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We present nanorheology measurements on the folded state of an enzyme that show directly that the

(ensemble-averaged) stress-strain relations are nonlinear and frequency dependent beyond 1-Å deforma-

tion. We argue that this frequency dependence allows for opening a nonequilibrium cycle in the force-

deformation plane if the forward and backward conformational changes of the enzyme during catalysis

happen at different speeds. Using a heuristic model for the experimentally established viscoelastic

properties of the enzyme, we examine a number of general features of enzymatic action. We find that

the proposed viscoelastic cycle is consistent with the linear decrease of the speed of motor proteins with

load. We find a relation between the stall force and the maximum rate for enzymes (in general) and motors

(in particular). We estimate the stall force of the motor protein kinesin from thermodynamic quantities and

estimate the maximum rate of enzymes from purely mechanical quantities. We propose that the

viscoelastic cycle provides a framework for considering mechanochemical coupling in enzymes on the

basis of possibly universal materials properties of the folded state of proteins.
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I. INTRODUCTION

Enzymes are different from passive catalysts: They are
thermodynamic machines at molecular scale. This is
obvious from the familiar examples of motor proteins
and ion pumps, but, in general, mechanochemical coupling
is central to the working of all enzymes [1–9]. The mecha-
nisms of action of many enzymes are known in detail in
structural terms [10]; the canonical description of the
dynamics is through the Michaelis-Menten approach,
which, in its most basic form, describing enzymatic pro-
cesses in terms of rate equations:

Sþ E !k�1;k1 C !k�2;k2 Pþ E; (1)

where S stands for substrate(s), E for enzyme, P for
product(s), and C for the enzyme-substrate complex. This
description can be complicated by adding more intermedi-
ate states, but in this paper we argue that this approach
misses one fundamental aspect, namely, that, from left to
right in Eq. (1), the enzyme goes through a thermodynamic
cycle. That is, the enzyme moves from an initial equilib-
rium state A to some (in general, nonequilibrium) state B
and back to A, but the return path B! A in phase space is
different from the time reverse of A! B. This statement is
obvious in the case of motor proteins, because no work can
be extracted from a system that goes back and forth along
the same trajectory in phase space (for example, an oscil-
lating spring). Here, we propose that this notion holds, in

general, for enzymes, and we give an explicit representa-
tion of the cycle in question which, we suggest, has uni-
versal features common to all enzymes. From this we draw
several conclusions about the dynamics of enzymes, which
are seen to be consistent with experimental observations.
The basis for our proposal is the viscoelastic transition of

the folded state of proteins, which we discovered recently
[11]. The experiments are performed in the setup shown in
Fig. 1, where gold nanoparticles (GNPs) are tethered to a
gold surface by the enzyme under study through cysteine
residues. We estimate that the average number of guanylate
kinase (GK) tethers per GNP is 3, and themeasurements are
averaged over approximately 107 GNPs [11]. An AC elec-
tric field orthogonal to the surface drives the negatively
charged GNPs, while the amplitude of the response of the
GNPs, averaged over many GNPs, is measured by evanes-
cent wave scattering in a phase-locked loop [12]. The
response amplitude, z, is the amplitude of the collective
oscillation of the GNPs at the driving frequency. Response
amplitudes as small as a fraction of 1 Å can bemeasured for
frequencies between 10Hz and 10 kHz, giving access to the
rheological properties of the folded state of the enzyme in
this frequency range. By rheological properties, we mean
the mechanical properties characterizing the ensemble-
averaged dynamics directly measured in the experiments.
For the enzyme GK, we find a reversible transition from
elastic to viscoelastic behavior as the amplitude of the
forcing jFj is increased [11]. At a fixed frequency, the
force-deformation curve is piecewise linear, indicating a
conformational ‘‘softening’’ in the enzyme beyond a yield

deformation (zc � 1 �A at 10 Hz [13], where the subscript
‘‘c’’ stands for ‘‘critical’’). This softening is shown in
Fig. 2(a), which displays measurements of the amplitude
of the deformation jzj obtained at � ¼ 10 Hz forcing fre-
quency for varying amplitudes of the forcing (proportional

*zocchi@physics.ucla.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-
bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOI.

PHYSICAL REVIEW X 3, 011009 (2013)

2160-3308=13=3(1)=011009(10) 011009-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.3.011009
http://creativecommons.org/licenses/by/3.0/


to the applied voltageV). On the other hand, at fixed forcing
amplitude, the behavior in frequency is characteristic of
linear viscoelasticity, as shown in Fig. 2(c): The deforma-
tion amplitude is constant at high frequency (the behavior
of a spring) and diverges as 1=! at low frequencies (the
behavior of a viscous flow) [10]. The break in the curve of
Fig. 2(a) defines a yield deformation zc (and a correspond-
ing yield force Fc); however, this quantity must be fre-
quency dependent, and, in fact, increases with �. This
behavior follows from general considerations on the de-
pendence of the strength of molecular bonds on the pulling
rate [14], and is confirmed by the experiments. Indeed,
Fig. 2(b) shows two force-deformation curves measured
for the same sample at two different forcing frequencies (10
and 100Hz). Both curves are roughly piecewise linear, as in
Fig. 2(a), but the break in the slope (the transition from the
linear to the nonlinear regime) occurs at a higher critical
force (and critical deformation zc) for the 100-Hz curve.

The two curves coincide in the (first) linear regime of the
10-Hz curve (showing that this is indeed a frequency-
independent ‘‘simple-spring’’ regime), but this simple-
spring regime is extended to larger z for the 100-Hz curve.
That is, the (first) linear regime, where the deformation is
proportional to the force, survives up to larger deformations
at higher frequencies. This experimental fact, namely that
the linear elasticity regime extends to larger deformations
at higher frequencies, is a new experimental finding not
previously reported. We propose that the physical basis of
this phenomenon is similar to the Evans-Ritchie result [14]
for the pulling-rate dependence of the strength of molecular
bonds. In order to get out of the linear-elasticity regime, the
system has to climb over a barrier, and because of thermal
fluctuations, there is a frequency dependence in the critical
force (measured in ensemble-averaged experiments) at
which this transition happens. Beyond the corresponding
viscoelastic transition (to the right of the break in the slope
in each of the force-deformation curves shown in Fig. 2(b)),
the slopes of the 10- and 100-Hz curves are again similar
if not identical, a result which constrains the possible
viscoelastic models that can account for these data.
Finally, the curves in Fig. 2 represent transformations
between nonequilibrium states that are reversible, as we
already mentioned in [11]. The measurements in Fig. 2(b)
were obtained in the temporal sequence: 10-Hz run
1! 100-Hz run ! 10-Hz run 2, for the same sample, so
the filled circles show that after the 100-Hz run, which
displays a higher zc, one can come back to essentially the
initial 10-Hz response curve.
Let us summarize our understanding of the viscoelastic

transition [10], based on the measurements published in
[10,11] and the new measurements shown in Fig. 2. At a
fixed forcing amplitude, the response (the deformation z) is
frequency dependent, constant at high frequencies, and
diverging as 1=! at low frequencies. The z vs ! curve is
well represented by the Maxwell model of linear visco-
elasticity. At a fixed frequency, the force-deformation
curves are piecewise linear, defining a frequency-
dependent yield deformation (zc) and force (Fig. 2). The
location of the yield transition moves slowly with fre-
quency, as is evident from Fig. 2(b). In the following
discussion, we assume that the same qualitative features
of the force-deformation curves (i.e., the existence of the
yield transition) shown in Fig. 2(b) are present at the higher
frequencies that correspond to the time scale of this en-
zyme’s action (approximately 1 kHz). In the experimental
setup, we are limited in exploring the yield transition at
higher frequencies by the limited force that we can apply to
the GNPs and also by the frequency cutoff due to the
hydrodynamic dissipation of the GNPs.

II. HYPOTHESIS

The viscoelastic transition is the starting point of our
analysis. We consider the ‘‘stress-strain’’ diagram (actually

FIG. 1. The experimental system with which the data of Fig. 2
were obtained. (a) The schematics of the sample chamber with
AC electrophoretic excitation and synchronous evanescent-
wave-scattering optical measurement of displacement. ‘‘Sig’’
stands for signal, ‘‘PMT’’ for photomultiplier, and ‘‘Ref’’ for
reference. (b) Geometry of the enzyme GK tethering a GNP to
the gold-coated slide. The attachment points (residues mutated to
cysteins at positions 171 and 75) are shown on the structure. The
enzyme and the 20-nm-diameter GNP are drawn approximately
to scale.
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a force-deformation diagram) of Fig. 2. For different fre-
quencies �, one obtains different curves: This fact opens
the possibility of a cycle enclosing a nonzero area in the
force-deformation plane if the forward and backward con-
formational changes of the enzyme happen at different
speeds. Here and throughout the paper, we are describing
the ensemble-averaged dynamics of the system. The mea-
surements of Fig. 2 represent the ensemble-averaged me-
chanical response of the protein. Similarly, when we talk of
the ‘‘speed’’ of the conformational change, we mean the
ensemble-averaged speed of the process; individual trajec-
tories fluctuate, of course. Figure 3 shows schematically
our proposal for a nonequilibrium cycle describing enzyme
action: F represents the internal stress of the enzyme, z the

appropriately identified, pertinent conformational variable;
F ¼ z ¼ 0 defines the reference equilibrium state. We
imagine that the process A! B! C! D is driven by
substrate binding; D! E corresponds to the chemical
reaction and/or release of the products; the return path of
the cycle E! B! A is driven by the enzyme’s own
restoring force (i.e., its internal stress, proportional to the
gradient of the free energy). The leg B! C! D is fast
[corresponding to a frequency !2 >!1 in Fig. 2(b)] and
the leg E! B is slow (corresponding to a frequency !1);
i.e., in time, the cycle proceeds as represented schemati-
cally in Figs. 3(b) and 3(c). A! B, B! C are in the
elastic regime of the enzyme; C! D and E! B are in
the viscoelastic regime.

FIG. 2. The (ensemble-averaged) AC-driven mechanical response of GK. The amplitude of the oscillating force applied to the GNPs
is proportional to the voltage; the horizontal axis is the measured amplitude of the resulting deformation. (a) The force-deformation
curve is piecewise linear, the break in the slope occurring at a ‘‘yield’’ deformation zc � 1 �A, where z is the deformation of GK. To the
left of this transition is the linear-elasticity regime (the straight line extrapolating to the origin), where the protein behaves like a simple
spring. To the right of the transition lies a viscoelastic regime where the protein essentially flows like a viscous fluid [11,13]. The
transition is reversible. (b) The mechanical response as in (a) measured at two different frequencies (10 Hz, empty and filled circles,
and 100 Hz, red squares) for the same sample [which is a different sample from the one in (a)]. These measurements show that the
viscoelastic transition (the yield strain zc) is frequency dependent. For the 100 Hz curve, the linear-elasticity regime is extended up to
larger deformations. The 100-Hz and 10-Hz curves coincide in the linear-elasticity region of the 10-Hz curve, confirming that this is
indeed a frequency-independent ‘‘simple-spring’’ regime. The three curves were obtained in the sequence 10-Hz run 1, 100 Hz, 10-Hz
run 2. Thus, the filled circles show that these measurements explore nonequilibrium but reversible processes. (c) Amplitude of the
response vs frequency for GK at fixed force. The line shows a fit to the simplest description of linear viscoelasticity (Maxwell model)
[10]. The drop above 1 kHz is due to the hydrodynamic friction on the GNPs. The protein shows the behavior of a spring between 100
Hz and 1 kHz (the plateau) and that of a viscous fluid below 100 Hz (the divergence).
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Let us go through the cycle depicted in Fig. 3(a) in
somewhat more detail. For definiteness, we will think of
the enzyme GK, for which the data of Fig. 2 were obtained
and for which a detailed conformational and mechanical
analysis was performed in [15]. Binding of the substrate
guanosine monophosphate (GMP) drives the large ‘‘open-
to-closed’’ conformational change [7,15], which in the
diagram of Fig. 3(a) corresponds to A! B! C! D.
This process is ‘‘externally’’ driven by the forces between
substrate and enzyme, and is ‘‘fast’’; it leaves the enzyme
in the stressed state D. D! E corresponds to the reaction,
which, in this case, is the transfer of the phosphate from
adenosine triphosphate (ATP) to GMP. The very informa-
tive analysis in [15] shows that, in this step, the enzyme’s
conformational change is small, but internal stresses
change, as do the forces between the enzyme and the
ligands. For example, some parts of the enzyme are stiffer
after the reaction step than they were before, other parts are
floppier, and the distribution of stresses is, in general,
different. We schematize this step, in which stresses
change at relatively fixed conformation, with the segment
D! E in the diagram in Fig. 3(a). This picture is sup-
ported, in the case of GK, by molecular dynamics simula-
tion [15]. For example, the simulations show that some
parts of the enzyme are stiffer. The internal stress partially
‘‘released’’ in D! E shows in the fact that the catalytic
rates of the forward (kcat) and reverse (k0cat) reactions are
different. For GK, kcat � 394 s�1, while k0cat � 90 s�1
[16].) The return path E! B! A is driven by the internal
restoring force of the enzyme (which can be significantly
smaller than the driving force that originates from substrate
binding) and is ‘‘slow’’: The products are released at E or
somewhere along E! B, and the ground state of the
enzyme without ligands is A. Below, we explore some
consequences of this proposal of how enzymes work.
However, before we proceed, our respect for the opin-

ions of the community compels us to discuss why and in
what way we are departing from the traditional description.
The traditional approach assumes a simplified ‘‘micro-
scopic’’ energy landscape for the protein, usually consist-
ing of two potential wells, and certain expressions (or,
simply, values) for the rates of switching between wells,
based on either the Kramers [17] or the Bell [18] theory.
Dissipation is accounted for implicitly in the form of these
rates. For example, the most popular description of mo-
lecular motors [19] treats a motor itself as a two-state
system (while the interaction between the motor and the
track is treated through the formalism of Fokker-Planck
equations). However, the two-state picture is an idealiza-
tion: A real system of enzymes accesses a large (but finite)
number of different states [20,21]. We propose a descrip-
tion in terms of the opposite limit—an infinite number (a
continuum) of states—and then we write down a heuristic
equation of motion for the ensemble-averaged coordinate
describing this motion, with the dissipation put in directly.

FIG. 3. Schematic diagrams illustrating the proposed nonequi-
librium cycle of enzymes. jFj, z, and the trajectories zðtÞ are
ensemble-averaged quantities. (a) jFj is the ‘‘internal stress’’ of
the enzyme, z the deformation. In this plane, a cycle opens if the
forward conformational change is fast and the backward con-
formational change is slow. In this picture, the substrate binds
the (open) form of the enzyme A; the process A! B! C! D
is driven by the forces between the substrate and the enzyme and
is fast. D! E corresponds to the chemical reaction and/or
product release; the process E! B! A is driven by the internal
restoring force of the enzyme (proportional to the free-energy
gradient) and is slow. In (b) and (c), we sketch the corresponding
time dependence of the deformation (‘‘reaction coordinate’’) z
and the internal stress jFj.
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This is a sensible approach which leads to predictions that
can be directly related to our experimental data.

In fact, many ideas expressed in this paper have been
put forward before, in work by Blumenfeld starting in
1971 [22,23], and summarized, for example, in [4]. In
Blumenfeld’s ‘‘relaxation model’’ of enzyme catalysis,
the overall rate of the enzymatic cycle is determined by a
conformational relaxation rate of the enzyme structure.
(More recent experimental evidence supporting this view
is contained, for example, in [24].) The enzyme structure
exhibits long-lived nonequilibrium states during the cata-
lytic cycle, and rates for the forward and backward reaction
are, in general, different. These same ideas are reflected in
the present model, which in addition contains an explicit
representation of the mechanical ‘‘relaxation’’ cycle based
on the experimental data now available on the viscoelastic
transition of enzyme dynamics [25]. Indeed, this paper can
be thought of as fulfilling, to some extent, Blumenfeld’s
program as expressed in [26], where we read the following
statement in his conclusion: ‘‘. . . the problem of develop-
ing a quantitative physical theory of enzymatic catalysis is
reduced to that of developing a quantitative kinetic theory
for conformational relaxation of protein macromolecules.’’

III. DEDUCTIONS

In discussing this system, it is useful to have some actual
mechanical model in mind which, though heuristic, dis-
plays some of the relevant materials properties of the
enzyme. The relevant property here is viscoelasticity, since,
judged by the data of Fig. 2, most of the approximately

10- �A conformational change accompanying catalysis in
this enzyme happens in the viscoelastic regime. In this
respect, some appropriate variant of the classic Maxwell
model of viscoelasticity [consisting of a spring and a dash-
pot series as schematically illustrated in Fig. 4(a)] may play
a role for the enzyme cycle analogous to the ideal gas for
the Carnot engine. We therefore make our consideration
based on this model: a spring of stiffness k, a dashpot with
dissipation coefficient�, and force f applied to the cylinder
of the dashpot. Once again, this model represents the
ensemble-averaged mechanics of the enzyme at fixed
(room) temperature, not the microscopic mechanics.
Denoting the position of the piston and cylinder of the
dashpot by z1, z2, respectively, the equation of motion for
these two degrees of freedom is

8<
:
� d

dt ðz1 � z2Þ ¼ kz1

f ¼ � d
dt ðz1 � z2Þ

)
8<
:

_z2 ¼ _f
kþ f

� ;

z1 ¼ f
k ;

(2)

where _z ¼ dz=dt and _f ¼ df=dt.
We imagine the enzymatic cycle to proceed in the

following way: (1) A constant external force f0 acts for a
time t0. (This force originates from the substrate binding at
t ¼ 0; at time t0, the chemical reaction and/or the product
release occurs.) (2) A constant restoring force f1 acts until

the enzyme is back in its equilibrium state at time t0 þ t1.
(This action is the result of the free-energy gradient as the
enzyme is displaced from the equilibrium state.) That is
[see Fig. 4(b)],

fðtÞ ¼
8><
>:
f0 � f1 for 0 � t < t0;

�f1 for t0 � t < t0 þ t1;

0 otherwise:

(3)

Obviously, this equation is a schematization, grossly
approximate in the details (for instance, physically, we
must have f1 / z2 for z2 small enough) but reasonable in

FIG. 4. The heuristic viscoelastic model used to discuss the
enzyme cycle. (a) The Maxwell model of viscoelasticity: a
spring of stiffness k and dashpot of dissipation coefficient �.
z2 is the position of the cylinder of the dashpot, z1 the position of
the piston of the dashpot. The force f is applied to the cylinder.
(b) The force f vs time t used to drive the cycle in the model
[Eq. (3)]. f0 represents the driving force due to the interaction
between the substrate and the enzyme; it is turned on at t ¼ 0
when the substrate binds and turned off at t ¼ t0 when the
reaction and/or product release occurs. f1 is the internal restor-
ing force of the enzyme (proportional to the free-energy gradient
in the absence of substrate), always present for z2 � 0. For
simplicity, f0 and f1 are taken as constants. The time interval
t1 is chosen such that the system returns to the initial state at
t ¼ t0 þ t1. (c) The corresponding response of the Maxwell
element: z2ðtÞ [Eq. (5)].
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the substance. Now it is a simple matter to integrate Eq. (2)
using Eq. (3) since

_f ¼ ðf0 � f1Þ�ðtÞ � f0�ðt� t0Þ þ f1�ðt� t0 � t1Þ;
(4)

and the result is [Fig. 4(c)]

z2 ¼

8>>>>>><
>>>>>>:

f0� f1
f1

þ f0� f1
�

t for 0� t < t0;

�f1
k
þ f0� f1

�
t0� f1

�
t for t0 � t < t0þ t1;

0 otherwise;

(5)

where t1 ¼ ðf0 � f1Þt0=f1 ensures that the system is back
in the original state at t ¼ t0 þ t1. Evidently, we must have
f1 < f0. The ‘‘conformational change’’ is

zmax ¼ z2ðt�0 Þ ¼
f0 � f1

k

�
1þ k

�
t0

�
: (6)

In order to have the enzyme perform mechanical work,
we may want to apply a load FL for t0 � t < t0 þ t1; then
t1 is modified:

t1 ¼ f0 � f1
f1 � FL

t0; (7)

which diverges for FL ! f1. In this scenario, it is the
restoring force f1 that performs the work, during the return
(slow) part of the cycle, and evidently f1 is the ‘‘stall
force’’ for the enzyme. (See, for example, the working of
the motor protein kinesin; a succinct summary is given in
[27], which also contains references to the original litera-
ture.) Thework supplied by the external force (arising from
the binding of the substrate) is

W1 ¼ f0z2ðt�0 Þ ¼ f0

�
f0 � FL

k
þ f0 � FL

�
t0

�

¼ f20
k

�
1þ k

�
t0

��
1� FL

f0

�
: (8)

The work delivered to the dashpot (i.e., the energy
dissipated) is

W2 ¼ ðf0 � f1Þ2
�

t0 þ ðf1 � FLÞ2
�

t1

¼ ðf0 � f1Þðf1 � FLÞ t0� (9)

) W2

W1

¼ 1� FL=f0
1þ �=ðkt0Þ ; (10)

and the work done against the load is

W3 ¼ FLz2ðt�0 Þ ¼ FLzmax; (11)

) W3

W1

¼ FL

f0
: (12)

Alternatively, if we apply the load at tþ0 ,

W3 ¼ FLz2ðtþ0 Þ ¼ FL

�
zmax � f0

k

�
) W3

W1

¼ FL

f0
� FL

kzmax

:

(13)

Let us now look at some consequences of this model
cycle:
Consequence 1. For t1 � t0, the duration of the cycle is

� ¼ t0 þ t1 � t1, so the rate is [see Eq. (7)]

1

�
� f1 � FL

f0 � f1

1

t0
; (14)

which goes to zero linearly with the load FL; f1 is evi-
dently the stall force. This behavior is seen, for example, in
the force-velocity curves of the motor protein kinesin [28].
Consequence 2. In the regime t1 > t0, the maximum

velocity of the enzyme is (FL ¼ 0)

vmax � f1
�
¼ Fstall

�
; i:e:; � � Fstall

vmax

: (15)

This result is not obvious: It relates the internal dissipa-
tion parameter of the protein to the stall force and the
maximum velocity. (Notice that this relation is indepen-
dent of ‘‘lever-arm length’’.) It could, in principle, be
tested on any enzyme, and, if true, we would expect
Fstall=vmax to be an approximately universal quantity based
on our expectation that the dissipation parameter � is
presumably not very different for different proteins. In
other words, we expect fast enzymes (with large vmax) to
have ‘‘large’’ stall forces Fstall. Applied to kinesin, for
which Fstall � 5 pN and vmax � 10 �m=s [29], we obtain
� � 5� 10�4 g=s. Our measured value for GK [11] is
� ¼ 4� 10�2 g=s at 10 Hz. However, at 1 kHz (kinesin’s
rate), this value would be smaller because of ‘‘shear thin-
ning’’ (a nonlinear effect). For example, the value of �
measured in [30] for a different protein (lysozyme) and
higher shear rate was 5 times smaller (8� 10�3 g=s).
Evidently, other effects may limit vmax for kinesin (such
as binding-unbinding rates to the microtubule), but our
point is that perhaps even a complicated molecule like
kinesin operates not too far from the regime described
by Eq. (15).
Consequence 3. For enzymes that deliver work (such as

motors), the efficiency in our language is � ¼ W3=W1 �
FL=f0 [Eq. (12)]. Since FL < f1 < f0, the efficiency is
maximum for f1 and f0 as close as possible (and � can, in
principle, be approximately 1). On the other hand, f1 ¼
f0=2 is a special working point at which the cycle is
symmetric under time reversal (fast-slow for f1 < f0=2,
slow-fast for f1 > f0=2). See the diagram of Fig. 5(a),
where the work done by the external force (substrate
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binding) is approximately f0zmax and the maximum work
one can extract is about f1zmax (since FL � f1). Thus, the
area of the cycle in the (kz1, z2) plane [Fig. 5(b)] is the
work done by the external force, while the shaded area in
the figure is the work one can extract. So, while the
efficiency can be up to 1 (f1 ¼ f0), for a fast-slow cycle,

f1 � f0
2
) � � 50%: (16)

Intriguingly, the actual efficiency of kinesin [31] is 50%,
so it is quite possible that kinesin works close to this
regime. Indeed, let us suppose that

f0zmax � �Gbind � �Gr; (17)

where �Gbind is the free energy of substrate binding and
�Gr the free energy of the reaction. [The first equality
states that ATP binding is the actual driving force for the
motor; the second equality states that the free energy of
ATP hydrolysis removes the products from the binding
site; both statements are probably roughly correct for
kinesin.) Then, using zmax ¼ 8 nm (which is the step size

of kinesin, i.e., we are reporting forces to the ‘‘lever arm’’)
and �Gr ¼ 13 kcal=mol ¼ 20 kT=molecule, we find

f0 � �Gr

zmax

¼ 20 kT

8 nm
¼ 10 pN;

f ¼ Fstall ¼ f0=2 ¼ 5 pN; (18)

which is indeed the stall force of kinesin.
Consequence 4. What is special about the regime

f1 ¼ f0=2? The duration of the cycle is

� ¼ t0 þ t1 / f0
f1ðf0 � f1Þ (19)

as far as force dependence is concerned. [We used
Eqs. (14) and (16), with FL ¼ 0, kt0=�� 1, and zmax

given.] Given f0, from Eq. (19) � is minimum for f1 ¼
f0=2; i.e., this condition maximizes the speed of the cycle.
Consequence 5. We may calculate the maximum rate for

enzymes that operate in a cycle across the viscoelastic
transition. In order to still have a cycle, zmax must be

beyond the elastic limit at, say, zmax � 2 �A. The question
is then: What is the maximum possible value for f0? In a
real physical system, the answer depends on the rate, as
Fig. 2 shows. We may phrase the question as follows: What
is the maximum stress the enzyme can sustain over a given
time scale � (or frequency � ¼ 1=�)? For an order-of-
magnitude estimate, we may use the result of Evans and
Ritchie for the strength of molecular bonds [14]:

F ¼ T

�
ln

�
�

�0

�
; (20)

where F is the bond-rupture force, � the frequency, �0 the
zero-force unbinding rate, and � a microscopic length scale
(barrier position) which we identify approximately with
our ‘‘critical deformation’’ zc (which is also approximately
the same as zmax in this regime). Thus we have, for the
maximum stress sustainable at frequency �,

fmax
0 ð�2Þ � fmax

0 ð�1Þ ¼ T

�
ln

�
�2

�1

�
: (21)

Very roughly, from our own measurements on GK [11],
the yield force at 10 Hz is fmax

0 ð10 HzÞ � 10 pN, while

T=� ¼ 20 pN for � ¼ 2 �A. Thus, for example, at �2 ¼
100 kHz, the maximum force is given by

fmax
0 ð100 kHzÞ ¼ 10 pNþ 20� 4 lnð10Þ pN � 200 pN;

(22)

and increases by about 50 pN for each decade in frequency.
Evidently, the numbers are such that this estimate gives
fmax
0 � 200 pN in the relevant range of frequencies. (This

value can also be extracted directly from Fig. 2 in [14].)
In fact, the relation (20) applies only for low forces

[32–35]:

FIG. 5. (a) The ‘‘internal stress’’ jkz1j vs deformation z2 for the
model illustrated in Fig. 4. The dashed lines correspond to
the jumps in the model. This cycle is qualitatively similar to
the schematic cycle proposed in Fig. 3(a), which is itself sug-
gested by the measurements of Fig. 2. (b) Simplified representa-
tion of the cycle in (a).
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F� F� ¼ �G=ð��Þ (23)

[35], where �G is the barrier height, � the barrier position,
and � ¼ 2=3, such that the shape of the barrier is not much
perturbed. The more general theory of Dudko et al. [35]
shows that, in fact, the rupture force increases faster than
linearly with the log of the frequency. However, this effect
does not change the order of magnitude of the estimate
above, as can be seen from Fig. 2 in [35]. We may see the
above estimate fmax

0 � 200 pN as a lower bound, while a

higher bound is provided by the critical force F�, at which
the barrier vanishes [35]. Using reasonable values �G �
20 kT (as in [35]), � ¼ 2=3, and � � 0:2 nm in the for-
mula above gives F� � 600 pN. Then taking fmax

0 ¼
400 pN, which is the median value between our rough
lower bound (200 pN) and upper bound (600 pN) for this
force, we obtain�
1

�

�
max� fmax

0

4�zmax

� 400 pN

0:2 nm� 4� 10�2 g=s
� 50 kHz;

(24)

using our value � ¼ 4� 10�2 g=s [and using Eq. (19)
with f1 ¼ f0=2]. Once again, because of shear thinning,
the relevant value of � is probably about a factor 10
smaller. (See also the measurement of � in [30].) Then
the estimate (23) for the maximum rate of enzymes that
perform conformational changes is close to the truth. (The
fastest enzymes, such as carbonic anhydrase, have rates of
about 1 MHz but very small conformational motion [36]).
This result is remarkable because the estimate (23) de-
pends only on purely mechanical quantities.

IV. CONCLUSIONS

In conclusion, we propose a nonequilibrium thermody-
namic cycle based on the viscoelastic transition of the
folded state of proteins [13] as one universal feature of
enzyme action. ‘‘Thermodynamic’’ here means ensemble
averaged. The cycle operates between two different speeds
for the forward and backward paths. This possibility arises
because the stress-strain curves of Fig. 2 are frequency
dependent, which is, in our view, the same phenomenon
discovered by Evans and collaborators in the context of
bond-rupture forces [14]. The viscoelastic transition itself
may correspond, in structural terms, to the previously
proposed ‘‘cracking’’ [37,38]. In general, the approach
we introduce here describes the dynamics through
ensemble-averaged variables and is thermodynamic in
this sense. In the present framework, several general prop-
erties of enzymes are easily understood or predicted.
Among them, we find that the speed of molecular motors
decreases linearly with load force [Eq. (15)]. We find a
relation between the maximum speed vmax ¼ ðzmax=�Þmax

of an enzyme, its stall force Fstall, and the dissipation
coefficient � [Eq. (15)]. Here, zmax is the amplitude of
the conformational change on substrate binding and 1=�

the maximum rate (the rate under conditions where
substrate binding is not rate limiting). Stall forces have
hitherto been measured only for processive enzymes such
as motors and polymerases, which are particularly compli-
cated enzymes. We envision similar measurements in the
future on simpler enzymes, such as GK; the experimental
methods are available in principle. For example, mechani-
cal stresses can be applied to an enzyme such as GK
through molecular springs while, at the same time, moni-
toring the enzymatic activity, as described in Ref. [9]; or
else oscillatory stresses can be applied to the enzyme in a
nanorheology setup as described in Ref. [12], where it is
also feasible (although not reported yet) to simultaneously
monitor enzymatic activity. We can estimate the maximum
rate of those enzymes that couple conformational motion
to substrate binding or catalysis (which probably
cover most enzymes) from purely mechanical parameters
[Eqs. (21)–(23)]. The crucial quantity is the dissipation
coefficient �. Very few measurements have been taken of
the ‘‘internal viscosity’’ of proteins, and the results differ
by 8 orders of magnitude [11,39]. We argued in [11] that
the reason for this variance is the viscoelastic nature of the
protein’s mechanics, which makes the internal viscosity
frequency dependent (�� 1=�2 at high frequency). The
dissipation coefficient � is, on the other hand, not fre-
quency dependent (except for nonlinear effects such as
shear thinning, but this dependence probably is not
dramatic), and we show in the present work that the value
�� 10�2 g=s, obtained experimentally first by Radmacher
et al. [30] and later by us [11], leads to a consistent picture
of the dynamics of proteins. Evidently, the precise value of
�, which is an effective parameter, will depend on the
specific protein and conformational change; here, we are
concerned with the order of magnitude. The other crucial
quantity that enters the estimate of the maximum rate of
enzymes is the maximum stress that the enzyme can sus-
tain over a given time. Here we are in a better position to
give an estimate, because the related problem of bond-
rupture forces has been studied extensively [14,32,34]; it
appears that fmax

0 � 400 pN is, within a factor 2, a reason-

able value at the relevant frequencies.
A different aspect of this work is that the nonequilibrium

cycle we propose provides a basic way of breaking time-
reversal symmetry (for f1 � f0=2 in the simple model that
we consider) in the cycle of the enzyme itself, which is,
after all, necessary to obtain a molecular machine. This
aspect is connected with the question of obtaining directed
motion from a molecular machine, which has also been
studied extensively [40]. On the other hand, we find that
the regime f1 ¼ f0=2, which corresponds to the cycle
proceeding at the same speed in the forward and backward
directions, has several special features (such as maximiz-
ing the rate), so f1=f0 (in this language) may be a parame-
ter that, for different enzymes, is tuned to different values
between 0 and 1.
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Thermal fluctuations of the thermodynamic variables
are conspicuously absent from our discussion. One might
argue that, if f0zmax � kT, this absence is not too serious a
shortcoming in our model, but in fact it is one question that
will have to be addressed in future work.

Finally, we remark that, taken individually, several of the
ideas presented here have been put forward before. For
instance, a linear relationship between force and velocity
(v ¼ F=�, which applies in the viscoelastic regime) was
invoked in [41] to obtain the experimentally observed
linear behavior of motor-protein velocity with load.
Similarly, the fact that conformational motion of enzymes
must operate beyond the linear elasticity regime has been
understood before [38,42]. And, more generally, the
present model is essentially an explicit representation of
Blumenfeld’s relaxation model [4], based on experimental
facts (the viscoelastic transition) that were not known at
the time.

So what we contribute that is new is the direct experi-
mental evidence of the viscoelastic nature of the protein’s
mechanics (Fig. 2) and the consequent realization that,
because of the frequency dependence of this viscoelastic
transition, a nonequilibrium cycle can open between the
forward and backward conformational changes if they
happen at different speeds. Our work provides a framework
for considering mechanochemical coupling in enzymes
based on universal materials properties rather than the
specific structure of the folded state.
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Carlsson, and M. Lindgren, High-Resolution Probing
of Local Conformational Changes in Proteins by the
Use of Multiple Labeling: Unfolding and Self-Assembly
of Human Carbonic Anhydrase II Monitored by Spin,
Fluorescent, and Chemical Reactivity Probes, Biophys.
J. 80, 2867 (2001).

[37] O. Miyashita, J. N. Onuchic, and P.G. Wolynes, Nonlinear
Elasticity, Proteinquakes, and the Energy Landscapes of
Functional Transitions in Proteins, Proc. Natl. Acad. Sci.
U.S.A. 100, 12570 (2003).

[38] P. C. Whitford, O. Miyashita, Y. Levy, and J. N.
Onuchic, Conformational Transitions of Adenylate
Kinase: Switching by Cracking, J. Mol. Biol. 366,
1661 (2007).

[39] K.W. Plaxco and D. Baker, Limited Internal Friction in
the Rate-Limiting Step of a Two-State Protein Folding
Reaction, Proc. Natl. Acad. Sci. U.S.A. 95, 13591
(1998).

[40] M.O. Magnasco, Forced Thermal Ratchets, Phys. Rev.
Lett. 71, 1477 (1993).

[41] C. Bustamante, D. Keller, and G. Oster, The Physics of
Molecular Motors, Acc. Chem. Res. 34, 412 (2001).

[42] J. A. McCammon, B. R. Gelin, and M. Karplus, Dynamics
of Folded Proteins, Nature (London) 267, 585 (1977).

HAO QU AND GIOVANNI ZOCCHI PHYS. REV. X 3, 011009 (2013)

011009-10

http://dx.doi.org/10.1016/S0022-5193(76)80120-8
http://dx.doi.org/10.1016/0092-8674(94)90060-4
http://dx.doi.org/10.1038/35036345
http://dx.doi.org/10.1038/35036345
http://dx.doi.org/10.1021/la00022a068
http://dx.doi.org/10.1146/annurev.ph.58.030196.003415
http://dx.doi.org/10.1209/epl/i2002-00101-8
http://dx.doi.org/10.1209/epl/i2002-00101-8
http://dx.doi.org/10.1016/S0006-3495(03)74449-X
http://dx.doi.org/10.1016/S0006-3495(03)74449-X
http://dx.doi.org/10.1073/pnas.1534554100
http://dx.doi.org/10.1073/pnas.1534554100
http://dx.doi.org/10.1103/PhysRevLett.96.108101
http://dx.doi.org/10.1103/PhysRevLett.96.108101
http://dx.doi.org/10.1016/S0006-3495(01)76253-4
http://dx.doi.org/10.1016/S0006-3495(01)76253-4
http://dx.doi.org/10.1073/pnas.2135471100
http://dx.doi.org/10.1073/pnas.2135471100
http://dx.doi.org/10.1016/j.jmb.2006.11.085
http://dx.doi.org/10.1016/j.jmb.2006.11.085
http://dx.doi.org/10.1073/pnas.95.23.13591
http://dx.doi.org/10.1073/pnas.95.23.13591
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1103/PhysRevLett.71.1477
http://dx.doi.org/10.1021/ar0001719
http://dx.doi.org/10.1038/267585a0

