initial position. Therefore, the bulk
Floquet operator for this case is simply the identity. The
Floquet spectrum features two degenerate bands collapsed
at quasienergy zero. Because the bands are fully collapsed,
none of the standard invariants for two-dimensional sys-
tems can take nontrivial values.
What happens in a finite system with an edge? Naively,

it appears that the Floquet operatorUðTÞ ¼ 1 describes the
trivial stroboscopic dynamics of a system with an effective
Hamiltonian Heff ¼ 0. However, using the strip geometry
shown in Fig. 2(b), it is straightforward to check that the
system supports chiral propagating edge modes localized
on the boundaries. Over each complete driving cycle, a
particle moves by one unit cell along the edge. These
modes appear in the spectrum as two linearly dispersing
branches with group velocities d"=dk ¼ �1=T; see
Fig. 2(c).
Now, consider the time-reversed cycle (5� 4� 3�

� � � ), which has the opposite chirality. Here, although
particles circle around the plaquettes in the anticlockwise
direction, the Floquet operator (which is still identity) is
the same as that of the original cycle. Thus, the information
about the circulation direction, which is contained in the
bulk evolution operator for intermediate times within the
driving cycle, is absent in the Floquet operator. Physically,
this information is of crucial importance, however, as it
determines the propagation direction of the edge states
when the system is terminated. Thus, it is clear that a full
topological characterization of these new phases requires
an invariant defined in terms of the evolution operator
evaluated throughout the entire driving period.

IV. CONSTRUCTION OF THE INVARIANT

In this section, we define an integer invariant that can be
used to correctly predict the edge-state spectrum for a
two-dimensional periodically driven system. We begin by

(a) (b)

(c)

FIG. 2. Two-dimensional tight-binding model exhibiting
anomalous Floquet edge modes. (a) Driving protocol. Hopping
amplitudes are varied in a spatially homogeneous but chiral,
time-periodic way. A sublattice potential �AB differentiating the
two types of sites in the bipartite lattice (filled and open circles)
is applied throughout. During four of the five equal-length
phases of the cycle, hopping along one of the four distinct
bond types is allowed, with amplitude J (bold lines). During
the fifth phase, all hopping amplitudes are zero, while the
sublattice potential remains constant. (b) In the simple case
JT ¼ 5�=2, �AB ¼ 0, particles in the bulk move in closed
trajectories encircling plaquettes, and the Floquet operator is
the identity. Chiral edge modes propagate along the boundaries.
(c) Floquet spectrum for the case described in (b).
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setting up the problem. Let us consider a periodically
driven, tight-binding model defined on a 2D lattice with
N sites per unit cell—i.e., a generalization of Eq. (1).
Suppose that the hopping amplitudes are translationally
invariant and have finite range. Working in k space, the
Hamiltonian can be written as

HðtÞ ¼ X
k��0

cyk;�H��0 ðk; tÞck;�0 ; (2)

where �;�0 ¼ 1; . . . ; N label the sites in each unit cell and
k lies in the first Brillouin zone. All of the bulk properties
of the system are encoded in the N � N Hermitian matrix
Hðk; tÞ. In particular, the bulk time evolution operator can
be computed as

Uðk; tÞ ¼ T exp

�
�i

Z t

0
dt0Hðk; t0Þ

�
; (3)

whereT denotes time ordering. The bulk Floquet operator
corresponds to the special case Uðk; TÞ.

Let us suppose that the Floquet spectrum has a gap
extending over some finite interval ½"��"; "þ �"�.
Then, if we define the model in a geometry with an edge,
any Floquet eigenstates with eigenvalues lying in this
interval must be localized near the boundary. These eigen-
states correspond to edge modes. In analogy with the time-
independent case, we expect that the number of these edge
modes—counted with a sign corresponding to their chi-
rality—is completely determined by the bulk time evolu-
tion operator U. Therefore, one should be able to compute
the number of chiral edge modes at quasienergy ", given
only Uðk; tÞ. We will now construct an explicit formula,
defined in terms of fUðk; tÞ; "g, that gives exactly this
number. [Here, fUðk; tÞg denotes the set of evolution op-
erators for all times within a driving period 0 � t � T.]

A. The case of a trivial Floquet operator

Our construction proceeds in two steps. First, we con-
sider the special case where the (bulk) Floquet operator is
simply the identity, i.e., Uðk; TÞ ¼ 1 for all k, as in the
example described in Sec. III. We then generalize to arbi-
trary Floquet operators.

If the Floquet operator is the identity, then the Floquet
spectrum is gapped everywhere except at " ¼ 0.
Therefore, to each fUðk; tÞg, we should be able to unam-
biguously associate an integer nedge that counts the number

of edge modes propagating across the gap (i.e., winding
around the quasienergy Brillouin zone). Furthermore, this
integer must be invariant under smooth deformations of U
that preserve the condition Uðk; TÞ ¼ 1, since the number
of edge modes cannot change under a deformation in
which the gap remains open.

Purely mathematical considerations suggest a natural
guess: Notice that U is periodic in kx, ky, and t [since

Uð0Þ ¼ UðTÞ ¼ 1 by assumption]. Thus, U defines a map
from S1 � S1 � S1 ! UðNÞ. Such maps are known to be

classified by an integer topological invariant or ‘‘winding
number’’ defined by [37]

W½U� ¼ 1

8�2

Z
dtdkxdky

� TrðU�1@tU½U�1@kxU;U�1@kyU�Þ: (4)

It is natural to guess that nedge is related to W½U� in some

way. In Appendix A, we show that this guess is correct—in
fact, the two integers are identical:

nedge ¼ W½U�: (5)

The winding number W½U�, defined in Eq. (4), differs
crucially from the familiar Chern number invariant. The
winding number depends on the full time evolution,
throughout the driving cycle, through the unitary evolution
operator UðtÞ. In contrast, the Chern number depends only
on projectors onto a band of Floquet states [see Eq. (13)
below]. The relationship between the winding numbers and
the Chern numbers of the Floquet bands is discussed in
more detail in Sec. IVC.

B. The general case

Next, we consider the general case, where the Floquet
operator Uðk; TÞ can be arbitrary. We would like to com-
pute the number of edge modes at a quasienergy value "
lying within a Floquet gap. One way to perform this
computation is to reduce the problem to the previous
case. The idea is to construct another time evolution op-
eratorU" satisfying several properties. The first property is
that U" has a trivial Floquet operator: U"ðk; TÞ ¼ 1 for all
k. The second property is that there exists a one-parameter
family of evolution operators fUs: s 2 ½0; 1�g that
smoothly interpolates between U and U":

Us¼0ðk; tÞ ¼ Uðk; tÞ; Us¼1ðk; tÞ ¼ U"ðk; tÞ: (6)

Finally, and most importantly, we require that the interpo-
lation Usðk; TÞ maintains a gap around some quasienergy
value "s that changes smoothly in s and satisfies "s¼0 ¼ "
and "s¼1 ¼ �=T.
If we can construct an evolution operator U" with these

properties, then we can immediately compute the number
of chiral edge modes of U at quasienergy ":

nedgeð"Þ ¼ W½U"�: (7)

The validity of this identification comes from the fact that
the gap does not close during the interpolation process (by
assumption). Therefore, the number of edge modes of U at
quasienergy " must be the same as the number of edge
modes of U" at quasienergy �=T. The latter quantity is
then given by W½U"�, using the formula in Eq. (5).
All that remains is to construct an appropriate U"

and a corresponding interpolation. There is some
arbitrariness here, since U" is far from unique. The result,
however, will not depend on our particular choice. We will
define U" by
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U"ðk; tÞ ¼
(
Uðk; 2tÞ if 0 � t � T=2

V"ðk; 2T � 2tÞ if T=2 � t � T;
(8)

where

V"ðk; tÞ ¼ e�iHeff ðkÞt; HeffðkÞ ¼ i

T
logUðk; TÞ: (9)

Here, we choose the branch cut of the logarithm to lie
along the direction e�i"T . That is, we choose a branch with

loge�i"Tþi0� ¼ �i � "T;
loge�i"Tþi0þ ¼ �i � "T � 2�i:

(10)

This choice of branch is important and provides the only
dependence of U" on ".

Physically, V" can be viewed as a trivial ‘‘return map’’
that is used to connect the Floquet operator Uðk; TÞ to the
identity. The quantity Heff appearing in the exponent plays
the role of a static effective Hamiltonian that generates a
bulk time evolution that, when examined stroboscopically
at integer multiples of the driving period T, is identical to
that of Uðk; TÞ [22]. By concatenating the driving cycle
with an evolution generated by �Heff , the net effect of the
combined evolution becomes trivial.

We now check that the above definition of U" satisfies
all of our requirements. It is clear that U"ðk; TÞ ¼ 1; the
crucial question is to find an appropriate interpolation
connecting U and U". The following interpolation does
the job:

Usðk; tÞ ¼
(
U½k; ð1þ sÞt� if 0 � t � T=ð1þ sÞ
V"½k; 2T � ð1þ sÞt� if T=ð1þ sÞ � t � T:

Indeed, using Eq. (9), it is easy to check that the Floquet
gap remains open around "s � ð1� sÞð"þ �=TÞ � �=T,
using the fact that

Usðk; TÞ ¼ Uðk; TÞ1�s: (11)

Also, we can see that "s¼0 ¼ " and "s¼1 ¼ �=T
(mod 2�=T). Thus, the interpolation Us satisfies all of
the conditions listed above.

C. Relation with Chern number

As discussed in Sec. II, the Chern number of a Floquet
band n is defined by integrating the Berry curvature of the
Floquet eigenstates jc nðk; tÞi over the crystal-momentum
Brillouin zone, at a fixed time t:

C n ¼ � 1

2�

Z
dkxdkyðr �AnÞ; (12)

where An ¼ hc nðk; tÞjirjc nðk; tÞi. Equivalently, C can
be written as

C n ¼ 1

2�i

Z
dkxdkyTrðPn½@kxPn; @kyPn�Þ; (13)

where PnðkÞ ¼ jc nðk; tÞihc nðk; tÞj is a projector onto the
Floquet eigenstate jc nðk; tÞi.
Not surprisingly, there is a close mathematical relation-

ship between the winding number W½U"� defined above
and the Chern numbers fCng of the Floquet bands. This
relationship becomes clear when one considers the differ-
ence between winding numbers evaluated at two different
quasienergies. More specifically, it is possible to show that

W½U"0 � �W½U"� ¼ C""0 ; (14)

where C""0 denotes the sum of the Chern numbers of all
Floquet bands that lie in between " and "0 (see Appendix B
for a derivation). This identity is very natural from a
physical point of view. Indeed, identifying W½U"� with
nedgeð"Þ, Eq. (14) is simply the statement that the differ-

ence between the numbers of edge modes at two quasie-
nergies " and "0 is equal to the total Chern number of the
intermediate bands.

D. Phases of the modulated square lattice model

We now briefly illustrate the utility of the winding
number by examining the phase diagram of the model
introduced in Sec. III. Away from the special point
�AB ¼ 0, JT=5 ¼ �=2, the Floquet operator UðTÞ is not
equal to the identity. Thus, the return-map construction
described above must be used to compute the winding
numbers for the Floquet gaps around quasienergy values
0 and �.
In the general case, the evolution operator UðtÞ for 0 �

t � T is straightforward to calculate. The Hamiltonian in
Eq. (1) is piecewise constant in time through five equal-
length segments of duration T=5. Let Hn denote the
Hamiltonian within the interval ðn� 1ÞT=5 � t � nT=5.
Then, for t < T=5, we have UðtÞ ¼ expð�iH1tÞ; for

T=5 � t < 2T=5, UðtÞ ¼ e�iH2ðt�T=5Þe�iH1T=5, and so on.
Because the Bloch Hamiltonians fHnðkÞg are 2� 2 matri-
ces, their exponentials are easily obtained directly. The
evolution operator Uðk; tÞ is then given by a handful
of 2� 2 matrix exponentiations and multiplications. The
return map V"ðk; tÞ [Eq. (9)] is defined through the loga-

rithm of Uðk; TÞ ¼ e�iH5T=t � � � e�iH1T=5. Using these re-
sults, the winding numberW½U"� [see Eqs. (4) and (7)] can
then be calculated explicitly.
Using direct numerical calculations, we solve for

Floquet spectra in both periodic and strip geometries
[see, e.g., Figs. 3(a)–3(c)] and map out the approximate
phase diagram, shown in Fig. 3(d). Example spectra from
each of the three phases confirm the correspondence be-
tween the winding number, calculated from the bulk evo-
lution operator in the periodic geometry, and the edge-state
count in each gap in the strip geometry. Figure 3(c) pro-
vides an explicit example of the phenomenon discovered in
Ref. [22] and shown in Fig. 1: Chiral edge modes
appear for the finite system, despite the fact that the
Chern numbers of both bands are zero.
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V. FREQUENCY-DOMAIN FORMULATION

In this section, we discuss an alternative approach for
deriving the edge-state spectrum of the Floquet operator
and its relation to the Chern numbers of the bulk Floquet
bands. This approach is based on an analysis in the fre-
quency domain instead of the time domain. The informa-
tion obtained from the frequency-domain analysis is
equivalent to that obtained from the winding numbers in
Sec. IV. Specifically, both methods predict the number of
chiral edge modes in each Floquet gap. In practice, the
frequency-domain technique provides a simpler computa-
tional route for systems in which the driving field is weak
and has a narrow power spectrum.

A. Repeated zone analysis

We start from the Schrödinger equation with
Hamiltonian (2) for the Floquet state in band n, with crystal
momentum k. Using a basis of states labeled by �, we

write jc nðk; tÞi ¼
P

N
�¼1 c n�ðk; tÞcyk;�j0i, where j0i is the

vacuum. The amplitudes fc n�ðk; tÞg evolve according to

i@tc n�ðk; tÞ ¼
XN
�0¼1

H��0 ðk; tÞc n�0 ðk; tÞ: (15)

Employing the Floquet theorem, we write

c n�ðk; tÞ ¼ e�i"nðkÞt
X1

m¼�1
’ðmÞ

n� ðkÞeim!t; (16)

where ! ¼ 2�=T. Below, we suppress all k indices for

notational simplicity. The coefficients ’ðmÞ
n� satisfy the

(time-independent) eigenvalue equationX
�0;m0

H mm0
��0 ’

ðm0Þ
n�0 ¼ "n’

ðmÞ
n� ; (17)

where the ‘‘Floquet Hamiltonian’’ H mm0
��0 is given by

H mm0
��0 ¼ m!���0�mm0 þ 1

T

Z T

0
dte�iðm�m0Þ!tH��0 ðtÞ:

(18)

For each k, Eq. (17) has solutions throughout �1<
"n <1. However, as discussed in Sec. II, if "n is an
eigenvalue of Eq. (17) corresponding to the eigenstate

with amplitudes f’ðmÞ
n� g, then ~"n ¼ "n þ p! (where p is

any integer) is also an eigenvalue corresponding to an

eigenstate with amplitudes given by ~’ðmþpÞ
n� ¼ ’ðmÞ

n� . In
fact, as seen by direct substitution into Eq. (16), all of
these solutions correspond to the same time-dependent
solution of the Schrödinger equation. Therefore, the
Floquet states are uniquely and completely parametrized
by quasienergies in the ‘‘first quasienergy Brillouin zone’’
��=T � "n < �=T. Equation (17) is the temporal ana-
logue of a ‘‘repeated zone’’ scheme for conventional band-
structure calculations.
To illustrate the structure of Eqs. (17) and (18), we now

consider the case where

HðtÞ ¼ H0 þ�ei!t þ �ye�i!t: (19)

In this case, the matrix H mm0
��0 has the block tridiagonal

form, shown schematically in Fig. 4(a), where each block is
anN � Nmatrix. As noted above, it suffices to solve for the
Floquet bands within the first quasienergy Brillouin zone
��=T � "n < �=T. In the limit of weak driving (small�),
this solution can be attained using perturbation theory.
As sketched in Fig. 4(b), the zeroth-order (in �) spec-

trum of the Floquet Hamiltonian (18) consists of an array
of copies of the original spectrum of H0, shifted up and
down by integer multiples of the drive frequency !. In the
Floquet picture, the harmonic driving (�ei!t þ H:c:) in-
duces hopping between levels with m values differing by
one. Processes where m increases (decreases) by one cor-
respond to transitions accompanied by the absorption
(emission) of a photon from the driving field. When the
range � of the spectrum of H0 is greater than !, resonant
transitions (associated with degeneracies between levels
with neighboring values of m) may occur for some values
of k. To leading order, degenerate perturbation theory
shows that the driving (�ei!t þ H:c:) opens gaps at these
resonances [see Fig. 5(b)].

(a)

(c) (d)

(b)

FIG. 3. Phases of the square lattice model in Sec. III.
(a)–(c) Example Floquet spectra for each of the three
phases, calculated in a strip geometry (unit cell 2a), with
sublattice potential �AB ¼ 0:5�=T and hopping amplitudes
(a) J ¼ 0:5�=T, (b) J ¼ 1:5�=T, and (c) J ¼ 2:5�=T. The
winding numbers W0 and W� correctly yield the numbers of
edge states in the two gaps. The asymmetry in kk is due to the

breaking of inversion symmetry by the sublattice potential �AB.
(d) Phase diagram indicating the winding numbers W0 and W�,
calculated in the gaps at quasienergies 0 and �=T, and Chern
number C of the upper band. Note the existence of two topo-
logically distinct phases with C ¼ 0.
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B. Edge-state count via the truncated
Floquet Hamiltonian

An important property of Floquet eigenstates is that they
are localized in m, decaying rapidly for jm�m0j! � �,
where m0 is the center of a given localized state. This
localization in frequency space is analogous to the well-
known localization of Wannier-Stark states in real space.
Starting from this observation, we now describe an alter-
native method for computing edge-state spectra of Floquet
systems—complementary to the winding-number ap-
proach of Sec. IV.

The first step is to truncate the Floquet Hamiltonian (18)
so thatm andm0 run over a large but finite range�M � m,
m0 � M, where M is much greater than the frequency-
space localization range of the Floquet states. Making
use of the localization of the Floquet states in m, we note
that the spectrum of the truncated Floquet Hamiltonian will

be a good approximation to the exact result within the first
few quasienergy zones centered around m ¼ 0. In particu-
lar, if we consider a geometry with a boundary, then the
edge-state spectrum of the truncated Hamiltonian will
closely match the exact Floquet edge-state spectrum within
these central few quasienergy zones.
The key observation is that there is actually a straight-

forward way to determine the edge-state spectrum
using Chern numbers of the bands of the truncated
Floquet Hamiltonian. Interpreting the truncated Floquet
Hamiltonian as the static Hamiltonian of some new
ð2Mþ 1Þ � N-band system, we apply the standard bulk-
edge correspondence to deduce that the net number of
chiral edge modes (counterclockwise minus clockwise)
crossing any particular gap is given by the sum of the
Chern numbers of all bands below this gap. In this way,
we have a simple procedure for deriving the edge-state
spectra of Floquet systems: To find the number of chiral
edge modes crossing a given quasienergy gap within the
first quasienergy Brillouin zone, i.e., within the interval
��=T � "n < �=T, we truncate the Floquet Hamiltonian
and then count Chern numbers of the resulting bands below
the gap in which we are interested. Note that, as in
Sec. IVC, the difference between the numbers of chiral
edge modes at quasienergies " and "0 within the first
quasienergy zone is equal to the sum of the Chern numbers
of all Floquet bands between " and "0.
As an example, we study the case of harmonic driving

introduced in Eq. (19). We take H0 to be a general two-
band Hamiltonian

(a)

(b)

FIG. 4. Floquet Hamiltonian and level diagram in the repeated
zone scheme. (a) When the driving �ðtÞ consists of a single
harmonic with angular frequency !, the Floquet Hamiltonian
H ðkÞ [see Eq. (18)] assumes a block-tridiagonal form. Each
block is an N � N matrix, where N is the number of bands
in the unperturbed Hamiltonian H0. The off-diagonal blocks
labeled by � and �y describe transitions accompanied by the
absorption and emission of a driving field photon, respectively.
(b) Schematic Floquet level diagram. The N-level spectrum of
H0ðkÞ, which spans an energy range �, is copied and rigidly
shifted by m! for each value of m. The harmonic driving �
induces transitions between neighboring copies with m values
differing by 1. Analogous to Wannier-Stark states, the Floquet
eigenstates in the first quasienergy Brillouin zone (gray shaded
region) are localized inm, with amplitudes highly suppressed for
jmj � �=!.

(a) (b)

FIG. 5. Floquet bands for a two-band model in the truncated
repeated zone scheme. Representative one-dimensional cuts
through the two-dimensional crystal-momentum Brillouin zone
are shown. (a) For � ¼ 0, the unperturbed bands of H0 are each
copied and shifted up and down one time; m ¼ �1; 0; 1. The
bands have Chern numbers C ¼ �C0. The crossings between
bands with m values differing by 1 correspond to points in the
Brillouin zone where the driving field resonantly couples the two
bands. (b) For � � 0, a generic driving field opens avoided
crossings at the resonance points. After coupling, the Chern
numbers of the crossed bands are changed to C ¼ �CF. In the
truncated scheme, the appearance of Floquet edge states at a
particular quasienergy in the first quasienergy Brillouin zone
(gray regions) can be predicted by adding up the Chern numbers
of all bands below it.
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H0ðkÞ ¼ eðkÞ þ dðkÞ � �; (20)

where � ¼ ð�x; �y; �zÞ is the vector of Pauli matrices, and

dðkÞ is a three-dimensional vector. The bands are charac-
terized by Chern numbers C ¼ �C0, as indicated in
Fig. 5(a). For simplicity, we assume that the periodic drive
creates a single resonance between the valence and con-
duction bands ofH0. This resonance occurs simultaneously
for all k values that satisfy ! ¼ 2jdðkÞj. We further as-
sume that this resonance condition is satisfied along a
single closed curve in the crystal-momentum Brillouin
zone [see Fig. 6(a)].

Consider the corresponding Floquet HamiltonianH mm0
��0

[see Eq. (18)], which is truncated to the range �1 � m,
m0 � 1. The band structure of the truncated Floquet
Hamiltonian is shown schematically in Fig. 5. For � ¼ 0,
the valence band of block m and the conduction band from
block m� 1 are degenerate on the resonance curve (ap-
pearing as two points on the sections shown in Fig. 5). The
driving terms mix the two bands, generically opening gaps

at the crossing points. The resulting bands have Chern
numbers CF and �CF, as indicated in Fig. 5(b). Because
of the truncation, however, two isolated bands are left, at
the top and bottom of the spectrum. These bands do not
participate in any resonances, and their Chern numbers
remain equal to �C0; see Fig. 5(b).
Examining the gap centered at quasienergy ��=T, we

see that the Chern numbers of all bands below it sum to
C0 þ CF. Therefore, we expect to find C0 þ CF chiral
edge modes spanning this gap. For the same reason, the
gaps centered at quasienergy values " ¼ 0 and " ¼ �=T
support C0 and C0 þ CF chiral edge modes, respectively.
The value of CF that is obtained in any particular model

depends on the details of H0ðkÞ, �, and !. In particular, in
Sec. VC below and in Fig. 6, we describe a specific model
that gives CF ¼ 0, while nonetheless exhibiting robust
chiral edge modes.
Importantly, the method outlined above for determining

the number of chiral edge modes in each gap of the Floquet
spectrum can be applied to more general periodically
driven systems and is not restricted to the weakly driven,
single harmonic limit discussed in the above example. It
works, provided that one keeps sufficiently many copies of
H0 in the truncation and that the driving power spectrum
decays sufficiently rapidly for higher harmonics. If the
driving is strong, the relationship between the Floquet
bands and the original bands may be more complicated
than in the example considered above, but the results of
this procedure are still guaranteed to converge for large
enough M.

C. Anomalous edge states in a weakly driven
two-band lattice system

We consider a two-band model with a Hamiltonian of
the form (20), with eðkÞ ¼ 0 and with the components of
dðkÞ given by

dxðkÞ ¼ a sinðkxÞ; dyðkÞ ¼ a sinðkyÞ;
dzðkÞ ¼ ð�� JÞ � 2b½2� cosðkxÞ � cosðkyÞ�

þ J cosðkxÞ cosðkyÞ: (21)

In the parameter regime �; b; J > 0 and �=b < 4, the
unperturbed bands of H0 have Chern numbers C0 ¼ �1,
as indicated in Fig. 6(a). This result can easily be obtained
by direct integration of the Berry curvature using Eq. (12).
More simply, recall that for a general two-band system
of the form (20), the Chern number is determined by the

degree of the map d̂ðkÞ ¼ dðkÞ=jdðkÞj from the Brillouin
zone to the unit (Bloch) sphere S2, i.e., by the number of
times this map ‘‘covers’’ S2. The result C0 ¼ �1 follows

simply by noting that the vector d̂ðkÞ maps exactly one
point in the Brillouin zone to a point close to the north pole
of the unit sphere, as indicated by the colored shading in
Fig. 6(a) (see Ref. [38] for more details).

(a) (c)

(b)

FIG. 6. Anomalous edge states in a weakly driven two-band
system, with Hamiltonian H0 given by Eqs. (20) and (21). The
Chern numbers of the unperturbed bands are C0 ¼ �1.
(a) Spectrum of H0 with periodic boundary conditions, showing
the resonance curve (purple line) in the valence and conduction
bands. The color scheme indicates h�zi for the corresponding
eigenstates in the two bands. (b) Spectrum of H0 for a cylindrical
geometry, with periodic boundary conditions in the x direction
and open boundary conditions in the y direction. (c) Spectrum of
the truncated Floquet Hamiltonian [Eq. (18)] in the cylindrical
geometry. The isolated bands at the top and bottom of the figure
do not participate in any resonances and are nearly identical to
the original bands of H0. The Floquet bands have zero Chern
numbers, while edge states traverse both gaps, centered around
" ¼ 0 and " ¼ �=T. The parameters used are J=� ¼ b=� ¼
1:5, a=� ¼ 4, �0=� ¼ 1, and �0=! ¼ 0:07.
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We now add a time-dependent perturbation of the form
�ðtÞ ¼ �0�z cosð!tÞ. The hopping J and frequency ! can
be tuned such that only a single resonance occurs in the
Brillouin zone, on a closed curve around k ¼ 0, as shown
in Fig. 6(a). Note that here we take parameters to provide
the simplest situation, containing only a single resonance,
for the purposes of clearest illustration; similar consider-
ations apply in other parameter regimes, allowing for more
resonances.

To see that this driving results in trivial Floquet bands
with CF ¼ 0, we perform degenerate perturbation theory
in the off-diagonal matrix elements of the Floquet
Hamiltonian; see Eq. (17). Consider an isolated pair of
crossing bands, such as the red and blue bands labeled
m ¼ �1 and m ¼ 0 in Fig. 5(a), respectively. To lowest
order in �0, the corresponding two new hybridized bands
are described as the eigenstates of an effective Hamiltonian

Hð0Þ
eff ¼ ðjdðkÞj �!=2Þd̂ðkÞ � � þ ~�ðkÞ � �; (22)

where ~�ðkÞ ¼ �0½ẑ� d̂zðkÞd̂ðkÞ�. Note thatHð0Þ
eff is in fact

a leading-order approximation to the effective Hamiltonian
introduced in Eq. (9). As indicated in Fig. 5(b), the bands

of Hð0Þ
eff are inverted relative to those of H0 in the region

around k ¼ 0.
Howdowe see that these bands have trivial Chern indices?

Consider themap from theBrillouin zone toS2 defined by the

projector onto the lower-energy band of Hð0Þ
eff in Eq. (22).

Writing this projector as 1
2 ½1� deffðkÞ�, a necessary require-

ment for obtaining a nonzero Chern number is that every
point on the Bloch sphere must be reached by deffðkÞ for at
least one value of k in the Brillouin zone. For small �0 and
for ! such that the resonance curve winds around k ¼ 0,
there is a region surrounding the north pole of S2 that is not
accessed by deffðkÞ for any points in the Brillouin zone.
Therefore, its bands must have zero Chern numbers.

In Fig. 6(c), we plot the spectrum of the truncated
Floquet Hamiltonian for the model described above, de-
fined in a cylindrical geometry. This figure clearly exhibits
chiral edge states traversing each of the gaps, including
those associated with the isolated bands at the top and
bottom of the truncation window. As described above,
these bands are not strongly hybridized and are nearly
identical to the unperturbed bands of H0 [see Fig. 6(b)].

The analysis above provides an alternative picture for
understanding how edge states can appear in periodically
driven systems, even when all of the Floquet bands have
vanishing Chern numbers. The fact that the bands carry
zero Chern numbers only guarantees that the numbers of
chiral edge states in the two gaps surrounding each Floquet
band are equal. In the truncated Floquet Hamiltonian pic-
ture, the edge states owe their existence to bands near the
truncation boundaries that carry anomalous (i.e., nonvan-
ishing) Chern numbers. These bands retain the history
about the topological properties of the original bands of
H0, as well as the structure of the resonances that transform

them into the Floquet bands. Note that anomalous edge
states can also be obtained in a model when the unper-
turbed Hamiltonian H0ðkÞ contains only trivial bands,
provided that additional resonances (e.g., due to multi-
photon processes) are allowed.

VI. DISCUSSION

In this paper, we discussed the correspondence between
bulk topological invariants and the edge-state spectra of
two-dimensional periodically driven systems. In both static
and periodically driven systems, the Chern number of a
given band is equal to the difference between the number
of chiral edge states above and below the band. Because
the spectrum of a static system is bounded from below,
knowledge of the Chern numbers of all bands up to a
particular energy is sufficient to uniquely determine the
number of chiral edge modes at that energy. For driven
systems, however, the spectrum is defined on a circle, and
hence is not bounded. Knowing the Chern numbers of all
Floquet bands is therefore not sufficient to determine the
edge-state structure. Our main result in this work is the
construction of a new invariant that fully captures the edge-
state spectrum for periodically driven systems.
The most striking example of the difference between the

static and driven cases occurs when a driven system sup-
ports robust chiral edge states, even when the Chern num-
bers of all of its Floquet bands are zero. Can such systems
be realized experimentally? In the analysis above, we
introduced two lattice models: one with strongly modu-
lated hopping amplitudes and one with a weak driving field
applied on top of a convenient band structure. While the
first model was constructed primarily for mathematical
demonstration, a class of models similar to the second,
involving weak, uniform driving, should be accessible in
cold-atomic, solid-state, or all-photonic systems.
A promising route for implementing models of the

second type is to utilize Cooper’s optical flux-lattice sys-
tems [9]. There, weak periodic modulations of the optical
fields that create the flux lattice could be used to produce
the resonances necessary for obtaining a nontrivial Floquet
spectrum. A modulated flux lattice with anomalous edge
states could be achieved either by starting with topologi-
cally nontrivial unperturbed bands, as in Sec. VC, or even
by starting with topologically trivial bands and employing
two (or more) photon resonances.
Solid-state implementations are also possible (see, e.g.,

Refs. [39,40] for some experimental preliminaries).
Typically, the frequency ! will be at least a few times
smaller than the total width � of the two central bands
of interest (e.g., the conduction and valence bands). In
this case, the Floquet band structure is complicated by
quasienergy-zone folding, which leads to additional
band crossings corresponding to multiphoton resonances.
Generically, for!=� 	 1, one can find bulk states coming
from a sufficiently high-order folding at any quasienergy.
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Therefore, strictly speaking, there is no gap in the Floquet
spectrum at any quasienergy. If there are chiral edge states
in a gap that corresponds to a first-order (single-photon)
resonance, they acquire a finite lifetime due to scattering
into bulk states with the same quasienergy. However, these
scattering processes involve high-order resonances (multi-
photon processes). For sufficiently weak driving, the
lifetime broadening of the Floquet edge states is parametri-
cally smaller than the size of the gap in which they reside.
Therefore, the chiral Floquet edge states are still well-
defined excitations.

Throughout this work, we have focused on the topologi-
cal characteristics of the single-particle spectra of periodi-
cally driven two-dimensional systems. Notably, we have
not discussed the filling of these states for fermionic (or
bosonic) systems. Many-body physics in these systems is a
very interesting and challenging problem of its own, which
is beyond the scope of this work. However, future studies
on the phenomenology of periodically driven multiparticle
systems will need to address this issue in detail.

The invariants presented in this paper give a complete
topological description of the Floquet band structures of
periodically driven, two-dimensional noninteracting sys-
tems, if no additional symmetries are imposed. In static
systems, the presence of additional symmetries leads to a
rich topological characterization of noninteracting systems
[33,34]. In the case of periodically driven systems, some
robust topological phenomena have been demonstrated to
be stabilized by additional symmetries such as an effective
time-reversal symmetry [12,15,17]. A full topological clas-
sification for driven systems is yet to be developed and is
an interesting direction for further study.
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APPENDIX A: DERIVATION OF
THE RELATION BETWEEN EDGE MODES

AND WINDING NUMBER

In this section, we prove Eq. (5): We show that the
number of Floquet edge modes is given by the winding
number, i.e., nedge ¼ W½U�, for any system in which the

bulk Floquet operator is the identity. Our derivation is
inspired by an analogous derivation in Ref. [41].

The precise statement we will prove is as follows. Let H
be a translationally invariant, periodically driven
Hamiltonian with a time evolution operator U. Suppose
that U has a trivial Floquet operator—that is, Uðk; TÞ ¼ 1.
Now, consider a cylindrical geometry with periodic bound-
ary conditions in the y direction and open boundary con-
ditions at x ¼ 1 and x ¼ Lx. (Here, x and y are integers
labeling lattice sites.) Consider a Hamiltonian ~H that is
identical to H in the interior of the cylinder but can take
any form near the boundaries as long as it is local and
translationally invariant in the y direction. Let ~U be the
corresponding time evolution operator. What we will show
is that the number of edge modes of ~Uðk; TÞ is given by the
winding number W½U�.
The first step is to find a formal mathematical expression

for the number of Floquet edge modes nedge. To this end, it

is convenient to describe ~H and ~U in mixed x, ky space. In

this description, we denote the Hamiltonian by ~Hxx0 ðky; tÞ
and the time evolution operator by ~Uxx0 ðky; tÞ. Here, we
drop the additional indices � and �0 corresponding to the
sites within the unit cell, so that ~Hxx0 ðky; tÞ and ~Uxx0 ðky; tÞ
are actually N � N matrices for each x, x0, ky, and t.

The time evolution operator ~Uxx0 ðky; tÞ satisfies several
important properties. The first property is that it is quasi-
diagonal in x: ~Uxx0 ðky; tÞ ! 0 as jx� x0j ! 1. To see that
~U is quasidiagonal, note that ~Uxx0 can be thought of as a
propagator for single-particle states. Furthermore, the ve-
locity of these states is bounded during the course of the
time evolution: jvj � c for some c. It then follows that ~Uxx0

vanishes exponentially if x and x0 are separated by a
distance greater than c � t.
Another important property of ~U is that the Floquet

operator ~Uxx0 ðky; TÞ reduces to the identity matrix �xx0

unless x and x0 are near x ¼ 1 or x ¼ Lx (i.e., within
distance c � T of one of the boundaries). This property
follows from the same reasoning as above: As long as x
and x0 are far from the boundaries, the amplitude to propa-
gate between them must be identical to that in the transla-
tionally invariant system [where UðTÞ ¼ 1]. Therefore,

~U xx0 ðky; TÞ ¼ Uxx0 ðky; TÞ ¼ �xx0 ; (A1)

unless x and x0 are near one of the boundaries.
It is illuminating to write out the matrix ~Uðky; TÞ more

explicitly. All together, the matrix ~Uðky; TÞ has dimension

NLx � NLx, since the lattice index x runs from 1 to Lx, and
the band index � runs from 1 to N. Let us list the rows and
columns in order x ¼ 1; . . . ; Lx, with the band index run-
ning from 1 to N for each value of x. Then, it follows from
the above two properties that ~Uðky; TÞ (approximately)

takes the block diagonal form

~Uðky; TÞ ¼
~U1ðkyÞ 0 0
0 1 0
0 0 ~U3ðkyÞ

0
B@

1
CA; (A2)
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where ~U1ðkyÞ and ~U3ðkyÞ are unitary matrices describing

the action of ~U near the two boundaries and 1 describes the
action of ~U in the interior of the cylinder. To rigorously
derive Eq. (A2), imagine we partition the lattice sites x into
three groups: those with x � Lx=3, those with Lx=3< x<
2Lx=3, and finally those with x 
 2Lx=3. In the thermody-
namic limit, ~Uðky; TÞwill be block diagonal with respect to
these three groups—up to corrections that are exponen-
tially small in Lx. Furthermore, ~U will act like the identity
matrix 1 on the middle group of sites Lx=3< x< 2Lx=3.
Thus, we can define the three diagonal blocks
f ~U1ðkyÞ; 1; ~U3ðkyÞg to be NLx=3� NLx=3 matrices that

describe the action of ~U within these three groups of sites.
Using the above matrix representation for ~U, we can

write down a simple expression for the number of edge
modes nedge on the x ¼ Lx edge. In particular, we claim

that

nedge ¼ � 1

2�i

Z
dkyTr½ ~Uðky; TÞ�1@ky

~Uðky; TÞQ�; (A3)

where Q is an operator defined by

Qxx0 ¼ gðxÞ�xx0 ; (A4)

and g is any function satisfying

gðxÞ ¼
(
0 if x � Lx=3

1 if x 
 2Lx=3:
(A5)

The trace in Eq. (A3) is taken over the band indices � and
�0 and the site indices x and x0.

To understand where (A3) comes from, imagine we
replace Q by the identity operator 1. Then, the above
integral reduces to� 1

2�i

R
dkyTrð ~U�1@ky

~UÞ, which counts
the total number of chiral modes propagating in the y
direction—both at x ¼ Lx and x ¼ 1 [22]. Our claim is
that, when we include the operatorQ in the expression, we
effectively count the edge modes near the x ¼ Lx boundary
and throw out the contribution from the x ¼ 1 boundary.

To see this counting explicitly, let us write out the matrix
for Q using the same notation as Eq. (A2):

Q ¼
0 0 0

0 Q2 0

0 0 1

0
BB@

1
CCA: (A6)

Here,Q2 describes the action ofQ on the sites withLx=3<
x < 2Lx=3, while 0 and 1 describe the action of Q on the
sites with x � Lx=3 and x 
 2Lx=3, respectively. From the
matrix representations for Q and ~U, we can see that the
only contribution to Trð ~U�1@ky

~U �QÞ comes from the sites

near the x ¼ Lx boundary:

Tr ð ~U�1@ky
~U �QÞ ¼ Tr½ ~U�1

3 ðkyÞ@ky ~U3ðkyÞ�: (A7)

Clearly, when we integrate this expression over ky and take

the trace, the result is simply the number of chiral edge

modes localized near the x ¼ Lx boundary, as claimed
above.
The next step is to write (A3) as an integral over t:

nedge ¼ � 1

2�i

Z
dtdky@tTrð ~U�1@ky

~U �QÞ: (A8)

We then add the total derivative @kyTrð� ~U�1@t ~U �QÞ to
the integrand, thereby deriving

nedge ¼ 1

2�i

Z
dtdkyTrð ~U�1@ky

~U½Q; ~U�1@t ~U�Þ:

Next, we note that the integrand only receives contribu-
tions from the interior of the cylinder, since gðxÞ in
Eq. (A4) is constant near the boundaries, and hence the
commutator ½Q; ~U�1@t ~U� vanishes there. In the interior of
the cylinder, however, ~U is identical toU. We are therefore
free to replace ~U ! U:

nedge ¼ 1

2�i

Z
dtdkyTrðU�1@kyU½Q;U�1@tU�Þ: (A9)

To proceed further, let A � U�1@kyU and B � U�1@tU.

Exploiting the translational invariance of A and B, we have

Tr ðA½Q;B�Þ ¼X
xx0

Axx0Bx0x½gðx0Þ � gðxÞ�

¼X
xs

A0sBs0½gðxþ sÞ � gðxÞ�:

Next, we use the identity
P

x½gðxþ sÞ � gðxÞ� ¼ s to write
the above equation as

Tr ðA½Q;B�Þ ¼ X
s

A0sBs0 � s ¼ i

2�

Z
dkxAðkxÞ@kxBðkxÞ;

where the last equality comes from taking the Fourier
transform. Substituting this expression into (A9), we have

nedge ¼ 1

4�2

Z
dtdkxdkyTr½U�1@kyU � @kxðU�1@tUÞ�:

The final step is to massage this expression into the desired
form (5) by adding a derivative with respect to kx, ky, and t

to the integrand. In particular, we add

� 1
2@kxTrðU�1@kyU �U�1@tUÞ þ 1

2@kyTrðU�1@kx@tUÞ
� 1

2@tTrðU�1@kx@kyUÞ:
Adding this term and simplifying gives

nedge¼ 1

8�2

Z
dtdkxdkyTrðU�1@kxU �U�1@kyU �U�1@tUÞ

�ðkx$kyÞ
¼W½U�; (A10)

as claimed.
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APPENDIX B: DERIVATION OF EQ. (14)

In this section, we derive relation (14) between the
winding number W½U"� and the Chern numbers of the
Floquet bands. Let Uðk; TÞ be the Floquet operator with
gaps at " and "0. We wish to compute the difference in the
winding numbersW½U"0 � �W½U"�. A simple way to com-
pute this difference is to note that W½U"0 � �W½U"� is
equal to the winding number of a map U that ‘‘glues’’
V"0 and V" together with opposite orientations. To be
precise,

W½U"0 � �W½U"� ¼ W½U�; (B1)

where

Uðk; tÞ ¼
(
V"ðk; 2tÞ if 0 � t � T=2

V"0 ðk; 2T � 2tÞ if T=2 � t � T:
(B2)

To computeW½U�, we use the fact that it is invariant under
continuous deformations ofU. We note that the above map
U can be continuously deformed into �U, where

�Uðk; tÞ ¼ V"ðk; tÞ � V"0 ðk; tÞ�1: (B3)

For example, the following interpolation does the job:

Usðk; tÞ ¼
(
V"ðk; 2tÞ � V"0 ðk; 2tÞ�s if 0 � t � T=2

V"0 ðk; 2T � 2tÞ1�s if T=2 � t � T;

for 0 � s � 1.
The problem reduces to computing the winding number

W½ �U�. Note that V" and V"0 differ only in the position of
the branch cut of the logarithm in definition (9), which
affects only the quasienergy eigenvalues but not the eigen-
vectors. These two operators can therefore be simulta-
neously diagonalized, and commute. From the definition,
we see that

�Uðk; tÞ ¼ V"ðk; tÞ � V"0 ðk; tÞ�1 ¼ eð2�it=TÞP""0 ðkÞ; (B4)

where P""0 ðkÞ is the projector onto the Floquet eigenstates
with crystal momentum k, and with eigenvalues between "
and "0. Therefore, according to the calculation of
Appendix C, the corresponding winding number is
W½ �U� ¼ C""0 , where C""0 is the total Chern number of all
the Floquet bands with eigenvalues between " and "0. We
conclude that

W½U"0 � �W½U"� ¼ W½ �U� ¼ C""0 ; (B5)

as we set out to show.

APPENDIX C: WINDING NUMBER FOR TIME-
INDEPENDENT, FLAT-BAND HAMILTONIANS

In this section, we compute the value of W½U� for time-
independent, flat-band Hamiltonians of the form

HðkÞ ¼ � 2�

T
PðkÞ; (C1)

where PðkÞ is an N � N Hermitian matrix, all of whose
eigenvalues are either 0 or 1 (i.e., P is a projection
operator). Note that the prefactor 2�

T guarantees that the

corresponding Floquet operator is trivial, i.e., UðTÞ ¼
e�iHT ¼ 1. For concreteness, we assume that PðkÞ has M
eigenvalues equal to 1 and N �M eigenvalues equal to 0,
whereM<N. Thus, the Hamiltonian H hasM bands with
energy �2�=T and N �M bands with energy 0. We will
show thatW½U� is given by the total Chern number C of the
bands with energy �2�=T.
First, we note that the time evolution operator

U ¼ eð2�it=TÞPðkÞ satisfies the identities

U ¼ ðe2�it=T � 1ÞPþ 1;

U�1 ¼ ðe�2�it=T � 1ÞPþ 1;
(C2)

from which it follows that

U�1@kxU ¼ ðe�2�it=T � 1Þðe2�it=T � 1ÞP@kxP
þ ðe2�it=T � 1Þ@kxP

� a

�
2�t

T

�
P@kxPþ b

�
2�t

T

�
@kxP: (C3)

Here,

að�Þ ¼ 2� 2 cosð�Þ; bð�Þ ¼ ei� � 1: (C4)

Similarly, we have

U�1@kyU ¼ a

�
2�t

T

�
P@kyPþ b

�
2�t

T

�
@kyP;

U�1@tU ¼ 2�i

T
P:

(C5)

Combining these results, we find

Trð½U�1@tU�½U�1@kxU�½U�1@kyU�Þ

¼ Tr

�
2�i

T
P½a � P@kxPþ b � @kxP�

� ½a � P@kyPþ b � @kyP�
�
:

Next, we make use of the identity

ðP@iPÞP ¼ ½@iðP2Þ � @iPP�P ¼ @iP � P� @iP � P ¼ 0

to reduce the expression to

Tr ð½U�1@tU�½U�1@kxU�½U�1@kyU�Þ

¼ 2�i

T
ðaþ bÞb � TrðP@kxP@kyPÞ:

Substituting in the above expressions for a and b, we find

Tr ð½U�1@tU�½U�1@kxU�½U�1@kyU�Þ

¼ 2�i

T
½2 cosð2�t=TÞ � 2�TrðP@kxP@kyPÞ: (C6)
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We are now ready to compute the winding number corre-
sponding to U:

W½U� ¼ 1

8�2

Z
dtdkxdkyTrð½U�1@tU�

� ½U�1@kxU�½U�1@kyU�Þ � ðkx $ kyÞ

¼ 1

8�2

Z
dtdkxdky

2�i

T
½2 cosð2�t=TÞ � 2�

� TrðP½@kxP; @kyP�Þ

¼ 1

2�i

Z
dkxdkyTrðP½@kxP; @kyP�Þ: (C7)

The latter expression is precisely the Chern number C
[Eq. (13)] of the bands with quasienergy " ¼ �2�=T.

It is also possible to derive Eq. (C7) from simple physi-
cal considerations. To this end, let us calculate the number
of Floquet edge modes nedge corresponding to U in two

different ways. On one hand, we know that nedge ¼ W½U�.
On the other hand, it follows from the special form of U
that the number of Floquet edge modes is equal to the
number of edge modes of H with quasienergies between
�2�=T and 0. The latter number is equal to the total Chern
number C of the " ¼ �2�=T bands of H. In this way, we
deduce that nedge ¼ C. Combining these two results, the

identity (C7) follows immediately.
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