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We discuss the question of when a gapped two-dimensional electron system without any symmetry has

a protected gapless edge mode. While it is well known that systems with a nonzero thermal Hall

conductance, KH � 0, support such modes, here we show that robust modes can also occur when

KH ¼ 0—if the system has quasiparticles with fractional statistics. We show that some types of fractional

statistics are compatible with a gapped edge, while others are fundamentally incompatible. More

generally, we give a criterion for when an electron system with Abelian statistics and KH ¼ 0 can

support a gapped edge: We show that a gapped edge is possible if and only if there exists a subset of

quasiparticle typesM such that (1) all the quasiparticles inM have trivial mutual statistics, and (2) every

quasiparticle that is not in M has nontrivial mutual statistics with at least one quasiparticle in M. We

derive this criterion using three different approaches: a microscopic analysis of the edge, a general

argument based on braiding statistics, and finally a conformal field theory approach that uses constraints

from modular invariance. We also discuss the analogous result for two-dimensional boson systems.

DOI: 10.1103/PhysRevX.3.021009 Subject Areas: Condensed Matter Physics, Strongly Correlated Materials,

Topological Insulators

I. INTRODUCTION

In two dimensions, some quantum many-body systems
with a bulk energy gap have the property that they support
gapless edge modes that are extremely robust. These
modes cannot be gapped out or localized by very general
classes of interactions or disorder at the edge: They are
‘‘protected’’ by the structure of the bulk phase. Examples
include quantum Hall states [1,2], topological insulators
[3–5], and topological superconductors [6], among others.

It is useful to distinguish between different levels of
edge protection. In some systems, the edge excitations
are only robust as long as certain symmetries are preserved.
For example, in two-dimensional (2D) topological insula-
tors, the edge modes are protected by time-reversal and
charge-conservation symmetry. If either of these symme-
tries is broken (either explicitly or spontaneously), the edge
can be completely gapped. In contrast, in other systems,
the edge modes are robust to arbitrary local interactions,
independent of any symmetries.

While much previous work has focused on symmetry-
protected edges, here we will focus on the latter, stronger,
form of robustness. The goal of this paper is to answer a
simple conceptual question: When does a gapped 2D
quantum many-body system without any symmetry have
a protected gapless edge mode?

One case in which such protected edge modes are known
to occur is if the system has a nonzero thermal Hall con-

ductance [7,8] at low temperatures, i.e., KH � 0. This
result is particularly intuitive for systems whose edge can
be modeled as a collection of chiral Luttinger liquids.

Indeed, in this case, KH ¼ ðnL � nRÞ � �
2k2B
3h T, where nL,

nR are the number of left- and right-moving chiral edge
modes. Hence, the condition KH � 0 is equivalent to nL �
nR. It is then clear that KH � 0 implies a protected edge:
Backscattering terms or other perturbations always gap out
left- and right-moving modes in equal numbers, so if there
is an imbalance between nL and nR, the edge can never be
fully gapped. Alternatively, we can understand this result
by analogy to the electric Hall conductance, �H: Just as
systems with �H � 0 are guaranteed to have a gapless
edge as long as charge conservation is not broken [9,10],
systems with KH � 0 are guaranteed to have a gapless
edge as long as energy conservation is not broken.
On the other hand, if KH ¼ 0, then there is not an

obvious obstruction to gapping the edge. Thus, one might
guess that systems withKH ¼ 0 do not have protected edge
modes. Indeed, this is known to be true for systems of
noninteracting fermions [6,11].
In this paper, we show that, in general, this intuition is

incorrect: We find that systems with KH ¼ 0 can also have
protected edge modes—if they support quasiparticle ex-
citations with fractional statistics. The basic point is that
some (but not all [12]) types of fractional statistics are
fundamentally incompatible with a gapped edge. Thus,
fractional statistics provides another mechanism for edge
protection which is qualitatively different from the more
well-known mechanisms associated with electric or ther-
mal Hall response.
Our main result is a criterion for when an electron

system with Abelian statistics and KH ¼ 0 can support a
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gapped edge (we discuss bosonic systems in Sec. VI). We
show that a gapped edge is possible if and only if there
exists a set of quasiparticle ‘‘types’’ M satisfying two
properties:

(1) The particles in M have trivial mutual statistics:
ei�mm0 ¼ 1 for any m, m0 2 M.

(2) Any particle that is not in M has nontrivial mutual
statistics with respect to at least one particle in M:
If l2M, then there exists m 2 M with ei�lm � 1.

Here, two quasiparticle excitations are said to be of same
topological ‘‘type’’ if they differ by an integer number of
electrons. In this language, a gapped system typically has
only a finite set of distinct quasiparticle types, which we
will denote byL; the setM should be regarded as a subset
of L. Following previous terminology [13], we will call
any subset M � L that obeys the above two properties a
‘‘Lagrangian subgroup’’ of L.

Our analysis further shows that every gapped edge can
be associated with a corresponding Lagrangian subgroup
M � L. Physically, the set M describes the set of quasi-
particles that can be ‘‘annihilated’’ at the edge, as ex-
plained in Sec. IV. We show that if L contains more than
one Lagrangian subgroup, then the system supports more
than one type of gapped edge: In general, there is a differ-
ent type of edge for everyM. In this sense, different types
of gapped edges are (at least partially) classified by
Lagrangian subgroups M � L.

We now briefly discuss the relationship with previous
work on this topic. A systematic, microscopic analysis of
gapped edges was presented in Ref. [14]. In that work, the
authors constructed and analyzed gapped edges for a large
class of exactly soluble bosonic lattice models with both
Abelian and non-Abelian quasiparticle statistics. On the
other hand, gapped edges were studied from a field theory
perspective in Ref. [13]. In that paper, the authors inves-
tigated ‘‘topological boundary conditions’’ for Abelian
Chern-Simons theory. Both Refs. [13,14] showed that the
gapped boundaries (or boundary conditions) that they
studied are classified by algebraic structures similar to
the Lagrangian subgroup M � L defined above. How-
ever, neither paper showed that this classification scheme is
general and includes allAbelian gapped edges: Indeed, it is
not obvious, a priori, that exactly soluble models or topo-
logical boundary conditions are capable of describing all
types of gapped edges. One of the main contributions of
this work is to fill in this hole and to show, in a concrete
fashion, that every Abelian gapped edge is associated with
some Lagrangian subgroup M � L. It is this generality
that allows us to deduce the existence of protected edges in
those cases when L has no Lagrangian subgroup M, i.e.,
when the criterion is violated.

We will derive the above criterion using three different
approaches: a microscopic edge analysis, a general argu-
ment based on quasiparticle braiding statistics, and finally
an argument that uses constraints from modular invariance.

These derivations are complementary to one another. The
microscopic argument proves that the criterion is sufficient
for having a gapped edge but does not prove that it is
necessary (it only provides evidence to that effect). The
other two arguments show that the criterion is necessary for
having a gapped edge but do not prove that it is sufficient.
This paper is organized as follows: In Sec. II, we discuss

some illustrative examples of the criterion, in Secs. III, IV,
and V we establish the criterion with three different argu-
ments, and in Sec. VI we discuss the bosonic case and other
generalizations. The appendixes contain some of the more
technical derivations.

II. TWO EXAMPLES

Before deriving the criterion, we first discuss a few
examples that demonstrate its implications. A particularly
illuminating example is the � ¼ 2=3 fractional quantum
Hall state—that is, the particle-hole conjugate of the � ¼
1=3 Laughlin state. Let us consider a thought experiment in
which the edge of the � ¼ 2=3 state is proximity coupled
to a superconductor [Fig. 1(a)]. Then, charge conservation
is broken at the edge, so the edge does not have any
symmetries.1 At the same time, the thermal Hall conduc-
tance of this system vanishes since the edge has two modes
that move in opposite directions. Thus, one might have
guessed that the edge could be gapped by appropriate
interactions. However, according to the above criterion,
this gapping is not possible: The edge is protected. To
see this, note that the � ¼ 2=3 state supports three different
quasiparticle types that we denote by L ¼ f0; e3 ; 2e3 g. The
mutual statistics of two quasiparticles le

3 ,
me
3 is �lm ¼

� 2�l�m
3 . Examining this formula, it is clear that L has no

ν = 8/9

SC SC

ν = 2/3

Edge is not protected

(b)(a)

Edge is protected

FIG. 1. To demonstrate the subtleties of protected edge modes
without symmetry, we consider the � ¼ 2=3 and � ¼ 8=9 frac-
tional quantum Hall edges, proximity coupled to an adjacent
superconductor. (a) In the � ¼ 2=3 case, the edge has vanishing
thermal Hall conductance, KH ¼ 0, since it contains two modes
moving in opposite directions. Even so, wewill show that the edge
isprotected. (b) In the� ¼ 8=9 case, the edge also hasKH ¼ 0, but
in this case we will show that the edge is not protected. We argue
that the two states behave differently because of the different
quasiparticle braiding statistics in the bulk.

1We do not regard fermion-parity conservation as a physical
symmetry, as it cannot be broken by any local interactions.
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Lagrangian subgroup M: The only set M that obeys
condition (1) is M ¼ f0g, and this set clearly violates
condition (2).

To underscore the surprising nature of this result, it is
illuminating to consider a second example: a � ¼ 8=9 state
constructed by taking the particle-hole conjugate of the� ¼
1=9 Laughlin state. (While this state has not been observed
experimentally, we can still imagine it as a matter of prin-
ciple.) Again, let us consider a setup in which the edge is
proximity coupled to a superconductor, thereby breaking
charge-conservation symmetry [Fig. 1(b)]. This system is
superficially very similar to the previous one, with two edge
modes moving in opposite directions and a vanishing ther-
mal Hall conductance KH ¼ 0. However, in this case the
above criterion predicts that the edge is not protected.
Indeed, the � ¼ 8=9 state has nine different quasiparticle
types that we denote by L ¼ f0; e9 ; 2e9 ; . . . ; 8e9 g. The mutual

statistics of two quasiparticles le
9 ,

me
9 is given by �lm ¼

� 2�l�m
9 . Examining this formula, we can see that the subset

of quasiparticlesM ¼ f0; 3e9 ; 6e9 g obeys both (1) and (2); i.e.,
it is a valid Lagrangian subgroup.

III. MICROSCOPIC ARGUMENT

In this section, we derive the criterion from a micro-
scopic analysis of the edge. We follow an approach which
is similar to that of Refs. [15–19] and also the recent paper,
Ref. [20].

A. Analysis of the examples

Before tackling the general case, we first warm up by
studying the � ¼ 2=3 and � ¼ 8=9 examples discussed
above. Recall that the criterion predicts that the � ¼ 8=9
edge can be gapped while the � ¼ 2=3 edge is protected.
We now verify these claims by constructing edge theories
for these two states and analyzing their stability.

We begin with the � ¼ 8=9 state. To construct a con-
sistent edge theory for this state, consider a model in which
there is a narrow strip of � ¼ 1 separating the � ¼ 8=9
droplet and the surrounding vacuum. The edge then con-
tains two chiral modes—a forward-propagating mode �1

at the interface between the � ¼ 1 strip and the vacuum,
and a backward-propagating mode �2 at the interface
between � ¼ 8=9 and � ¼ 1. The mode �1 can be mod-
eled as the usual � ¼ 1 edge [1,2]:

L1 ¼ 1

4�
½@x�1@t�1 � v1ð@x�1Þ2�: (1)

Similarly, the mode �2 can be modeled as the usual
� ¼ 1=9 edge, but with the opposite chirality:

L2 ¼ 1

4�
½�9 � @x�2@t�2 � v2ð@x�2Þ2�: (2)

Here, the two parameters v1, v2 encode the velocities of
the two (counterpropagating) edge modes. We use a

normalization convention where the electron creation op-

erator corresponding to �1 is c y
1 ¼ ei�1 , while the crea-

tion operator for �2 is c
y
2 ¼ e�9i�2 . Combining these two

edge modes into one Lagrangian L ¼ L1 þ L2 gives

L ¼ 1

4�
@x�IðKIJ@t�J � VIJ@x�JÞ; (3)

where I ¼ 1, 2 and

K ¼ 1 0
0 �9

� �
; V ¼ v1 0

0 v2

� �
: (4)

In this notation, a general product of electron creation and
annihilation operators corresponds to an expression of the

form ei�
TK�, where � is a two-component integer vector.

Given this setup, the question we would like to inves-
tigate is whether it is possible to gap out the above edge
theory (3) by adding appropriate perturbations. For con-
creteness, we focus on perturbations of the form

Uð�Þ ¼ UðxÞ cos½�TK�� �ðxÞ�; (5)

where � is a two-component integer vector. These terms
give an amplitude for electrons to scatter from the forward-
propagating mode �1 to the backward-propagating mode
�2. Importantly, we do not require Uð�Þ to conserve
charge, since we are assuming charge conservation is
broken by proximity coupling to a superconductor
[Fig. 1(b)]. However, we do require that Uð�Þ conserve
fermion parity.
We now consider the simplest scenario for gapping the

edge: We imagine adding a single backscattering term
Uð�Þ to the edge theory (3). In this case, there is a simple
condition that determines whetherUð�Þ can open up a gap:
According to the null vector criterion of Ref. [21], Uð�Þ
can gap the edge if and only if � satisfies

�TK� ¼ 0: (6)

The origin of this criterion is that it guarantees that we can
make a linear change of variables �0 ¼ W� such that, in
the new variables, the edge theory (3) becomes a standard
nonchiral Luttinger liquid, and Uð�Þ becomes a backscat-
tering term. It is then clear that the term Uð�Þ can gap out
the edge, at least if U is sufficiently large [22]. Conversely,
if � does not satisfy (6), it is not hard to show that the
corresponding term Uð�Þ can never gap out the edge, even
for large U (see Appendix B).
Substituting (4) into (6), and letting � ¼ ða; bÞ, gives

a2 � 9b2 ¼ 0: (7)

By inspection, we easily obtain the solution � ¼ ð3;�1Þ.
It follows that the corresponding scattering term Uð�Þ can
gap out the edge. We note that this term is not charge
conserving, since it corresponds to a process in which
one electron is annihilated on one edge mode and three
are created on the other. However, it is still an allowed
perturbation in the presence of the superconductor, since it
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conserves fermion parity [in fact, it is not hard to show that
solutions to (6) always conserve fermion parity].

Now let us consider the � ¼ 2=3 edge. Following a
construction similar to the one outlined above, we model
the edge by the theory (3) with

K ¼ 1 0
0 �3

� �
: (8)

As before, we ask whether backscattering terms Uð�Þ can
gap the edge, and as before, we can answer this question by
checking whether � satisfies the null vector condition (6).
However, in this case, we can see that (6) reduces to

a2 � 3b2 ¼ 0; (9)

which has no integer solutions, since
ffiffiffi
3

p
is irrational. We

conclude that no single perturbation Uð�Þ can open up a
gap—suggesting that the edge is protected.

We emphasize that this analysis only shows that
the � ¼ 2=3 edge is robust against a particular class of
perturbations—namely, single backscattering terms of the
form (5). Hence, the above derivation only gives evidence
that � ¼ 2=3 is protected; it does not prove it.

B. General Abelian states

We now extend the above analysis to general electron
systems with Abelian quasiparticle statistics and with
KH ¼ 0. For each state, we investigate whether its edge
modes can be gapped out by simple perturbations. We
show that if a state satisfies the criterion, then its edge
can be gapped out. Conversely, we show that if a state does
not satisfy the criterion, then its edge is protected—at least
against the perturbations considered here. In this way, we
prove that the criterion is sufficient for having a gapped
edge, and we give evidence that it is necessary.

Our analysis is based on the Chern-Simons framework
for describing gapped Abelian states of matter. According
to this framework, every Abelian state can be described by
a p-component Uð1Þ Chern-Simons theory of the form
[1,2,23]

LB ¼ KIJ

4�
��	�aI�@	aJ�; (10)

where K is a symmetric, nondegenerate p� p integer
matrix. In this formalism, the quasiparticle excitations
are described by coupling LB to bosonic particles that carry
integer gauge charge lI under each of the gauge fields aI.
Thus, the quasiparticle excitations are parametrized by
p-component integer vectors l. The mutual statistics of
two excitations l, l0 is given by

�ll0 ¼ 2�lTK�1l0; (11)

while the exchange statistics is �l ¼ �ll=2. Excitations
composed of electrons correspond to vectors l of the
form l ¼ K�, where � is a p-component integer vector.

Two quasiparticle excitations l, l0 are ‘‘equivalent’’ or ‘‘of
the same type’’ if they differ by some number of electrons,
i.e., l� l0 ¼ K� for some �.
In this paper, since we are interested in states with

equal numbers of left- and right-moving edge modes
(i.e., states with KH ¼ 0), we will restrict ourselves to
K matrices with vanishing signature and dimension
p ¼ 2N [24]. Also, since we wish to study states built
out of electrons, we focus on K matrices with at least
one odd element on the diagonal: This assumption
guarantees that the Chern-Simons theory (10) supports
at least one topologically trivial excitation with fermi-
onic statistics—i.e., at least one electronlike excitation.
(Likewise, when we study bosonic states in Appendix E,
we consider K matrices with only even elements on the
diagonal.)
Let us translate the criterion from the introduction into

the K-matrix language. The set of quasiparticles M cor-
responds to a collection of (inequivalent) 2N-component
integer vectors,M ¼ fmg. Conditions (1) and (2) translate
to the requirements that

(1) mTK�1m0 is an integer for any m, m0 2 M.
(2) If l is not equivalent to any element of M, then

mTK�1l is noninteger for some m 2 M.

The criterion states that the edge can be gapped if
and only if there exists a set M satisfying these two
conditions.
To derive this result, we use the bulk-edge correspon-

dence for Abelian Chern-Simons theory [1,2] to model
the edge as a 2N-component chiral boson theory (3).
We then ask whether the edge can be gapped by adding
backscattering terms Uð�Þ (5). In order to gap out all 2N
edge modes, we need N terms,

P
N
i¼1 Uð�iÞ, where

f�1; . . . ;�Ng are all linearly independent. Similarly to
Eq. (6), there is a simple condition for when the perturba-
tion

P
N
i¼1 Uð�iÞ can gap out the edge. Specifically, one can

show that this term can gap out the edge if and only if
f�1; . . . ;�Ng satisfy

�T
i K�j ¼ 0 (12)

for all i, j.
To complete the derivation, we make use of a mathe-

matical result derived in Appendix A. According to this
result, Eq. (12) has a solution f�1; . . . ;�Ng if and only if
there exists a set of integer vectors M with the above two
properties. (More generally, Appendix A establishes a
correspondence between sets of null vectors f�ig and
Lagrangian subgroups M).
Putting this all together, we arrive at two conclusions.

First, every state that satisfies the criterion can support a
gapped edge. Second, every state that does not satisfy the
criterion has a protected edge—at least with respect to
perturbations of the form

PN
i¼1 Uð�iÞ.
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IV. BRAIDING STATISTICS ARGUMENT

The above microscopic derivation leaves several ques-
tions unanswered. First, it does not explain the physical
connection between bulk braiding statistics and protected
edge modes. Instead, this connection emerges from a
mathematical relationship between null vectors f�ig and
Lagrangian subgroups M. Another problem is that the
derivation is not complete since it only analyzes the robust-
ness of the edge with respect to a particular class of
perturbations. As a result, we have not proven definitively
that the criterion is necessary for having a gapped edge. In
this section, we address both of these problems: We give a
general argument showing that any system that supports a
gapped edge must satisfy the criterion. In addition, this
argument reveals the physical meaning of the set M.

We begin by explaining the notion of ‘‘annihilating’’
quasiparticles at a gapped boundary. The idea is as follows.
Consider a general gapped electron system with a gapped
boundary. Let us imagine taking the ground state j�i
and then exciting the system by creating a quasiparticle-
quasihole pair m, �m somewhere in the bulk. After creating
these excitations, we separate them and then bring them
near two points a, b on the edge [Fig. 2(a)]. Let us denote
the resulting state by j�exi. We will say that m, �m ‘‘can be
annihilated at the boundary’’ if, for arbitrarily distant a, b,
there exist operators Ua, Ub acting in finite regions near a,
b, such that [Fig. 2(b)]

UaUbj�exi ¼ j�i: (13)

Likewise, if no such operators exist, then we will say that
m, �m cannot be annihilated at the boundary. Here, Ua and
Ub can be any operators composed of electron creation and
annihilation operators acting in the vicinity of a and b such
that Ua � Ub conserves fermion parity. We do not require
thatUa andUb individually conserve fermion parity—only
that their product Ua � Ub does. Thus, according to the
above definition, electronlike excitations can always be

annihilated at the boundary, e.g., via Ua ¼ ca, Ub ¼ cyb .
Let M be the set of all quasiparticle types that can be

annihilated at the edge:

M ¼ fm: m can be annihilated at edgeg: (14)

We will now argue that self-consistency requires that M
has a very special structure: in particular, for systems with
Abelian quasiparticle statistics, M must be a Lagrangian
subgroup. In other words, we will show that (1) any two
quasiparticle types that can be annihilated at the edge must
have trivial mutual statistics, and (2) any quasiparticle type
that cannot be annihilated must have nontrivial statistics
with at least one particle that can be annihilated. This will
establish that the criterion is necessary for having a gapped
edge.
We establish condition (1) using an argument similar to

one given in Ref. [25]. The first step is to consider a three-
step process in which we create two quasiparticles m, �m in
the bulk, move them along some path 
 to two points on
the edge, and then annihilate them. At a formal level, this
process can be implemented by multiplying the ground
state j�i by an operator of the form

W m
 ¼ UaUbWm
: (15)

Here,Wm
 is a (stringlike) unitary operator that creates the

quasiparticles and moves them to the edge, while UaUb is
an operator that annihilates them [Fig. 3(a)]. Given that the
system returns to the ground state at the end of the process,
we have the algebraic relation

W m
j�i ¼ j�i: (16)

[Here, we assume that the phase of the operator Wm
 has

been adjusted so that there is no phase factor on the right-
hand side of Eq. (16)].
Now imagine we repeat this process for another

quasiparticle m0 and another path � with endpoints c, d
[Fig. 3(b)]. We denote the corresponding operator by

W m0� ¼ UcUdWm0�: (17)U U

(a) (b)

m m

ba ba

FIG. 2. The concept of annihilating particles at a gapped
boundary. (a) Consider a thought experiment in which we create
a pair of quasiparticle excitationsm, �m in the bulk and then bring
them near two points a, b at the edge. We denote the resulting
excited state by j�exi. (b) We say that m, �m can be annihilated at
the boundary if there exist operators Ua, Ub acting in the vicinity
of a, b, such that UaUbj�exi ¼ j�i, where j�i is the ground
state. Otherwise, we say the particles cannot be annihilated.

(a) (b)
mm m’β β γ

FIG. 3. (a) For each m 2 M, we can consider a process in
which we create a pair of quasiparticles m, �m in the bulk, move
them along some path 
 to two points on the edge, and then
annihilate them. We define Wm
 to be the operator that imple-

ments this process. (b) To establish condition (1) of the criterion,
we consider two paths 
, �, and two associated operators Wm
,

Wm0�. We then make use of the relations (18) and (19) along

with the commutation relation (20).
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Since each process returns the system to the ground state,
we have

W m0�Wm
j�i ¼ j�i: (18)

Similarly, if we execute the processes in the opposite order,
we have

W m
Wm0�j�i ¼ j�i: (19)

At the same time, it is not hard to see that Wm
, Wm0�
satisfy the commutation algebra

W m
Wm0�j�i ¼ ei�mm0Wm0�Wm
j�i; (20)

where ei�mm0 is the mutual statistics between m and m0.
Indeed, it follows from a general analysis of Abelian
quasiparticle statistics that

Wm
Wm0�j�i ¼ ei�mm0Wm0�Wm
j�i (21)

for any two paths 
, � that intersect at one point (see,
e.g., Refs. [25,26]). Using this result, together with the
observation that Wm0� commutes with UaUb and Wm


commutes with UcUd (since they act on nonoverlapping
regions), Eq. (20) follows immediately.

In the final step, we compare (20) with (18) and (19).
Clearly, consistency requires that ei�mm0 ¼ 1 for all m,
m0 2 M. Hence M must satisfy condition (1).

Showing thatM satisfies condition (2) is more challeng-
ing. Here, we simply explain the intuition behind this claim;
in Appendix C, we give a detailed argument. To begin, we
recall a bulk property of systems with fractional statistics
known as ‘‘braiding nondegeneracy’’ (Appendix E.5 of
Ref. [8]). Suppose l is a quasiparticle excitation that cannot
be annihilated in the bulk. In other words, suppose that if we
create l, �l out of the ground state and bring them near two
widely separated points a, b in the bulk, then we cannot
annihilate them by applying appropriate operators Ua, Ub

acting in their vicinity. Braiding nondegeneracy is the state-
ment that, for any such l, there is always at least one
quasiparticle m that has nontrivial mutual statistics with
respect to l, i.e., ei�lm � 1 [Fig. 4(a)].

The intuition behind braiding nondegeneracy is as fol-
lows: If l cannot be annihilated by applying any operator,
then, in particular, it cannot be annihilated by cutting a
large hole around l. Hence, it must be possible to detect the
presence of this excitation outside any finite disk centered
at l. At the same time, it is natural to expect that the only
way to detect excitations nonlocally is by an Aharonov-
Bohm measurement—i.e., braiding quasiparticles around
them and measuring the associated Berry phase. Putting
these two observations together, we deduce that ei�lm � 1
for some m, since otherwise it would not be possible to
detect l in this way.

For the same reason that bulk fractionalized systems obey
braiding nondegeneracy, it is natural to expect that the
gapped edges of these systems should obey an analogous
property. Specifically, we expect that for each quasiparticle
l that cannot be annihilated at the edge, theremust be at least

one quasiparticle species m that can be annihilated at the
edge and that satisfies ei�lm � 1. The physical intuition
behind this statement is similar to that of bulk braiding
nondegeneracy: We note that, if l cannot be annihilated, it
must be detectable by a measurement far from l. Again, it is
reasonable to expect that this nonlocal detection is based on
braiding, since both the edge and bulk are gapped and hence
[27] have a finite correlation length. In an edge geometry,
the analogue of conventional braiding is to create a pair of
quasiparticles m, �m in the bulk, bring them to the edge on
either side of l, and annihilate them [Fig. 4(b)]. Assuming
that it is possible to detect l in this way, it follows that there
always exists at least one quasiparticle m that can be anni-
hilated at the edge and that has ei�lm � 1. (See Appendix C
for a detailed argument). This result is exactly the statement
that M satisfies condition (2). We conclude that M is a
Lagrangian subgroup, as claimed.
The reader may wonder, at what point in the argument

do we use the assumption that the edge is gapped? This
assumption enters in several ways. At an intuitive level, it
is implicit in the very definition of quasiparticle annihila-
tion: The physical picture of annihilating quasiparticles
with (exponentially) localized operators Ua, Ub is only
sensible if the edge has a finite correlation length. If,
instead, the correlation length is infinite—as is typical for
a gapless edge—then we would not expect such a localized
annihilation process to be possible, in general. At a mathe-
matical level, the gapped edge assumption plays an im-
portant role in the derivation of condition (2): Only for a
gapped edge can one establish an analogue of braiding
nondegeneracy (see Appendix C).

V. MODULAR INVARIANCE ARGUMENT

To complete our discussion, we present another argu-
ment that shows that the criterion is necessary for gapping
the edge. In order to understand this argument, it is helpful
to consider it in a larger context. Recall that there is a close
relationship between protected edge modes in 2D systems

(b)

m
l

(a)

l

m

FIG. 4. (a) The concept of braiding nondegeneracy in the bulk:
If l is a quasiparticle that cannot be annihilated in the bulk, then
there must be at least one quasiparticle species m that has
nontrivial mutual statistics with respect to l, i.e., ei�lm � 1.
(b) The concept of braiding nondegeneracy at a gapped edge:
If l cannot be annihilated at the edge, then there must be at least
one quasiparticle m that can be annihilated at the edge such that
ei�lm � 1.
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and ‘‘no-go’’ theorems about one-dimensional (1D) lattice
models. For each type of protected edge, there is typically a
corresponding no-go theorem ruling out the possibility of
constructing a 1D lattice model realizing that edge theory.
For example, corresponding to the integer quantum Hall
edge is a theorem [28] that states that it is impossible to
construct a 1D lattice model realizing a chiral fermion.

In some cases, it is possible to use a 1D no-go theorem to
prove that a 2D edge is protected. This is the strategy we
will follow here. The no-go theorem we use is the state-
ment that any conformal field theory (CFT) realized by a
1D lattice model must be modular invariant—i.e., it is
impossible to realize a CFT that violates modular invari-
ance in a 1D system [29]. Using this theorem (or, more
accurately, conjecture), we prove that the criterion is nec-
essary for having a gapped edge. We note that this modular
invariance approach is similar to that of Ref. [30]. (See also
Refs. [31–33] for related work.)

We proceed in the same way as in the previous section:
We consider a general gapped electron system that has
Abelian quasiparticle statistics, has KH ¼ 0, and supports
a gapped edge.We then show that the setM of particles that
can be annihilated at the edge must be a Lagrangian sub-
group, i.e., must obey conditions (1) and (2) of the criterion.

The starting point for the argument is to consider the
system in a strip geometry with a large but finite width Ly

in the y direction and infinite extent in the x direction.
Since the system supports a gapped edge, we can consider
a scenario in which the lower edge is gapped. At the same
time, we imagine tuning the interactions at the upper edge
so that it is gapless (Fig. 5). Specifically, we tune the
interactions so that the upper edge is described by the
model edge theory

L ¼ 1

4�
@x�IðKIJ@t�J � VIJ@x�JÞ; (22)

where KIJ is the 2N � 2N K matrix describing the bulk
system.

To proceed further, we make a change of variables to
diagonalize the above action. Let W be a real matrix such
that WTKW ¼ �z, where

�z ¼ 1 0
0 �1

� �

and 1 denotes the N � N identity matrix. Setting �I ¼
WIJ

~�J, the edge theory becomes

L ¼ 1

4�
@x ~�Ið�z@t ~�J � ~VIJ@x ~�JÞ; (23)

where ~V ¼ WTVW. If we tune the interactions at the upper
edge appropriately, we can arrange them so that ~V is of the
form ~V ¼ v�IJ. Then, all the edge modes propagate at the
same speed jvj, and the low-energy, long-wavelength
physics of the strip is described by a conformal field theory.
We now apply the no-go theorem discussed above: We

note that the strip is a quasi-1D system, so according to the
no-go theorem (or conjecture), the above conformal field
theory must be modular invariant. Our basic strategy will
be to use this modular invariance constraint to derive the
criterion.
Before doing this, we first briefly review the definition of

modular invariance (for a more detailed discussion see,
e.g., Ref. [29]). For any conformal field theory, we can
imagine listing all the scaling operators O along with their

scaling dimensions ð�; ��Þ defined by

hOð0; 0ÞOðx; tÞi � 1

ðx� vtÞ2� � 1

ðxþ vtÞ2 �� : (24)

Using this list, we can construct the formal sum (‘‘partition
function’’)

Zð
Þ ¼ e�icð �
�
Þ=12X
O

e2�ið�
� �� �
Þ; (25)

where c is the central charge and 
 is a formal parameter.
If we evaluate this expression for a complex 
 with
Imð
Þ> 0, the sum converges. Modular invariance is the
statement that Zð
Þ has to obey the constraint

Zð�1=
Þ ¼ Zð
Þ: (26)

This equation places restrictions on the operator content of
the conformal field theory—that is, the set of scaling
operators in the theory. To see where Eq. (26) comes
from, we note that Zð
Þ can be interpreted physically as
the Euclidean space-time partition function for the con-
formal field theory, evaluated on a torus of shape 
.
Equation (26) then follows from the fact that the two
toruses with shape 
 and�1=
 are conformally equivalent
to one another and therefore must give identical partition
functions. [For similar reasons, modular invariance also
imposes the constraint that Zð
þ 1Þ ¼ Zð
Þ for a bosonic
system and Zð
þ 2Þ ¼ Zð
Þ for a fermionic system, but
we will not need this result here.]

(b)(a)

Ly

FIG. 5. We consider the system in a strip geometry with finite
width Ly in the y direction. We assume that the lower edge is

gapped, while the upper edge is gapless and described by (22).
The system has two types of scaling operators: (a) charge neutral
operators (27) acting on the upper edge and (b) charged opera-
tors of the form eil

T�. Operators of type (b) can only appear as a
low-energy description of a tunneling process in which a quasi-
particle of type l tunnels from the upper edge to the lower edge
and is subsequently annihilated.
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We now investigate the implications of modular invari-
ance, in particular, Eq. (26), for our system. The first step is
to classify all the scaling operators and find their scaling
dimensions. Importantly, we should only consider scaling
operators that are local in the x direction—that is, opera-
tors composed of products of electron creation and anni-
hilation operators acting within some finite segment of the
strip ½x� �x; xþ �x�.

One set of scaling operators is given by expressions of
the form

O fnJ;kg ¼
Y2N
J¼1

Y1
k¼1

ð@kx ~�JÞnJ;k : (27)

These operators describe combinations of electron creation
and annihilation operators that are charge neutral in each

individual edge mode ~�J [Fig. 5(a)]. Another set of op-

erators includes expressions of the form eil
T� for integer

vectors l. These operators describe the annihilation (or
creation) of a quasiparticle of type l on the upper edge.
An important point is that not all l correspond to physical
operators. Indeed, in general, one cannot annihilate a frac-
tionalized quasiparticle by itself. The only way such an
operator can appear in our theory is as a description of a
tunneling or annihilation process in which a quasiparticle
of type l tunnels from the upper edge to the lower edge and
is subsequently annihilated [Fig. 5(b)]. Thus, the allowed
values of l correspond to the quasiparticles that can be
annihilated at the lower edge.

We now introduce some notation to parametrize these
operators. Recall that l, l0 are topologically equivalent if
l� l0 ¼ K �� for some integer vector�. LetL be a set of
vectors l containing one representative from each of the
above equivalence classes. Let M be a subset of L, con-
sisting of all quasiparticles that can be annihilated at the
lower edge. In this notation, the most general scaling
operators in our theory are of the form

eiðmþK�ÞT�OfnJ;kg; (28)

where m 2 M, and � is an integer vector.
Given this parametrization of scaling operators, the

partition function Zð
Þ (25) can be written as

Zð
Þ ¼ X
m2M

Zmð
Þ; (29)

where Zm denotes the sum (25) taken over all � and fnJ;kg,
with m fixed.

To proceed further, we use the transformation law

Zlð�1=
Þ ¼ X
l2L

Sll0Zl0 ð
Þ; (30)

where S is defined by

Sll0 ¼ 1

D
ei�ll0 ; D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðKÞj

q
: (31)

This relation can be derived in two ways. First, it can be
derived using the Poisson summation formula, as shown in
Appendix D. Second, it can be established using the bulk-
edge correspondence for Chern-Simons theory: Quite gen-
erally, we expect the ‘‘modular S matrix’’ [29], which is
defined in terms of the edge partition function transforma-
tion law (30), to match the ‘‘topological S matrix’’ [8],
which is defined in terms of the bulk quasiparticle braiding
statistics (31).
Substituting (30) into (29) gives

Zð�1=
Þ ¼ X
m2M;l2L

SmlZlð
Þ: (32)

Applying the modular invariance constraint (26), we
deduce X

m2M

Zmð
Þ ¼
X

m2M;l2L

SmlZlð
Þ; (33)

implying that

X
m2M

Sml ¼
�
1 if l 2 M
0 otherwise:

(34)

It is worth mentioning that there is a subtlety in deriving
(34) from (33). The subtlety is that the fZlð
Þg are not
linearly independent as functions of 
: In fact, Zlð
Þ ¼
Z�lð
Þ, where �l ¼ �l denotes the antiparticle of l. However,
it can be shown that the sums fZlð
Þ þ Z�lð
Þg are linearly
independent as functions of 
, at least for generic VIJ. This
linear independence, together with the fact that m 2 M if
and only if �m 2 M, allows us to deduce (34) from (33).
Equation (34) is the main result of this section. We now

use this result to show that M obeys the two conditions
from the criterion. To this end, we first consider the case
where l is the trivial quasiparticle. In this case, the right-
hand side of (34) is 1, while the left-hand side is

X
m2M

Sml ¼
X

m2M

1

D
¼ jMj

D
; (35)

where jMj is the number of elements of M. We deduce
that jMj ¼ D.
Next, let l 2 M be arbitrary. In this case, the left-hand

side of (34) is

X
m2M

Sml ¼
X

m2M

ei�ml

jMj : (36)

Thus, the only way that (34) can be satisfied is if all the
phase factors ei�ml are equal to 1. In other words, we must
have ei�mm0 ¼ 1 for all m, m0 2 M. More precisely, M
satisfies condition (1).
Finally, we consider the case where l =2 M. In this case,

we must have ei�ml � 1 for at least one m 2 M, since
otherwise the left-hand side of (34) would evaluate to 1
rather than 0. Hence,Mmust satisfy condition (2) as well.
We conclude thatM is a Lagrangian subgroup, as claimed.
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VI. CONCLUSION

In this paper, we have derived a general criterion for when
an electron system with Abelian quasiparticle statistics and
KH ¼ 0 can support a gapped edge: A gapped edge is
possible if and only if there exists a subset of quasiparticles
M � L with the two properties discussed in the
Introduction (i.e., a Lagrangian subgroup). We have estab-
lished this criterion with three arguments—one based on a
microscopic analysis of the edge, another on constraints
from braiding statistics, and the third onmodular invariance.

Our analysis has also shown that every gapped edge can
be associated with a Lagrangian subgroup M � L.
Physically, M corresponds to the set of quasiparticles
that can be annihilated at the edge. Furthermore, we have
shown that there exists at least one gapped edge for each
M � L (Appendix A 3). In this sense, the different
Lagrangian subgroups M � L classify (or at least par-
tially classify) the different types of gapped edges that are
possible for a given bulk state.

For concreteness, we have focused on systems built out of
electrons (i.e., fermions). However, the criterion for a gapped
edge also applies to bosonic systems with only one modifi-
cation: In the bosonic case, we require that all the quasipar-
ticles inM are bosons, in addition to the two properties from
the Introduction. As in the fermionic case, one can show that
an Abelian bosonic system with KH ¼ 0 can have a gapped
edge if and only if there exists a Lagrangian subgroup M
with these three properties. Furthermore, the different types
of gapped edges are (at least partially) classified by the
different Lagrangian subgroups M � L. These results can
be derived using arguments similar to the fermionic case, as
discussed in Appendix E.

Throughout this paper we have analyzed boundaries
between a gapped quantum many-body system and the
vacuum. More generally, we could also consider interfaces
between two gapped quantum many-body systems.
Fortunately, these more complicated geometries can be
reduced to the case studied here using a simple (and well-
known) trick. Specifically, in order to understand the inter-
face between two Hamiltonians H, H0, we imagine folding
the system along the interface as we would fold a sheet a
paper. In this way, we can see that the H=H0 boundary is
equivalent to an interface between the vacuum and a bilayer
system with HamiltonianHþH0

r, whereH
0
r is obtained by

a spatial reflection of H0. We conclude that the boundary
between H and H0 can be gapped if and only if the corre-
sponding bilayer system has a Lagrangian subgroup.

There are a number of possible directions for future
work. One direction is to perform a more concrete analysis
of protected edge modes for a particular system. For ex-
ample, it would be interesting to investigate a specific
model of the � ¼ 2=3 edge (8) in the presence of arbitrary
scattering terms (5) and explicitly verify that the edge has
gapless excitations when proximity coupled to a supercon-
ductor. Such a calculation could also shed light on

important physical properties of these edge modes, such
as their robustness to disorder and their ability to transport
heat.
Another direction is to generalize the criterion to sys-

tems with non-Abelian statistics. To formulate such a gen-
eralization, it may be helpful to study the classification of
exactly solvable gapped edges given in Ref. [14]. Other
guidance may be obtained by extending the braiding sta-
tistics and modular invariance arguments of Secs. IVand V
to non-Abelian states; it is less clear how to generalize the
microscopic analysis of Sec. III.
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APPENDIX A: RELATION BETWEEN NULL
VECTORS AND LAGRANGIAN SUBGROUPS

In this section, we show that one can find N linearly
independent integer vectors f�1; . . . ;�Ng satisfying
�T

i K�j ¼ 0 if and only if there exists a set of (inequiva-

lent) integer vectors M satisfying two properties:

(1) mTK�1m0 is an integer for any m, m0 2 M.
(2) If l is not equivalent to any element of M, then

mTK�1l is noninteger for some m 2 M.

Here, K is a 2N � 2N symmetric integer matrix with
vanishing signature, nonvanishing determinant, and at least
one odd element on the diagonal.
We prove this result in Appendix A 1; we then explain its

physical interpretation in Appendix A 2, and we state and
prove a sharper version of this result in Appendix A 3. We
derive a bosonic analogue in Appendix E.

1. Proof

Wefirst establish the ‘‘only if’’ direction. Suppose that one
can findN linearly independent integer vectors f�1; . . . ;�Ng
such that �T

i K�j ¼ 0. We wish to construct a set M of

integer vectors satisfying the two properties listed above. The
first step is tomake an (integer) changeof basis so that the last
N components of �i are all zero for every �i. In the new
basis, the matrix K has the block diagonal form

K ¼ 0 A

AT B

 !
; (A1)

where A, B are N � N matrices. Hence, K�1 is given by

K�1 ¼ �ðATÞ�1BA�1 ðATÞ�1

A�1 0

 !
: (A2)

We then let M be the set of all vectors of the form

0

v

 !
;
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where v is an N-component integer vector. (More pre-
cisely, we divide this set into equivalence classes modulo
KZ2N and choose one vector from each equivalence class.)

We can easily see that M satisfies the two properties
listed above. To establish the first property, note that
mTK�1m0 ¼ 0 for any m, m0 2 M, so, in particular, this
quantity is always an integer. As for the second property, let

l ¼ u1
u2

� �

be an integer vector such that lTK�1m is an integer for all
m 2 M. Then, u1 ¼ Aw for some integer vector w, so we
can write

l ¼ K � 0
w

� �
þ 0

u2 � Bw

� �
: (A3)

Examining this expression, we see that l is equivalent to an
element of M, which is what we wanted to show.

We next establish the ‘‘if’’ direction. SupposeM is a set
of vectors satisfying the above two properties. We wish to
construct f�1; . . . ;�Ng satisfying �T

i K�j ¼ 0. To this

end, let us consider the set

� ¼ fmþ K�: m 2 M;� 2 Z2Ng: (A4)

This set forms a 2N-dimensional integer lattice and there-
fore can be represented as � ¼ UZ2N , where U is some
2N � 2N integer matrix.

Now, consider the matrix P ¼ UTK�1U. We claim that
P is a symmetric integer matrix with vanishing signature,
determinant �1, and at least one odd element on the
diagonal. Indeed, the facts that P is symmetric, has van-
ishing signature, and has at least one odd element on the
diagonal follow from the corresponding properties
of K. Also, the fact that P is an integer matrix follows
from the first property of M. Finally, to see that P has
determinant �1, we use the second property of M:
We note that if x2Z2N, then yTPx is noninteger for
some y 2 Z2N . Hence, if x2Z2N , then Px2Z2N. It fol-
lows that P�1 must be an integer matrix, so that P has
determinant �1.

The next step is to use the following theorem from
Milnor [34]: Suppose A, A0 are two symmetric, indefinite,
integer matrices with determinant �1. Suppose, in addi-
tion, that A, A0 have the same dimension and same signa-
ture and are either both even or both odd—where an
‘‘even’’ matrix has only even elements on the diagonal,
and an ‘‘odd’’ matrix has at least one odd element on the
diagonal. Milnor’s theorem (Ref. [34], p. 25) states that
there must exist an integer matrix W with a unit determi-
nant such that WTAW ¼ A0.

Applying this result to the matrix P (an odd matrix with
vanishing signature), we deduce that we can always block
diagonalize P as

WTPW ¼ 1 0
0 �1

� �
; (A5)

where W is an integer matrix with detðWÞ ¼ �1, and 1
denotes the N � N identity matrix.
To complete the argument, we define vi ¼ wi þ wiþN,

where wi is the ith column of W. We then define

�i ¼ detðKÞ � K�1Uvi: (A6)

It is easy to check that the �i obey �T
i K�j ¼ 0 and are

linearly independent and integer.

2. Understanding the correspondence

The ‘‘only if’’ part of the argument shows that every
collection of null vectors f�ig can be associated with a
corresponding Lagrangian subgroup M. We now discuss
the physical meaning of this f�ig ! M correspondence
and show that it agrees with the physical picture of Sec. IV.
To begin, it is helpful to reformulate the correspondence

in a basis-independent way: Given any linearly indepen-
dent f�1; . . . ;�Ng satisfying �T

i K�j ¼ 0, we defineM to

be the set of all (inequivalent) vectors m 2 Z2N such that

b �m ¼ X
i

ai � K�i (A7)

for some b, ai 2 Z. It is easy to verify that this definition of
M agrees with the one given in the previous section.
This alternative formulation is useful because it reveals

the physical interpretation of the f�ig ! M correspon-
dence: The set M is simply the set of quasiparticles that
can be annihilated at the gapped edge corresponding to
f�ig. To see this, note that whenPiUð�iÞ gaps the edge, it
freezes the value of�T

i K� and hence also freezes the value
of the linear combination

P
iai�

T
i K�. It then follows from

(A7) that the value of mT� is frozen for each m 2 M.

Thus, we expect the operator eim
T� to exhibit long-range

order,

heimT�ðx1Þe�imT�ðx2Þi ¼ const � 0; (A8)

in the limit jx1 � x2j ! 1. This long-range order implies
that the associated quasiparticlem can be annihilated at the
edge. Indeed, according to the bulk-edge correspondence

[1,2], the operator eim
T ½�ðx1Þ��ðx2Þ� can be interpreted as

describing a process in which two quasiparticles m, �m
are created in the bulk and brought to points x1, x2 at the

edge. Hence, heimT�ðx1Þe�imT�ðx2Þi can be thought of as an
overlap between the group state j�i and an excited state

j�exi ¼ eim
T�ðx1Þe�imT�ðx2Þj�i with two quasiparticles at

the edge. The fact that this overlap is nonzero implies that
the corresponding quasiparticlesm, �m can be annihilated at
the edge, as shown in Lemma 1 of Appendix C 1.
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3. Sharpening the correspondence

While the ‘‘if’’ part of the argument in Appendix A 1
shows that every state with at least one Lagrangian sub-
group M � L can support at least one type of gapped
edge, some states can have more than one Lagrangian
subgroup. Thus, it is desirable to prove a stronger
result—namely, every Lagrangian subgroup M can be
associated with a corresponding gapped edge. Such a
result, together with our proof that every gapped edge is
associated with a Lagrangian subgroup, would imply that
the different types of gapped edges are (at least partially)
classified by Lagrangian subgroups M � L.

We now derive this sharper result. In other words, we
construct a gapped edge for eachM in such a way that the
quasiparticles inM can be annihilated at the boundary. We
would like to mention that, while this paper was being
revised to include this extension of Appendix A 1, we
became aware that Barkeshli, Jian, and Qi, making use of
an earlier draft of this paper, have obtained a similar
extension [35].

To prove this stronger result, we modify our previous
construction of f�1; . . . ;�Ng (A6). The most important
modification is that we use a more complicated edge
theory: Instead of considering the standard edge theory
(3) for the Chern-Simons theory (10), we consider an
enlarged edge theory with a 4N � 4N K matrix

K0 ¼
K 0 0
0 �1 0
0 0 1

0
@

1
A: (A9)

Here, 1 is an N � N identity matrix. Physically, the K0
edge theory can be realized in an edge reconstruction
scenario where N nonchiral Luttinger liquids, described by

1 0
0 �1

� �
;

are glued to the standard edge for K.
We next describe how to construct null vectors f�ig that

gap out the K0 edge and give us a boundary where the
particles in M can be annihilated. Since the K0 edge has
4N chiral modes, we need 2N vectors f�1; . . . ;�2Ng with
�T

i K
0�j ¼ 0. We construct f�ig using the same recipe as

above. First, we define a 2N-dimensional lattice � by
Eq. (A4), and we construct a matrix U with � ¼ UZ2N .
We then define P ¼ UTK�1U, and we find a unit determi-
nant matrix W satisfying Eq. (A5). The only new element
comes in the definition of�i. In the modified construction,
we set

�i ¼ detK � K�1Uwi

ei

� �
; (A10)

where wi is the ith column ofW, and ei is a 2N-component
vector with a 1 in the ith entry, and with all other entries
vanishing. It is easy to verify that�T

i K
0�j ¼ 0 and that the

f�ig are all integer vectors.

At this point, it is clear that the perturbation
P

2N
i¼1 Uð�iÞ

will gap the K0 edge. All that remains is to prove that the
quasiparticles inM can be annihilated at this edge. To this
end, we note that

K0�i ¼ detK � Uwi

��zei

 !
; �z ¼

1 0

0 �1

 !
: (A11)

We then recall thatW a has unit determinant, so the lattice
generated by fUwig spans all of UZ2N ¼ �. Since � con-
tains everym 2 M, we can see from (A11) that the lattice
generated by fK0�ig contains the vector detðKÞ �m for
every m 2 M (modulo K0Z4N). Applying the analysis of
Appendix A 2, we conclude that all the quasiparticles in
M can be annihilated at the boundary.

APPENDIX B: PROOF THAT THE NULL
VECTOR CRITERION IS NECESSARY

In this section, we consider the two-component edge
theory (3) in the presence of a single scattering term Uð�Þ
(5). We show that a necessary condition forUð�Þ to gap the
edge is that � satisfy the null vector criterion, �TK� ¼ 0.
Our basic strategy is to construct a (fictitious) Uð1Þ

charge Q that is conserved by Uð�Þ and then show that
the system has a nonzero Hall conductivity with respect to
this charge. To this end, we consider a general Uð1Þ charge
of the form

Q ¼ 1

2�

Z
tT@x�; (B1)

where tT ¼ ðt1; t2Þ is some two-component real vector.
Next, we choose t1 ¼ b, t2 ¼ �a, where � ¼ ða; bÞ.

This choice of t guarantees that

½Q;Uð�Þ� ¼ 0: (B2)

As a result, the charge Q is a conserved quantity, so it is

sensible to compute the associated Hall conductivity �Q
H.

Following the usual K-matrix formalism, we have

�Q
H ¼ tTK�1t

¼ 1

detðKÞ b �a
� � � K22 �K12

�K21 K11

 !
� b

�a

 !

¼ 1

detðKÞ ðK11 � a2 þ 2K12 � abþ K22 � b2Þ

¼ 1

detðKÞ�
TK�: (B3)

We are now finished: We can see that if � does not

satisfy the null vector criterion (6), then �Q
H � 0. It then

follows that Uð�Þ cannot gap out the edge, since a system
with a nonzero Hall conductivity has a protected edge if the
corresponding charge is conserved [9,10]. This proves the
claim.
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We would like to emphasize that the above argument
does not rule out the possibility of gapping the edge with
other types of perturbations. In fact, it does not even
rule out simple perturbations like a sum of two scattering
terms Uð�1Þ þUð�2Þ: These terms break all the Uð1Þ
symmetries at the edge, thus invalidating the above
analysis.

APPENDIX C: ESTABLISHING CONDITION (2)
OF THE CRITERION

In this section, we consider a general gapped electron
system that has Abelian quasiparticle statistics and a
gapped edge. For this class of systems, we argue that the
set of quasiparticles that can be annihilated at the edge
(denoted by M) must obey condition (2) of the criterion.
In other words, we show that if l is a quasiparticle that
cannot be annihilated at a gapped edge, then l must have
nontrivial statistics with at least one quasiparticle m that
can be annihilated at the edge.

The argument we present is not a rigorous mathematical
proof: We do not give precise definitions for all the con-
cepts that we use, and we regularly drop quantities that we
expect to vanish in the thermodynamic limit. Despite these
limitations, we believe that the argument could be used as a
starting point for constructing a rigorous proof.

1. Preliminaries

Our argument relies on the following conjecture about
gapped many-body systems:

Conjecture 1: Let j�i be the ground state of a 2D gapped
many-body system defined in a spherical geometry. Let
j�0i be another state (not necessarily an eigenstate) that
has the same energy density outside of two nonoverlapping
disklike regions A, B. Then we can write

j�0i ¼ X
k

UkWkj�i; (C1)

where Wk is a (stringlike) unitary operator that describes a
process in which a pair of quasiparticles k, �k are created
and then moved to regions A, B, respectively, and whereUk

is an operator acting within A [ B. Here, the sum runs over
different quasiparticle types k.

In a more physical language, the above conjecture is the
statement that any excited state whose excitations are
located in two disconnected regions A, B can be con-
structed by moving a pair of quasiparticles k, �k into A, B
and then applying an operatorUk acting within A [ B. This
claim is reasonable because we expect that the different
excited states of a gapped many-body system can be di-
vided into topological sectors parametrized by the quasi-
particle type k, and that any two excitations in the same
sector can be transformed into one another by local
operations.

In addition, we will make use of the following lemma:

Lemma 1: Consider a 2D gapped many-body system
with a gapped edge. Let j�i denote the ground state and
let j�exi denote an excited state with a quasiparticle l and
quasihole �l located near two points a, b at the boundary. If l
cannot be annihilated at the edge, then

lim
ja�bj!1

h�jUaUbj�exi ¼ 0 (C2)

for any operators Ua, Ub acting near a, b.

To derive this result, let H be a gapped, local
Hamiltonian whose ground state is j�i. Let Hex be a
gapped, local Hamiltonian whose ground state is j�exi.
We can assume, without loss of generality, that the ground-
state energies of H, Hex are both 0:

Hj�i ¼ Hexj�exi ¼ 0: (C3)

We will also assume that Hex can be written as

Hex ¼ H þHa þHb; (C4)

where Ha, Hb are local operators acting near a, b.
We will now show that if,

lim
ja�bj!1

h�jUaUbj�exi ¼ � � 0; (C5)

then we can always construct ‘‘dressed’’ operatorsUa,Ub

such that limja�bj!1UaUbj�exi ¼ j�i. This will estab-
lish the lemma (since the latter equation means that l can
be annihilated at the edge).
To do this, we use a trick from Hastings (Ref. [36]) and

Kitaev (Ref. [8], Appendix D.1.2). Let ~fð!Þ be a real,
smooth function satisfying

~fð0Þ ¼ 1; ~fð!Þ ¼ 0 for j!j � �; (C6)

where � is the energy gap of H. Define

fðtÞ ¼ 1

2�

Z 1

�1
d!~fð!Þe�i!t: (C7)

Given that ~fð!Þ is smooth, it follows that fðtÞ ! 0 as
t ! 1 faster than any polynomial. We then define

U ¼ 1

�

Z 1

�1
dtfðtÞ � eiHtUaUbe

�iHext: (C8)

Straightforward algebra gives

Uj�exi ¼ 1

�

Z 1

�1
dtfðtÞ � eiHtUaUbj�exi

¼ 1

�

Z 1

�1
dtfðtÞ �X

n

eiEntj�nih�njUaUbj�exi

¼ 1

�
j�ih�jUaUbj�exi (C9)

so that

lim ja�bj!1Uj�exi ¼ j�i: (C10)

Furthermore, since f decays rapidly as t ! 1, and H is a
local Hamiltonian, it is not hard to see that the region of
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support ofU is well localized near a and b. Also,U can be
(approximately) factored as U ¼ Ua �Ub, up to terms
that decay rapidly in the separation between a and b. In this
way, we can explicitly construct operators Ua;Ub acting
near a, b such that limja�bj!1UaUbj�exi ¼ j�i.

2. Outline of argument

We consider a system in a square L� L geometry with a
gapped edge. We let j�i denote the ground state and j�exi
a state with two quasiparticles l, �l located near two well-
separated points at the boundary [Fig. 6(a)]. The argument
proceeds in three steps:

(1) In the limit L ! 1, we show that there exists an
operator V acting in region C such that Vj�i ¼ j�i
and Vj�exi ¼ 0 [Fig. 6(b)].

(2) We show that we can replace V by an operator of the
form

P
kUkWk, where Uk are operators acting near

the boundary, and Wk are (stringlike) unitary opera-
tors that describe a process in which a pair of quasi-
particles k, �k are created in the bulk and moved near
the boundary [Fig. 6(c)]. In other words, we show
that

P
kUkWkj�i ¼ j�i andPkUkWkj�exi ¼ 0.

(3) We show that there is at least one quasiparticle k that
has nontrivial statistics with respect to l and that can
be annihilated at the edge. This result proves the claim
that the setM of quasiparticles that can be annihilated
at the edge obeys condition (2) of the criterion.

3. Step 1

The first step is to partition our system into two pieces, C
and D [Fig. 6(a)]. We note that D has two connected
components—one containing l and one containing �l. We
will now show that in the limit L ! 1 there exists an
operator V acting in region C, with Vj�i ¼ j�i and
Vj�exi ¼ 0 [Fig. 6(b)].

To construct V, we consider the Schmidt decomposition
of j�i corresponding to the bipartition C, D:

j�i ¼ X
i

�ij�C;ii 	 j�D;ii: (C11)

Here, fj�C;iig and fj�D;iig are orthonormal many-body

states corresponding to regions C and D, and �i are
Schmidt coefficients. Since the fj�C;iig, fj�D;iig form a

complete orthonormal basis for C and D, we can also
express j�exi in terms of these states:

j�exi ¼
X
ij

�0
ijj�C;ii 	 j�D;ji: (C12)

We next observe that, in the limit L ! 1, the coefficients
have the property that, for each i, either (1) �i ¼ 0 or (2) all
the f�0

ijg vanish simultaneously. Indeed, if �i and �0
ij are

both nonzero for some i, j, then the operator j�D;iih�D;jj
would have a nonzero matrix element between j�i and
j�exi. But such a nonzero matrix element is not possible
according to Lemma 1 (C2), since j�D;iih�D;jj is a local

operator acting in the region D.
Given this observation, we can now construct the desired

operator V. We define

V ¼ X
�i�0

j�C;iih�C;ij: (C13)

By construction, we have

Vj�i ¼ j�i; Vj�exi ¼ 0; (C14)

as required.

4. Step 2

To proceed further, we decompose V as

V ¼ X
i

V 00
i � V 0

i ; (C15)

where V0
i acts in the interior of the system and V00

i acts near
the two boundaries [Fig. 7(a)].

(a)

CD D

l

(b)

Vl l
k

k

k

(c)

l ll W

U

U

FIG. 6. Key steps in the argument. (a) We partition the L� L
system into two pieces C, D, where D has two connected
components—one containing l and one containing �l. (b) We
show that there exists an operator V acting in region C such that
Vj�i ¼ j�i and Vj�exi ¼ 0. (c) We show that we can replace V
by an operator of the form

P
kUkWk, where Uk are operators

acting near the boundary and Wk are (stringlike) unitary opera-
tors that describe a process in which a pair of quasiparticles k, �k
is created in the bulk and moved near the boundary.

V ′

V ′′

V ′′i

i

i

(b)(a)

E

F

F

2

1

FIG. 7. (a) We write V ¼ P
iV

0
i � V00

i , where V0
i acts in the

interior of the system and V00
i acts near the boundary. (b) We

construct an operator P that acts within the region E and satisfies
several properties. First, Pj�i ¼ j�i. Second, if P is applied to a
state with no excitations outside of E [ F1 [ F2, it returns a state
with no excitations outside of F1 [ F2.
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Next, we construct an operator P that acts within the
region E shown in Fig. 7(b) and satisfies several properties.
First, Pj�i ¼ j�i. Second, if P is applied to a state that
has no excitations outside of E [ F1 [ F2, it returns a state
with no excitations outside of F1 [ F2. In other words, P
projects out any excitations within E.

It is easy to construct P in the case where the
Hamiltonian H is a sum of local, commuting projectors,
H ¼ �PiPi: In that case, the operator P ¼ Q

i2EPi sat-
isfies all the required conditions. In the general case, we
need to work a bit harder. Let H be a gapped Hamiltonian
whose ground state is j�i. We can write

H ¼ HE þHF þH0; (C16)

where HE contains terms acting in (or near) region E, HF

contains terms acting in (or near) region F1 [ F2, and H0

contains all the other terms in the Hamiltonian. In general,
HE, HF, H0 may not commute with one another since they
may overlap along the boundaries between the various
regions. However, according to a result from Ref. [36] as
well as Ref. [8] (Appendix D.1.2), we can always choose
HE, HF, H0 so that j�i is a simultaneous eigenstate of all
three operators:

H0j�i ¼ HEj�i ¼ HFj�i ¼ 0: (C17)

To proceed further, we use the same trick as in the proof of

Lemma 1. We choose a real, smooth function ~f satisfying
(C6), where � denotes the bulk gap of the Hamiltonian
H0 þHE. We then construct the Fourier transform f (C7)
and define

P ¼
Z 1

�1
dtfðtÞ � eiðH0þHEÞte�iH0t: (C18)

In the same way as in Lemma 1, one can verify that P has
all of the required properties.

Now, consider the state V 0
i j�i. This state has no excita-

tions outside of E [ F1 [ F2, since V
0
i acts entirely within

this region [Fig. 7(b)]. It follows that the state PV 0
i j�i has

no excitations outside of F1 [ F2. Therefore, according to
Conjecture 1, (C1), we can write

PV 0
ij�i ¼ X

k

UkiWkj�i; (C19)

where Wk is a (stringlike) unitary operator that describes a
process in which a pair of quasiparticles k, �k is created and
then moved to regions F1, F2, respectively, and where Uki

is an operator acting within F1 [ F2 (Fig. 8). Here, the sum
runs over different particle types k.

We next argue that the same relation holds for j�exi:
PV 0

i j�exi ¼
X
k

UkiWkj�exi: (C20)

To see this, note that

j�exi ¼ Wl�j�i; (C21)

where Wl� is a unitary operator that describes a process in

which two quasiparticles l, �l are created in the bulk and
moved along a path � to the boundary. Furthermore, this
equation holds for any path � with endpoints located at the
correct positions; we are free to choose the path � however
we like. Here, we choose � so that it avoids the region of
support of the operators PV0

i and
P

kUkiWk [Fig. 9(a)]. It is
then clear that Wl� commutes with PV 0

i and
P

kUkiWk. If

we then multiply both sides of Eq. (C19) by Wl�, and

commute the operators on both sides, the claim (C20)
follows immediately.
To complete step 2 of the argument, we define

Uk ¼
X
i

V 00
i Uki: (C22)

We then note thatX
k

UkWkj�i¼X
ik

V00
i UkiWkj�i¼X

i

V00
i ðPV0

i j�iÞ

¼P
X
i

V00
i V

0
i j�i¼PVj�i¼ j�i: (C23)

By the same reasoning, we have

= k

ki

ki

P

V ′ U

W

U

i

FIG. 8. According to Conjecture 1, (C1), we can write
PV0

i j�i ¼ P
kUkiWkj�i, where Wk is a (stringlike) unitary

operator that describes a process in which a pair of quasiparticles
k, �k are created and then moved to regions F1, F2 [Fig. 7(b)], and
where Uki is an operator acting within F1 [ F2.

ki

ki

l l

k

k

l lkk

(b)(a)

U

U

U

U

W W

FIG. 9. The state j�exi can be written as j�exi ¼ Wl�j�i,
where Wl� is a stringlike operator with path �. This equation

holds for any choice of�. (a) To prove (C20), we choose� (dotted
line) so that it avoids the region of support of

P
kUkiWk and PV

0
i .

(b) To prove (C27), we choose � so that it intersects Wk.
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X
k

UkWkj�exi ¼ PVj�exi ¼ 0; (C24)

which is what we wanted to show.

5. Step 3

It follows from Eqs. (C23) and (C24) thatX
k

h�jUkWkj�i¼1;
X
k

h�exjUkWkj�exi¼0: (C25)

In particular,X
k

h�jUkWkj�i � X
k

h�exjUkWkj�exi: (C26)

At the same time, it is easy to see that

h�exjUkWkj�exi ¼ h�jUkWkj�i � ei�kl ; (C27)

where �kl is the mutual statistics between k and l. One way
to derive this relation is to use the representation j�exi ¼
Wl�j�i (C21) and to choose the path � so that it intersects

the path corresponding to Wk at one point [Fig. 9(b)].
Equation (C27) then follows immediately from the string
commutation algebra (21).

To complete the derivation, we now compare the two
relations (C26) and (C27). From (C27), we see that
h�jUkWkj�i ¼ h�exjUkWkj�exi if k and l have trivial
mutual statistics. Also, h�jUkWkj�i ¼ h�exjUkWkj�exi
if h�jUkWkj�i ¼ 0. On the other hand, from (C26), we
know that h�jUkWkj�i � h�exjUkWkj�exi for at least
one k. We conclude that there must be at least one particle
type k that has nontrivial statistics with respect to l and
where h�jUkWkj�i � 0. Applying Lemma 1 (C2), we
conclude that there is at least one particle k that has non-
trivial statistics with respect to l and can be annihilated at
the boundary. Hence, the set M of quasiparticles that can
be annihilated at the boundary must obey condition (2) of
the criterion, as claimed.

APPENDIX D: DERIVING THE PARTITION
FUNCTION TRANSFORMATION LAW

In this section, we derive the transformation law (30) for
Zlð
Þ using the Poisson summation formula. This compu-
tation is well known (see, e.g., Ref. [29]), but we include it
here for completeness.

The first step is to derive an explicit expression for Zlð
Þ.
To this end, consider a general operator of the form

eiðlþK�ÞT�OfnJ;kg: (D1)

Rewriting this operator in terms of the ~� fields gives

ei�
T ~�OfnJ;kg; (D2)

where � ¼ WTðlþ K�Þ. The scaling dimensions for this
operator are, therefore,

�ð�; fnJ;kgÞ ¼ 1

2
�T

1 0

0 0

 !
�þ XN

J¼1

X1
k¼1

k � nJ;k;

��ð�; fnJ;kgÞ ¼ 1

2
�T

0 0

0 1

 !
�þ X2N

J¼Nþ1

X1
k¼1

k � nJ;k;
(D3)

where 1 is an N � N identity matrix.
To calculate the partition function Zlð
Þ, we substitute

these scaling dimensions into (25) and sum over all of the
above operators. In other words, we sum over all fnJ;kg and
all � 2 �l, where �l denotes the lattice

�l ¼ fWTðlþ K�Þ: � 2 Z2Ng: (D4)

Simplifying the resulting sum, we find

Zlð
Þ ¼
X
�2�l

e���TAð
Þ� 1

j�ð
Þj2N ; (D5)

where Að
Þ is the 2N � 2N matrix,

Að
Þ ¼ �i
 � 1 0
0 i �
 � 1

� �
; (D6)

and � is the Dedekind eta function,

�ð
Þ ¼ e�i
=12
Y1
k¼1

ð1� e2�ik
Þ: (D7)

We are now ready to derive the transformation law (30).
First, we use the Poisson summation formula to deduceX
�2�l

e���TAð�1=
Þ�

¼ 1

volð�0Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detAð�1=
Þp � X
�
2�


0

e��ð�
ÞTAð�1=
Þ�1�
þ2�ilTW�

:

(D8)

Here, volð�0Þ denotes the volume of the unit cell of �0, and
�

0 denotes the set of all vectors that have an integer inner

product with the vectors in �0 (i.e., the dual lattice).
Next, we observe that

A

�
� 1




��1 ¼ Að
Þ; detA

�
� 1




�
¼ 1

j
j2N ;

and volð�0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detKjp

. Also, it is not hard to show that
�

0 can be written as

�

0 ¼

[
l02L

�z � �l0 ; (D9)

where

�z ¼ 1 0
0 �1

� �
:

Substituting these expressions into Eq. (D8) and simplify-
ing, we derive the transformation law
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X
�2�l

e���TAð�1=
Þ� ¼ j
jN X
l02L

Sll0
X

�2�l0
e���TAð
Þ�;

where

Sll0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detKjp ei�ll0 : (D10)

Combining this result with the identity

�ð�1=
Þ ¼ ffiffiffiffiffiffiffiffiffi�i

p � �ð
Þ; (D11)

we conclude that

Zlð�1=
Þ ¼ X
l0
Sll0Zl0 ð
Þ; (D12)

as claimed.

APPENDIX E: BOSONIC CASE

As discussed in the Conclusion, the conditions for
when an Abelian bosonic system with KH ¼ 0 has a
gapped edge are similar to those of fermionic systems.
The only difference is that the set of quasiparticles M
must have an additional property beyond the two from
the fermionic case. Specifically, we require that every
m 2 M must be a boson, i.e., ei�m ¼ 1. The bosonic
criterion states that a gapped edge is possible if and only
if there exists a set M with these three properties (i.e., a
Lagrangian subgroup). In this section, we discuss how to
modify the different arguments in this paper to prove this
claim.

1. Microscopic argument

As in the fermionic case, the starting point for the micro-
scopic argument is the Chern-Simons theory (10), where
KIJ is a 2N � 2N symmetric, nondegenerate integer matrix
with vanishing trace. However, we now restrict ourselves to
matricesKIJ whose diagonal elements are all even, sincewe
are interested in systems built out of bosons.

Following the same analysis as in Sec. III B, it suffices
to prove the following mathematical result: There exist N
linearly independent integer vectors f�1; . . . ;�Ng satisfy-
ing �T

i K�j ¼ 0 if and only if there exists a set of (inequi-

valent) integer vectors M satisfying the following
properties:

(1) mTK�1m0 is an integer for any m, m0 2 M.
(2) mTK�1m is an even integer for any m 2 M.
(3) If l is not equivalent to any element of M, then

mTK�1l is noninteger for some m 2 M.
Here, the second property comes from the requirement that
ei�m ¼ 1 for every m 2 M.

The ‘‘only if’’ direction can be established exactly as in
the fermionic case (Appendix A 1) with no modification.
The ‘‘if’’ direction is also quite similar to the fermionic
case: As in Appendix A 1, we define a 2N-dimensional
lattice � by Eq. (A4), and we construct a matrix U with

� ¼ UZ2N. We then define P ¼ UTK�1U. Just as before,
it is easy to see that P is a symmetric integer matrix with
vanishing signature and unit determinant. The only differ-
ence from the fermionic case is that P is now an even
matrix instead of an odd matrix. Thus, Milnor’s theorem
implies that we can block diagonalize P as

WTPW ¼ 0 1
1 0

� �
(E1)

instead of (A5). We then define �i ¼ detK � K�1Uwi,
where wi is the ith column of W, i ¼ 1; . . . ; N. As in the
fermionic case, it is easy to see that �i obey �T

i K�j ¼ 0

and are linearly independent and integer.
It is also possible to prove the stronger correspondence

of Appendix A 3 in the bosonic case. In other words, it is
possible to construct a gapped edge for each M in such a
way that the quasiparticles in M can be annihilated at the
boundary. The only difference from the fermionic con-
struction of Appendix A 3 is that in the bosonic case we
need to consider an edge theory described by

K0 ¼
K 0 0
0 0 �1
0 �1 0

0
@

1
A (E2)

instead of (A9). The rest of the analysis proceeds as before.

2. Braiding statistics argument

It is straightforward to extend the braiding statistics
argument of Sec. IV to the bosonic case. As before, we
assume a gapped edge, and we define M to be the set of
particles that can be annihilated at the boundary. Using
arguments identical to the fermionic case, we can show
that M satisfies the two properties discussed in the
Introduction. The only new element is that we now
have to show that M satisfies the additional property
that every m 2 M is a boson. Similarly to Sec. IV, this
statement can be established by constructing stringlike
operators Wm
 ¼ UaUbWm
 and then examining their

commutation rules. However, instead of using the com-
mutation algebra (21), one needs to use the hopping
operator algebra of Ref. [26]:

Wm
Wm�Wm� ¼ ei�mWm�Wm�Wm
: (E3)

Here, ei�m denotes the exchange statistics of m, and 
,
�, � are three open paths that share a common endpoint.
Following an approach similar to Sec. IV, one can show
that self-consistency requires that ei�m ¼ 1 for all m 2
M, as claimed.

3. Modular invariance argument

As in the fermionic case, the modular invariance argu-
ment begins by considering a strip geometry in which the
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lower edge is gapped while the upper edge is described by
the conformal field theory (23). We then define a partition
function Zð
Þ (25), and we show that Zð
Þ can be written as
a sum (29),

Zð
Þ ¼ X
m2M

Zmð
Þ; (E4)

where M denotes the set of quasiparticles that can be
annihilated at the lower edge. Proceeding as in Sec. V,
we can use the modular invariance constraint (26) to show
that M satisfies the two properties discussed in the
Introduction. The only new element is that we now have
to show that M satisfies the additional property that every
m 2 M is a boson.

To establish this additional property, we make use of the
second modular invariance constraint [29],

Zð
þ 1Þ ¼ Zð
Þ: (E5)

We then use the transformation law

Zlð
þ 1Þ ¼ X
l02L

Tll0Zl0 ð
Þ; Tll0 ¼ ei�l�ll0 : (E6)

Like (30), this relation can be derived either from the
explicit expression for Zlð
Þ (D5) or from the general
equivalence between the ‘‘modular T matrix’’ [29] and
the ‘‘topological T matrix’’ [8]. Substituting (E6) into
(E4), we can see that modular invariance requires that
ei�m ¼ 1 for all m 2 M, as claimed.
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