
Efficient High-Dimensional Entanglement Imaging with a Compressive-Sensing
Double-Pixel Camera

Gregory A. Howland* and John C. Howell

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
(Received 24 October 2012; revised manuscript received 21 December 2012; published 20 February 2013)

We implement a double-pixel compressive-sensing camera to efficiently characterize, at high resolution,

the spatially entangled fields that are produced by spontaneous parametric down-conversion. This technique

leverages sparsity in spatial correlations between entangled photons to improve acquisition times over raster

scanning by a scaling factor up to n2= logðnÞ for n-dimensional images. We image at resolutions up to 1024

dimensions per detector and demonstrate a channel capacity of 8.4 bits per photon. By comparing the

entangled photons’ classical mutual information in conjugate bases, we violate an entropic Einstein-

Podolsky-Rosen separability criterion for all measured resolutions. More broadly, our result indicates

that compressive sensing can be especially effective for higher-order measurements on correlated systems.
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I. INTRODUCTION

Spatially entangled biphotons, such as those generated by
spontaneous parametric down-conversion (SPDC), exhibit
strong Einstein-Podolsky-Rosen (EPR) type correlations
[1] in the transverse-position and transverse-momentum
degrees of freedom [2]. Because these variables are con-
tinuous, the entanglement can be very high dimensional,
with a typical Schmidt number greatly exceeding 1000 [3].
Themany dimensions provide high information density that
can be leveraged to increase channel capacity and security
for quantum key distribution [4–6] and dense coding [7,8].
Other applications include ghost imaging [9,10], quantum
computing [11], and quantum teleportation [12].

Experimentally characterizing the SPDC state is unfortu-
nately difficult due to weak sources and low-resolution
detectors. Spatial entanglement is traditionally imaged by
jointly raster scanning photon-counting avalanche photo-
diodes (APDs) to measure spatial correlations. This tech-
nique scales extremely poorly with increasing detector
resolution. With a biphoton flux of 4000 coincident detec-
tions per second, it would take 55 d to jointly scan a 24� 24
pixel region for a signal-to-noise ratio (SNR) of 10. For
32� 32 pixels, it would take 310 d [see Eq. (9)].

Other approaches have been tried with mixed success.
Intensified CCD cameras can measure the Schmidt number
[13] but do not detect single-photon correlations, which
renders them ineffective for most quantum applications.
Arrays of photon-counting APDs could replace CCDs, but
they are currently low resolution, noisy, and resource inten-
sive, especially since each pixel pair must be individually

correlated [14–16]. A recent promising result averages in-
tensity correlations over many images from a single-photon
sensitive electron-multiplying CCD, reporting 2500 modes
[17]. This technique is limited to a 30-ms exposure time
(APDs are sub-ns) and is noisier than using APDs because it
does not isolate individual coincident detections.
In Ref. [18], Dixon et al. reduce the number of mea-

surements required for a raster scan by only measuring in
an area of interest where correlations are expected; they
report a channel capacity of 7 bits per photon. While they
do not perform a true full-field measurement, they high-
light a critical feature of the SPDC field. In both position
and momentum representations, the distribution of corre-
lations between pairs of detector pixels is very sparse,
despite dense (not sparse) single-particle distributions.
Applying ideas from the field of compressive sensing, we
exploit prior knowledge of this sparsity to beat the ‘‘curse
of dimensionality’’ [19] and efficiently characterize the full
biphoton field without raster scanning.
In this article, we implement a compressive-sensing

photon-counting double-pixel camera that efficiently im-
ages single-photon SPDC correlations in the near and far
fields at resolutions of up to 32� 32 ¼ 1024 dimensions
per detector. At 32� 32 resolution, the measurement time
is reduced from 310 d to around 8 h for raster scanning. We
perform an entropic characterization that shows channel
capacities of up to 8.4 bits per photon, equivalent to 337
independent, identically distributed modes. The sums of
channel capacities in conjugate bases violate an EPR steer-
ing bound [20] by up to 6.6 bits.

II. THEORY

A. Compressive sensing

Compressive sensing (CS) is a technique that employs
optimization to measure a sparsely represented
N-dimensional signal from M<N incoherent measure-
ments [21–24]. The approach is so named because the
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signal is effectively compressed during measurement.
Although sparsity is assumed, it is not known prior to
measurement which elements contain appreciable ampli-
tude. Compressive sensing must determine which elements
are significant, as well as find their values.

To detect a sparsely represented N-dimensional signal
vector X, we measure a series of M<N values Y by
multiplying X by an M� N sensing matrix A such that

Y ¼ AXþ �; (1)

where � is a noise vector.
BecauseM<N, this system is undetermined; a given Y

does not specify a unique X. The correct X is recovered by
minimizing a regularized least-squares objective function

min
X

1
2jjY � AXjj22 þ �gðXÞ; (2)

where, for example, jj�jj22 is the ‘2 norm of � and � is a
scaling constant. The function gðXÞ is a regularization that
promotes sparsity. Common gðXÞ include X’s ‘1 norm,
assuming the signal is sparse, and X’s total variation,
assuming the signal’s gradient is sparse [25]. A must be
incoherent with the basis of interest, with the surprising
and nonintuitive result that a random binary sensing matrix
works well. Given sufficiently large M, the recovered X
approaches the exact signal with high probability [26]. For
a k-sparse signal, the requiredM scales asM / k logðN=kÞ.

Incoherent random sampling is particularly beneficial
for low-light measurements, as each measurement re-
ceives, on average, half the total photon flux �=2, as
opposed to �=n for a raster scan. Compressive sensing is
now beginning to be used for quantum applications such as
state tomography [27]. Shabani et al., for example, have
performed a tomography on a two-qubit photonic gate for
polarization-entangled photons [28]. CS has also been used
with spatially correlated light for ghost imaging [29,30]. It
is important to note that, for ghost imaging, CS is not
required to recover the full two-particle probability distri-
bution as in entanglement characterization.

The quintessential example of compressed sensing is the
single-pixel camera [31,32]. An object is imaged onto a
digital micromirror device (DMD), a 2D binary array of
individually addressable mirrors that reflect light either to a
single detector or a dump. Rows of the sensing matrix A
consist of random binary patterns placed sequentially on the
DMD. For an N-dimensional image, by minimizing Eq. (2)
one recovers images while using as few as M ¼ 0:02N
measurements.

B. Compressive sensing for measuring correlations

The concept of a single-pixel camera naturally adapts to
imaging correlations by adding a second detector. Consider
placing separate DMDs in the near field or far field of the
SPDC signal and idler modes, where ‘‘on’’ pixels are redir-
ected to photon-counting modules. The signal of interest is

pxðu; vÞ ¼
Z
u
d ~xs

Z
v
d~xijc ð ~xs; ~xiÞj2; (3)

pkðu; vÞ ¼
Z
u
d ~ks

Z
v
d ~kij ~c ð ~ks; ~kiÞj2; (4)

where pðu; vÞ represents the probability of a coincident
detection between the uth pixel on the signal DMD and the
vth pixel on the idler DMD. The functions c ð ~xs; ~xiÞ and
~c ð ~ks; ~kiÞ are approximate position and momentum wave
functions for the biphoton

c ð ~xs; ~xiÞ¼N exp

�
�ð ~xs� ~xiÞ2

4�2
c

�
exp

�
�ð ~xsþ ~xiÞ2

16�2
p

�
~c ð ~ks; ~kiÞ

¼ð4�p�cÞ2N exp½��2
cð ~ks� ~kiÞ2�

�exp½�4�2
pð ~ksþ ~kiÞ2�: (5)

The subscripts s and i refer to signal and idler photons,
respectively;�p and�c are the pump and correlationwidths;

N is a normalizing constant. X of Eq. (2) is simply a one-
dimensional reshaping of px or pk.
Like the single-pixel camera, a series of random patterns

is placed on the DMDs to form rows of A. For each pair of
patterns, correlations between the signal and idler photons
form the measurement vector Y. The minimization of
Eq. (2) recovers pðu; vÞ.
While a fully random A is preferred, the DMDs only act

on their respective signal or idler subspaces, which pre-
vents arbitrary A. Rows of A are therefore outer products of
rows of single-particle sensing matrices a and b,

A ¼

a1 � b1

a2 � b2

..

.

am � bm

0
BBBBBB@

1
CCCCCCA
; (6)

where rows of a represent random patterns placed on the
signal DMD, and rows of b represent random patterns
placed on the idler DMD. To make signal and idler photons
distinguishable, a and b are not the same. The validity of
Kronecker-type sensing matrices has been established and
is of current interest in the CS community as attention
shifts to higher-dimensional signals [33,34]. The measure-
ment vector Y is obtained by counting coincident detec-
tions for the series of DMD configurations given by A.
A variety of reconstruction algorithms exists for Eq. (2),

with their computational complexities dominated by re-
peatedly calculating AX and ATY [35]. This calculation is
especially unwieldy for correlation measurements, as the
size of A isM� n2 for n-pixel DMDs. Using properties for
Kronecker products [36], these can be more efficiently
computed by

AX ¼ diag½b sqðXÞaT�; (7)

ATY ¼ vec½bT odðYÞa�; (8)

where sq and vec reshape a vector to a square matrix and
vice versa, diag forms a vector from the diagonal elements
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of a square matrix, and od forms a square matrix with the
operand vector on its diagonal.

C. Comparison to raster scanning

The compressive approach finds the joint probability
distributions orders of magnitude faster than by raster
scanning through two key improvements. The first im-
provement is simply the reduction in the number of mea-
surements. To jointly raster scan an n-pixel space requires
n2 measurements. For a compressive measurement, spar-
sity is approximately n with dimensionality n2, so only
M / n logðnÞ measurements are required. In practice, we
find excellent results when M is only 3% of n2.

The second advantage of compressive measurements is
that they more efficiently use available flux. For the raster
scan, the total flux is distributed over, at best, n pairs of
pixels in the case of perfect correlations. Conversely, the
average flux per incoherent compressive measurement is
independent of n, with each measurement receiving on
average 1=4 the total flux. To maintain a constant SNR
with increasing n (photons/measurement), the total mea-
surement time scales as n3 for raster scanning. Given a
photon flux of � photons per second, the measurement
time for a desired SNR is

t ¼ n2tmeas ¼ n3SNR2

�
; (9)

where tmeas is the time per measurement.
For incoherent compressive measurements, the acquisi-

tion time scales as n logðnÞ. The compressive improvement
therefore scales as n2= logðnÞ. For n¼32�32¼1024, this
improvement is of order 105.

This scaling factor somewhat optimistically assumes that
the reconstruction process yields an accurate result, despite
a noisy signal. Unfortunately, the propagation of uncer-
tainty through the reconstruction process remains a difficult
problem, especially for nonideal real-world systems [37].
There has been much recent theoretical work on the topic
for Gaussian [38–40] and Poissonian noise [41,42]. These
results tend to require ideal sensing matrices or more com-
plicated formulations to give provable performance bounds.
As such, their findings are difficult to directly and quanti-
tatively apply to an experiment. However, they do reveal
pertinent features that indicate that CS can perform ex-
tremely well in the presence of noise.

Awell-known characteristic of CS is a rapid phase change
from poor- to good-quality reconstructions [43]. This phase
change is often discussed as a function of increasingm, with
the boundary m / k logðn=kÞ. A similar phase transition
occurs for decreasing measurement noise. Noise in our sys-
tem is dominated by Poissonian shot noise, so this phase
change occurs as the average number of detected photons
increases. For some cases, these two phase transitions are
linked [38]. A practical compressive measurement simply
requires large enoughm and photon flux� to be in the space
of good reconstructions. Fortunately, simply obtaining a
recognizable reconstruction generally indicates that the mea-
surement conditions exceed this threshold.

Unlike a direct measurement, the information obtained
by a series of y compressive measurements is contained in
their deviation from the average value �y. In the presence
of noise, these deviations must exceed the noise level.
Assuming Poissonian shot noise, good reconstructions re-
quire stdðyÞ � �

ffiffiffi
�y

p
, where stdðyÞ is the standard deviation

of the measurement vector, and� is a positive constant that
is greater than 1.
The particular algorithm chosen to solve Eq. (2) also

plays a role in the reconstruction’s accuracy. These algo-
rithms often have provable performances on ideal signals
but degrade when confronted with noisy or otherwise non-
ideal conditions. In these circumstances, they have various
strengths, including speed, accuracy, and sensitivity to
user-selected parameters such as � in Eq. (2). For more
information on common reconstruction algorithms, see
Refs. [24,35,44,45].
In practice, the best way to determine accuracy for a

particular signal, sensingmatrix, and reconstruction approach
is simply repeated simulations or experiments. For our sys-
tem, we reduce a n ¼ 32� 32 measurement from a 310-d
raster scan (SNR of 10) to an 8-h compressive acquisition,
which is a 1000-fold improvement.

III. EXPERIMENT

The experimental apparatus is given in Fig. 1. Light
from a 2.8-mW 325-nm HeCd laser is directed to a

FIG. 1. Experimental setup. Photons generated via SPDC pass
through a narrow-band (NB) filter and are split into signal and
idler modes by a 50=50 beam splitter (BS). For position corre-
lations, lenses f1 ¼ 125 mm and f2 ¼ 500 mm form a 4f
imaging system with the crystal and DMDs placed in the object
and image planes, respectively. For momentum correlations, f1
is removed and the DMD is placed in the focal plane of f2 ¼
88:3 mm. Photons striking DMD ‘‘on’’ pixels are directed to
large-area SPCMs. Photon arrivals are then correlated by a
coincidence circuit.
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1-mm-long BiBO crystal that is oriented for type-I col-
linear SPDC. The generated daughter photons pass through
a 650=13-nm narrow-band filter before separating into
signal and idler modes at a 50=50 beam splitter. To mea-
sure position-position correlations, lenses f1 ¼ 125 mm
and f2 ¼ 500 mm image the crystal onto signal- and idler-
mode DMDs. For momentum-momentum correlations, f1
is removed and the DMDs are placed in the focal plane of
f2 ¼ 88:3 mm. DMD ‘‘on’’ pixels reflect light to large-
area single-photon counting modules (SPCMs) that are
connected to a correlating circuit.

To measure pðu; vÞ, a series of M random patterns are
placed on the DMDs to form the sensing matrix A. For each
set of patterns, joint detections are counted for acquisition
times taq for a total measurement time t ¼ Mtaq to make up

the measurement vector y. The joint distribution pðu; vÞ is
reconstructed using a gradient projection solver for Eq. (2)
with ‘1 regularization, which is commonly referred to as
basis-pursuit denoising [44].

We measure at dimensions of N ¼ 2562, N ¼ 5762, and
N¼10242 that correspond to DMD resolutions of 16� 16,
24� 24, and 32� 32 pixels. The associated measurement
numbers M are 2500, 10 000, and 30 000, so that M is
only about 0:03N. Acquisition times are 1 s for position

measurements and 1.5 s for momentum measurements, to
average 1000 coincident detections per DMD configura-
tion in all cases. Additionally, we perform representative
simulations at 16� 16 and 24� 24 resolutions.

IV. RESULTS

A. Joint probability distribution

A simulation for measuring position-position correla-
tions at 16� 16 DMD resolution is given in Fig. 2. The
object in Fig. 2(a) is the correlation function of Eq. (4). The
simulation uses m ¼ 2500 measurements and a photon
flux of� ¼ 5000 photons=measurement that is multiplied
by the ideal pðu; vÞ, which are conditions that are repre-
sentative of the 1-s experimental acquisitions. Note that �
is the total signal strength before interacting with the
sensing matrix; the mean value of the measurement vector
is �=4 ¼ 1250 detected photons. The values of the mea-
surement vector are Poissonian distributed to simulate the
effect of shot noise.
Figure 2(b) gives the reconstructed correlation function

pðu; vÞ between the signal and idler DMD pixels. The
sharply defined diagonal line shows the expected positive
correlations between the two DMDs. The DMD pixels are

FIG. 2. 16� 16 pixel simulation. The ideal object is given in (a). The object is incoherently sampled with m ¼ 2500 random binary
patterns. Poissonian noise corresponding to 5000 photons in the field (approximately 1250 detected) per measurement is added to the
measurement vector. The reconstruction is shown in (b), with a MSE of 5� 10�8. The inset images in (a) and (b) show the signal
photon’s 2D marginal distribution and give an image of the signal photon. (c) and (d) integrate along the antidiagonal to show that the
reconstruction recovers the correlation width �c < 1 pixel with negligible error.
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listed in column-major order. Themean-squared error (MSE)
for the reconstruction is 5�10�8. The two-dimensional
signalmarginal distribution is inset,which provides an image
of the signal beam. Figures 2(c) and 2(d) sum the result along
the antidiagonal to show the correlation width �c.
Qualitatively, the reconstruction closely resembles the origi-
nal object, faltering only near the edges of the distribution
where the signal falls beneath a noise floor. The reconstruc-
tion recovers a �c < 1 pixel with negligible error.

To demonstrate the reconstruction accuracy, simulations
are performed for increasing photon flux � with DMD
resolution 16� 16 and m ¼ 2500. The MSE versus � is
given in Fig. 3. Reconstructions are normalized to the
incident flux � for comparison to the ideal signal. The
result shows the rapid phase change from poor to excellent
reconstructions, with a MSE converging to 5� 10�8 be-
yond the phase change.

The MSE can be used to roughly estimate the signal-to-
noise ratio for a particular measurement of an average
nonzero element. Assuming perfect pixel correlations and
uniform marginal distributions, the energy in the signal is
distributed over 1=n elements. The signal-to-noise ratio is

then 1=n
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p
. For n ¼ 256 pixels andMSE ¼ 5� 10�8,

the SNR is approximately 17. For comparison, using
Eq. (9), a raster scan would require about 4 d to achieve a
SNR of only 10. The simulated CS acquisition time is
42 min for 2500 1-s measurements.

Sample experimental reconstructions for position-
position and momentum-momentum correlations at
16� 16 pixel DMD resolution are given in Fig. 4. As in
the simulations, the position-position result [Fig. 4(a)]
shows a well-defined diagonal line that indicates positive

pixel correlations. Conversely, the momentum-momentum
result [Fig. 4(b)] shows an antidiagonal line that shows the
expected anticorrelations. Figures 4(c) and 4(d) sum
the results along the antidiagonal (position-position) and
the diagonal (momentum-momentum) to reveal an effec-
tive correlation width �ce of a single pixel. Our detection
scheme is therefore as accurate as possible at this resolu-
tion, and our channel capacity remains detector limited.

B. Mutual information in the channel

Once pðu; vÞ is recovered, the channel capacity is given
by the classical mutual information that is shared between
signal and idler DMD pixels:

I ¼ �X
u

pðuÞ logpðuÞ �X
v

pðvÞ logpðvÞ

þX
u;v

pðu; vÞ logpðu; vÞ; (10)

where, for example,

pðuÞ ¼ X
v

pðu; vÞ (11)

is the signal particle’s marginal probability distribution
[18]. The entropic analysis is solely measurement
based and does not require a wave function or density
matrix reconstruction, a challenging task even for low-
dimensional systems [46–48].
To estimate the uncertainty in the mutual information

from shot noise and the reconstruction process, we perform
100 simulations at n ¼ 256 pixel resolution and 31 simu-
lations at n ¼ 576 pixel resolution. Simulations are not
performed at n ¼ 1024 pixel resolution due to available
computer time. In addition to the results from the raw
reconstruction, thresholding is performed to provide noise
reduction, where all values in the recovered pðu; vÞ below
a percentage of the maximum value are forced to zero. The
simulated mutual information versus thresholding percent-
age is given in Fig. 5 for the n ¼ 256 pixel simulations that
are exemplified by Fig. 2. The error bars enclose 1 standard
deviation from repeated simulations.
As the threshold increases from zero, the mutual infor-

mation rises as a weak uncorrelated noise floor is removed.
An optimal threshold is quickly reached, beyond which the
threshold removes more signal than noise, reducing the
mutual information. Note that the reconstructed mutual
information is systematically lower than the actual mutual
information in the ideal object. This discrepancy is due to
remaining noise and difficulty in recovering parts of the
signal toward the tail of the distribution.
The n ¼ 256 far-field experimental result is included

for comparison to the simulation. The experiment closely
matches the simulation both for no thresholding and for
beyond its optimal threshold but is smaller in the inter-
mediate region. This deviation is likely due to experimental
uncertainties that are not included in the simulation.

FIG. 3. Simulated MSE versus photon flux for n ¼ 256 and
m ¼ 2500. The phase-change behavior versus photon number
can be clearly seen. The experiment uses 5000 total (1250
detected) photons per measurement to comfortably exceed the
phase change. The MSE approaches a value of 5� 10�8, which
corresponds to a SNR of about 17.

EFFICIENT HIGH-DIMENSIONAL ENTANGLEMENT . . . PHYS. REV. X 3, 011013 (2013)

011013-5



These errors include slight pixel misalignment between
signal and idler DMDs, optical aberrations, detector dark
noise, stray light, power fluctuations in the laser, and tem-
perature stability of the nonlinear crystal. Figure 5 indicates
that these experimental difficulties appear to increase the

uncorrelated noise floor rather than significantly affect the
correlated part of the reconstruction.
Although thresholding is a simple postprocessing tech-

nique, it is applicable to how the entangled pixels might be
used for communication. If a pair of entangled pixels has a
correlated amplitude near or below the background noise, it
will be difficult to use that particular mode for communi-
cation. Note that thresholding and similar noise reduction
techniques cannot be used if a communication protocol
encodes information on single instances of the state.
However, any entanglement characterization will neces-
sarily require many instances, so background noise can
often be removed to obtain a more accurate measurement.
This removal is similar to the technique in photonic quan-
tum information of subtracting background noise from a
measured signal. In CS, it is common to perform postpro-
cessing or secondary optimization after maximizing spar-
sity, such as the debiasing routine in Ref. [44].
The experimental channel capacity versus DMD resolu-

tion for both position-position and momentum-momentum
correlations is given in Fig. 6 for several levels of thresh-
olding. The optimal threshold is that which maximizes
the mutual information. At 256 and 576 pixel resolutions,
optimal thresholds of 20% and 30% are used for position-
position and momentum-momentum distributions,

FIG. 5. Mutual information versus thresholding. The mutual
information for reconstruction values above a thresholded per-
centage of the maximum is given for 100 n ¼ 256 pixel simu-
lations, with m ¼ 2500 measurements and � ¼ 5000 photons
per measurement. The solid red line gives the true mutual
information for the simulated object. The black points give the
n ¼ 256 far-field experimental data for comparison.

FIG. 4. Sample 16� 16 experimental reconstructions. (a) and (b) give the joint probability distribution for position-position and
momentum-momentum correlations where DMD pixels are listed in columnwise order. 2D marginal distributions for the signal photon
are inset. (c) and (d) show correlation widths of only 1 pixel by summing over the (c) signalþ idler and (d) signal� idler axes. Only
2500 (3% of raster scanning) measurements are needed, with a total acquisition time of about 40 min.
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respectively. At 1024 pixel resolution, noise is more signifi-
cant, so the optimal thresholds increase to 30% and 40%.
The error bars on n ¼ 256 and n ¼ 576 pixels measure-
ments represent the simulated effect of shot noise and re-
construction uncertainty. The error bars conservatively
include 2 standard deviations from the simulated result.

The joint probability distribution is also fit to the double-
Gaussianwave function [Eq. (5)] to find effectivewidths�ce

and �pe. When �p � �c, the mutual information between

particles forEq. (5) is the logarithmof the Federov ratio [49],

log

�
�2

p

�2
c

�
; (12)

where the ratio is squared for two dimensions. While the
Federov ratio technically applies to the continuous wave
function, and the true �c is smaller than a DMD pixel,
Eq. (12) still applies to the discretized measurement as
long as the effective �ce � �pe.

Fitting yields the largest channel capacities, with a
maximum of 8.4 bits for momentum-momentum correla-
tions at 1024 pixel resolution, which is equivalent to 337
independent, identically distributed entangled modes.

Given that fitting more accurately characterizes the sys-
tem and finds a larger mutual information, it is reasonable
to question the usefulness of the direct computation of the
mutual information. However, the two approaches suit
different purposes. Fitting is useful if one is particularly

interested in the state itself. However, if one intends to use
correlated pixels for some other purpose, such as commu-
nication, the direct calculation is more appropriate. In
practice, the correlated pixels on the low-intensity tail of
the distribution will be difficult to use, even if their ampli-
tudes can be inferred by fitting. The reduced mutual infor-
mation in the direct calculation reflects this difficulty.
The solid curve of Fig. 6 gives the maximum possible

mutual information between two n-pixel detectors.
Assuming perfect diagonal or antidiagonal correlations and
uniformmarginals, this maximum is simply logðnÞ. Because
we have Gaussian marginals, we do not expect to reach this
bound, even with �ce � 1 pixel. By magnifying and using
only the central part of the field,we could approach this upper
limit.

C. Witnessing entanglement

Although we do not reconstruct a full density matrix, it
is still possible to demonstrate nonclassical behavior by
comparing position-position and momentum-momentum
correlation measurements directly. This process has tradi-
tionally involved fitting the measurements to Eq. (5)
and analyzing products or sums of conditional variances
[50–52].
We recently presented a more inclusive entropic steering

inequality for witnessing continuous variable entanglement
with discrete measurements [20], where the sum of the

FIG. 6. Mutual information between signal and idler photons for (a) position-position and (b) momentum-momentum representa-
tions are presented as a function of detector resolution. Three levels of thresholding are shown, as well as a fit to Eq. (5). The dashed
lines are guides for the eye. The error bars enclose 2 standard deviations from the expected uncertainty from simulations (not
performed for n ¼ 1024). The solid curve represents the maximum possible value for a particular detector resolution, given perfect
correlations and uniform marginals.
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classical mutual information between position-position and
momentum-momentum correlations is classically bounded.
For our system, all classically correlated measurements
must satisfy

Ixs;xi þ Iks;ki � 2 log

�
ndxdk
�e

�
; (13)

where dx and dk are the respective widths of the DMD
pixels in the position and momentum bases. Note that
ndxdk is simply the bandwidth product for the DMD area
and is independent of n if its total area does not change.

The sum of the classical mutual information in conju-
gate bases for each detector resolution is given in Fig. 7.
The solid blue line provides the right-hand side of Eq. (13),
which must be exceeded to witness EPR steering. The error
bars for the n ¼ 256 and n ¼ 576 cases are derived from
simulation and include 2 standard deviations. In all cases,
we show EPR steering with both optimal thresholding and
fitting to the double-Gaussian wave function [Eq. (5)].
Even at 5% thresholding, there is a violation for 16� 16
dimensions. Recall that simulations (Fig. 3) systematically
underrepresent the object’s mutual information relative to
measurement uncertainty, so measurement error is highly
unlikely to overestimate this sum. For the fitted 32� 32
dimensional result, we violate the classical bound by
6.6 bits.

V. CONCLUSION

In this article,wepresent aCSdouble-pixel camera for the
characterization of the SPCD biphoton state with photon-
counting detectors. This technique is very efficient and
improves acquisition times over raster scanning by
n2= logðnÞ for n-pixel detectors. We image SPDC correla-
tions at up to 1024 dimensions per detector and measure
detector-limited mutual information of up to 8.4 bits. We
also violate an entropic EPR steering bound,which indicates
that these correlations are nonclassical. More broadly, our
results suggest that compressive sensing can be extremely
effective for analyzing correlations within large-
dimensional signals (e.g., intensity-intensity correlations).
Potential applications range from verifying security in spec-
tral correlations for energy-time quantum key distribution
[53] to imaging through scattering media [54].
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