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We describe a many-body quantum system that can be made to quantum compute by the adiabatic

application of a large applied field to the system. Prior to the application of the field, quantum information

is localized on one boundary of the device, and after the application of the field, this information

propagates to the other side of the device, with a quantum circuit applied to the information. The applied

circuit depends on the many-body Hamiltonian of the material, and the computation takes place in a

degenerate ground space with symmetry-protected topological order. Such ‘‘adiabatic quantum transis-

tors’’ are universal adiabatic quantum computing devices that have the added benefit of being modular.

Here, we describe this model, provide arguments for why it is an efficient model of quantum computing,

and examine these many-body systems in the presence of a noisy environment.
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I. INTRODUCTION

The invention of the transistor [1] was a watershed mo-
ment in the history of computing: It provided a logic
element that was naturally robust to noise and error.
Quantum computers offer the potential to exponentially
speed up some computational problems (notably factoring
[2]) but have not been built, in large part, because quantum
information is notoriously fragile and quickly becomes
classical information in the presence of noise. In theory,
the quantum threshold theorem [3–5] asserts that these
difficulties can be circumvented, but in practice, the re-
quirements of this theorem are daunting. Here, we outline a
novel method for building a fault-tolerant quantum com-
puter that much more closely mimics the classical transis-
tor. In particular, we show how a suitably engineered
material can quantum compute by the simple application
of an external field to the sample. Applying the field
adiabatically causes quantum information to spatially
propagate across the device at the same time that a quan-
tum computation (quantum circuit) is enacted on the quan-
tum information, and this in turn allows us to design
clocked quantum computing architectures similar in con-
trol requirements to modern classical computers. While we
will not be able to rigorously show that our adiabatic
quantum transistors are fault-tolerant devices like classical

transistors, we present analytical and numerical arguments
as to why these transistors could be tolerant to errors and
thus a true quantum analog of the classical transistor.
The standard operating model for a quantum computer is

called the quantum circuit model [6]. In this model, one
begins with a system of initialized two-level quantum
systems (qubits), applies a temporal sequence of one-
and two-qubit gates enacting a circuit, and finally performs
a measurement (readout) of the qubits. In contrast to
modern classical computers where information propagates
spatially—advancing roughly one step across the computer
chip at each rise and fall of a clock voltage—most pro-
posed implementations of quantum computers fix the in-
formation spatially and bring the computational operations
to the data. Many researchers have noted this difference,
and a variety of quantum computing (QC) models were
subsequently developed in which quantum information
propagates spatially during a quantum computation; ex-
amples include spin-wave models where quantum infor-
mation moves ballistically down a quantum wire [7],
linear-optics QC [8], one-way QC where simple sequential
measurements push the quantum information across the
system [9], and some universal adiabatic QC models that
create a superposition of computational states spread
across the device [10–12]. However, none of these con-
structions yields architectures that mimic modern synchro-
nous sequential computer chips. In these chips, the rise or
fall of a global voltage is the trigger that causes the
information in the device to move spatially across the
device. While the control requirements for the clock signal
in synchronous sequential logic devices are by no means
trivial, they do not require the precise control, measure-
ment, and timing that make quantum computers notori-
ously difficult to build. Here, we introduce a new way to
mimic these classical control requirements that allows us
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to propose synchronous sequential fault-tolerant QC archi-
tectures. The key to our construction is a novel type of
quantum gadget that mimics the role classical transistors
play in modern computers and that we hence label an
adiabatic quantum transistor. While the outline we give
for an adiabatic quantum transistor is still very far from
experimental realization, the novel quantum computational
matter that such a device represents opens a new and
potentially promising path for the construction of a large-
scale quantum computer.

An outline of the paper is as follows. In Sec. II, we
introduce a model of an adiabatic quantum transistor. The
speed at which we can operate a quantum transistor is
related to the minimal energy gap between the ground-
state manifold and the first excited state during the appli-
cation of the applied field. In Sec. II A, we rigorously prove
that if the adiabatic quantum transistor enacts a single-
qubit quantum circuit with only identity gates, then the
energy gap is such that the adiabatic quantum transistor can
be enacted efficiently. In Sec. II B, we provide strong
numerical evidence from matrix product state simulations
that the same efficiency holds when the adiabatic quantum
transistor enacts an arbitrary single-qubit quantum circuit.
Next, in Sec. II C, we provide (weaker) numerical evidence
that the same results hold for our adiabatic quantum tran-
sistors for quantum circuits involving more than one qubit.
Having given evidence that the adiabatic quantum transis-
tor model is an efficient model of quantum computation in
an ideal world in which the system is isolated from its
environment, in Sec. III we turn to the question of whether
the model can be made fault tolerant. We give arguments
that if quantum transistors are configured to execute fault-
tolerant quantum circuits, then the tolerance of these cir-
cuits to errors is conveyed to our model. While we cannot
show that our model has a threshold theorem associated
with it, we can give physical reasons for why the model
will have a threshold. In Sec. IV, we discuss how the
unrealistic four-body Hamiltonian we use in our construc-
tions can be implemented using a Hamiltonian with only
two-body interactions, via perturbation theory gadgets, and
we discuss the effect that these gadgets have on the argu-
ments in the previous sections. In Sec. V, we present a
variety of constructions for quantum adiabatic transistors
that are likely to be useful, including systems that can be
used to spatially route quantum information and to perform
measurements. Finally, in Sec. VI, we conclude and list
important open questions for the adiabatic quantum tran-
sistor model.

II. THE ADIABATIC QUANTUM
TRANSISTOR MODEL

Our proposed adiabatic quantum transistor is a device
that operates in a manner similar to a classical logical
element such as a metal-oxide-semiconductor field-effect
transistor (MOSFET). See Fig. 1 for the analogy with a

classical transistor and Fig. 2 for a diagram of how
an adiabatic quantum transistor would work under this
analogy. Like a classical transistor, this device is made to
quantum compute via the application of an applied field to
the device. Prior to the application of the field, the quantum
information is localized to one side of the device, and the
system is in its ground state. After the application of
the field, the quantum information is on the opposite
side of the device, but with a quantum circuit applied to
this information, and the system remains in its ground
state. The exact circuit applied depends on the microscopic
details of the system—we propose that each such quantum
transistor be made to implement a small fault-tolerant
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FIG. 1. Graphical depiction of the operation of a classical
transistor. In a classical transistor such as the n-channel
MOSFET shown, the application of a voltage at the gate input
transforms the semiconductor in a manner such that a channel
opens between the drain and source. Note that this transition is
switched by the application of an electric field. Traditionally, we
think of this action as a switch, but there is another possible
interpretation. In particular, the application of the applied electric
field has the effect of copying the voltage at the source to the drain,
which we can interpret as an identity logical gate (a logical gate
that takes in a single bit and outputs this bit unchanged) on the
classical information encoded as a voltage. Quantum information
cannot be copied [14], so if we are to imagine a suitable analogy of
the transistor in the quantumworld, the quantum informationmust
move from the source to the drain. This result is what our proposed
adiabatic quantum transistors would achieve.

Field

Time

FIG. 2. Sketch of how an adiabatic quantum transistor be-
haves. With no applied field, the quantum information is on
one side of the device (shaded grey, left), and after the adiabatic
application of the field, the quantum information has propagated
to the other side of the device (shaded grey, right) with a unitary
U applied to the original information. The strength of the applied
field is initially zero and then is ramped up to a nonzero value,
during which time the quantum information is not localized to
either end of the device.
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quantum circuit for a single encoded logical gate and be
used to classically steer the quantum information across
the device. During the application of the field, the system
remains in its ground state; however, the energy gap to the
first excited state gets smaller. Thus, the device functions
as an instantiation of a universal adiabatic quantum com-
puter [10–12] with, however, the important differences that
the ground state of the system can be degenerate (and thus
the model could also be considered an open loop holo-
nomic computation [13]) and, more importantly, that the
information propagates spatially (thus the transistors are
modular.) This allows us to design clocked architectures
that very closely resemble today’s classical synchronous
digital computers (see Fig. 3). Here, we introduce the
details of adiabatic quantum transistors and present theo-
retical arguments and evidence from simulations that the
energy gap in the system shrinks sufficiently slowly so as
to allow adiabatic quantum computing. We further present
arguments for how our construction can be made fault
tolerant. This construction results in an implementation
of quantum computers in which precision gates, prepara-
tions, and measurements are replaced by sufficiently slow
and smooth application of fields, and the degree to which
one can suitably engineer a many-body quantum system.

Our starting point is the recent work that shows how it is
possible to use piecewise adiabatic deformation of a many-
body interacting quantum system [15–18] to perform a
quantum computation. In Ref. [16], we considered a cer-
tain many-body interacting quantum system in its ground
state whose Hamiltonian we adiabatically deformed by
turning on a strong field at the border of the device and
then slowly propagating this field across the material; this
field propagates quantum information through the device
in a piecewise fashion, riding the front of the applied field.
A major drawback of this method is that it requires one to

precisely control a microscopic applied field that is turned
on in a step-by-step process. This motivates the following
question: If we take the construction in [16] and, rather
than turning on the field in a piecewise fashion, we instead
turn on the field simultaneously across the entire device,
then does the device still perform the desired quantum
computation? Here, we answer this question affirmatively
and show how it leads to our adiabatic quantum transistor.
The many-body quantum system with the remarkable

properties given in [16] is described by a twisted version of
the Hamiltonian associated with cluster states. Cluster
states are the entangled states originally used to perform
measurement-based quantum computation [9,19]. To de-
fine the Hamiltonian of our system, we need a graph (with
vertices V and edge set E) where each vertex v is labeled
by an angle �v and is associated with a qubit. We define the
twisted cluster-state Hamiltonian as

HC ¼ �X
v2V

ðcosð�vÞ½X�v þ sinð�vÞ½Y�vÞ
Y

ðv;wÞ2E

½Z�w; (1)

where ½P�v denotes the operator P acting on the qubit at
vertex v; X, Y, and Z are Pauli operators; and we choose
units so that the coupling constant is unity. The ground
state of this Hamiltonian is a cluster state in a locally
rotated frame [16]. Note that the above Hamiltonian con-
tains interactions that are physically unrealistic because
they involve more than two qubits. Indeed, the complexity
of the interaction increases with the degree of the graph.
Fortunately, we need only consider graphs with degree of
at most 3 (corresponding to four-body interactions on a
honeycomb lattice graph), and it turns out that we can use
perturbation theory gadgets to obtain an effective
Hamiltonian of this form inside the low-energy sector of
a Hamiltonian containing only two-qubit interactions
[15,20,21] (see Sec. IV). We will assume here the
Hamiltonian in Eq. (1) and return to implementation in
two-qubit interactions later.
The results in Ref. [16] show that one can take a quan-

tum circuit and, using the recipe shown in Fig. 4, map it to a
twisted cluster-state Hamiltonian with the property that
adiabatically turning on fields along the x direction
(� Xv on vertex v) and turning off relevant noncommuting
terms in HC pushes information through the device in such
a way as to implement the computation defined by the
quantum circuit. In the analysis of Ref. [16], one can
separate out the rigorous argument that the computation
is performed from whether this procedure can be per-
formed adiabatically. Thus, if we consider the case of
turning on all of the fields simultaneously rather than
piecewise, we see that our analysis of the fact that a
quantum computation is performed carries directly over
from Ref. [16]. By contrast, although the energy gap in the
computation is independent of the size of the computation
in the piecewise construction of [16], when one turns on
the field at all locations simultaneously, this will no longer
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FIG. 3. Using quantum transistors, one can design a synchro-
nous architecture as shown. A router takes classical information
about what circuit should be executed (the quantum program)
and routes it to the appropriate action unit. These units are made
up of a collection of quantum transistors that can be used to
implement their given functions. This information is then di-
rected to the router, where another step in the circuit begins by
reading the next program action.
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be true. Therefore, in order to show that turning on the field
over the entire system still causes our device to execute the
desired computation, we must show that the inverse of the
energy gap between the ground state and the first excited
states grows at most polynomially in the size of the quan-
tum circuit being enacted. If, indeed, the inverse gap grows
this slowly, then the adiabatic theorem (for example,
Ref. [22]) guarantees that the system will remain in its
ground state throughout the evolution, conditional on turn-
ing on the field over a time scale polynomial in the size of
the quantum circuit.

To summarize, quantum circuits correspond, via Fig. 4,
to twisted cluster-state Hamiltonians, and the minimal
spectral gap of such a Hamiltonian determines how long
it takes, via adiabatic deformation, to achieve a high-
fidelity implementation of the circuit.

A. One-dimensional wire

We begin by analyzing the simplest instantiation of our
model: n qubits on a line with no twists in the Hamiltonian,
�v ¼ 0 for all v 2 V. In this case, we evolve the system
according to the time-varying evolution,

HðtÞ ¼ �fðsÞ
�
�½Z�n�1½X�n þ

Xn�2

i¼1

½Z�i½X�iþ1½Z�iþ2

�

� gðsÞ Xn�1

i¼1

½X�i; (2)

where f and g are suitably smoothly varying envelopes that
satisfy fð0Þ ¼ gð1Þ ¼ 1 and fð1Þ ¼ gð0Þ ¼ 1, and s ¼ t

T is

a scaled time. For simplicity, in this subsection, we will
assume fðsÞ ¼ 1� s ¼ 1� gðsÞ. Note that we have also
turned off the cluster-state term in Eq. (1) corresponding to
the first qubit. This implies that the ground state of the
Hamiltonian is twofold degenerate and thus encodes a
qubit [16]. Initially, this logical qubit is localized on the
first two physical qubits of the chain. At the end of the
adiabatic evolution, the qubit will be at the end of the chain
on the last qubit, with a Hadamard gate applied to the qubit
if the chain has even length. We can now ask the following
questions: What is the minimum energy gap for the above
evolution, and how does it scale with the length of the
chain? If the energy gap scales as an inverse polynomial in
the length of the chain, then the adiabatic theorem tells us
that propagating the qubit down this length n chain can be
done efficiently (i.e., in a time polynomial in n).
To answer these questions, we use the equivalence of

this model to two uncoupled transverse Ising models [23]
(see also Ref. [24]). These systems can be exactly diago-
nalized by a transformation of the spin model to a model
with noninteracting fermions. Following the work of
Doherty and Bartlett [23], but with additional attention to
the boundary terms, suppose that one defines a code with
the following ðn� 1Þ encoded Pauli operators:

�Xj ¼
8<
:
½X�1½X�3 � � � ½X�j if j is odd

½X�2½X�4 � � � ½X�j if j is even;
(3)

and

�Zj ¼
8<
:
½Z�j½X�jþ1½Z�jþ2 if j < n� 1

½Z�n�1½X�n if j ¼ n� 1:
(4)

Then, given these encoded operators, we can express the
Hamiltonian in Eq. (2) as the union of two uncoupled
transverse Ising models acting separately on the even and
odd qubits, with an additional boundary term:

HðsÞ ¼ �ð1� sÞ Xn�1

i¼1

�Zi � s

�
�X1 þ �X2 þ

Xn�3

i¼0

�Xi
�Xiþ2

�
:

(5)

Using standard techniques for diagonalizing such
Hamiltonians [25] (and the trick of adding an extra qubit
to make the system have quadratic fermion operators; see
Appendix A), this Hamiltonian can be shown to be equiva-
lent to a system of noninteracting fermions with

ClusterGate

FIG. 4. Dictionary for translating a quantum circuit into the
cluster-state Hamiltonian (see one-way QC [9]). First, express
the quantum circuit in the universal gate set above, where R� ¼
expð�i�Z=2Þ, H is a Hadamard gate, and the two-qubit gate is a
controlled-phase gate, along with preparations of the þ1 eigen-
value of X, jþi. Then, convert this circuit into a graph and
corresponding twisted cluster-state Hamiltonian by converting
the circuit graph to a twisted cluster-state graph using the
diagramed dictionary. For each of the unitary operators above,
the corresponding gadget is labeled by its input (shaded) and
output (unshaded) qubits. To construct the graph from the gate
circuit, replace each unitary gate with the corresponding graph,
merging output (unshaded) and input (shaded) qubits. For the
nonunitary preparation of jþi, the inputs are never merged, but
the output is merged with any input that this circuit element
proceeds. The end result of this construction will be a labeled (by
the angles in the R� gates) graph corresponding to a twisted
cluster-state Hamiltonian. Output qubits will not have been
merged and will be in the location of the quantum information
after the adiabatic procedure described in the text has been
completed.
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HlðsÞ ¼
Xl
k¼1

!kðsÞ
�
�y
k�k � 1

2

�
!kðsÞ2

¼ 4ð1� 2sð1� sÞ½1� cosð k�lþ1Þ�Þ; (6)

where �y
k is the creation operator for the kth fermion (see

Appendix A) and l ¼ bn2c or l ¼ bnþ1
2 c depending on

whether one is considering the even or odd chain. Note
that there is no k ¼ 0 energy level. From this equation, one
sees that the minimum energy gap occurs at s ¼ 1

2 , where

!kð1=2Þ ¼ 2 cosð k�
2ðlþ1ÞÞ, and is of order Oð1nÞ. Thus, since

the minimum gap scales inversely as a polynomial in the
length of this one-dimensional system, we see that if we
turn the field on in a time polynomial in this length, then
with high probability the quantum information will propa-
gate from one end of the system to the other end—with a
possible Hadamard gate applied, depending on whether n
is odd or even.

B. Single-qubit quantum circuits

Having demonstrated rigorously that the scaling for a
quantum wire has a gap that scales inversely with the
length of the wire, we now examine what happens when
we apply other single-qubit gates by using twisted
Hamiltonians with varying �’s. Here, we give strong nu-
merical evidence that the gap scales inversely as a poly-
nomial through the use of a matrix product state algorithm.
To simplify our study of the one-dimensional twisted
Hamiltonian, it is convenient to note that this model has
a duality. In particular, for a twisted Hamiltonian with
angles �i, where 1 � i � n� 2 and �i is the angle asso-
ciated with the ðiþ 1Þst qubit, it can be shown that if the
angles obey the symmetry condition �i ¼ �n�i�1 for all i
and additionally there is only one minimum in this model
(which is true numerically for small systems), then the
minimum energy gap occurs at the midpoint, s ¼ 1=2.

To see this, we proceed as follows. First, we define a
shorthand for the operators that are rotated combinations of
X and Y Pauli operators, namely,

½�k�i ¼ cosð�kÞ½X�i þ sinð�kÞ½Y�i: (7)

Now, consider the twisted one-dimensional cluster
Hamiltonian with a transverse field,

HðsÞ ¼ �ð1� sÞ
�Xn�2

i¼1

½Z�i½�i�iþ1½Z�iþ2 þ ½Z�n�1½X�n
�

� s
Xn�1

i¼1

½X�i: (8)

Define the following unitary operator:

U ¼ S

�
½Z�1

Yn
i¼2

½X�i
��Yn�1

i¼1

½CZ�i;iþ1

��Yn�2

i¼1

½Rð��iÞ�iþ1

�
;

(9)

where Rð�Þ ¼ expð�iZ�=2Þ, ½CZ�i;j is the controlled-

phase gate acting between qubits i and j, and S is the
gate that inverts the chain about its middle, swapping the
1st and nth, 2nd and ðn� 1Þst, etc., qubits. Then, one can
check that

UHðsÞUy ¼ �s

�Xn�2

i¼1

½Z�i½�n�i�1�iþ1½Z�iþ2 � ½Z�n�1½X�n
�

� ð1� sÞ Xn�1

i¼1

½X�i: (10)

Thus, in the case that �i ¼ �n�i�1 for 1 � i � n� 2,HðsÞ
has the same spectrum as Hð1� sÞ and, in particular, if
there is only one quantum phase transition (meaning, only
one value of s for which the spectral gap above the degen-
erate ground space collapses to zero in the thermodynamic
limit), then it occurs when s ¼ 1� s or s ¼ 1

2 .

Therefore, we used the technique of matrix product
states [26–28] to calculate the energy gap for systems
having up to 200 qubits with angles �i chosen uniformly
from ½0; 2�Þ satisfying the aforementioned symmetry con-
dition; for each system size that was examined, we per-
formed 200 simulation runs, each with a different choice of
angles. Figure 5 presents the resulting data, from which we
find that the energy gap data are well fit by a function that
scales as Oðn�1Þ, thus indicating that the twisting of the
Hamiltonian does not quantitatively change the scaling of

FIG. 5. Energy gap versus number of qubits for a one-
dimensional twisted Hamiltonian with random angles. The dual-
ity condition has been enforced so that the minimum is at s ¼ 1

2

(see text.) We took 200 samples with uniformly distributed
random angles. We also plot the smallest and largest energy
gaps that were obtained for a given number of qubits (dotted
lines), as well as the case with no rotated angles (which we
showed could be computed exactly) (nonbold line.) The data are
well fit by ð4:97� 0:02Þn�1.
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the energy gap with the length of the single-qubit circuit
being implemented.

C. Multiqubit quantum circuits

Finally, we turn to the question of the energy gap in the
case where the circuits involve two or more qubits. Here,
we note that if we take a square lattice with appropriate
boundary conditions, then the untwisted Hamiltonian
model is equivalent to a quantum compass model restricted
to a certain symmetry sector. Under this symmetry restric-
tion, the minimal gap occurs at s ¼ 1

2 , where the compass

model has equally competing interactions. Numerical evi-
dence from exact diagonalization on a square lattice for
this model presented in Ref. [29] demonstrates that the
minimal energy gap for this model with the symmetry
restriction scales as 1=n, where n is the size of (i.e., number
of qubits in) the square lattice. Thus, the real question is
what happens to the energy gap for more general circuits.

We consider a model on a square lattice with the full
twisted cluster-state Hamiltonian turned on interpolating to
a Hamiltonian with applied fields on across the entire
device. Label the qubits on the square grid by ði; jÞ. The
Hamiltonian we consider is

H ¼ ð1� sÞHC � s
XL
i;j¼1

½X�ði;jÞ; (11)

where L is the length of the lattice and we define ½P�ði;jÞs
with values of i or j lying outside the lattice as identity
operators to deal with boundary terms. Here, HC is the
twisted cluster Hamiltonian of Eq. (1) for a square lattice
with some particular choice of angles �ði;jÞ for each vertex

ði; jÞ in the lattice. We suppress the dependence on the �ði;jÞ
to avoid notational clutter.

If we apply a unitary operator Ux consisting of a
controlled-phase gate between all x-coordinate neighbors,
½CZ�ði;jÞ;ðiþ1;jÞ, to the Hamiltonian in Eq. (11), then the

cluster-state Hamiltonian is turned into a y-direction
striped twisted Hamiltonian, and the applied field turns
into an x-direction striped untwisted Hamiltonian.
Explicitly, this transformed Hamiltonian (which will have
the same spectrum) is given by

UxHUy
x ¼ � XL

i;j¼1

ð1� sÞ½�ði;jÞ�ði;jÞ½Z�ðiþ1;jÞ½Z�ði�1;jÞ

þ s½Z�ði;j�1Þ½X�ði;jÞ½Z�ði;jþ1Þ: (12)

If one instead applies Uy, consisting of controlled-phase

gates between all y-coordinate neighbors, ½CZ�ði;jÞ;ði;jþ1Þ to
the Hamiltonian in Eq. (11), then we see that this simply
swaps the direction of the stripes:

UyHUy
y ¼ � XL

i;j¼1

ð1� sÞ½�ði;jÞ�ði;jÞ½Z�ði;j�1Þ½Z�ði;jþ1Þ

þ s½Z�ði�1;jÞ½X�ði;jÞ½Z�ðiþ1;jÞ: (13)

If one swaps the qubits about the line x ¼ y in Eq. (13), we
obtain the striped Hamiltonian in Eq. (12), but with �ði;jÞ
replaced by �ðj;iÞ and s replaced by 1� s. Thus, if we

enforce �ði;jÞ ¼ �ðj;iÞ, we obtain a duality, and as in the

previous subsection, there will be a minimum at s ¼ 1
2 .

For systems that obey the duality condition �ði;jÞ ¼ �ðj;iÞ,
we have investigated the size of the energy gap using exact
diagonalization as well as a matrix product state approach.
The results of these simulations are plotted in Fig. 6. While
we can only obtain weaker evidence of an inverse poly-
nomial for this two-dimensional system, the data are at
least consistent with this hypothesis.

III. FAULT TOLERANCE OF THE ADIABATIC
QUANTUM TRANSISTOR

Having given strong evidence that our model can effi-
ciently produce a desired quantum circuit when all evolu-
tions are error-free, we now turn to the question of how this
model will behave in realistic settings where the system is
coupled to an environment. Here, we argue that, if one
uses standard circuit constructions for fault-tolerant QC
[3–5], this will be good enough to ensure robust quantum

FIG. 6. Energy gap versus number of qubits for the two-
dimensional twisted Hamiltonian with random angles and the
duality condition enforced (see text.) The initial Hamiltonian
was a rotated-cluster Hamiltonian for a square lattice [Eq. (1)],
and the final Hamiltonian was an X field over the entire device.
All data were obtained using exact diagonalization with accuracy
10�8, with the exception of the random angle data for n ¼ 25,
which were obtained using a one-dimensional matrix product
algorithm wrapped onto the two-dimensional lattice and have
accuracy 10�3. The data are well fit by ð1:63� 0:12Þn�1. We
also show the untwisted energy gap for comparison. The un-
twisted energy gap does not appear to be a power law because
there is an even-odd lattice effect: Examination of nonsquare
lattices gives us more confidence that the untwisted case is
indeed a power law.
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computation in the model. In particular, we can consider a
model in which each modular adiabatic quantum transistor
is configured to perform an encoded quantum gate, state
preparation, or measurement from a fault-tolerant quantum
circuit construction, including the error-correcting step.
We will argue that if one does this, then the standard
analysis of the success probability of such constructions
carries over to our model. Note that fault-tolerant QC
requires expunging entropy (usually via measurement),
but this can always be placed at the end of the fault-tolerant
block [30]. Thus, we envision here a model in which the
final measurements in error-correcting circuits are imple-
mented after each evolution of a quantum transistor. These
measurements can be done by either directly measuring the
relevant qubits, or via an adiabatic amplifier that dissipates
energy by the natural relaxation of the system, as described
in Sec. VA.

First, note the following positive result of using each
quantum transistor as a fault-tolerant circuit gadget. If one
is executing a quantum algorithm with L gates, then each
of these gates needs to be executed with accuracy � ¼
�0L

�1. To do this using fault-tolerant gates below the fault-
tolerant threshold requires [3–5] that the gadgets have
circuits of size Oðlogc��1Þ for a constant c. Thus, if the
energy gap in an adiabatic gate shrinks as an inverse
polynomial, the energy gap in the individual fault-tolerant
gadget will shrink as OððlogkLÞ�1Þ for a constant k.
Because each individual transistor executes a single en-
coded gate, this means that each adiabatic evolution need
only be polylogarithmically longer when executing larger
and larger quantum algorithms.

Second, and equally important, is the fact that a spectral
gap need only hold for some universal set of encoded gates.
In other words, we do not need to have a spectral gap for all
possible Hamiltonians of the type in Eq. (12); we only need
a gap for some particular set of logical gates. For example,
if one could prove that logical Hadamard, controlled-
phase, and �=8 gates have an appropriately large gap,
that would be sufficient for any algorithm in our scheme
to have a sufficiently large gap, since it would be com-
prised of solely these gates. Having a gap for only a
handful of specific models is a tremendously weaker re-
quirement than having a gap for all twisted-cluster
Hamiltonians. We expect that, at the very least, substantial
numerical evidence could be gathered in support of a gap
for a universal set, and indeed, our results in Fig. 6 already
constitute some measure of support for this statement.
Proving a gap for a universal set of logical gates remains
an important open problem related to this work.

A. An unrealistic but illuminating error model

We now turn to the question of whether fault-tolerant
gadgets will act to overcome errors in the adiabatic
transistor. We begin by considering the following simpli-
fied error model: Assume that at the beginning of the

computation the system is not in the ground state of HC,
but rather, it is in one of the excited states of HC. Note that
since the terms of HC commute [as expressed in Eq. (1)],
excited states of HC can be labeled by the list of eigenval-
ues of each of the terms, where the eigenvalue of each term
is eitherþ1 or�1. If one carries out the analysis described
in Ref. [16] regarding the computation that is performed if
one starts in such an excited state, then one sees that for
each of the terms in HC whose initial eigenvalue is þ1
there is a corresponding Pauli error in the circuit—in other
words, errors that take the form of starting in an excited
state of HC map directly onto errors in the circuit model.
For example, consider the one-dimensional case with no
rotated angles; if the initial state is in theþ1 eigenspace of
some term �½Z�i�1½X�i½Z�iþ1 in the middle of the chain,
then this corresponds to a Pauli Z error in the circuit model.
Furthermore, note that in this model, errors that are local

on the physical qubits of HC map to errors that are local in
the circuit since all terms in HC are localized on a few
qubits—so, for example, applying ½X�i to the system flips
only two eigenvalues of HC in the untwisted case. By the
linearity of quantum mechanics, we can extend this argu-
ment to initial preparations that are mixtures and coherent
superpositions of such errors. Thus, if we take our initial
system and expose it to an environment for an amount of
time proportional to the size of the quantum circuit we are
about to enact, then subsequent perfect adiabatic evolution
will produce errors in the quantum circuit model that are
commensurate with a local independent error model. (Note
that this model does have temporally correlated errors over
a few qubits, but this does not affect the existence of fault-
tolerant methods for overcoming these errors [3].)

B. Errors on a quantum wire

Of course, this model in which errors appear only at the
beginning of the computation is unrealistic. More gener-
ally, we may consider a model in which errors occur
throughout the adiabatic evolution. Consider such an evo-
lution for the single-quantum wire with an untwisted
Hamiltonian. As we detailed above, this model can be
mapped into two transverse-field Ising models. Any linear
operator, and hence any error, on this model can be ex-
pressed as one of three types of errors: errors that change
the energy of the system, errors that act on the degeneracy
(corresponding to the encoded qubit), and a combination of
these two errors. We will show that each of the first two
types of errors can be mapped to an independent error
model on the quantum circuit corresponding to the quan-
tum wire in an independent manner, thus taking care of the
third type of error. Finally, note that we use the term error
in a quantum-error-correcting sense to denote an error
operator, even when this arises from coherent error
sources. For example, our results deal with the errors in
the Hamiltonian description resulting from a perturbing
interaction on the system H0 ¼ H þ �V for small �, as
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well as for couplings of our system to an environment,
though the argument for these errors is slightly different
(see Sec. III B 3 for a discussion of this point).

1. Errors that change the energy of the system

We first consider errors that change the energy of the
system. The energy spectrum calculated in Sec. II A has
low-lying excited states, and thus we can reasonably expect
excitations into these levels. Assuming a detailed balance
in our error rates (which tends to be the case for weak
coupling errors that change the energy of a system [31]),
we consider a model in which the rate of errors that change

energy by �E scales as p0e
��E=kBT , where p0 is a bare

error rate, kB is the Boltzmann constant, and T is the
temperature of the environment.

Consider working at a temperature much less than the
bare energy gap of the system at s ¼ 0, which is � ¼ 2. In
this case, the only fermionic excitations that will occur
with high probability are those for which!ðsÞ< kBT. This
condition implies that only a constant fraction of fermions
will be created in such an error model throughout the
adiabatic evolution. Furthermore, note that because the
adiabatic evolution preserves the energy levels, it will
therefore proceed to drag the system along the excited
energy level. We see, therefore, that errors that excite a
constant fraction of fermions can be mapped back to ex-
citations at the beginning of the adiabatic evolution; as we
have already shown, this is not a problem for standard
quantum-error-correction procedures.

Finally, we note a technical condition: We have assumed
a detailed balance error model, but for the lowest-lying
energy levels, where the strength of the interaction be-
tween the system and environment is greater than the
energy gap, this condition might not hold. However, these
energy levels are, under our temperature assumption, al-
ready assumed to be in error and, therefore, covered by our
argument (i.e., they are, at most, a constant fraction of the
error, the fraction being directly related to the ratio of the
energy gap and the perturbation energy strength). See
Fig. 7 for a graphic depicting the relevant energy levels
and the partition of these errors into different categories in
our argument.

To summarize, under the reasonable assumption that
high-energy excitations are suppressed by a Boltzmann
factor, we see that errors in the quantum wire that change
the energy of the system result in independent errors on the
quantum circuit being enacted.

2. Errors on encoded quantum information

The situation for errors that do not change energy but
instead act on the degeneracy of the quantum wire is
slightly more complex. To see what happens, we consider
the two logical operators encoded in the degenerate ground
state of the quantumwire, which for a chain of odd length n
are given by

�X n ¼
Ynþ1
2

i¼1

½X�2i�1 and �Zn ¼ ½Z�n
Yn�1
2

i¼1

½X�2i: (14)

The first n� 1 operators are the encoded operators of the
code described in Sec. II A. Note that these two logical
operators commute with the entire Hamiltonian during the
adiabatic evolution. At the beginning (end) of the compu-
tation, this information is localized onto the start (end) of
the quantum wire. Thus, during both of these times, the
quantum information in the wire is susceptible to decoher-
ence from local errors. For example, undesired or impre-
cisely controlled terms in our initial Hamiltonian will be
able to act nontrivially on the initial quantum information.
However, during the middle of the computation, we will
argue that the information in the degeneracy is protected
and, furthermore, that we can adjust the adiabatic schedule
in such a way that the system only spends a constant
amount of time during which the quantum information is
exposed to local decoherence at the beginning and end of
the adiabatic evolution.
In particular, consider the logical �Xn. By expanding this

logical operator in terms of the underlying physical opera-
tors, we see that this error requires a combination of OðnÞ
local ½X�i errors on odd qubits. When we map these errors
over to the transverse Ising model, these are errors on the
Ising model, but are now two-qubit terms like �Xi

�Xiþ1 for
i � 2 or �X1. Individually, these errors can change the
energy of the system (and we have previously argued that
such errors can be dealt with), but they can also have an
effect that keeps the energy constant. To evaluate this
effect, for example, for information at the end of the
computation, we can evaluate the portion of the error
amplitude that preserves the vacuum of the transverse

Ising model: e ¼ Qn
2

i¼0hvj �Xi
�Xiþ1jvi, where jvi is the vac-

uum (the single �X1 error can be thought of as a two-qubit X
error on the fictitious extra qubit).
For the transverse Ising model with periodic boundary

conditions in the thermodynamic limit, the nearest neigh-
bor XX correlations are given by [32]

hvj½X�i½X�iþ1jvi ¼ 1

�

Z �

0
��1ðkÞ½cosðkÞ þ ��dk; (15)

where

�ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 þ 2� cosk

p
(16)

and, to relate back to the quantum wire model, � ¼ s
1�s .

This can be transformed into

hvj½X�i½X�iþ1jvi ¼ 1

�s
ð2s� 1ÞK½4sð1� sÞ�

þ 1

�s
E½4sð1� sÞ�; (17)

where K and E are the complete elliptic integrals of the
first and second kinds, respectively. We are interested in the
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amplitude for the product of n of these correlation func-

tions, hvj½X�i½X�iþ1jvin=2. Series expanding this about
s ¼ 1, we find

hvj½X�i½X�iþ1jvin=2¼1�1

8
nðs�1Þ2þ1

4
nðs�1Þ3

þ
�
2n2�53n

128

�
ðs�1Þ4þOððs�1Þ5Þ:

(18)

If ð1�sÞ<Oðnð�1=2Þ��Þ for � > 0, we see that this function
vanishes as n ! 1.

Thus, using correlation functions for the relevant
degeneracy-preserving operation, we see that the ampli-
tude for the degeneracy-preserving error is exponentially
small (as a function of n) except for s near s ¼ 1 in a

window of size Oðn�1
2��Þ for � > 0. In and of itself, this

scaling would imply that the model is in trouble: A linear
interpolation for this would imply spending Oð ffiffiffi

n
p Þ time in

this region, during which the quantum information can be
decohered. However, note that the energy gap for this
model is large during the beginning and end of the adia-
batic path. Thus, instead of using a linear interpolation as
in Eq. (2), one can use an interpolation that spends only a
constant amount of time in the window where these errors
can affect the logical quantum information.

In particular, if we maintain the adiabatic condition for
each infinitesimal evolution of the system, we can obtain a
schedule for interpolating our Hamiltonian that spends
significantly more time where the energy gap is smaller.
In particular, consider the adiabatic condition for the one-
dimensional quantum wire. As we show in the Appendix,
the energy spectrum for a wire of length 2l is given by Eq.
(A22). To maintain the adiabatic condition for the lowest
energy level, infinitesimally we must satisfy [33]

ds

dt
¼ �!2

l ðsÞ , dt ¼ ds

�!2
l ðsÞ

; (19)

where � is the accuracy that we desire for our adiabatic
evolution relative to the ideal evolution. Performing this
integration and enforcing t ¼ 0 at s ¼ 0 yields the solution

t¼ 1

4�
csc

�
�

lþ1

� �
�l

2ðlþ1Þþ tan�1½ð2s�1Þcotð �
2ðlþ1ÞÞ�

�
:

(20)

Inverting this equation for s yields a schedule for adjusting
s as a function of time, which runs for a total time of

T ¼ �l

4�ðlþ 1Þ cscð
�

lþ 1
Þ (21)

and scales linearly as l for large l (thus, there is no Grover-
type speedup using this schedule). The amount of time this
schedule spends with 1� � � s � 1 is

t� ¼ T

2�

�
1þ 2ðlþ 1Þ

�l
tan�1½ð2�� 1Þ cotð �

2ðlþ1ÞÞ�
�
: (22)

For the case relevant to the degenerate error model where

� ¼ l�1=2, this is bounded by 1
� . Thus, this schedule spends

only a constant amount of time in the region where the
logical output quantum information is susceptible to noise.
In conclusion, for the single-qubit quantum wire case,

we see that the quantum information in the degeneracy is
vulnerable to degeneracy-preserving errors only at the
beginning or end of the computation and in a setting that
is no worse than the standard circuit model with indepen-
dent errors. We can adjust the adiabatic schedule so as to
not spend much time in these regions. Actually, this is no
different than how we would want to operate a quantum
computer with or without adiabatic quantum transistors: To
keep the effective error-corrected error rate down, one
needs to spend a minimal amount of time letting the
quantum information simply decohere. In our model, this
means that we need to move faster than linearly out of the
region where the encoded quantum information is exposed
to errors. We note that the above analysis works for both
open system errors and also for (small) deviations in the
Hamiltonian we implement, i.e., perturbative system
errors.

3. Static errors

In the previous subsection, we argued that an adiabatic
quantum transistor configured to act as a quantum wire
would behave, given an appropriate adiabatic schedule, as
a quantum circuit with an independent error model. In this
argument, we have explicitly used an argument that relied
on detailed balance. Thus, one might wonder how the
argument works when there is no environment and the
errors occur solely from a static perturbation on the wire.
Here, we argue that these errors also give rise to an
independent error model, at least for a quantum wire
with no gates.
In particular, consider a model in which a static term is

added to our adiabatic evolution H0ðsÞ ¼ HðsÞ þ �V for
the case of a quantum wire. We will assume that V is a sum
of local operators (for example, one- or two-qubit opera-
tors) and that the strength of the interaction is perturbative
(� � 1, since we have fixed to unity the energy scale used
in the twisted cluster-state Hamiltonian and the final ap-
plied field). First note that the contribution of V to splitting
the degenerate ground state of the wire will be exponen-
tially suppressed except at the beginning and end of the
adiabatic evolution, as we have argued above. The reason
for this is exactly the same: Local operators do not act on
this space except when multiplied together (except at the
beginning and end of the adiabatic evolution). Thus, a term
like �V will act like a single-qubit error term only for the
time we spend with the information localized on either end
of the wire. Using the scheduling trick we have described
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previously, this means that it acts like an independent error
(from a static term) at the beginning and end of the com-
putation represented in the wire. Thus, we see that the
static perturbing term will not act on the degeneracy in a
manner that is inconsistent with an independent error
model.

Moreover, many types of errors will hardly effect the
degeneracy at all since it is known [34] that the cluster state
has symmetry-protected topological order [35,36] and the
degeneracy and spectral gap for such systems are known to
be stable [37,38]. (See also Refs. [39,40] for other schemes
for quantum computation in a symmetry-protected topo-
logically ordered phase.)

Next, we turn to the case in which there is a static
perturbation but where we now concern ourselves with
the effect this has coming from portions of V that do not
act on the degeneracy. These perturbations have the effect
of changing the energy levels, in terms of both the eigen-
values and the eigenvectors of the system.

Consider first the effect of the perturbation on the ei-
genvectors of the system. We begin by recalling the argu-
ment that shows that the quantum wire Hamiltonian
correctly transmits information in the absence of a static
perturbation. Recall that the quantum wire Hamiltonian is
given by

HðtÞ ¼ �fðsÞ
�
�

Xn�2

i¼1

½Z�i½X�iþ1½Z�iþ2 � �½Z�n�1½X�n
�

� gðsÞ� Xn�1

i¼1

½X�i: (23)

Initially, we can define the logical operators �X ¼ ½X�1½Z�2
and �Z ¼ ½Z�1, and the system is in theþ1 eigenstate of the
vertex operators ½Z�i½X�iþ1½Z�iþ2 (1 � i � n� 2) and
½Z�n�1½X�n. By suitable multiplication of the encoded logi-
cal operators with these vertex operators, we can express
the logical operators as a pattern of ½X�i operators on
qubits, for i < n, and a Pauli operator on the last qubit:
�X � ðQn�1

i¼1;iodd½X�iÞ½X�n, �Z � ðQn�1
i¼1;ieven½X�iÞ½Z�n, where

we have assumed, for simplicity, that n is odd. At the
end of the evolution, we will be in the þ1 eigenstate of
all of the ½X�i, 1 � i � n� 1. This result then implies that
the information will be correctly transmitted down the
quantum wire since under this condition the logical opera-
tors are just bare Pauli operators on the last qubit.

Suppose, on the other hand, that we are initially in a state
in which we are in the �1 eigenvalue eigenspace of a
single vertex operator. Then, the above argument
about the logical operators could still be applied, but the
effect would be that one of the logical operators might
acquire a phase. For example, it might end up that �X �
�ðQn�1

i¼1;iodd½X�iÞ½X�n, �Z � ðQn�1
i¼1;ieven½X�iÞ½Z�n, which rep-

resents the quantum wire being faithful up to a Z error.
Generalizing, we see that initial states that are not in the
þ1 eigenstates translate into single-qubit errors on the wire

(so that multiple vertex operators in �1 eigenstates repre-
sent multiple errors). A similar argument applies to the end
of the evolution: If we are in �1 eigenstates of some final
½X�i operator, this will correspond to a single-qubit error on
the wire. Note that it is possible for the errors in our model
to cancel out.
How does the static perturbation changing the eigenval-

ues affect this argument? Consider first the effect of a
perturbation on the initial ground state and expand its
effect using perturbation theory. In particular, if jc gð0Þi
is the initial ground state of the unperturbed system and
jc 0

gð0Þi is the initial ground state of the perturbed system,

then the first-order correction will be

jc 0
gð0Þi	jc gð0Þiþ�

X
k�g

hc kð0ÞjVjc gð0Þi
Eg�Ek

jc kð0ÞiþOð�2Þ;

(24)

where jc kð0Þi are the excited energy states of the unper-
turbed system. Now, notice that if V is a sum of local terms,
each local term will act to change the eigenvalues of at
most three vertex operators. Thus, the sum above will not
be over all excited states but will only include excited
states with at most three vertex operator eigenvalues
flipped. Each of these terms represents errors that are
localized in space-time on the quantum circuit version of
the quantum wire, as per our argument in the previous
subsection. If we were to end up in the þ1 eigenstate of
the final Hamiltonian’s ½X�i terms, these terms would then
each represent a wire in which at most three single-qubit
errors occurred during the evolution. In other words, the
portion of the wave function arising to first order in per-
turbation theory, if dragged to the þ1 eigenstates of the
½X�i operators, acts as if one had (nearly) independently
erred the quantum information transmitted through the
quantum circuit. A similar argument can be made for the
effect of being in the wrong final state. Thus, we see that
the effect of being in the wrong initial and final eigenspace
is, for a weak local perturbation, equivalent to an error that
is local in space and time in the quantum circuit.
Having shown that the effects of changing the eigenvec-

tors of the ground state can be modeled as an independent
error model on the quantum wire, we now turn to the effect
of static perturbations on the eigenvalues. The worry here
is as follows: The effect of the perturbation may cause the
energy gap to close, and therefore the adiabatic evolution
will actually cause the evolution not to preserve the ground
state (subspace). This effect will certainly occur in the
system, but the real question is whether this looks like an
independent error model or not.
To see that this effect is unlikely to be a problem,

consider a model in which each of the individual terms
in the Hamiltonian of the quantum wire, Eq. (23), is
randomly perturbed by ��. When we convert this model
into the free-fermion model, as discussed in previous
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sections, we see that this will result in A and B matrices
from Eq. (A3) that are like the band diagonal matrices in
Eqs. (A5) and (A6), but now with random diagonal and off-
diagonal elements added to these matrices. One can then
numerically diagonalize the equation for the free-fermion
energies. In Fig. 8, we show both the unperturbed free-
fermion energies and also the perturbed energies for a
chain of length 20 and a perturbation strength of � ¼
0:1. From this figure, we see that, while the perturbation
causes the energies associated with the free fermions to
change by ��, the spectrum is qualitatively the same. In
particular, we can now imagine sweeping adiabatically
from s ¼ 0 to s ¼ 1. The energy levels that will cause
problems are then the free fermions with excitation ener-
gies below �. At all stages where the fermion energies are
greater than �, there is a cost to create such a fermion that
is greater than �, and the perturbing potential V will not be
strong enough to achieve this transition. Since only a
constant fraction of the energy levels cross below the �
creation energy line (similar to Fig. 7), this means that the
possible errors created are a constant fraction of those that
could occur on the quantum wire. This, then, is nothing
more than an independent error model on the system. Thus,
at least for the kind of error model we have assumed, static
perturbations result in an independent error model.

We have argued (but not rigorously proven) in this
subsection that the effect of a static perturbation on a

quantum wire is no different from an independent error
model on the quantum circuit corresponding to this wire.

4. Summary

In this section, we have argued that errors on quantum
adiabatic transistors configured as a quantum wire act
similarly to errors within the standard quantum circuit
model with independent (or slightly time-correlated)
errors. Errors that change energy were argued to only act
as a constant fraction of independent errors in the quantum
circuit model. Errors that preserved the degeneracy could
be severe, but only during the initial and final durations of
the adiabatic evolution when the quantum information is
localized on either end of the quantum wire. By spending
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FIG. 7. When one exactly solves the one-dimensional wire, the
result is that the wire behaves like a collection of free fermions.
Here, we show the energies for creating each of these fermions in
a chain of length 80 (thus, all the energy levels are sums of these
energies) as a function of the scaled time s. See Eq. (A22) in
Appendix A. For high-energy excitations, if the environment is
cool enough, then these energy levels are essentially never
excited (solid lines.) At energies comparable to the temperature
of the environment, errors will no longer be suppressed by a
Boltzmann factor (dashed lines). At the lowest energies, the
interaction strength between the environment and the system is
small enough that the error model will not be governed by
detailed balance. However, assuming that these energy levels
are changed by any process whatsoever is no worse than our
assumption that all errors below the temperature cutoff lead to
real errors.
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FIG. 8. Static perturbations. Consider a quantum wire with
repeated Hadamard gates, but where the individual interactions
in, for example, Eq. (23) are randomly perturbed by a random
amount in the range of �� to �. This plot is done for a wire of
length 20. This model can be mapped to the transverse Ising
model, and above we plot the energy of the free fermions that
occur in this model. One sees that, while the energy cost for each
fermion with the perturbed field is modified, qualitatively the
cost for each individual fermion remains approximately the
same. This result implies that the model will behave similarly
to the unperturbed model: In the absence of other errors, the
worst this can do is cause a level crossing near s ¼ 1=2, which
will at most introduce a constant number of errors in the model.
Furthermore, the effects of other errors occurring on this per-
turbed model will be similar to how we argue they will act in the
main text. In particular, there will be a constant fraction of errors
occurring when the system is coupled to a thermal bath and
obeys detailed balance.
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less time in the adiabatic evolution during these stages, we
showed that these errors act as constant rate errors at the
beginning and end of the computation. Finally, we ana-
lyzed how static (not varying in time) perturbative inter-
actions would modify these arguments and gave evidence
that these errors behave in a similar manner. Thus, adia-
batic quantum transistors configured as quantum wires
seem to have errors that act as independent single-qubit
errors in the standard quantum circuit model. The case of a
full quantum circuit with multiple qubits is more difficult
to analytically or numerically analyze. Some of our argu-
ments, for instance, the effect of local perturbations on the
initial twisted cluster-state Hamiltonian that are local in the
space-time of the quantum circuit enacted by the adiabatic
evolution, carry over directly to this more complicated
case. The full general case is an open question for future
work.

IV. PERTURBATION THEORY GADGETS

Finally, let us mention issues arising from the use of
perturbation theory gadgets in implementing the many-
qubit interactions in HC. Perturbation gadgets produce an
effective, low-energy many-qubit interaction via strong
and weak single- and two-qubit interactions. The strength
of these interactions is related to the ratio of the weak and
strong interactions (hence the name.) For example, one can
engineer an effective three-body interaction at second or-
der in perturbation theory by using only physically realistic
two-body interactions.

If one wishes to only apply fields (single-qubit interac-
tions) to our model, it appears that one cannot use Bartlett-
Rudolph gadgets [20] but, instead, must use gadgets that do
not have encoded quantum information [21] (this is be-
cause the former gadgets have encoded quantum informa-
tion that is not acted upon by single-qubit operations). At
temperatures much lower than the energy gap in the an-
cillas of these constructions, one can effectively treat the
errors arising from these gadgets as local errors in our
above model. In particular, as in prior work [15,20,21],
we can treat the imperfections arising from the use of
perturbation gadgets as terms that cause errors on our
system. Thus, the only major quantitative change resulting
from using these gadgets is that the strengths of the engi-
neered interactions will be lower because of the perturba-
tive nature of these gadgets. The best possible choice of
gadget will depend on the physical system being used and
on the relevant noise sources that are present.

The main question that arises from the use of perturba-
tion theory gadgets is whether they will cause extra prob-
lems when the quantum transistor is configured to carry out
a fault-tolerant quantum circuit element. In the supplemen-
tary section of Ref. [15], we analyzed the effects of per-
turbation theory gadgets for implementing a simple
adiabatic scheme that performs a two-qubit gate. The
main result of this analysis was that the use of perturbation

theory gadgets to achieve these many-body interactions
does not substantially damage the usefulness of these
gadgets in the adiabatic constructions. However, the use
of gadgets has two drawbacks: (1) the eigenvectors are
slightly changed because of the inexact nature of the
effective many-qubit interaction, and (2) the eigenvalues
are also slightly changed, and thus the gap is made slightly
smaller. For the case analyzed in Ref. [15], there were two
energy scales, � and �. We can choose units where � ¼ 1.
The effective three-qubit interaction in the scheme is of
strength Oð�2Þ, and thus the gap in this construction is of
this order. The imperfections in the gadget construction led
to corrections to the energy of order Oð�3Þ. Furthermore,
the eigenvectors of the ground state were corrected in
amplitude to order Oð�2Þ. The main conclusion of this
calculation was that the effects of the perturbation theory
gadgets were small in the perturbation parameter �.
What can we say about the similar calculation for the

adiabatic quantum transistor? The first question is how
the gadgets will affect the initial and final eigenvectors
of the system. Bartlett and Rudolph [20] considered ex-
actly this problem for their encoded gadget scheme and
showed that the new eigenvectors behave as if there is an
independent error model acting on the state when it is used
for measurement-based quantum computing. One can per-
form exactly the same sort of calculation for the perturba-
tion theory gadgets that use ancillas as mediators, and the
conclusion is exactly the same: The lowest-order errors
created using these gadgets change the state to act as if it
has been independently erred. The result is not dissimilar
to that of our Eq. (24), but now for the more complicated
quantum transistor with a quantum circuit. The other ques-
tion is what effect the gadgets have on the energy gap. We
note here that the corrections to the effective interaction for
the perturbation theory gadgets can be thought of as extra
static Hamiltonian terms that are weaker from the pertur-
bative factor used to create the gadgets; hence, these errors
are covered by the argument in the previous section.
The use of perturbation theory gadgets in building adia-

batic quantum transistors is clearly one of the largest draw-
backs in our scheme and one of the reasons why we
consider this work as an outline for how an adiabatic
quantum transistor will work. Recent work using, for
example, more physically realistic Affleck-Kennedy-
Lieb-Tasaki states [39–43], however, indicates that these
gadgets may not be a necessary component of a quantum
transistor construction.

V. BUILDING BLOCKS FOR ADIABATIC
QUANTUM TRANSISTOR ARCHITECTURES

Finally, let us give details about some building blocks
for adiabatic quantum transistors that will be useful for
building a larger quantum computer architecture that
closely mimics today’s modern clocked classical computer
architectures. These include constructions for a system that
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performs measurements and for a system that can be used
to take classical information and use it to route quantum
information in a device built with an adiabatic quantum
transistor. The former is essential for fault-tolerant con-
structions, which must purge the entropy of quantum er-
rors, and the latter is important for building architectures
that are modular and synchronous.

A. Adiabatic measurement amplifier

Here, we describe the details of an adiabatic measure-
ment amplifier. This amplifier can be used to take quantum
information encoded on a single quantum wire (in the
circuit being adiabatically simulated) and copy it to mul-
tiple qubits in a fixed basis and then read out this informa-
tion. Consider a tree with alternating internal levels of
degree 2 and 3, as shown in Fig. 9. Call the degree-1
external node that is connected to an internal degree-3
node the root of the tree and label it r. Label the unique
child node of r by r0, and let all other degree-1 nodes be
called leaves. Initially, information will have logical op-
erators �Z ¼ Zr and �X ¼ XrZr0 . The operation of the am-
plifier is as follows. First, single-qubit X terms are turned
on while turning off all of the graph stabilizers. Then, aP

iZi term was turned on across all of the leaves. One then
waits for observed decay events from the leaves: No decays
indicates the system is in the �1 eigenstate of �X initially;
Oð#leavesÞ decays indicate the system is in the þ1 eigen-
state of �X initially. The utility of this device is that it turns
information encoded into one qubit into information cop-
ied (in a particular basis) to many qubits, thus facilitating
the measurement of this information.

To see how this process works, we note that, while we
defined the information as initially encoded into �Z ¼ Zr

and �X ¼ XrZr0 , we could have chosen equivalent operators
by multiplying by graph stabilizers. Thus, if we multiply
the �Z operator by graph stabilizers from vertices of degree
3 and the graph stabilizer from the leaves, we obtain an
operator that has X or I on the nonleaf vertices and is X on
all of the leaves. Similarly, if we multiply a �X operator by a
graph stabilizer from vertices of degree 2 on any simple
path from a root to a leaf, we will obtain X operators on the
nonleaves and a Z on the leaf. This latter fact is indepen-
dent of which path to the leaf one chooses, which is a
symptom of the fact that the information is encoded into an
error-correcting code. Indeed, it is not hard to see that by
multiplying graph stabilizer elements one can obtain ZiZj

terms that act only on i and j, which are leaves of the graph.
These are the stabilizer elements for the classical repetition
code: jbi ! jbi
k. When we turn on the X terms on the
nonleaves, we will thus have taken the information at the
root (and its child) and encoded it into this code (note that
the roles of �X and �Z are reversed in this process because of
an extra Hadamard at the beginning of this process).
Stabilizer code arguments [15,16] make this statement
rigorous: We promote the graph stabilizer to logical Zs,
and then the local X terms become products of logical Xs.
The information as described by the encoding above is
untouched by this process, and thus the adiabatic evolution
described above does not affect this information.
An equivalent way to derive this graph is to take the

circuit for copying information recursively using
controlled-NOTs and prepared ancilla states, convert it to
a graph state, and then simplify this state by noting, for
instance, that two nodes on a line can be eliminated from a
graph because they correspond to H2 ¼ I, where H is the
Hadamard gate.

B. Adiabatic router

It is convenient to design a device that can route quan-
tum information in making a modular clocked architecture.
The goal of the router construction is to design a system
such that application of a field across different portions of
the device can be used to steer the quantum information,
conditional on where the field has been applied. The basic
method for achieving this goal is the gadget shown in
Fig. 10. The gadget shown can be used to produce a state,
conditional on where in the device a field is applied.
Initially, the Hamiltonian for this gadget is a sum over
graph stabilizers for all vertices:

Hi ¼ �ðZ2X1 � Z2X10 þ Z2Xo þ Z1Z10ZoX2Þ: (25)

Then, this Hamiltonian is adiabatically turned off while
either of the two following Hamiltonians is turned on:

Hf ¼ �ðX1 þ X2Þ (26)

Gate Cluster

FIG. 9. An adiabatic measurement amplifier. A binary tree
with alternating degree 2 and 3 internal vertices (as shown)
can be used to take information encoded into the �X eigenstates
at the root into a code across the leaves by turning on an X field
across the shaded qubits. This code has a stabilizer given by ZiZj

terms on leaves; i.e., it is the repetition code. The logical
information initially at the root in the X eigenstate is in this
process copied into the Z eigenstates of the leaves. Thus, if one
turns on a

P
iZi interaction, the information initially in the X

eigenstate will be separated in energy by twice the number of
leaves. The natural relaxation of this system to its ground state
will result in Oð#leavesÞ relaxation events, which can be indi-
vidually (noisily) observed, hence amplifying a measurement in
the X eigenvector basis.

ADIABATIC QUANTUM TRANSISTORS PHYS. REV. X 3, 021015 (2013)

021015-13



or

H0
f ¼ �ðX10 þ X2Þ: (27)

The point of this process is that, depending on which of
these is turned on, the state of the qubit o will differ
between being a þ1 eigenstate of X and a �1 eigenstate
of X.

To see this result, first consider the case of ending inHf.

Define a stabilizer code using the following operators:

S1 ¼ X1X10 ; S2 ¼ X1Xo;

�Z1 ¼ Z1Z10ZoX2; �X1 ¼ X1;

�Z2 ¼ Z2X1; �X2 ¼ X2;

(28)

where S1 and S2 are the stabilizers for the code and �Pj are

the encoded Pauli operators for this code. Then, we see that
we can express the initial Hamiltonian as

Hi ¼ �½ �Z1 þ �Z2ðI � S1 þ S2Þ� (29)

and the final Hamiltonian as

Hf ¼ �ð �X1 þ �X2Þ: (30)

Since S1 and S2 commute with these Hamiltonians, the
subspaces defined by the eigenvalues of these operators
will remain constant. The initial Hamiltonian will have a
ground state that is in the �1 eigenstate of S1 and the þ1
eigenstate of S2. Initially, the system will also be in theþ1
eigenvalue eigenspace of �Z1 and �Z2. Upon application of
the fields as represented by Hf, the information in these

latter two encoded qubits will be adiabatically dragged
(with no energy-level crossings) to þ1 eigenvalues of �X1

and �X2. Thus, at the end of this evolution, the system will
be in the þ1 eigenvalue eigenspaces of S2, �X1, and �X2,
while being in the �1 eigenvalue eigenspace of S1. In
particular, Xo ¼ �X1S2, which implies that the system is
in the eigenstate of Xo with eigenvalue þ1.
On the contrary, consider the case ending in H0

f. Define

the code similarly to above,

S01 ¼ X1X10 ; S02 ¼ X10Xo;

�Z0
1 ¼ Z1Z10ZoX2; �X0

1 ¼ X10 ;

�Z0
2 ¼ Z2X10 ; �X2 ¼ X2:

(31)

Then, we can express the initial Hamiltonian as

Hi ¼ �½ �Z0
1 þ �Z0

2ð�I þ S01 þ S02Þ� (32)

and the final, primed, Hamiltonian as

H0
f ¼ �ð �X0

1 þ �X0
2Þ: (33)

From these expressions, one can deduce that the system
will start in the �1 eigenstate of the �Z0

2, S01, and S02
operators and in the þ1 eigenstate of �Z0

1. At the end of
the evolution, the system will end up in the þ1 eigenstate
of �X0

1 and
�X0
2 and in the �1 eigenstate of S01 and S02. Since

Xo ¼ �X0
1S

0
2, this implies that at the end of this adiabatic

evolution the system will be in the �1 eigenstate of Xo.
Thus, we see that, depending on whether the final

Hamiltonian is Hf or H
0
f, the qubit located at o is in either

theþ1 or�1 eigenstate of Xo. Note that this depends only
on where the field Hf is applied. Furthermore, note that

there is flexibility in spatially achieving this result. For
example, in Fig. 10(b) we show a larger version of this
gadget. Depending on whether the applied field is in either
of the two circles, this produces a þ1 or �1 eigenstate of
the last qubit at o. The exact location of this applied field is
not important, except for the point that the field entirely
spans one of the two ‘‘legs’’ in the construction. Of course,
while we would ideally have a field profile that exactly
vanishes outside the oval in Fig. 10, imperfections in the
field will affect the qubits on the boundary; we leave open
the question of quantifying the errors introduced by real-
istic control fields.
One can extend this idea to then create a router, where

the routing depends only upon where a field has been
applied. The basic idea is rather simple: If one has the
ability to conditionally create one of the two orthogonal

1

2 o

1

o o

(a)

(b)

(c)

1
2

1
2

FIG. 10. Gadgets and router. Here, we show the stages in
understanding a router. In (a) we show the basic gadget that
can be used to conditionally prepare a �1 eigenstate of Xo,
depending on where the field is applied. (b) is the same con-
struction, but now demonstrating the flexibility of the construc-
tion to the applied field. The applied field need only cover the
desired leg in order to get the correct conditional behavior. (c) is
a nonoptimized router construction. If we apply the field every-
where but one of the two circled regions, this will route the
quantum information incoming at points 1 and 2 and output it at
points 10 and 20, applying either the identity gate ð1; 2Þ ! ð10; 20Þ
or the swap gate ð1; 2Þ ! ð20; 10Þ, depending on which circled
region contains a nonzero field. Here, the black nodes are twisted
by �

4 , the grey nodes by� �
4 , and the gradient-shaded node by �.
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states by the location where the field is applied, then
one can use this as input into a controlled swap gate. In
Fig. 10(c) we show, for example, such a construction
(no attempt has been made to optimize this construction)
based upon the conditional swap-gate construction of
Smolin and DiVincenzo [44]. If one applies a field every-
where but in one of the two circled regions, then this routes
the quantum information depending on which of the two
circled regions is left out. In particular, information coming
into 1 and 2 is thus routed (permuted) to output information
at 10 and 20.

VI. CONCLUSION

In conclusion, we have introduced a new method for
building a quantum computer based upon the notion of an
adiabatic quantum transistor. Two notable benefits of this
method are that the system is robust to timing errors (as in
universal adiabatic QC) and that it is modular in nature
(something that prior universal adiabatic QC models
lacked). Instead of requiring increasingly accurate timing
and control mechanisms, this model requires one to focus
on increasing the fabrication quality of engineered inter-
actions in many-qubit systems. We have argued that the
noise model for our scheme will follow an independent
error model and thus is amenable to stabilization by stan-
dard methods of fault-tolerant quantum computing. While
our actual construct is not optimized for current experi-
mental implementation, the mere existence of devices like
the one we describe, combined with recent experimental
progress in building highly controllable quantum simula-
tors [45], gives us hope that adiabatic quantum transistors
are a viable new path toward building a large-scale quan-
tum computer.
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APPENDIX: TRANSVERSE ISING MODELWITH
BOUNDARY-TERM SPECTRUM

The relevant model on l qubits is

HlðsÞ¼�ð1�sÞXl
i¼1

½Z�i�s

�
½X�1þ

Xl�1

i¼1

½X�i½X�iþ1

�
: (A1)

Because of the single-qubit term on the first qubit, both the
initial and final Hamiltonian are nondegenerate. It is con-
venient to add an extra qubit, called the 0th qubit, and
consider the Hamiltonian

H0
lðsÞ ¼ �ð1� sÞXl

i¼1

½Z�i � s

�Xl�1

i¼0

½X�i½X�iþ1

�
: (A2)

Then, when we restrict to the þ1 eigenspace of ½X�0 (½X�0
commutes with the Hamiltonian), we will obtain HlðsÞ.
Also note that if we conjugate HlðsÞ by Q

l
i¼1½Z�i, we will

obtain HlðsÞ with the ½X�1 term flipped in sign. Therefore,
the �1 eigenvalue of the ½X�0 eigenspace has the exact
same spectrum as the þ1 eigenvalue of the ½X�0 eigen-
space. Thus, we know thatH0

lðsÞwill have exactly the same

spectrum as HlðsÞ but will be twofold degenerate, with the
degeneracy corresponding to the eigenvalue of ½X�0. Thus,
if we are interested in the gap of HlðsÞ, we can work
equally well with H0

lðsÞ, which we now assume.

The computation of the energy spectrum of H0
lðsÞ fol-

lows the techniques of Lieb, Schultz, and Mattis [25]. After
a Jordan-Wigner transform [46], the Hamiltonian can be
written as

H0
lðsÞ¼�s

Xl�1

i¼0

ðcyi �ciÞðcyiþ1þciþ1Þ�ð1�sÞXl
i¼1

ð2cyi ci�IÞ:

(A3)

We can express this as

H0
lðsÞ ¼

Xl
i;j¼0

�
Ai;jc

y
i cj þ

1

2
ðBi;jc

y
i c

y
j þ Bj;icicjÞ

�
þ �I;

(A4)

where A is a ðlþ 1Þ � ðlþ 1Þ symmetric matrix given by

Aij¼�sð�j;iþ1þ�i;jþ1Þ�2ð1�sÞ�i;jð1��i;0Þ; (A5)

B is a ðlþ 1Þ � ðlþ 1Þ antisymmetric matrix given by

Bij ¼ �sð�j;iþ1 � �i;jþ1Þ; (A6)

and � ¼ ð1� sÞl. Then, we can find new fermion opera-

tors, �k, which are linear combinations of the ci and cyi
such that

H0
lðsÞ¼

Xl
k¼0

!k�
y
k�kþ

�
1

2

Xl
i¼0

Aii�1

2

Xl
k¼0

!kþ�

�
I (A7)

or, after simplifying,

H0
lðsÞ ¼

Xl
k¼0

!k

�
�y
k�k � 1

2

�
; (A8)

with the !ks being the square roots of the eigenvalues of
4M [25], where

M ¼ 1

4
ðAþ BÞðA� BÞ: (A9)
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Note the second Hamiltonian follows by direct calculation
but also because of the traceless nature ofH0

lðsÞ. Explicitly,
we find that

Mij ¼ s2�i;jð1� �i;lÞ þ ð1� sÞ2�i;jð1� �i;0Þ
þ sð1� sÞð�i;jþ1 þ �j;iþ1Þ: (A10)

It is easy to check that the (un-normalized) vector

j�i ¼ Xl
i¼0

�
s� 1

s

�
l�ijii (A11)

is an eigenvector ofM with eigenvalue 0 for all values of s.
This implies that there is always a mode with zero energy,
which is exactly a consequence of the fact that the
Hamiltonian is always twofold degenerate. As argued
above, we can ignore this fact.

We can find the eigenvalues of M by using an ansatz of
the form

jvi ¼ Xl
i¼0

sin½�ðiþ 1
2Þ þ��jii: (A12)

If we apply M to this vector, then we obtain three equa-
tions: two boundary terms and a term from the bulk. Define
	 ¼ sð1� sÞ. The bulk term gives us the equation

	 sin½�ði� 1
2Þ þ�� þ ð1� 2	� �Þ sin½�ðiþ 1

2Þ þ��
þ 	 sin½�ðiþ 3

2Þ þ�� ¼ 0; (A13)

where � is the eigenvalue. After some tedious math, this
can be turned into

� ¼ ð1� 2	Þ þ 2	 cos�: (A14)

The two boundary terms give the equations

s2 sinð�2 þ�Þ þ 	 sinð3�2 þ�Þ ¼ � sinð�2 þ�Þ (A15)

and

	 sin½�ðl� 1
2Þ þ�� þ ð1� sÞ2 sin½�ðlþ 1

2Þ þ��
¼ � sin½�ðlþ 1

2Þ þ��: (A16)

This first equation can be rearranged to yield

ð1� sÞ sinð�2 þ�Þ ¼ s sinð�2 ��Þ; (A17)

while the second one can be manipulated to become

ð1�sÞsin½�ðlþ3
2Þþ��¼�ssin½�ðlþ1

2Þþ��: (A18)

Solving these equations for 1�s
s , we obtain the equation

sinð�2 ��Þ
sinð�2 þ�Þ ¼ � sin½�ðlþ 1

2Þ þ��
sin½�ðlþ 3

2Þ þ�� : (A19)

This can be reduced to

cos½�ðlþ 2Þ� ¼ cosð�lÞ; (A20)

which has solutions for

� ¼ �k

lþ 1
; (A21)

where k is an integer. When k ¼ 0, this equation does not
have a solution for general s. Fortunately, we already have
the k ¼ 0 eigenvector, so we have found the relevant non-
zero eigenvalues. For k � 0, the phase shift� can be found
by solving the transcendental equation of Eq. (A17).
Thus, we see that the eigenvalues are

!kðsÞ2 ¼ 4ð1� 2sð1� sÞ½1� cosð k�lþ1Þ�Þ (A22)

for k ¼ 1; 2; . . . ; l. Each of these is minimized for s ¼ 1=2,
for which the eigenvalues become

!kð1=2Þ2 ¼ 2þ 2 cosð k�lþ1Þ ¼ 4cos2ð k�
2ðlþ1ÞÞ: (A23)

From this result, we see that !k’s smallest value is Oð1=lÞ,
occurring when k ¼ l.
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