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We demonstrate a fully cryogenic microwave feedback network composed of modular superconducting

devices connected by transmission lines and designed to control a mechanical oscillator that is coupled to

one of the devices. The network features an electromechanical device and a tunable controller that
coherently receives, processes, and feeds back continuous microwave signals that modify the dynamics
and readout of the mechanical state. While previous electromechanical systems represent some com-
promise between efficient control and efficient readout of the mechanical state, as set by the electro-

magnetic decay rate, the tunable controller produces a closed-loop network that can be dynamically and
continuously tuned between both extremes much faster than the mechanical response time. We demon-
strate that the microwave decay rate may be modulated by at least a factor of 10 at a rate greater than 10*
times the mechanical response rate. The system is easy to build and suggests that some useful functions
may arise most naturally at the network level of modular, quantum electromagnetic devices.
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I. INTRODUCTION

As researchers improve their ability to engineer quan-
tum electromagnetic (EM) devices, we should start to look
beyond individual components and find experimental and
theoretical techniques that exploit coherent networks of
quantum devices [1]. For instance, it is important to con-
sider whether useful functions are best achieved at the
network level of interacting, modular, and increasingly
generic devices. This approach is routine in classical elec-
tronics. For example, an unreliable operational amplifier
(““op amp”’) may be combined with a reliable impedance
network in a feedback configuration to realize a reliable
amplifier. This strategy is usually more efficient than de-
veloping high-quality amplifier chips for each new use. If
quantum engineering is to consider this approach, it would
greatly benefit from some systemization of device and
interconnection laws, in very rough analogy to Kirchoff’s
laws’ systemization of practical electronics. Because clas-
sical network theory has so many established, practical
techniques, we might expect that hybrid approaches toward
this end may handle network complexity better than
approaches entirely native to physics.

Feedback engineering addresses two types of problem:
Feedback can enhance a system’s robustness and/or tune
the dynamics of an otherwise untunable system [2,3].
As a general rule, modern quantum EM devices feature
increasingly monolithic and insular designs, as robustness
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is generally prized over tunability in single-device physics.
In the field of electromechanics (also known as opto-
mechanics), for example, devices in which mechanical
simple harmonic oscillators are coupled to itinerant EM
fields have become increasingly powerful; see, e.g.,
Refs. [4-10]. Mechanical oscillators are more isolated
from thermal baths, interactions with distinct EM modes
are better controlled, and quantum effects are starting to be
observed [5-10]. But, as a consequence, these devices are
often modulelike and unadjustable: Important character-
istics like EM center frequency and linewidth are often
fixed by construction, and often a single EM input-output
(I0) port admits access to all internal mechanisms
[6-8,10]. In principle, tunability may be won back without
compromising device integrity by employing a tunable,
coherent controller that exchanges continuous coherent
signals with this port. Just as a reliable, negative feedback
network can ameliorate the unreliable gain of an op amp,
perhaps combining a tunable coherent feedback network
with an insulated electromechanical circuit may bring out
the best of both, and at low cost.

Here, we demonstrate a coherent feedback network of
EM devices, a superconducting electromechanical device
[5,6,11-17] and a superconducting microwave controller
[18,19], that provides us with a type of dynamic flexibility
previously unavailable in electromechanics. Namely, while
previous electromechanical systems make some compro-
mise between better mechanical control and better me-
chanical measurement capabilities, we demonstrate that
this network may be dynamically modulated between
both extremes. While our network is too complex for
traditional electromechanical models [4,20,21], it requires
only three components, all of which are accessible to
superconducting circuit labs (and feature regularly in our
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own work [6,10,13]), and is efficiently and intuitively
modeled as a linear feedback system [1,2,22]. In other
words, this network is easy to build (given familiar tech-
nologies, specifically, devices that are *“‘generic” in our
lab) and its mechanisms are easy to intuit. But, it is difficult
to model quantitatively, meriting methods that naturally
handle complex networks. We do not characterize perform-
ance in the quantum regime, but these devices feature
regularly in such work and these capabilities are novel
regardless. Moreover, because the network is linear and
driven by Gaussian fields, the network characterization
done in the classical regime should apply in the quantum
one [1,22-27]. Thus, we use the term ‘“‘coherent” in the
sense that an interferometer or resonator is coherent, which
is the primary prerequisite for quantum dynamics.

Because a systematic network theory perspective
is relatively novel in electromechanics [25,28,29], this
article features a pedagogical modeling section that out-
lines the modeling method and its advantages. (Rigorous
derivations are well covered in the literature, e.g.,
Refs. [1,22-25,30,31].) Also, because it employs theoreti-
cal approaches developed by an electrical engineering
community, familiar concepts in electromechanics are
described in more detail than usual. The outline of the
paper is as follows: In Sec. II, we introduce the network
construction and its physical intuition. Section III presents
our measurements of this network, its essential operation,
and agreement with the network model. Section IV
describes the procedure for constructing the network
model, and we conclude in Sec. V.

II. THE NETWORK AND PHYSICAL INTUITION

Many superconducting microwave realizations of elec-
tromechanical systems consist of a high-quality microwave
LC resonator (hereupon “‘resonator’’), in which the capaci-
tance is modulated by a spring-loaded, mechanical simple
harmonic oscillator (hereupon “MO’) [6,11,13-17].
Motion in this MO adjusts the capacitance of the resonator
and thus acts on microwave power in the resonator. Also,
the voltage potential across the capacitor creates a
Coulomb force that acts on the MO, and thus microwave
power in the resonator acts on the position of the MO. Via
an inductive transformer (or some other “input coupler”),
this high-quality resonator couples to a transmission line,
which serves as the 10 port through which the electrome-
chanical device is probed, driven, and controlled. These
microwave systems are accurately described at a quantum
level with a model that is formally equivalent to the models
used to describe electromechanical systems of all scales
and realizations [11,20,21,32].

The choice of an input coupler in an electromechanical
system typically represents a compromise. For example,
microwave signals inside a resonator leave the resonator
more slowly if it couples to a transmission line weakly.
As a consequence, microwave signals in resonators with

weak couplers both affect and are affected by the MO
more strongly: The weak coupling causes electro-
mechanical effects to integrate for a longer time. But, too
much integration can also be undesirable. For example,
weak couplers frustrate high-bandwidth detection of
mechanical motion by low-pass filtering mechanical infor-
mation on EM signals that leave the resonator and by
encouraging loss of the same through parasitic channels.
The usual distinction between these two regimes is
whether or not the resonator linewidth k, is narrower
than the MO’s center frequency (). More strongly (weakly)
coupled systems with «, > (x,<()) are known
as “unresolved-sideband” (“‘resolved-sideband’’) systems.
Experimentalists typically use resolved-sideband systems
to control and prepare specific states in MOs [6,7,10,11].
Unresolved-sideband systems are most useful when high-
bandwidth readout of the MO’s motion is the priority
[33,34]. Sometimes, intermediate regimes are ideal
(k, = Q) [9,13]. In all electromechanical systems, to our
knowledge, though, the resonator’s coupling strength is
fixed at the time of construction.

How might one construct a more flexible system that
could be tuned dynamically between the resolved- and
unresolved-sideband regimes? Our solution was inspired
by considering what usually goes “outside” electrome-
chanical circuit (EMC) devices. Many superconducting
microwave electromechanical experiments conducted by
us [6,10,11,13] and others [12,14,15,32] are partitioned
into an “‘upstream” EMC and a “downstream” cryogenic
low- or near-quantum-limited noise-temperature amplifier,
for high-fidelity readout of microwave probes. Our group
typically uses near-quantum-limited Josephson parametric
amplifiers (JPAs) for readout [18]. JPAs are composed
of a 20-dB directional coupler followed by a single-port
“tunable Kerr circuit” (TKC) [18,19], a nonlinear micro-
wave resonator whose center frequency is drive power
dependent and tunable with an applied magnetic flux. The
essential novelty in this work is that rather than measure the
signal that comes out of the JPA, a portion of the signal
emitted by the EMC and passed to the JPA is fed back into
the EMC coherently. This feedback gives microwave sig-
nals more opportunities to interact with the MO, which is
the essential quality of a weakly coupled system. Moreover,
because the JPA is dynamically tunable, we can choose
whether or not this feedback occurs and access both
coupling regimes dynamically. Also, because the critical
components, the EMC and the JPA, are generic in our lab,
we can pursue this scheme by using existing devices.

Housed in a dilution refrigerator, our network is the
interconnection of a single-port EMC, a JPA, and a com-
mercial microwave tee [35] [Fig. 1(a)]. The EMC and the
JPA are connected to one tee port each, while the remain-
ing tee port serves as the overall 10 network port. The
network output is amplified by a cryogenic high-electron-
mobility transistor (HEMT) for analysis. While the EMC
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FIG. 1. (a) An experimental schematic of the coherent
feedback network. A microwave tee connects an EMC to a
JPA—here broken down into its directional coupler (DC) and
TKC subcomponents—and provides an overall input-output
port. The input port is typically driven by a strong electro-
mechanical coupling tone, but this tone is typically cancelled
at the DC, preventing its strong carrier from driving the TKC
nonlinear. Microwave signals are detected at the output port.
(b) Conceptual schematic of coherent interconnections. Ideally,
the JPA acts as an overcoupled and wideband linear resonator
with a tunable center frequency.

and the TKC were originally designed for different experi-
ments and were mounted in separate sample boxes—and
interconnections were made using cm-scale-length copla-
nar waveguides and low-loss, semirigid coaxial cables—an
analogous network could be fabricated on a single Si
substrate. Although the specific EMC used here is some-
what incidental, it is a new design of this type [17], built
from a 4.672-GHz center frequency and an overcoupled
K;/27 = 2.8 MHz lumped-element resonator; employing
a mechanical membrane oscillator with an effective mass
of approximately 10 ng, center frequency of ) = 27 X
713.6 kHz, and intrinsic linewidth of I'y = 27 X 0.81 Hz;
and in which each photon exerts a force on the MO
(in coherent amplitude units) of g, = A X 2.3 Hz. In this
report, we do not pump our JPA; effectively, it is operated
as a gain-one amplifier or, more precisely, as a linear
resonator whose center frequency can be tuned by applying
either magnetic flux or a moderate amount of microwave
drive power. We do, however, typically employ a cancel-
lation tone that prevents the carrier of any strong, electro-
mechanical coupling tone that drives the network from
reaching the TKC and driving it nonlinear.

The network’s operation is depicted conceptually in
Fig. 1(b). Microwave signals leaving the EMC and carry-
ing information about the motion of the MO are split three
ways at the tee: Most of the amplitude is split evenly
between the network output and the JPA input, and a small
amount is reflected. Modeling the JPA as a linear resonator
with a tunable center frequency, the JPA reflects its signal
portion with a tunable phase shift. Similarly split by the
tee, a portion of the JPA-reflected signal interferes with the
EMC-to-output signal, enhancing or diminishing the rate
of mechanical information leaving the network. This same
interference also enhances or diminishes the effective
microwave linewidth of the network, as seen by the micro-
wave input port. Finally, the portion of the JPA-reflected
signal fed back to the EMC can exert a force on the MO,
amplifying or counteracting its motion. All of these effects
are controlled by a single, continuous parameter—the JPA
center frequency—and both effects improve as the JPA
bandwidth exceeds the bandwidth of the EMC and the
EMC bandwidth exceeds the MO’s center frequency.

There are many ways to view this network. For instance,
this network may be interpreted as being analogous to a
traditional EMC, except with a user-controlled knob that
modifies the coupling between the transmission line and
the resonator [36]. (The resonator center frequency may
also be affected.) The specific network in Fig. 1(b) can be
viewed as a form of microwave stub tuning [36,37],
although the JPA bandwidth generalizes the usual model
of a “stub.” This network may also be interpreted as a
feedback control system: Rather than make a room-
temperature measurement of the JPA output, this signal is
fed back directly to the EMC without leaving the cryostat.
In this work, the first interpretation aids physical intuition
but is not predictive. The second has a physical intuition
and is quantitatively predictive but is limited to the specific
wiring configuration used here. The third, however, is also
physically intuitive and predictive but may be applied quite
generally.

Although it is not our focus here, it is worth clarifying
that coherent feedback approaches are distinct from
measurement-based feedback approaches. For example,
in a measurement-based version of our system, coherent
signals produced by the EMC and the JPA would be
measured by an incoherent controller (e.g., a computer),
which would then synthesize new signals that act back
on the MO [24,25,33,34]. While a measurement-based
approach can alter the response function of a MO, the
system’s effective EM linewidth is unchanged [33,34].
Here, the JPA’s transformation of the microwave signal is
ideally unitary (i.e., adds no noise). This network is thus
fully coherent and thus fundamentally different from
any measurement-based control system [1,22-25,30,38].
For example, it has been noted that coherent feedback
in the quantum regime can outperform even ideal
measurement-based feedback when one considers the

021013-3



JOSEPH KERCKHOFF et al.

PHYS. REV. X 3, 021013 (2013)

cost of the controller’s action—a measurement-based con-
troller must act to cancel both environmental disturbances
and quantum projection noise [24,25]. At a more practical
level, coherent control systems tend to be physically
compact [19,25,29-31,39,40]. We note that techniques
borrowed from network systems theory are vital for the
tractable modeling of many coherent networks [1,22].
Many of the demonstrations in the next section are
analogous to the widely used electromechanical technique
of sideband cooling [4,6,7,11,15,32,41-43]. The canonical
sideband-cooling system consists of an EMC, or some
other electromechanical device, driven at a frequency
below the resonator’s center frequency. Mechanical cool-
ing via this method is usually explained in analogy to early
ion-trapping experiments [4,20,21,44]. A small portion of
the low-entropy EM drive is inelastically scattered by a
MO inside the resonator, with each scattered photon having
gained or lost a phonon’s worth of energy. If the center
frequency of the resonator is higher than the drive fre-
quency, then more frequency up-converted photons are
scattered than down-converted photons. Consequently,
the MO gives up energy, on average, to the EM field per
scattering event, reducing its motion. This phenomenon is
usually visible through “blue” (up-converted) and ‘“‘red”
(down-converted) sidebands to the “coupling tone” (drive
carrier) emitted by the resonator. A cooling MO is indi-
cated by more blue than red sideband power, less total
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sideband power, and sideband-power spectral densities that
are broader than the intrinsic MO linewidth. To connect our
coherent feedback network to sideband cooling, we point
out that there are equivalent, coherent feedback interpre-
tations of these phenomena [25,28,29]. These interpreta-
tions involve mechanically modulated EM signals that
interfere with the coupling tone, say, at the input coupler.
Dependent on this interference, EM power is continuously
added to or removed from the resonator in such a way to
counteract mechanical motion.

III. RESULTS

The network’s response to microwave probe tones is
depicted in Fig. 2. By monitoring the network’s S;; phase
response (i.e., the phase with which microwave tones are
reflected by the network), we see that the microwave
response may be finely tuned by using a static, magnetic
flux bias applied to the JPA. Viewing the response over a
2-GHz frequency range in Fig. 2(a), the JPA center fre-
quency strongly varies with applied flux. The other visible
resonances, the narrow-band EMC and the very broad-
band resonances that arise from standing-wave resonances
between the subcomponents, are only affected as the JPA
tunes through them. Focusing on the 10-MHz band around
the intersection of the JPA and EMC resonances [which
occurs in the vicinity of a flux coil bias of 56 nA; see
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FIG. 2. The network’s microwave response. (a) The network’s 4-6-GHz S,; phase response to microwave probes as the flux bias is
tuned. The JPA resonance shifts with flux and couples to EMC (4.7-GHz) and standing-wave (4.2- and 5.5-GHz) resonances as it passes
through them. (b) Detail of the response around the EMC-JPA intersection. (c) Simulation of response detail using a linear control
systems model. (d) Phase response line cuts at fixed 50-, 56.2- and 56.5-p A flux coil biases, as marked by blue, black, and green
arrows in (b). The JPA is far detuned from the EMC at 50- A coil bias but near detuned for the others. The brown arrow represents an
electromechanical coupling tone that is on resonant with the 50-uA-biased network. The blue and red arrows represent =714-kHz

electromechanical sidebands [see Fig. 3(a)].
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Fig. 2(b)], we see that as the flux increases and the JPA-like
resonance

approaches, the EMC-like resonance first broadens
slightly, then abruptly narrows and shifts higher, then
becomes undercoupled, and finally rebroadens and returns
to its original center. These effects indicate that the two
device modes are coupling coherently and hybridizing.

Microwave-related parameters may be estimated, given
these 2-GHz and 10-MHz probe ranges. Using a linear
control systems model built from interconnected device
models (employing Matlab’s control systems toolbox; see
Sec. IV), we infer an EMC coupling linewidth of
k., =2m X 2.7 MHz and an internal loss rate of k; =
27 X 0.1 MHz; a JPA coupling linewidth of y = 27 X
50 MHz and an internal loss rate of y; = 27 X 5 MHz;
and a tee-to-EMC round-trip phase shift of ¢y = —1.9 rad
and a tee-to-JPA round-trip phase shift of § = —0.11 rad.
These parameters are consistent with parameter estimates
from the devices in isolation. Although it is difficult to
distinguish losses internal to these overcoupled devices
from interconnection losses, a network model that is
dominated by losses internal to the EMC and the JPA is
more consistent with observations than a network model
dominated by interconnection losses. Similarly, the tee is
assumed to be ideal and properly terminated, reflecting
1/9th of the incident power with a 180° phase shift and
splitting the remaining power between the other two ports.
With these parameters, the linear control systems model
accurately reproduces the network’s microwave response
as the flux varies; see Fig. 2(c).

Only the EMC-like resonance (i.e., the resonance in the
vicinity of 4.672 GHz) has significant coupling to the MO.
How this resonance responds to applied flux is more
easily seen by taking a few, constant-flux line cuts through
Fig. 2(b). Figure 2(d) depicts three such line cuts. With the
JPA far detuned (50-uwA bias current), the microwave
phase response indicates an overcoupled, «,/27 =
3.0 MHz linewidth network resonance at 4.672 GHz.
Note that even with the JPA far detuned, the network
causes the effective linewidth of the EMC-like resonance
to differ from «,. + k;, the linewidth of the bare EMC. At
different flux biasings, this resonance frequency and line-
width vary together, each by values of the order of the
EMC’s coupling linewidth.

In Fig. 3, we see that the dynamics of the MO also varies
with applied flux. Far detuning the JPA once more (back to
50-u A flux coil bias) and driving the network with a strong
coupling tone at the 4.672-GHz network resonance [and
protecting the TKC with a cancellation tone through the
directional coupler; see Fig. 1(a)], the thermal motion of
the MO is visible via red and blue inelastically scattered
network output signals, i.e., sidebands. The power spectral
densities of these sidebands [Fig. 3(a)] indicate a mechani-
cal center frequency of ) =27 X 713.6 kHz and an
intrinsic damping rate of I'y =27 X 0.81 Hz. Next,
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FIG. 3. The network’s mechanical response. (a) Employing
n, = 1.6 X 10%, the power spectral density (PSD) of the blue,
thermally excited mechanical sideband is shown for three flux
settings [the same flux settings as in Fig. 2(d)], keeping the
coupling tone fixed at 4.672 GHz. (b) The points represent the
observed linewidth of blue thermal sidebands as the JPA is tuned,
employing a coupling tone at a fixed frequency and power such
that n, = 1.6 X 10°. The line is a theoretical prediction with no
free parameters. (c) From the same experiment, the observed
changes in the MO center frequency and theoretical prediction
are shown. (d) CE, as inferred from ring-down measurements
and measured red and blue sideband powers. Left: CE for
different coupling tone frequencies when the JPA is far detuned.
Right: CE for a fixed coupling tone and different JPA tunings.
The lines are theoretical predictions. The numbered call outs in
the right plot correspond to the JPA tunings used in Fig. 4(a).

keeping the coupling tone fixed at the same power and
frequency but varying the flux bias, the mechanical motion
inferred from the sidebands varies. In particular, as the
network’s resonance moves higher and its linewidth nar-
rows in Fig. 2(d), in Fig. 3(a) the apparent mechanical
motion is damped more heavily (sideband linewidth
becomes I' >T)), is cooled, and its center frequency
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moves (6€) # 0). These effects are analogous to sideband
cooling in traditional electromechanical systems [4]. In
our system, these effects may be interpreted as sideband
cooling or as the JPA acting as a coherent controller [25],
exerting different control laws for different amounts of
applied flux.

It is important to note that n,, the number of photons in
the EMC induced by the coupling tone, does not change as
the TKC (the tunable component of the JPA) is tuned.
While the network’s response to probes and mechanical
sidebands varies with the TKC state, the coupling tone
is canceled at the directional coupler before the TKC
[Fig. 1(a)] and is thus unaffected by the TKC’s center
frequency. More precisely, the mean power in the coupling
tone is dissipated in the terminated port in the directional
coupler through interference with the cancellation tone,
while information-carrying fluctuations about the mean
power are not. These fluctuations are fed back to the tee
and the EMC after reflecting off the TKC, while the mean
coupling power experiences an entirely different network
without TKC feedback. Except for inducing 7., this mean
coupling power is unimportant and it carries no informa-
tion. The assumption of a constant n. is made throughout
and would have resulted in very inaccurate predictions in
Figs. 3(b) and 3(c) (discussed next) if incorrect.

While Fig. 3(a) establishes the qualitative mechanical
response, the rest of the figure considers it quantitatively.
Driving the network with a coupling tone fixed at a
frequency just 13 kHz below the (4.672-GHz) network
resonance with the JPA far detuned and with a fixed power
such that n, = 1.6 X 10° is expected, Figs. 3(b) and 3(c)
depict the linewidth and center frequency of the mechani-
cal sidebands as a function of flux biasing. Starting from a
linewidth of I' = I'j with the JPA far detuned, I" reaches a
maximum of 277 X 56 Hz, with a simultaneous frequency
shift of 6Q) = —2# X 24 Hz, when the flux bias is
56.4 pA. This flux bias corresponds to a JPA center fre-
quency that is 3.4 MHz higher than the coupling tone and
an undercoupled network response with an approximately
300-kHz internal loss rate. If internal device losses were
lower, this effective internal loss rate would be lower, and
the maximum I' on Fig. 3(b) would have been higher.
Because the near-resonant coupling tone has no significant
effect on the mechanical state when the JPA is far detuned,
it is natural to interpret the JPA as ““controlling” the MO as
it is tuned through the EMC. Using a control systems
model (here employing standard-issue Mathematica tool-
kits) and no free parameters, predictions for the expected
mechanical linewidth and frequency shift as a function of
flux bias are also included in Figs. 3(b) and 3(c).

One metric for quantifying the efficiency with which the
network controls the MO is the probability that a mechani-
cally scattered photon dissipated by the network is a fre-
quency up-converted photon minus the probability it is a
down-converted photon. This ““cooling efficiency” (CE) is

independent of n,. but is coupling-frequency-dependent
and is positive when the network cools the MO (and
is negative when it amplifies thermal motion). The maxi-
mum CE obtainable over all coupling frequencies is

O /JQ?% + k2/4, where k, is the total, EMC-like reso-
nance linewidth. In Fig. 3(d), left plot, we plot CE as a
function of coupling tone frequency and with the JPA far
detuned. These are measured by first inducing coherent
oscillations in the MO well above their thermal occupation
through amplitude modulation of the coupling tone at
frequency (), and then stopping the modulation and mea-
suring the red and blue sidebands emitted by the network
as the mechanical state reequilibrates [45]. Data are aver-
aged over 25 trials. The power emitted by both sidebands,
P.q and Py, decays exponentially (‘“‘rings down”) in
time at rate I', while CE = (Pyjye — Pred)/(Poiue + Pred)
is constant. The extrema of the CE are =0.42, implying a
K,/2m = 3 MHz linewidth network coupled to the signifi-
cantly slower /27 = 714 kHz MO, an unresolved-
sideband network. Underlying these data is the expected
CE versus coupling frequency, using independent network
and MO calibrations. Driving the network as in Figs. 3(b)
and 3(c) and tuning the JPA, but now making ring-down
measurements, the CE peaks at 0.98 at 56.4 uA. A CE of
0.98 is only possible for networks with, at most, «,, /27 =
300 kHz, a resolved-sideband network, and a tenfold
reduction in k, that is consistent with the thermal data
estimate above. Such a reduction was apparent from
microwave S;; measurements in Fig. 2, but CE represents
an effective S, measurement from the mechanical-bath
“port” to the microwave output. The CE also reaches a
minimum of —0.04 at 57.8 pA, indicating that the net-
work resonance can also dip slightly below its far-detuned
JPA resonance. An independently calibrated control sys-
tems prediction that uses

_ |E{M(,Thi}[jﬂ]|2 - E{/,L(*,Thi}[jﬂ]lz
|2, QN + 1B QI

[see Eq. (11), Sec. IV] underlies the data.

Finally, we demonstrate that the state of the JPA, and
thus the dynamics it effects, may be switched far faster
than the MO can equilibrate. While above we controlled
the JPA state using static flux biasing, below we apply both
static flux biasing and an additional microwave tone at a
frequency 10 MHz below the EMC-like resonance. The
amplitude of this new, “control” tone is switched dynami-
cally and is not cancelled at the directional coupler. At its
strongest, the control tone is too weak and off resonant with
the EMC to affect the MO but is sufficiently strong and
resonant with the wider-band JPA to strongly shift its
center frequency. The rate with which the JPA may be
switched in this manner should lie between the JPA line-
width (50 MHz) and the network’s EM linewidth as a
whole (=300 kHz), orders of magnitude faster than the
mechanical response rate (0.81-Hz intrinsic linewidth). By

CE

)]
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performing similar ring-down measurements starting from
an even larger mechanical coherent amplitude (inducing
an approximately 100-kHz pk-pk resonance shift in the
EMC), this switched control may be observed with high
visibility and bandwidth. In Fig. 4(a), the power measured
in the blue and red mechanical sidebands is depicted in
time where, from 0 to 25 ms, the network is in a resolved-
sideband and blue-detuned state [state 1 in Fig. 4(b), with
the CE called out in Fig. 3(d)], while from 25 to 40 ms, the
network is in an unresolved-sideband and slightly red-
detuned state (state 2). In the first segment, almost all the
mechanically scattered power is in the blue sideband, and
the total power emitted decays in time, indicating MO
cooling. (The large amplitude motion employed here
induces a variation in the EMC center frequency of the
order of the state-1 linewidth. As a consequence, the ring-
down power is more linear than exponential in time.) In the
second segment, the two powers are roughly equal, with
the red sideband slightly greater, and the total power
hardly decays. The inset depicts the transition between
states 1 and 2, through which the blue sideband stays

(a) Ring-down power (b) i
g p Angle[S, ] for ring-down states
with switched JPA
3
15} 0.2 0 5
. @ :M,\M _ 1%
el
710 o= @ |i 8
§ . o0 -@®
c jo))
= 5| [FRed 200us <-1 &)
Blue 2 1 1
0 -3
0 10 _ 20 30 40 4668 4670 4672 4674 4676
Time [ms] Probe frequency [MHz]
(c) o (d)
Thermalization with Ensemble variance for 6- and 3-ms cooling
6-ms cooling interval [1573
[ ] L ] 1 ]
"] " L] L
n n " ., L] n
; | “‘\ it I \1““*“ | 3[10]2 " "
- ] ] [ ]
[ ] [5]2
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04 06 038 02 04 06 08
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FIG. 4. Dynamic JPA control. (a) Red and blue sideband
powers ringing down from a very high coherent amplitude.
From 0-25 ms (25-40 ms), the network is in state 1 (state 2);
see Figs. 3(d) and 4(b). Inset: detail of the network transition,
depicted with a 25-kHz bandwidth. (b) Microwave probe Sy,
measurements for the network states employed in (a), with
arrows indicating coupling tone and sidebands. (c) Switched
rethermalization of a cooled MO. At 100 ms, the JPA is tuned
from the I'> T (cooling) state to the I'=T (bath-
thermalizing) state. At 600 ms, the JPA is switched to the cooling
state for 6 ms only. The plot represents the ensemble distribution
of blue sideband amplitudes in time for 300 trials. (d) Sideband-
amplitude variance for 6 ms = 2/T" and 3 ms = 1/T" cooling-
interval experiment ensembles.

constant, but the red sideband power jumps by an order
of magnitude. This behavior is only possible because state
2 has a much larger linewidth than state 1 [Fig. 4(b)].
The transition occurs at least as fast as the 25-kHz
detection bandwidth, much faster than the mechanical
decay rate in state 1 (I'y < I' ~ 277 X 15 Hz) or state 2
Tg> T =27 X0.1 Hz).

Switched control over incoherent thermal motion may
also be demonstrated, at the expense of reducing the
detection bandwidth to 100 Hz (so that 10-min averaging
times yield reasonable signal-to-noise ratios). In Figs. 4(c)
and 4(d), the coupling tone and the JPA are tuned such
that the mechanics are cooled for several seconds with
I' = 27 X 56 Hz [the most aggressive, resolved-sideband-
cooling configuration in Fig. 3(b)]. At time 100 ms, the JPA
is rapidly far detuned from the EMC, so that the network is
on resonance with the coupling tone and is in an unresolved-
sideband limit. For 500 ms, the mechanical state then ther-
malizes with its bath at rate I'y. After 500 ms, the JPA is
briefly tuned to the cooling state for 6 ms and then back to the
thermalization state for a final 400 ms. Figure 4(c) depicts
the 300-trial ensemble distribution of continuously moni-
tored blue sideband amplitudes. Before 100 ms, the distri-
bution is dominated by amplifier noise but broadens by a
factor of 3 during the thermalization periods. The sideband
amplitude is proportional to mechanical displacement (by a
factor that differs for the cooling and thermalization states),
and the broadening of the distribution is indicative of a
warming MO (to approximately 750 phonon occupation,
or 26 mK, or (63 Hz)? variance in the EMC resonance,
although precise knowledge of the thermal occupation is
incidental to our purposes). The position variance of the hot
I' = 27 X 56 HzMO s expected to drop by e 2 in 6 ms and
by e”! in 3 ms, and the variance of the cold, I'y-linewidth
MO should rise to 1 — e~ ! of the bath equilibrium value
in 200 ms. Figure 4(d) depicts the ensemble variance of
6- and 3-ms cooling-interval experiments and is consistent
with these expectations.

IV. MODEL

Each subcomponent (the EMC, the JPA, and the tee) is
separately described by an IO dynamical model, a familiar
concept in quantum optics [1,46—48] and superconducting
microwave systems [19,49]. Moreover, despite fundamen-
tal nonlinearities, the device dynamics essential to the
network’s operation are accurately described by common
linear approximations [20,21], as discussed more below. It
is well known that a network of linear, coherent IO devices
coupled to itinerant Gaussian fields may be modeled as a
classical control system of interconnected, linear state-
space models [22-27]. The residual ‘“quantumness” of
these systems is captured by nonclassical “noise” driving
the network inputs, but such quantum-level accuracy is
not required in this work, as the dynamics considered
are classical. Moreover, when vacuum fluctuations in
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the microwave fields are dynamically significant, each
instance of microwave dissipation inside each device or
interconnection between devices must be modeled using an
additional IO port pair [1] (and a beam-splitter component
interrupting lossy interconnections), but such accuracy is
not required here. In sum, the “physics” of our model is
captured by well-known IO device models and cascaded
interconnections [30,48], but our manipulation of these
device models adopts techniques from network theory
[1,22]. To many readers, the least familiar aspect of the
model is likely to be these manipulations, which are
expected [22-26] (and partially tested [27]) to be the
same in classical and quantum linear systems.

More precisely, the tee is modeled as a six-input and
six-output (6I0) itinerant field scattering device (three
physical ports, each of which is both a field input and
output, with each field described by two quadrature
degrees of freedom) with no internal degrees of freedom.
The JPA is modeled as a 210, overcoupled linear resonator
device (whose center frequency is a tunable parameter)
with two internal degrees of freedom, representing the two
quadratures of the mode inside the TKC [48,49]. Also, the
EMC is a 410 device, with two IO ports connected to a
microwave field (effectively at zero temperature) and two
IO ports connected to a thermal mechanical bath. The
EMC also contains four internal degrees of freedom,
representing the quadratures of coupled microwave and
mechanical modes [25,28,29]. Consequently, a linear
network model representing the schematic depicted in
Fig. 1(b) consists of ten coupled linear equations of
motion, with six internal degrees of freedom, and two

|

microwave and two mechanical-bath 10 port pairs.
Despite this complexity, standard control systems software
toolkits make the construction of network dynamical mod-
els intuitive, and efficient linear systems theories may be
applied to their analysis. We now describe the model
construction in more detail.

While the electromechanical interaction is fundamen-
tally nonlinear, the dynamics we consider may be modeled
by linearizing the coupling of the microwave and mechani-
cal modes about the large microwave coherent state
induced in the resonator by the coupling tone [20,21], an
approximation that is nearly ubiquitous in electrome-
chanics. In a frame in which the EM degrees of freedom
are rotating with the coupling tone’s carrier frequency, the
Hamiltonian that describes the internal dynamics of the
EMC in the linearized approximation is (& = 1)

Hy= Qa;ral + Aa;raz +gla; + a;r)(az + a;r), )
where a; is the annihilation operator for the mechanical
mode and a, the annihilation operator for fluctuations
in the microwave mode about the large coherent state.
(af2 are the creation operators.) Additionally, () is the
center frequency of the MO, A = w, — w, is the fre-
quency detuning between the resonator center frequency
(w,) and the carrier of the coupling tone (w.), and
g = 8o+/nc, where n. is the number of intraresonator
photons induced by the coupling tone and g is the funda-
mental coupling rate between photons and phonons.

In the usual IO formulation for an EMC, the Heisenberg
equations of motion may be written as [25,29]

a, Q- g 0 je a,
dla| | Jjg jA-f"5% g 0 a
difal || 0 —jg o —jo-% g ||al
a} -jg 0 —jg  —ja-se fla
—jiTo 0 0 0 brn,in
. 0 —j/xc 0 0 bEin
0 0 T, © leL“h,in
0 0 0 jyr L bk
brh,out W 0 0 0 a -1 0 0 0 [ bmin
bEou 0 jJk 0 0 ay 0 -1 0 0 bEin
bhoe | | 0 0 —iyT 0 } d 170 0 =1 o || bha | @
bl ou o o o —ji/lldg o o o -1l »f,
[

where by, and bgi, (bryow and bgo,) are standard
mathematical objects in IO theory that are functions of
time ¢ and may be roughly considered annihilation opera-
tors on the infinitesimal segment of the free field that is

incident on (leaving from) the device at time 7 [22,46—48].
Specifically, brpinouy and bginou) are associated with
the fields that drive the system through the thermal me-
chanical port and the EMC’s microwave port, respectively.
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As with ay, b in(ou 18 associated with the microwave field
fluctuations about the coupling tone amplitude. Moreover,
I'y is the intrinsic mechanical decay rate, «. (k;) is
the EMC coupling (internal) decay rate, and j is the
imaginary number with the electrical engineering sign
convention [50].

Equations (3) are unwieldy, but they also contain rela-
tively few free parameters. Linear, coherent 1O systems
feature such restrictions, in general, which may be traced
back to fundamentally unitary dynamics (e.g., IO theory in
the quantum stochastic differential equation formulation
[46,47]) and are the primary distinction between coherent
and more general linear 10 systems [22,25]. Rather than
specify the fully reduced form of Egs. (3) [22,25], we
simply note that they may be written as

d . o
E =AMa +BMbin’

bow = Cyd + Dybyy, 4)

where d = [a,, a,, air, a;f]T (T indicating transpose) is a
vector of operators, by, = [brhin D ins b;h,in, b;in]T, and
similarly for bow. The matrices Ay, By, Cy, and Dy,
define the device dynamics.

Equations (4) are directly relatable to a common
representation of a classical linear system known as a
state-space model. Emulating this representation even
more fully, we can represent Egs. (4) using the mathemati-
cal object Ml, which is defined by A,;, By, Cys, and D, and

notated as [2,22]
An | Bu
M = + ) 5
{ Cvm | Dm ] )

[Each matrix and its location in the above array implies
Egs. (4).] We can similarly generate state-space-model
representations for the JPA and tee devices [22]; call
them J and T, respectively.

We now come to the problem of constructing the net-
work model. As discussed in Refs. [1,22,25] and else-
where, the formal relation between linear quantum IO
device models and classical state-space models means
that procedures for constructing dynamical models of lin-
ear quantum networks are analogous to those for classical
linear networks. Through these methods, we may derive a
new state-space model N that describes the network as a
whole. In the remainder of this section, it will be ambig-
uous whether we are constructing a quantum or coherent
classical model. It is only when we neglect the effects of
quantum fluctuation in the free fields, when we compare
our model to experiment, that the approach becomes a
classical approximation [19,26].

The network model we need is depicted schematically
in Fig. 5, as inspired by Fig. 1(b), where the EMC and the
JPA each exchange input and output signals with two
ports of the tee. The s and € blocks represent the phase

/J(»*’ J (9:})
=’} (
u (¥) —l]— J J]
¢ n ! ut® Th®
[1] I N I
E®) E®) » <=* >
; ° u (0 ) Th®
Theo 0
i
M =
Thi

FIG. 5. Control system schematic of the network depicted in
Fig. 1(b). The tee, EMC, and JPA components are represented as
MIMO linear state-space models that exchange signals contin-
uously. The interconnections are labeled here such that, e.g., EY
stands for the two free-field channels labeled E, and E},, which
are explained in the text. Transmission line delays may be
modeled here as static phase shifts ¢ and 6. Standard software
toolkits are available that reduce the network on the left to a
single MIMO state-space model N. This approach is compatible
with both quantum and classical investigations.

shifts accumulated just from transmission line delays
around the tee-and-EMC and tee-and-JPA network loops,
respectively [51]. We thus define our network by defining
the state-space-model objects T, M, and J and labeling the
channels associated with each component’s input and out-
put fields according to the schematic in Fig. 5. For instance,
the label E, (the label E}) in Fig. 5 is applied to both the
channel through which the M output field bg o (bz’out)
“flows” and the appropriate channel through which one of
the T inputs is driven. The label w; is applied to the
channel through which the (heretofore unmentioned)
bin field drives a T input associated with the network’s
microwave input, etc.

While algorithmic, constructing N using a linear
systems approach is extremely tedious. However, software
toolboxes are available in, for example, Matlab and
Mathematica that completely automate the procedure.
This basic fact is under-recognized by the physics com-
munity and deserves explicit emphasis: After defining the
three state-space models and labeling the component input
and output channels according to Fig. 5, the entire state-
space model N may be obtained in Matlab using the single
command N = connect(T, M, J). (Other software that can
deal with nonlinear quantum IO networks has also been
developed [19,52].) Using such methods, these control
systems toolkits determine an effective network state-
space model defined by matrices Ay (dimensions 6 X 6),
By (6 X4),Cy (4X6),and Dy (4 X 4),

it ©

which are too unwieldy to write out in full generality here.

It is useful, though, to consider the network’s equation
of motion for just a,, the annihilation operator for
the microwave fluctuations in the EMC. (The network
modifies the dynamics of the MO only inasmuch as a,
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and a;r are modified.) For the EMC in isolation, and taking
g = 0 for clarity, the equation of motion for this mode
is [Eq. (3)]
ﬁa:=0A—5§a—j¢rb. %)
dt 2 2 2 cYE,in»
where k;, = k; + k.. Inthe network N, taking g = 0 and in
the limit that the JPA has no internal loss and couples much

more strongly to transmission lines than the EMC does, we
find that

d . K iy

ke (]A/g, - 7")412 + e AW el b (8)

where k, = k; + k!, and

. cos*()
KC = KL‘ / /NS
cosz(%)sinz(%) + 0052(‘”;0)
NZA_mlwﬂ@mwywmw+?’ )
4 cosz(%)sinz(%) + cosz(‘(’%)
!
A= arctan[cot(%) — tan(%) ],

where 6’ is the total phase shift acquired by a narrow-band
signal that makes a round trip from the tee to the JPA and
back (i.e., it is determined by the length of that inter-
connection and the center frequency of the JPA).

From the correspondence between Eqs. (7) and (8), we
see that the EMC resonator response still acts like a single-
mode resonator in this limit, except one that is now driven

by the inputs ,ug*) and has a new detuning from the cou-
pling tone (A’), a new decay rate (k,), and a new phase
shift between inputs and outputs (controlled by A) that are
all controlled by 6, which is in turn controlled by the JPA
center frequency. Synthesizing new effective system pa-
rameters, such as new effective decay rates and detunings,
is a primary reason for constructing coherent feedback
networks, in general [19,22,25,31]. In this case, these
modifications quantitatively express the physical mecha-
nisms that are qualitatively described in Sec. II. For ex-
ample, the effective coupling rate k.. comes from the
interference between signals emitted by M that are passed
to the network output directly and those that reflect off J
before being passed to the same output port. The effective
detuning A’ represents the interference between fields
inside M and those that exit M but are fed back into M
by the network. In general, and especially when intra-JPA
loss is not negligible, these same qualitative effects still
hold, although they lose their quantitative accuracy, in
which case the full network model N is needed.

If losses were negligible and the JPA bandwidth effec-
tively infinite, the effective microwave parameters given
in Eq. (9) could be substituted immediately into a tradi-
tional analysis of an electromechanical circuit [4,6,20,21],
whose physical interpretations are discussed in Sec. II.

Equation (8) could also be extended to incorporate
nonidealities with yet more complicated expressions, but
that is beside the point. The modularity of the devices that
make up the network permits us to use modular network
techniques to construct a dynamical model and make pre-
dictions using general and efficient algorithms. Analytic
expressions of the full equations of motion are readily
available, but they complicate matters unnecessarily here
and they are efficiently reproduced through the construc-
tion outlined above. Furthermore, we argue that such an
approach is often efficient, useful, and appropriate as elec-
tromechanics and quantum engineering in general begin to
move beyond the physics of individual devices.

In Sec. I1I, we compare the network model N’s steady-
state output predictions to data. This comparison is most
naturally done through a Laplace transform of the field and
internal variables, such that, e.g.,

bls] = f " e b, (10)
0

where b, i, (as above) is a function of time. In the Laplace
domain, it is appropriate to write the network equations of
motion in terms of susceptibilities and transfer functions
such that [22]

d'ls] = (sI — Ay)"'Bybl[s]1= x[s1b},[s]
bhuls] = [Cxn(sI — Ay)"'By + Dy1bj[s] = E[s1b},[s]
(11)

where d' = [a,, ay, as, aIr, a;r, ag]T, where a5 is the anni-

9

hilation operator on the internal JPA mode, bi’n(out) =

[bTh:i"(OUt)’ b,u,in(out)’ b'11:h,in(0ut)’ b;,in(out)]T’ and [ is a 6 X6
identity matrix. While manually calculating the multi-
input-multioutput (MIMO) transfer function Z[s] would
be prohibitively tedious, again standard software toolboxes
completely automate the procedure; in Matlab, given a
network state-space model N, the MIMO transfer-function
representation is obtained using the single command
Xi = tf(N).

The transfer function =[s] is applied several times in
Sec. III to make predictions about the signals emitted by
the network. For instance, the network’s phase response to
microwave probes of varying frequency is simulated in
Fig. 2(c) by calculating the phase angle of the {u,, u;}
matrix element of E[s], angle[Zy, ,;[s]], as s runs
along the imaginary axis. Similarly, the absolute value
squared of the {u,, Th;} matrix element of E[;jQ],
|E 0,0l jQ]I?, represents the gain with which Q-energy
excitations in the thermal bath induce ()-energy excita-
tions in the microwave network output (i.e., induce
blue sideband power in the network output), through
effective (b;)outhh,in + H.c.)-type interactions [used in
Eq. (1)]. Conversely, |2, [jQ]I* represents the gain
of thermal-bath-induced ()-energy deexcitations in the
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microwave network output (i.e., induction of red sideband
power in the network output), through effective
(b 4, outbhin T H.c.)-type interactions. Similarly,

arg max|Z g, m[j(Q + 6Q)]? (12)

may be used to predict microwave-induced shifts in the
mechanical center frequency [11,32] [used in Fig. 3(c)].
Finally, an expression related to x[ jQ], the {u,, a,} matrix
element of

Cy(QI = Ay) g, 13)

may be used to predict the rate with which MO excitations
decay out the network’s blue sideband, potentially enhanc-
ing the total MO decay rate, and similar expressions may
be used to predict red sideband decay and losses dissipated
in the network internally [used in Fig. 3(b)]. Thus, the
functions =[s] and y[s] are extremely convenient for
modeling steady-state network dynamics. Also, while the
matrix of expressions represented by Z[s] is difficult for a
human to parse, for instance, the mathematical object E[s]
is easily manipulated algebraically and computationally.

V. CONCLUSION

We have demonstrated a small coherent feedback
network of modular superconducting microwave devices
that provides a type of dynamical flexibility previously
unavailable to electromechanics. The network has at least
three natural interpretations: a dynamically tunable input
coupler, a tunable microwave stub [36,37], or a gain-one
amplifier that feeds back coherent signals [25]. Despite the
simplicity of the components and construction (coaxial
cabling between preexisting and familiar superconducting
devices), the network is too complex to be modeled using
traditional electromechanical techniques (e.g., such ap-
proaches assume a single resonator mode, while our net-
work features coupled resonators) [4,20,21]. However, it is
efficiently and intuitively modeled using coherent network
techniques [1,22-25], an unconventional approach that
will find increasing utility as electromechanics (or quan-
tum engineering in general) begins to move beyond the
physics of individual devices. Although we only demon-
strate this network’s operation in the classical regime,
on the basis of the well-known connections between clas-
sical and quantum dynamics in linear coherent systems
[1,22-26], we expect that the essential mechanisms of
the network should work analogously in the presence of
unambiguously quantum fields and states. We have not
yet probed the quantum regime because of our use of a
HEMT (non-quantum-limited) amplifier for readout and
the dynamical richness to be explored first in the classical
regime.

There are several worthwhile directions for future inves-
tigations with this same network. First, the TKC may be
pumped by a third microwave tone to add a parametric

gain-and-squeezing element [18] (or a more general Kerr
nonlinearity [19]) into the feedback and readout dynamics.
Recent theoretical work suggests that quantum coherent
feedback to an electromechanical system from a paramet-
ric gain controller can outperform any type of ideal
measurement-based feedback or passive coherent control-
ler [24,25]. Second, the ability to dynamically and contin-
uously modulate the network’s coupling to its IO port
could be leveraged to shape the waveform of signals read
into and out of the EMC. This capability could facilitate
high-fidelity coherent-state transfer between the MO and
arbitrary coherent devices either up- or downstream from
the network [10,36,53]. And, finally, the model could be
considered from the perspective of well-developed theories
of classical optimal and robust control [2,23-25]. Such
investigations are likely to yield recommendations for a
more precisely controlled network construction. In particu-
lar, different applications are helped and hindered by
different round-trip phase shifts over the EMC and TKC
network branches. While these phases were uncontrolled
by the use of bulky cable interconnections in this work, a
more integrated network could be constructed with much
better precision.
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