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In this work, we present theoretical tools suitable for quantitative modeling of large superconducting

circuits that include one-dimensional Josephson-junction arrays. The large number of low-energy degrees

of freedom and the peculiar interactions between them induced by flux quantization present a considerable

challenge to the detailed modeling of such circuits. For the concrete example of the fluxonium device, we

show how to address this challenge. Starting from the complete degrees of freedom of the circuit, we

employ the relevant collective modes and circuit symmetries to obtain a systematic approximation

scheme. Important circuit symmetries include approximate invariance under the symmetric group and

lead to considerable simplifications of the theory. Selection rules restrict the possible coupling among

different collective modes and help explain the remarkable accuracy of previous simplified models. Using

this strategy, we obtain new predictions for the energy spectrum of the fluxonium device that can be tested

with current experimental technology.
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I. INTRODUCTION

In the search for a viable architecture for solid-state
quantum-information processing, superconducting circuits
have been the focus of immense interest [1–4]. While
research efforts have led to the remarkable improvement
of coherence times by nearly 5 orders of magnitude [5]
relative to those in the pioneering experiments a decade
ago [6,7], superconducting circuits have remained ex-
tremely simple—especially when compared to circuits
found in commonplace electronic devices. Most supercon-
ducting quantum circuits such as phase, flux, or charge
qubits consist of less than a handful of circuit elements.

Experiments with the fluxonium device—a supercon-
ducting circuit with more than 40 Josephson junctions—
have shown that a larger number of Josephson junctions,
and hence degrees of freedom, is not necessarily penalized
by reduced coherence times [8,9]. Experimental studies of
linear Josephson-junction arrays have advanced at a rapid
pace [10–16]. However, despite considerable theoretical
work [17–27], methods for detailed modeling of larger
circuit networks are needed to successfully chart the future
territory of quantum coherence in networks of increasing
size to, e.g., further explore the possibility of topological
protection from decoherence [28–31]. The description
presents a considerable challenge to theory due to the
combination of several factors: the nonlinearity induced
by Josephson junctions, the increased number of low-
energy degrees of freedom, and the peculiar interactions
between them induced by flux quantization. As a key step

for mastering these difficulties, we present theory for the
fluxonium device that starts from the complete circuit
degrees of freedom. We demonstrate that circuit symme-
tries play a crucial role in the organization of the excitation
spectrum and, employing the relevant collective modes and
their approximate decoupling [26], we obtain a systematic
approximation scheme.
Nonlinearity, interactions, and a large number of degrees

of freedom are challenges commonly encountered in the
study of many-electron atoms. Our symmetry-based ap-
proach resembles methods familiar from atomic and mo-
lecular physics where the weak breaking of symmetries
leads to the well-known lifting of degeneracies in the fine
and hyperfine structures of spectra [32]. For the fluxonium
circuit, we demonstrate that approximate symmetry under
the unitary group and under permutations of junction var-
iables divides the excitation spectrum into nearly degener-
ate subspaces. For realistic parameters, the careful study of
perturbations allows us to refine our description and pro-
vide new predictions for the collective excitations of the
circuit.

II. FLUXONIUM CIRCUIT

The fluxonium device [8] (Fig. 1) consists of a
Josephson-junction array with a large number N � 1 of
nominally identical tunneling junctions. One additional
smaller junction (the ‘‘black sheep’’) shunts the array.
The superconducting loop formed in this manner can be
biased with an external magnetic flux �ext, making the
energy spectrum tunable. As is typical of superconducting
circuits, the nature of eigenstates and their detailed energy
spectrum are governed by the competition between charge
transfers across junctions due to Cooper-pair tunneling and
charging effects due to excess electric charge on individual
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islands. While charge transfers favor charge delocalization
and definite phase differences across each junction, charg-
ing effects promote charge localization with definite
Cooper-pair numbers on each superconducting island.
The ratio of Josephson energy (EJ) to charging energy
(EC) of the involved junctions quantifies this interplay.
We use the superscripts ‘‘a’’ and ‘‘b’’ in this article to
distinguish between array (Ea

J=E
a
C � 1) and black-sheep

parameters (Eb
J � Eb

C).

The energy spectrum and corresponding eigenstates of
the superconducting circuit C are governed by the station-
ary Schrödinger equation HCjc i ¼ Ejc i, in which the
circuit Hamiltonian is obtained from the Lagrangian
L ¼ T �U by circuit quantization [33,34]. For each junc-
tion, Josephson tunneling produces a potential-energy term
Um ¼ �EJm cos�m, where �m denotes the phase difference
across junction m. The dominant kinetic-energy contribu-
tions arise from the charging of junction capacitances,
Tm ¼ 1

2CJmV
2
Jm. Here, the voltage drop across junction m

is linked to _�m via Josephson’s phase-evolution equation
_�m ¼ 2�VJm=�0, and charging energies are related to
capacitances via EC ¼ e2=2C.

The requirement for the superconducting phase to be
single valued (modulo integer multiples of 2�) leads to
fluxoid quantization [35–37]. It manifests itself as the rigid
constraint

PN
m¼0 �m þ ’ext ¼ 2�z, where z is an integer,

�0 ¼ h=2e the superconducting flux quantum, and ’ext ¼
2��ext=�0 the phase offset due to external magnetic flux.
The constraint reduces the number of independent coordi-
nates by one and induces coupling among the remaining
junction phases. To incorporate the constraint while main-
taining symmetry among array junctions, we eliminate the
black-sheep variable �0 and obtain the Lagrangian

L ¼ @
2

16Ea
C

X
m

_�2m þ @
2

16Eb
C

�X
m

_�m

�
2 þ 1

2

X
mn

Gmn
_�m _�n

�X
m

Ea
Jm cos�m � Eb

J cos

�X
m

�m þ ’ext

�
; (1)

where, as a convention, sums over Latin indices always run
over the range 1; . . . ; N. The capacitive term involving the

matrix G describes the effects from capacitances between
superconducting islands and ground (see Appendix D).
To illustrate the content of Eq. (1), it is instructive to

note that L describes a single fictitious particle inside a
periodic potential, albeit in N-dimensional space with
N � 1. Alternatively, it can be interpreted as a description
of N distinguishable particles, each moving in a 1D peri-
odic potential but subject to a peculiar interaction of
collective type induced by flux quantization.
The central idea of our approach in this article is to

harness the large amount of symmetry present in the domi-
nant terms of Eq. (1) [38]. In particular, if ground capaci-
tances are negligible and if all array junctions possess the
same charging energy Ea

C and Josephson energy Ea
J;m ¼ Ea

J ,

then L is manifestly SN symmetric. In other words, any
permutation � 2 SN of the array variables, such as

�12½ð�1; �2; �3; . . . ; �NÞ� ¼ ð�2; �1; �3; . . . ; �NÞ;
leaves the Lagrangian invariant for any value of the
external flux. We will refer to this idealization as the
symmetric-fluxonium model (SFM).
In nonrelativistic quantum mechanics, such discrete

symmetries generally lead to degeneracies that are gov-
erned by the irreducible representations of the symmetry
group. The simplest irreducible representations of the
symmetric group SN are the trivial and alternating repre-
sentations that are familiar from particle and many-body
physics. In those contexts, they dictate the symmetry of
wave functions for indistinguishable bosons and fermions.
In the case of superconducting circuits, degrees of freedom
referring to different junctions generally remain distin-
guishable, and the full plethora of irreducible representa-
tions of SN is realized. In this sense, the SFM constitutes an
intriguing example of a many-body system with degener-
ate eigenstates that obey novel permutation symmetries
beyond those of bosons and fermions.

III. SN SYMMETRIC-FLUXONIUM MODEL

From the circuit Lagrangian (1), we now extract the
relevant collective modes [26] governing the low-energy
physics and discuss their connection with effective models
employed in previous works [8,39]. A key ingredient in the
construction of the low-energy modes is the observation
that array junctions in fluxonium are dominated by
Josephson tunneling, Ea

C=E
a
J � 1, while the black-sheep

parameters Eb
C � Eb

J are both roughly of the same order as

the array charging energy.
For large arrays with junction number N � Ea

J=E
b
J , the

potential energy Uð ~�Þ exhibits deep minima at positions
where all array coordinates have the identical value

�m ’ � �’ext � 2�z

N þ Ea
J=E

b
J

; (2)

with the integer z satisfying jzj � N and �’ext ¼
’ext mod 2�. The minima of Uð ~�Þ are surrounded by large

FIG. 1. Circuit of the fluxonium device: a Josephson-junction
array (JJA) of nominally identical junctions with Josephson
energy Ea

J and charging energy E
a
C, shunting one weaker junction

(Josephson and charging energy Eb
J and Eb

C, respectively).
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energy barriers of height � 2Ea
J , except along the special

direction defined by a simultaneous and equal change in all
variables, i.e., �m ¼ �=N for all array variables. Such
collective dynamics is associated with the black-sheep
variable and has a barrier height of only 2Eb

J . In the
quantum regime, fluctuations will occur primarily along
this direction and motivate the use of � as an essential
collective variable.

For the symmetric-fluxonium model, this collective
motion of all array variables forms a normal mode for
harmonic oscillations around the global minimum that,
for zero magnetic flux, is located at � ¼ 0. Anticipating
the role of this mode, we refer to it as the superinductance
mode. Further analysis shows that the remaining N � 1
normal modes are degenerate, and, so as to remain or-
thogonal to the superinductance mode, their amplitudes
sum to zero mode by mode. We therefore call them differ-
ence modes and introduce �� (� ¼ 1; . . . ; N � 1) as their

amplitude variables (see Fig. 2). The transformation to the
new set of variables f�; �1; . . . ; �N�1g is facilitated by

�m ¼ �=N þX
�

W�m�� (3)

and, inversely, � ¼ P
m�m and �� ¼ P

mW�m�m. Unless

otherwise specified, sums over Greek indices run over the
difference modes � ¼ 1; . . . ; N � 1. The ðN � 1Þ � N
matrix W is semiorthogonal, and its components sum up
to zero in each row, i.e.,

P
mW�mW�m ¼ ��� andP

mW�m ¼ 0. Our choice

W�m ¼
ffiffiffiffiffiffiffiffiffi
2=N

p
cos½��ðm� 1

2Þ=N� (4)

differs from the choice in Ref. [26]. It proves particularly
convenient for the subsequent discussion of corrections

from ground capacitances [see the paragraphs containing
Eqs. (9) and (12)] that break SN symmetry. After this
variable transformation, circuit quantization yields the
symmetric-fluxonium Hamiltonian

HSFM ¼ �4Esi
C@

2
� � 4Ea

C

X
�

@2�� � Eb
J cosð�þ ’extÞ

� Ea
J

X
m

cos

�
�=N þX

�

W�m��

�
; (5)

where Esi
C ¼ Eb

C=½1þ Eb
C=ðEa

CNÞ� is equal to the black-

sheep charging energy up to a small 1=N correction.
The structure of HSFM illustrates the utility of the

collective-mode description: Coupling between different
modes is limited to potential-energy terms, and the
‘‘effective masses’’ are identical for all difference-mode
amplitudes. Further, at the relevant potential minima,
all difference-mode amplitudes vanish, �� ¼ 0, and the

arguments of the array cosines [last line of Eq. (5)] are of
order 1=N. Hence, a Taylor expansion for small arguments
can be expected to capture the essential low-energy phys-
ics. Keeping terms up to second order in this expansion,
one obtains

H0¼�4Esi
C@

2
��Eb

J cosð�þ’extÞþEL

2
�2þX

�

�ay�a�;

where ay� ¼ ð��=�� � ��@��Þ=
ffiffiffi
2

p
is the ladder operator

that creates an excitation in the�th difference mode,�� ¼
ð8Ea

C=E
a
JÞ1=4 is the oscillator length, and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8Ea
CE

a
J

p
is

the array-junction plasma frequency. Eigenstates of H0

take the form of direct-product states jlis � j~sid. In this
expression, l ¼ 0; 1; . . . enumerates the superinductance
eigenstates (variable �), and the components of the
ðN � 1Þ-dimensional vector ~s denote the occupation
numbers of the difference modes, i.e.,

j~sid ¼
YN�1

�¼1

ðay�Þs�ffiffiffiffiffiffiffi
s�!

p j~0id: (6)

The first three terms in the expression for H0 reproduce
the superinductance model that was successfully used in
Refs. [8,39]. It describes the superinductance mode as the
coupled system of the black-sheep junction with capacitive
energy Esi

C and a large superinductance [40] Ls ¼
Nð�0=2�Þ2=Ea

J with correspondingly small inductive en-
ergy EL ¼ Ea

J=N. As the second crucial insight from H0,
we note that, within the harmonic approximation, the
symmetry of the circuit has been extended to include
arbitrary unitary transformations of the N � 1 degenerate
difference modes. As the superinductance mode is a scalar
under the action of the group UðN � 1Þ, it completely
decouples from the difference modes in the harmonic limit.
This decoupling explains, in part, the success of the super-
inductance model in matching experimental spectra in
spite of the presence of the large number of additional

FIG. 2. Normal modes for the SN symmetric-fluxonium model.
The plots show the array-variable amplitudes �m for each normal
mode. (a) Superinductance mode ½��, for which all array-
junction amplitudes �m are identical. (b) Difference modes
½���, for all of which the amplitude sum exactly vanishes.

SYMMETRIES AND COLLECTIVE EXCITATIONS IN . . . PHYS. REV. X 3, 011003 (2013)

011003-3



degrees of freedom. The concept of symmetry-induced
decoupling carries over to more complicated circuits that
include linear arrays of Josephson junctions.

IV. WEAK SN SYMMETRY BREAKING

The symmetric-fluxonium model HSFM and its approxi-
mation H0 both obey SN symmetry. The symmetries of H0

are enlarged by the harmonic approximation and include
an additional UðN � 1Þ symmetry in the difference-mode
subspace: Any transformation a� ! P

�U��a� with uni-

tary U leaves H0 invariant. To go beyond the superinduc-
tance model and predict corrections arising from the weak
interaction between the superinductance mode and the
difference modes, we next consider mechanisms that lead
to symmetry breaking.

As is summarized in Table I, we focus on the following
three mechanisms that are likely the dominant ones in the
present experimental samples: anharmonicities of the po-
tential energy neglected in the above expansion (�HU),
disorder in the Josephson energies of individual array
junctions (�HJ), and additional stray capacitances of
each superconducting island to ground (�HC). We first
derive the Hamiltonian expressions for each of these cor-
rections and subsequently discuss their effects on the en-
ergy spectrum and eigenstates.

We start with �HU, the corrections from anharmonic-
ities exhibited by the periodic potential but neglected in the
harmonic approximation employed in H0. Considering
higher-order terms in the Taylor expansion of HSFM �
H0, we find that the leading anharmonic corrections are
given by

�HU ¼ �Ea
J

4!

X
m

�
�=N þX

�

W�m��

�
4
: (7)

It is easy to verify that �HU breaks theUðN � 1Þ symmetry
but preserves the permutation symmetry under SN .

To derive an expression for �HJ, we capture disorder in
the Josephson energies of the array by defining EJm ¼
Ea
J þ �EJm. Such disorder is expected to be caused by

slight variations in junction size and thickness and may
also be affected by junction aging. In the absence of
experimental statistics for fluxonium-junction parameters,
we choose random �EJm from a Gaussian distribution of
width �EJ ¼ 150 MHz and, without loss of generality,
impose

P
m�EJm ¼ 0. The disorder modifies the potential

energy of the Hamiltonian, and through Taylor expansion
we obtain

�HJ ¼ 1

2

X
m

�EJm

�
�=N þX

�

W�m��

�
2
: (8)

Disorder in individual array-junction parameters gener-
ally leads to weak breaking of both UðN � 1Þ and SN
symmetry.
To capture corrections from stray capacitances of the

superconducting islands to ground, we include the terms
due to ground capacitances shown in Eq. (1). Ground
capacitances contribute kinetic-energy terms that are easily
expressed as Tj ¼ 1

2 ð�0=2�Þ2Cgj _’
2
j when using node var-

iables ’j for each superconducting island. Assuming over-

all charge neutrality of the circuit, we can recast these
additional contributions in terms of the junction variables
_�m. Accounting for the ground capacitances of the two
large superconducting islands surrounding the black sheep
and the ground capacitances of the remaining small islands
by Cb

g; C
a
g � Ca

J ; C
b
J (Fig. 1), the perturbation can be ex-

pressed as

�HC ’ 4
XN�1

�;�¼0

ðM�1GM�1Þ��@��
@��

; (9)

where@�0
¼@� and@��

¼ða��ay�Þ=ð
ffiffiffi
2

p
��Þ for��1. The

detailed derivation of Eq. (9) and analytical expressions for

TABLE I. Summary of the principal effects of the perturbations �HU, �HC, and �HJ organized by the type of coupling. The three
types of coupling are ‘‘s,’’ coupling among superinductance states; ‘‘d,’’ coupling among difference-mode states; and ‘‘sd,’’ coupling
between the two subsystems.

Perturbation

origin !
and type # Anharmonicity (�HU) Capacitance to ground (�HC) Josephson-energy disorder (�HJ)

s Renormalize EL [Eq. (10)]. Renormalize Esi
C [Eq. (10)].

d Reduces symmetry from UðN � 1Þ
to SN and splits subspaces into

irreducible components

V T ! V Tð	Þ [Fig. 4(b)].

Reduces symmetry from SN to

PT and generates the largest

energy shift for difference modes

with small � [Eq. (12)].

Removes all symmetries and

broadens the energy distribution

of the difference modes [Fig. 5(b)].

sd Symmetry-enforced decoupling

of subspaces that are inequivalent

with respect to SN symmetry

[Fig. 5(a)].

Creates coupling between the

superinductor and the even

difference modes [Eq. (13)].

Creates coupling between the

superinductor and all the difference

modes [Eq. (14)].
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the entries of the matrices M and G are provided in
Appendix D.

After removing irrelevant global-energy shifts, the ef-
fects of the perturbations �HU, �HC, and �HJ can be
organized into three categories according to their action
on the superinductance and difference modes. Perturba-
tions may introduce coupling among superinductance
states (�Hs	) and coupling among difference-mode states
(�Hd	), as well as coupling between the two subsystems
(�Hsd	 ).

We first discuss corrections in the �Hs	 category, which
only affect the superinductance mode. The simplest con-
tributions of this type are terms with a structure identical to
those already present in H0 that merely renormalize the
superinductance model parameters. Both �HU and �HC

contain corrections of this type and yield renormalized
parameters

Esi
C!

1

1=Eb
Cþ1=NEa

CþG00

; EL!Ea
J

N

�
1��2

�

N�1

4N

�
:

(10)

We emphasize that the inclusion of ground capacitances of
the large islands alone leaves the SN symmetry unharmed
and is completely accounted for in our model by the above
renormalization, even in the limit that Cb

g is large. The only

contribution of type �Hs	 that goes beyond renormalization
is the term�Ea

J�
4=ð4!N3Þ generated by �HU. For realistic

parameters, we find that this perturbation generates level
shifts well below 100 MHz (see Sec. IV).

We next turn to corrections in the �Hd	 category to
discern how anharmonicity �HU, ground capacitance
�HC, and array-junction disorder �HJ affect the spectrum
of difference-mode excitations. Perturbations from anhar-
monicity �HU break the UðN � 1Þ symmetry but leave the
SN symmetry subgroup intact. As a result, degeneracies are
lifted only partially and degenerate perturbation theory
must be used. Each remaining degenerate subspace is
associated with an irreducible representation of the sym-
metric group. Our construction of the relevant irreducible
subspaces works as follows. We start by decomposing the
difference-mode Hilbert space into orthogonal subspaces
V T with fixed excitation number T ¼ P

�a
y
�a�, i.e.,

H d ¼ V 0 
V 1 
 � � � . In general, each V T may still
be reducible under SN and should be further decomposed.

In this decomposition, the integer partitions of N serve
as labels for the irreducible representations of the symmet-
ric group SN . Here, a partition ð	Þ ¼ ð	1; 	2; . . . ; 	FÞ is a
sequence of nonincreasing positive integers

	1 � 	2 � � � � � 	F > 0

that sum to N. Each partition is conveniently represented
by a Young diagram: a collection of N boxes arranged in F
left-justified rows with the ith row having the length 	i. For
N ¼ 6, the partition (4, 2) is represented by the Young
diagram

Since the inductive decomposition of SN [41] is not very
practical for N � 1, we decompose the subspaces V T by
using a restricted set of semistandard Young tableaux [42].
(All technical details of this procedure are provided in
Appendix A.) For the low-energy part of the spectrum
probed by experiments, we find that the excitation number
T and partition ð	Þ are sufficient to specify the relevant
irreducible subspaces. A simplified physical interpretation
of the Young diagrams is offered in Fig. 3.
The subspace without any difference-mode excitations,

V T¼0, is spanned by only the ground state j~0id. It imme-
diately forms an irreducible representation. The state is
effectively bosonic and is indexed by the partition ð	Þ ¼
ðNÞ. The subspace of difference-mode states with a single

excitation,V T¼1 ¼ spanfay�j~0idj� ¼ 1; 2; . . . ; N � 1g, al-
ready forms an irreducible N � 1-dimensional subspace
corresponding to the representation with partition ð	Þ ¼
ðN � 1; 1Þ (Fig. 4). For T ¼ 2, the decomposition is more
interesting and results in three irreducible subspaces in-
dexed by ðNÞ, ðN � 1; 1Þ, and ðN � 2; 2Þ. The subspace
labeled by ðNÞ, for example, is comprised of a single
SN-invariant state given by

jTð	Þi ¼ j2ðNÞi ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðN � 1Þp X

�

ðay�Þ2j~0id; (11)

which is independent of the specific choice ofW in Eq. (3).
By employing perturbation theory for �Hd

U in each irre-
ducible subspace V Tð	Þ, we obtain the first-order energy

corrections �Ed
U½T; ð	Þ� in Table II. The resulting level

shifts are shown schematically in Figs. 4(a) and 4(b).
We next consider perturbations that break the SN sym-

metry and thus lift the degeneracy of difference modes.
Both corrections from ground capacitances, �Hd

C, and from

junction disorder, �Hd
J , fall in this category. If the ground

FIG. 3. Physical interpretation of Young diagrams. (a) Each
subspace labeled by a Young diagram of shape ðN � 1; 1Þ is
spanned by N states in which one array junction is excited
relative to the other N � 1 array junctions. These states are
linearly dependent and can be decomposed into difference-
mode excitations. For example, the irreducible ðN � 1; 1Þ sub-
space V 1 has a basis that is comprised of the N � 1 difference-

mode excitations ay�j~0id that are collective excitations distrib-

uted across multiple junctions (see Fig. 2). (b) Subspaces with
higher junction excitations are associated with Young diagrams
with additional rows.
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capacitance of the big islands is sufficiently large com-
pared to that of the small islands, Eb

g=E
a
g � 1=N2, then

�Hd
C in Eq. (9) is approximately diagonal. This decoupling

is the primary motivation for our choice of difference
modes [Eq. (3)]. To leading order, the resulting energy
shifts for states in the in the one-excitation subspace V 1

are given by

�Ed
C;� � ��Ed

C=�
2 ð� � NÞ; (12)

where �Ed
C ¼ 4N2Ea2

C =ð�2�2
�E

a
gÞ. Similar effects from

ground capacitances have been predicted and observed in
Ref. [16]. For higher values of �, shifts induced by
Josephson-energy disorder �Hd

J become dominant in our
model. For Gaussian-distributed junction parameters
�EJm, the first-order energy shifts �Ed

J;� also follow a

Gaussian distribution with width �Ed
J ¼ �EJ�

2
�=2

[Figs. 4(c) and 5(b)].

Interesting corrections in the third and final category,
�Hsd	 , arise from coupling between superinductance and
difference modes. Anharmonicity captured by �Hsd

U pre-
serves SN symmetry and hence, by Schur’s lemma, cannot
couple states belonging to different irreducible representa-

tions. More specifically, states of the form j‘0is � ay�j~0id
cannot couple to states of the form j‘is � j~0id under
SN symmetry, even when such states are degenerate
[Fig. 5(a)]. This symmetry-enforced lack of coupling be-
tween the superinductance mode and the lowest difference-
mode excitations constitutes a central result of our work. It
is a crucial ingredient in preserving the respective identity
of these collective modes and explains the quantitative
accuracy of the superinductance model at low energies.
The only difference-mode excitations that may couple to

states of the form j‘is � j~0id are those that are bosonic, i.e.,
that are indexed by the partition ðNÞ. The candidate states
with lowest energies are j‘0is � j2ðNÞi but are already well
beyond the frequency range probed by spectroscopy in
previous fluxonium experiments.
Ground capacitances, as described by �Hsd

C , break SN
symmetry but preserve PT symmetry: ’j ! �’N�j. PT

symmetry is a combination of ‘‘circuit parity’’ P that
mirrors the circuit variables and time reversal T. PT is a
symmetry ofH0 and HSFM, even for nonzero flux ’ext. The
superinductance mode and difference modes with even
index � are even under PT; difference modes with odd
index � are odd under PT. As a result, �Hsd

C can only

couple the superinductance mode to every other difference
mode. We find that the coupling is largest for small values
of � and takes the form

FIG. 4. Difference-mode spectrum for total excitation numbers T ¼ 0; 1; 2. (a) Within the harmonic approximation, SN and
UðN � 1Þ symmetry hold and produce degenerate subspaces of dimension (dim) DT. (b) Anharmonicity �HU breaks UðN � 1Þ but
leaves SN symmetry intact. The irreducible representations (irreps) of SN , labeled by partitions ð	Þ or Young diagrams, give rise to
Dð	Þ-dimensional degenerate subspaces. (c) Corrections from disorder in array-junction EJ’s and ground capacitances, �HC þ �HJ,
break SN symmetry. The degeneracy lifting is shown for the T ¼ 1 subspace.

TABLE II. Energy corrections for difference-mode states due
to anharmonicities (�HU). T is the total number of excitations in
the difference modes, and ð	Þ is the partition labeling the
irreducible subspace.

T ð	Þ ��Ed
U½T; ð	Þ�=Ea

C

0 ðNÞ 0

1 ðN � 1; 1Þ 1� 1=N
2 ðNÞ 3� 3=N
2 ðN � 1; 1Þ 3� 4=N
2 ðN � 2; 2Þ 2� 2=N
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�Hsd
C � �@�

X
�¼2;4;6...

�Esd
C ða� � ay�Þ=�2; (13)

where �Esd
C ¼ 8Ea

CE
si
CN

3=2=ð�2��E
a
gÞ. Finally, all symme-

tries are broken for array-junction disorder, and the result-
ing perturbation is given by

�Hsd
J � �

X
�

�Esd
J�ða� þ ay�Þ; (14)

where �Esd
J;� follows a Gaussian distribution of width

�EJ��=ð
ffiffiffi
2

p
NÞ. As shown in Figs. 5(c) and 5(d), the cou-

pling between superinductance and the � ¼ 1 difference
mode, induced by �Hsd

J only, is considerably smaller than
the coupling to the � ¼ 2 difference mode that is domi-
nated by �Hsd

C .

V. DISCUSSION AND SUMMARY

The low-energy spectrum of the full fluxonium circuit
includes, in addition to the energy levels predicted by the
superinductance model, a large number of nearly degener-
ate excitations. We have identified the nature of these
collective excitations with the difference modes at energies
near the array-junction plasma frequency. Degeneracies
are expected to be lifted, first by UðN � 1Þ symmetry
breaking due to anharmonicity and further by SN symmetry
breaking due to array-junction disorder and ground capaci-
tances. The important consequences of these corrections
include separation of previously degenerate levels into
closely spaced multiplets.

Josephson-junction arrays provide an interesting
example of a quantum system with many identical but

distinguishable degrees of freedom, resulting in represen-
tations of the symmetric group that are not readily
observed in nature with indistinguishable particles.
Invariance under permutations of the junction variables is
a generic symmetry that is expected to be important for any
large superconducting circuit containing one or several
Josephson-junction arrays. The decomposition of the sym-
metric group SN into irreducible representations relevant at
low energies thus becomes an important tool in circuit
analysis. For the example of the fluxonium device, we
have shown that such symmetry strongly restricts the
possible coupling between the superinductance mode,
as observed in the experiment [8,9], and the additional
difference modes. Our results explain the remarkable accu-
racy of the effective superinductance model as long as the
renormalizations of EL and Esi

C are taken into account and

are consistent with previous fits of experimental data where
EL and E

si
C were used as fit parameters, producing excellent

agreement [8,9].
The power of symmetry-based approaches in the analysis

of future circuits is easily illustrated for the example of the
fluxonium device. Specifically, the number of difference-
mode states with excitations up to some threshold T grows

rapidly as ðTþN�1Þ!
T!ðN�1Þ! . The number of states with proper bo-

sonic symmetry, however, is dramatically smaller: For
N¼43 and T¼5, there are 106 difference-mode states, but
merely six of them possess bosonic symmetry. Harnessing
exact and approximate symmetries of Hamiltonians for
larger circuits will likely be a crucial ingredient in future
research that explores quantum coherence in superconduct-
ing circuit networks of increasing complexity.

FIG. 5. Spectrum from numerical diagonalization, including the effects of (a) anharmonicity and of (b) anharmonicity, ground
capacitances, and junction disorder. The dashed curves show the pure superinductance spectra for renormalized Esi

C and EL [Eq. (10)].

The thick curves in (a) indicate N � 1-fold degenerate levels that remain decoupled from T ¼ 0 states under �HU. (b) Corrections
from ground capacitance �HC and junction disorder �HJ break SN symmetry. In the T ¼ 1 manifold, ground capacitances split off
several levels; smaller shifts are due to junction disorder �Ed

J�, here chosen from a Gaussian distribution. (c) and (d) show

magnifications of regions marked in (b). The avoided crossing in (c) is primarily generated by ground capacitances. The even smaller
splitting in (d) is purely generated by array-junction disorder. The chosen parameters are consistent with the experimental device
(Appendix F).
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APPENDIX A: IRREDUCIBLE
REPRESENTATIONS FOR DIFFERENCE MODES

In this Appendix, we discuss the decomposition of the
difference-mode Hilbert spaces V T into subspaces that
transform irreducibly under SN symmetry. Since some of
the mathematical tools employed may not belong to the
physicist’s ordinary repertoire, we provide definitions
along with concrete examples where appropriate. In termi-
nology and notation, our discussion closely follows the
excellent book by Sagan [42].

The subspace V T comprises all difference-mode states
with total excitation number T. It is spanned by the or-
thogonal states

ay�1
� � �ay�T

j~0i; (A1)

where we assume weakly ordered mode indices

�1 
 � � � 
 �T 2 f1; 2; . . . ; N � 1g
to avoid double counting. The SN symmetry displayed
in the ideal fluxonium circuit pertains to permutations
� 2 SN of the array-junction variables �1; �2; . . . ; �N .
Such permutations also induce linear transformations in

the operator space Cfay1 ; ay2 ; . . . ; ayN�1g spanned by the

difference-mode creation operators. To understand how
ay� transforms under permutations, we recall the definition

of the creation operators in terms of junction variables:

ay� ¼ X
m

W�mð�m=�� ���@�mÞ=
ffiffiffi
2

p
: (A2)

Using the identity
P

�W�mW�n ¼ �mn � 1
N , one finds

that the difference-mode creation operators transform
according to

�ðay�Þ ¼
X
�

Sð�Þ��a
y
�: (A3)

We remind the reader that, by our convention, sums with
Latin (Greek) summation indices always range from 1 toN
(1 to N � 1). The ðN � 1Þ � ðN � 1Þ transformation ma-
trices are given by

Sð�Þ�� ¼ X
m;n

W�mW�nDð�Þmn: (A4)

Here, Dð�Þmn ¼ �m;�ðnÞ denotes the N � N permutation

matrix for the group element � 2 SN . [The matrices Dð�Þ
form the defining representation of SN.]

By the relationV 1 ¼ Cfay1 ; ay2 ; . . . ; ayN�1gj~0i, the trans-
formation matrices Sð�Þ in Eq. (A3) define an orthogonal
SN representation of dimension N � 1 in the one-
excitation subspace. Similarly, for higher excitation num-
bers T> 1, the group action for products of creation
operators,

�ðay�1
� � � ay�T

Þ ¼ X
�1;...;�T

Sð�Þ�1�1
� � � Sð�Þ�T�T

ay�1
� � � ay�T

;

(A5)

determines the representation of SN in the subspace V T.
Given these representations, our central task is to decom-
pose each V T into its irreducible subspaces. As an aside,
we note that, in the special case of V 1, simple arguments
based on group characters can be used to show that V 1 is
already irreducible and coincides with the irreducible rep-
resentation indexed by the partition ðN � 1; 1Þ, for which
group characters are known to be trDð�Þ � 1 for arbitrary
N (Ref. [42], Sec. 2.12).
The common approach for the decomposition of such

product representations is inductive and requires succes-
sive decompositions for S1; S2; . . . ; SN; see, e.g., Ref. [41].
For large N, however, that strategy is not very practical.
Following the treatment by Sagan [42], we thus employ an
alternate approach using a restricted class of semistandard
tableaux. (We will explain the meaning of these words in
this Appendix, Step 2.)
As our first step in constructing the decomposition of

each V T, we define the pseudocreators byn for n ¼
1; 2; . . . ; N by

byn ¼
X
�

W�na
y
�¼½ð�n��=NÞ=��þ��ð@�n �@�Þ�=

ffiffiffi
2

p
:

(A6)

As one would expect, pseudocreators byn increase the total
excitation number in the difference-mode subspace by one.
The number of pseudocreators, however, is N and thus
exceeds the number of difference-mode creation operators
ay� by one. Indeed, the pseudocreators obey

P
nbn ¼ 0 and,

hence, are not linearly dependent. They obey the nonstan-
dard commutation relation

½bm; byn � ¼ �mn � 1=N: (A7)

For the price of this anomalous commutator, we obtain
operators that transform with elegant simplicity.
Specifically, under array-variable permutations � 2 SN ,

the byn operators simply undergo the following permutations:

�ðbyn Þ ¼
X
m

Dð�Þnmbym ¼ by�ðnÞ: (A8)

This simple transformation lawwill be crucial for finding the
irreducible subspaces ofV T.
We next extend the language of difference-mode exci-

tations to pseudomode excitations and define the states
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jti ¼ YN
n¼1

ðbyn Þtn j~0i ðnot normalizedÞ; (A9)

where the vector t ¼ ðt1; t2; . . . ; tNÞ specifies the excitation
numbers tn 2 N0 for each pseudomode byn . Using the

inverse of Eq. (A6), ay� ¼ P
nW�nb

y
n , it is simple to con-

firm that

V T ¼ span

�
jti

��������
X
n

tn ¼ T

�
; (A10)

i.e., the pseudomode excitations span the difference-mode
subspaces V T one by one. For example, the pseudomode

states byn j~0i span the irreducible subspace V 1 indexed by
ðN � 1; 1Þ (see Fig. 3).

For a state with given pseudomode excitations t ¼
ðt1; t2; . . . ; tNÞ, Eq. (A8) implies that � 2 SN simply per-
mutes the pseudomode-excitation numbers according to
t ! t0 ¼ ðt�ð1Þ; t�ð2Þ; . . . ; t�ðNÞÞ.

Example: The state with three excitations in pseudo-
mode n ¼ 1 and four excitations in pseudomode n ¼ 2 is
t ¼ ð3; 4; 0; . . . ; 0Þ. A permutation may transform it into
t0 ¼ ð4; 0; 3; 0; . . . ; 0Þ, for example, but not into
ð2; 5; 0; . . . ; 0Þ, even though the latter state still has the
same total excitation number T ¼ 7. r

For each state jtiwith T ¼ P
ntn, we define the subspace

spanned by itself and its permuted partner states as

V ½t� :¼ spanfjt0i ¼ j�ti j � 2 SNg � V T: (A11)

As suggested by the notation, ½t� may be understood as an
equivalence class when defining t� t0: , There exists a
� 2 SN such that t0 ¼ �t. By construction, the V ½t� form
SN-invariant subspaces, and their unions cover each V T:

V T ¼ [
n
½t�
�����T¼P

n

tn

oV ½t�: (A12)

Note that, due to linear dependence of the pseudomodes,
subspaces for inequivalent excitation classes ½t� \ ½t0� ¼ ;
may, nonetheless, have a nonzero intersection, V ½t� \
V ½t0� � ;.

We will first discuss the decomposition of V ½t� into

irreducible subspaces as if bn were orthogonal modes. In
step 1, we thus temporarily drop the cautionary prefix
‘‘pseudo’’ and show that the basis vectors jti can then be
relabeled in such a way to reveal isomorphism between
V ½t� and the corresponding permutation module M	t . In

step 2, we then utilize the important theorem for the
decomposition ofM	t that identifies semistandard tableaux
as the indexing set for all irreducible subspaces. In both
steps, we introduce the necessary terminology and explain
the construction. We do not provide proofs of the under-
lying theorems but instead refer the interested reader to
Chapter 2 of Sagan’s book [42]. Finally, in step 3, we return

to the issue of the linear dependence of bn modes and show
how the usual construction can be modified to account for
the linear dependence in a simple fashion.

Step 1: Isomorphism between V ½t� and the
permutation module M�t

The excitation numbers t ¼ ðt1; t2; . . . ; tNÞ label each
state in V ½t� by specifying excitation numbers, mode by

mode. An alternative labeling scheme (Fig. 6) consists of
specifying mode numbers, excitation level by excitation
level.
To specify the procedure of switching from the first

labeling scheme to the second, we define the partition
ð	tÞ associated with t as follows. Consulting t and for
each integer f ¼ 0; 1; . . . ;T, count

	0
f ¼ ðnumber of modes with f excitationsÞ: (A13)

The resulting sequence ð	0
0; 	

0
1; . . . ; 	

0
TÞ sums toN, the total

number of modes. By sorting entries in this sequence in
decreasing order and dropping all 0 entries, we obtain the
partition ð	tÞ associated with t. Excitation numbers t and t0
in the same equivalence class always have the same asso-
ciated partition.

Example: For N ¼ 4 and excitation numbers t ¼
ð1; 3; 0; 1Þ, one obtains the sequence (1, 2, 0, 1, 0, 0) and
thus the associated partition ð	tÞ ¼ ð2; 1; 1Þ. r

The partition ð	tÞ ¼ ð	1; 	2; . . . ; 	FÞ is represented by a
Young diagram, which is an array of squares where row f
has 	f squares. From the Young diagram ð	tÞ, we obtain

the Young tableau�t associated with t by filling the boxes
with the mode indices from 1 to N in such a way that mode
indices with the same excitation number appear in the same
row.

Example: For t ¼ ð1; 3; 0; 1Þ, the Young diagram of
ð	tÞ ¼ ð2; 1; 1Þ and a Young tableau associated with t are
given by

FIG. 6. Labeling schemes for difference-mode excitations.
(a) The labels specify excitation numbers, mode by mode.
(b) The labels specify mode indices, excitation number by
excitation number.
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From the sorting function used to order the entries in the
partition ð	tÞ, one can infer which row in the tableau refers
to which excitation number. As a result, the Young tableau
lists the mode indices corresponding to each excitation
number as intended. One additional modification is re-
quired to turn it into the desired state label.

For this modification, note that the transposition (inter-
change) of two mode indices with the same excitation
number leads to a new tableau (consider an interchange
of entries 1 and 4 in the previous example) but not to a new
state jti. To remove this ambiguity, we define two tableaux
as row equivalent,�t �R �0

t:, Permutations of elements
within each row can transform �0

t to �t. The resulting
equivalence class ½�t� is called the tabloid associated with
t and serves as the new label for each state.

Example: Using t ¼ ð1; 3; 0; 1Þ as above, the associated
tabloid is

It is useful to note that ½�t� can also be expressed as
½�t� ¼ f��tj� 2 R�tg, where R�t � SN is the subset
of permutations that only interchange entries in each row
of the tableau �t. R�t is called the row stabilizer of �t.
Below, we will also encounter the column stabilizer C�t,
with the analogous definition referring to columns instead
of rows.

With these definitions and observations, we have estab-
lished a one-to-one map jti $ j½�t�i that achieves the
important goal of relating V ½t� to a central object in the

representation theory of SN: the permutation module M	t

defined by

M	t ¼ Cf½�t� j t 2 ½t�g: (A14)

Since each permutation module is defined in terms of
tabloids, the group action for V ½t� and for M	t is easily

verified to be identical, and the two vector spaces are hence
isomorphic as SN representations.

Step 2: Decomposing V ½t� and constructing basis
vectors for all irreducible subspaces

The great benefit of identifying V ½t� as isomorphic

to M	t lies in the availability of mathematical tools for
decomposing the permutation modules into their irreduc-
ible subspaces (see Sagan [42], Sec. 2.10). For the sym-
metric group SN , each irreducible representation S� is
labeled uniquely by a partition ð�Þ of N. Consequently,
the general decomposition takes the form

M	 ffi M
�

m�	S
�; (A15)

where m�	 2 N0 is the multiplicity of the irreducible

subspace S� within M	. For a given V ½t� ’ M	t , we

wish to obtain the basis vectors for each of the copies (if
any) of S� contained in it. The basis vectors are obtained
by means of semistandard tableaux, which we define next.
For the excitation numbers t, an associated semistandard

tableau �
�
t is constructed from the Young diagram for ð�Þ

[where ð�Þ need not be ð	tÞ] by filling its squares with the
excitation numbers t1; t2; . . . ; tN in such a manner that
entries in each row weakly increase (
) and that entries
in each column strictly increase (< ). Along with �

�
t , we

consider standard tableaux �
�
st of the same shape ð�Þ that

are Young tableaux with entries increasing in each row and
column. This way, we can set up a lookup function
#: f1; 2; . . . ; Ng ! ft1; t2; . . . ; tNg that extracts the position
of the integer n in the reference tableau��

st and returns the
excitation-number entry found in the semistandard tableau
�

�
t at the corresponding position. To keep the notation

simple, we do not usually make explicit the dependence of
# on ��

t and ��
st .

Example: For t ¼ ð0; 1; 0; 3Þ and partition ð�Þ ¼ ð2; 2Þ,
an associated semistandard tableau and standard tableau
are

The lookup function then yields the following results:

n 1 2 3 4

#ðnÞ 0 1 0 3
. r

With this preparation, one now obtains the basis states
spanning the instance(s) of S� within V ½t� from

j��
t ;�

�
st i¼

X
�2C�

�
st

X

2R�

�
st

sgnð�Þ�
½by#ð1Þ1 by#ð2Þ2 ���byN#ðNÞ�j~0i;

(A16)

where permutations �; 
 2 SN act on the mode indices,

i.e., the subscripts of the byn operators, as before. (Caveat:
As defined above, the basis states are not yet normalized.)
Each semistandard tableau ��

t yields an irreducible
subspace

V �
�
t
¼ spanfj��

t ;�
�
st i j all standard tableaux��

st g: (A17)

By considering all possible partitions ð�Þ and associated
semistandard tableaux ��

t , we thus completely decompose
V ½t� into linearly independent irreducible subspaces. (The

set of partitions one needs to consider can be restricted by
considering the dominance ordering of partitions [42].)
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Step 3: Linear dependence of bn modes and restricted semistandard tableaux

In steps 1 and 2, we have ignored the linear dependence of bn expressed by the constraint
P

nbn ¼ 0. Once linear
dependence is taken into account, the states from Eq. (A16) still span

V T ¼ span

�
j��

t ;�
�
st i
����������

t ;�
�
st semi-standard and standard tableaux;T ¼ X

n

tn

�
: (A18)

However, in general, they are linearly dependent. Fortunately, the removal of this linear dependence can be achieved by a
harmless modification of our previous procedure. This modification consists of an additional restriction on the set of
admissible semistandard tableaux ��

t . Specifically, we will show that restricting the semistandard tableaux to the set

R T ¼
�
��

t

����������
t has no“1”in its first row;

X
n

tn ¼ T

�
(A19)

removes the linear dependence and that

B T ¼ fj��
t ; �

�
st i j��

t 2 RT;�
�
st standard tableaug (A20)

forms a basis forV T. Furthermore, each subspace spanned
by states with a fixed restricted semistandard tableau ��

t

retains its character as an irreducible representation in-
dexed by the partition ð�Þ.

To prove this assertion, we first show that every state

j��0
t ; ��

st i obtained for a ‘‘forbidden’’ semistandard tab-

leau �
�0
t =2 Rt can be written as a linear combination of

states j��
t ; �

�
st i from the restricted set, i.e., ��

t 2 RT.
Consider the vectors constructed in Eq. (A16) and note
that the row stabilizer can always be separated into the
stabilizer of only the first row R1 and the stabilizer of all
remaining rows R0:X


2R�
�
st


 ¼ X

02R0


0 � X

2R1


: (A21)

Example: In this example and all that follow, we con-
sider the forbidden state vector

The stabilizer for row 1 consists of R1 ¼
fe; ð13Þ; ð15Þ; ð35Þ; ð135Þ; ð153Þg; the stabilizer for the re-
maining rows is R0 ¼ fe; ð24Þg. r

Proceeding with the decomposition of the forbidden

state vector j��0
t ; ��

st i in terms of states with restricted
semistandard tableaux, let M ¼ fm1; m2; . . . ; mNg denote
the entries of the standard tableau�

�
st (reading left to right,

row by row) and let M1 ¼ fm1; m2; . . . ; mrg denote the
entries in row 1 only. Similarly, let ðt1; t2; . . . ; trÞ be the
integer excitation numbers in the first row of the semi-

standard tableau �
�0
t and (without loss of generality) as-

sume that t1 ¼ � � � ¼ tq�1 ¼ 0 and tq ¼ 1 for q 
 r.

Next, we introduce the sets�m ¼ fnr; nr�1; . . . ; nmg and
rewrite the stabilizer of row 1 as

X

2R1


½bymq
b
ytqþ1
mqþ1

� � � bytrmr
�

¼ ðq� 1Þ! X
nr2M1

bytrnr

X
nr�12M1n�r

bytr�1
nr�1

� � � X
nq2M1n�qþ1

bynq :

(A23)

By construction, each successive sum over pseudomode
indices nr; nr�1; . . . is associated with weakly decreasing
excitation numbers tr � tr�1 � � � � , and the final sum
over pseudomode indices nq corresponds to the case of a

single excitation (entry ‘‘1’’ in row 1).

Example: Continuing with our previous example, the
above equality takes the form

X

2R1


ðby01 by3b
y2
5 Þ ¼ X

n32f1;3;5g
by2n3

X
n22f1;3;5gnfn3g

byn2

¼ by21 ðby3 þ by5 Þ þ by23 ðby1 þ by5 Þ
þ by25 ðby3 þ by1 Þ: r

Next, we use the linear dependence of the pseudomodes
to rewrite the final sum in Eq. (A23) asX

nq2M1n�qþ1

bynq ¼ � X
n2�qþ1

byn � X
n2MnM1

byn : (A24)

The transformed expression has two separate sums over n:
a sum over pseudomodes that, according to Eq. (A23), are
already occupied and a sum over pseudomodes in rows
2; 3; . . . of the standard tableau. The increase of excitation
number produced by Eq. (A24) hence only affects pseu-
domodes that are already occupied.

Example: Again continuing with our previous example,
we find that
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X
n22f1;3;5gnfn3g

byn2 ¼ � X
n2fn3g

byn � X
n2f2;4g

byn : r (A25)

Finally, we inspect the full state vector by using
Eqs. (A21), (A23), and (A24). The resulting terms associ-
ated with a single index n [Eq. (A24)] can be reexpressed
as a sum over the complete row stabilizer R and associated

with a tableau where entry ‘‘1’’ in the first row of �
�0
t has

been eliminated and another entry 1 
 tn of �
�0
t has been

increased by one: In such a way, the state with a forbidden
semistandard tableau

is decomposed into a linear combination of states with
tableaux

where we have used bold red text to emphasize the changes
relative to the forbidden tableau. In cases where the above
procedure results in a tableau that is not semistandard, a
straightening algorithm can be applied to generate the

corresponding semistandard tableau (see [42], Sec. 2.6).
Importantly, the straightening algorithm does not change
the content of the tableaux and thus does not change the
fact that our procedure expresses the forbidden tableau in
terms of a semistandard tableau with fewer ‘‘1’’ entries in
row 1. Using this procedure, repeatedly if necessary, we
can decompose any state with a forbidden semistandard
tableau as claimed. It is important, of course, that the
removal of states occurs at the level of entire subspaces
(indexed by the forbidden semistandard tableaux) while
the group action and hence the irreducibility of the remain-
ing subspaces is unharmed.

Example: We complete our running example by decom-
posing the forbidden state vector

in the restricted basis. Following our previous steps, the
state vector can be expressed as

¼ X
�2C

X

2R0

sgnð�Þ�

�
by2b

y4
4

�
� X

n32M1

by3n3

� X
n32M1

by2n3
X

n2f2;4g
byn

��
: (A27)

Together with a combinatorial factor (here, 1=2), the sums
over n3 and 
0 2 R0 can be recombined into the full row
stabilizer:

¼ � 1

2

X
�2C

X

2R

sgnð�Þ�

�
by2b

y4
4

�
by35 þ by25

X
n2f2;4g

byn
��

¼ � 1

2

X
�2C

X

2R

sgnð�Þ�
½by2by44 by35 þ by22 by44 by25

þ by2b
y5
4 by25 �:

We have thus completed our goal of expressing the original
forbidden state vector as a linear combination of the
‘‘restricted’’ state vectors

With the decomposition of forbidden semistandard tab-
leaux in hand, we conclude by showing that the states
j��

t ; �
�
st i with restricted ��

t 2 R�
t not only span each

VT but are linearly independent. The proof is based on a
simple dimensional argument. Counting the number of
basis elements with T excitations, we find

dimV T ¼ ðN � 2þ TÞ!
T!ðN � 2Þ! : (A28)

This expression should be compared with the dimension-
ality of subspaces constructed with restricted semistandard
tableaux�

�
t 2 RT. For

P
ntn ¼ T 
 5, the explicit listing

of restricted semistandard tableaux is given in Table III.
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TABLE III. Irreducible subspaces for difference modes with total excitation number T 
 5. In this Table, the equivalence class ½t�
with 	0

f pseudomodes with exactly f excitations is denoted 0	
0
01	

0
1 � � � , where all entries with 	0

f ¼ 0 are suppressed. All semistandard

tableaux of shape ð�Þ and content ½t� are listed in the corresponding row and column.

T ½t� ¼ 0	
0
0 1	

0
1 . . . ð�Þ ¼ ðNÞ ðN � 1; 1Þ ðN � 2; 2Þ ðN � 2; 12Þ ðN � 3; 3Þ ðN � 3; 2; 1Þ ðN � 4; 4Þ ðN � 4; 3; 1Þ ðN � 5; 5Þ

0 0N

1 0N�11

2 0N�12

0N�212

3 0N�13

0N�212

0N�313

4 0N�14

0N�213

0N�222

0N�3122

0N�414

5 0N�15

0N�214

0N�223

0N�3123

0N�3122

0N�4132

0N�515
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For comparison with Eq. (A28), note that the dimension d�
of the irreducible representation of SN indexed by partition
ð�Þ can be obtained by the hook-length formula; see Sagan
[42], Sec. 3.10. We have verified that

X
�

�
t 2RT

d� ¼ ðN � 2þ TÞ!
T!ðN � 2Þ! (A29)

for all T 
 5 and leave it as a conjecture that equality
continues to hold for all higher T.

Example: As an example, we consider T ¼ 2. Using the
hook-length formula, the sum of the dimension of the
irreducible subspaces indexed by the semistandard tableaux

is equal to 1þ N � 1þ NðN � 3Þ=2. Simple arithmetic
shows that this expression is equal to dimV T¼2 ¼
NðN � 1Þ=2 as expected. r

In summary, the subspaces indexed by restricted semi-
standard tableaux decompose each V T into its irreducible
subspaces. As a final remark, we note that, for T> 2,
multiplicities of irreducible representations can exceed 1.
(Through T ¼ 5, the largest multiplicity that occurs is 5;
see Table III.) In such cases, the usual Gram-Schmidt
procedure may be employed to generate orthogonal irre-
ducible subspaces.

APPENDIX B: CALCULATION OF
PERTURBATIVE SHIFTS ACCORDING

TO IRREDUCIBLE SUBSPACES

We next discuss the calculation of first-order shifts of
energy levels in each irreducible subspace under the SN
symmetric perturbation �HU. In general, irreducible sub-
spaces for the difference modes are labeled by restricted
semistandard tableaux. [For T 
 2, it is sufficient to spec-
ify T and the partition ð	Þ instead of full-blown semistan-
dard tableaux. In this Appendix, we continue to employ the
restricted semistandard tableau notation.]

To calculate the first-order shifts, we choose a unique
element from each subspace. This selection is made by
fixing a reference standard tableau �	

ref , which we choose

as the standard Young tableau of shape ð	Þ with entries 1
throughN filled in column by column. Using this reference
tableau, we obtain one representative state in each irreduc-
ible difference-mode subspace, which we denote by j�	

t i
(�	

t 2 R	
t ).

Example: The reference standard tableau for the parti-
tion ð	Þ ¼ ðN � 2; 2Þ is

The state acting as the representative for the T ¼ 2, ð	Þ ¼
ðN � 2; 2Þ subspace is then given by

where the column and row stabilizers C and R are defined
with respect to the reference standard tableau. With
Eq. (A7), we obtain

for the first-order shift of the irreducible subspace due to
the effect of anharmonicity. r

APPENDIX C: LAGRANGIAN FOR
SUPERINDUCTANCE AND

DIFFERENCE-MODE VARIABLES

After transforming to superinductance and difference-
mode variables, the Lagrangian of Eq. (1) can be cast into
the form

LSFM ¼ @
2

16Esi
C

_�2 þ @
2

16Ea
C

X
�

_�2
� þ Eb

J cosð�þ ’extÞ

þ Ea
J

X
m

cos

�
�=N þX

�

W�m��

�
: (C1)

This expression for the Lagrangian has important advan-
tages over its equivalent form expressed in terms of �m.
First, the kinetic energy is now diagonal. Second, low-
energy minima of the potential energy U are in locations
where each difference-mode variable vanishes, �� ¼ 0.

Third, fluctuations between minima are dominantly de-
scribed by the � variable. The ability to simultaneously
expand around �� ¼ 0 for each local minimum ofU is key

in the derivation of the superinductance model that was
previously used [8,9].

APPENDIX D: INCORPORATING
CAPACITANCES TO GROUND

The ðN þ 1Þ node variables’j can be expressed in terms

of the N junction variables �m when using the constraint
that the total charge

P
jnj of all superconducting islands

must be zero. To show that this statement is indeed true, we
may use 
 ¼ ’0 as a reference variable and express every
other node variable ’j (j ¼ 1; . . . ; N) as

’j ¼ 
� j

N
’ext þ

Xj
m¼1

�m: (D1)

Note that _
�0=2� represents a uniform voltage shift of all
superconducting islands relative to ground and that 
 is
cyclic; i.e., the Lagrangian is independent of 
. Hence, its
conjugate momentum is conserved: @L=@ _
 ¼ const. This
constant of motion, in fact, corresponds to the total charge
ntot since
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@L
@ _


¼ X
j

@’j

@


@L
@ _’j

¼ X
j

nj ¼ ntot: (D2)

Imposing the constraint ntot ¼ 0 thus allows us to eliminate
_
 from the Lagrangian and to work with a Lagrangian
(strictly speaking, a Routhian) that only depends on �m
and _�m. Using this procedure, the contribution to the
kinetic energy due to ground capacitances 1

2 ð�0=2�Þ2 �P
N
i¼0 Cgi _’

2
i in Eq. (1) takes the form 1

2

P
mnGmn

_�m _�n,

where

G mn ¼ ð�0=2�Þ2PN
i¼0 Cgi

Xminfm;ng�1

i¼0

XN
j¼maxfm;ng

CgiCgj: (D3)

Then, assuming that the two large superconducting islands
surrounding the black-sheep junction have ground capaci-
tance Cb

g ¼ e2=2Eb
g while the ground capacitance of the

remaining small array islands is Ca
g ¼ e2=2Ea

g and using

the variables �� defined in Eq. (3), the kinetic-energy

terms of the Lagrangian [Eq. (1)] take the form

@
2

16

XN�1

�;�¼0

ðM�� þG��Þ _��
_��: (D4)

Here, for compactness, we use the shorthand �0 ¼ �.
The symmetric N � N matrices M and G have the follow-
ing form:

M00¼1=Eb
Cþ1=ðNEa

CÞ; M0�¼0; M��¼���=E
a
C

(D5)

and

G00¼ 1

2Eb
g

þðN�1ÞðN�2Þ
12NEa

g

; G0�¼� o�þ1cð�Þ
2Ea

g

ffiffiffiffiffiffiffi
2N

p
sð�Þ2 ;

G��¼
���

4Ea
gsð�Þ2�

Eb
go�o�cð�Þcð�Þ

2NEa2
g ½2þðN�1ÞEb

g=E
a
g�sð�Þ2sð�Þ2 ;

(D6)

where cð�Þ and sð�Þ are shorthand for cosð��=2NÞ and
sinð��=2NÞ, respectively. Furthermore, the coefficient o�
is 1 whenever the index � is an odd integer and is zero
otherwise.

Performing the Legendre transform, the perturbation
from ground capacitances takes the form

�HC ¼ �4
XN�1

�;�¼0

½ðMþGÞ�1 �M�1���@��
@��

: (D7)

For small ground capacitances, the entries of G are
small compared to those of M, and we approximate
ðMþGÞ�1 ’ M�1 �M�1GM�1, which yields Eq. (9) in
the main text.

APPENDIX E: LIMITS OF THE
PERTURBATIVE APPROACH

Corrections in the main text are treated perturbatively,
and we briefly comment on the necessary conditions for

this approach to be valid. First, we remark that the energy
scales �Esd

J and �Esd
C of Eqs. (13) and (14) must remain

sufficiently small relative to the typical energy scales of the
superinductance spectrum. Second, when the magnitude

of h~0j�Hd
Uj2ðNÞi or h~0j�Hd

Cðay1 Þ2j~0i becomes of order 2�,

the ground state of the difference modes will require non-
perturbative corrections. To prevent this breakdown of the
perturbative approach, the respective inequalities

ffiffiffiffiffiffiffiffiffi
N=2

p � 16=�2
�; ðN��=2�Þ2 � Ea

g=E
a
C (E1)

must hold. Thus, to connect with the N ! 1 limit (see,
e.g., Ref. [39]), a different approximation scheme to model
the low-energy spectrum of fluxonium may become neces-
sary. However, in the case of the fluxonium samples pre-
viously studied in Refs. [8,9], the range of validity of the
perturbative approach is well satisfied.

APPENDIX F: PARAMETER VALUES USED
IN NUMERICAL CALCULATIONS

The specific parameters used in all calculations in the
main text are N ¼ 43, Ea

C ¼ 1:0, Ea
J ¼ 26:4, Eb

C ¼ 3:7,
Eb
J ¼ 8:9, �EJ ¼ 0:17, Eb

g ¼ 5, and Ea
g ¼ 1750. Using

Eqs. (10), these parameters yield Esi
C ¼ 2:5 and EL ¼

0:53; all energies are in units of h GHz.
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