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The main characteristic of Mott insulators, as compared to band insulators, is to host low-energy spin

fluctuations. In addition, Mott insulators often possess orbital degrees of freedom when crystal-field levels

are partially filled. While in the majority of Mott insulators, spins and orbitals develop long-range order,

the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we

provide clear evidence that the spin-orbital SUð4Þ symmetric Kugel-Khomskii model of Mott insulators on

the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking—

lattice or SUðNÞ—is supported by a combination of semiclassical and numerical approaches: flavor-wave

theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these

methods are very accurately accounted for by a projected variational wave function based on the �-flux

state of fermions on the honeycomb lattice at 1=4 filling. In that state, correlations are algebraic because of

the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on

the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides an interesting

starting point to understanding the recently discovered spin-orbital-liquid behavior of Ba3CuSb2O9. The

present results also suggest the choice of optical lattices with honeycomb geometry in the search for

quantum liquids in ultracold four-color fermionic atoms.

DOI: 10.1103/PhysRevX.2.041013 Subject Areas: Computational Physics, Condensed Matter Physics,

Strongly Correlated Materials

I. INTRODUCTION

The investigation of orbital physics in transition-metal
oxides has recently been boosted by the possibility of
observing orbital excitations with resonant inelastic x-ray
scattering [1]. This possibility has been demonstrated in
cases where the crystal-field splitting is strong enough to
select a unique orbital configuration in the ground state and
push the orbital excitations to high energy and hence to
separate them from magnetic excitations. However, such a
separation of orbital and magnetic excitations is not the
only possibility. If the electronic configuration of the
transition-metal ion is such that several orbital occupations
are consistent with the crystal-field environment, a situ-
ation referred to as orbital degeneracy [2], orbital fluctua-
tions are expected to have an energy comparable to that of
spin fluctuations. In most cases known until recently, a
cooperative Jahn-Teller distortion occurs, resulting in or-
bital order and gapped orbital excitations, but there is no
reason for such a distortion to take place a priori, and the
search for situations in which orbitals remain fluctuating in

the ground state has been very active over the past decade
[3–9]. To which extent the orbitals keep fluctuating in the
ground state of the triangular system LiNiO2 [10,11] or in
the spinel FeSc2S4 [12] is still debated [13]. Interestingly, a
new candidate has recently been put forward, Ba3CuSb2O9

[14], a Cu oxide that lives on a decorated honeycomb
lattice in which no trace of orbital order could be detected.
On the theory side, the Mott-insulating state in

transition-metal oxides with orbital degeneracy is gener-
ally described by a Kugel-Khomskii model [15] in which
spin and orbital degrees of freedom are coupled on each
bond. A minimal model to investigate the possibility of
stabilizing an orbital liquid is the symmetric version of that
model defined by the Hamiltonian

H ¼ X
hi;ji

�
2Si � Sj þ 1

2

��
2Ti � Tj þ 1

2

�
; (1)

where the sum goes over nearest-neighbor sites, Si

is a spin-1=2 operator, and Ti is a pseudospin-1=2 operator
that describes fluctuations of a two-fold degenerate
orbital (a and b). Introducing the local basis

, the Hamil-

tonian exhibits the full SUð4Þ symmetry and can be written
as H ¼ P

hi;jiPi;j, where Pi;j interchanges the states on

sites i and j. The local basis states are often referred to as
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colors. In fact, the model is the straightforward general-
ization of the SUð2Þ symmetric Heisenberg model for
S ¼ 1=2 spins which, up to a constant and a factor 2, has
the same form when expressed with Pi;j operators.

The first investigations of this model on various
lattices have emphasized the role of four-site plaquettes,
the natural unit to use to build an SUð4Þ singlet [5,16,17].
The spontaneous formation of four-site plaquettes has
been proven for an SUð4Þ ladder [17], and plaquette
coverings have been argued to provide the relevant varia-
tional subspace for the ground-state properties of the
SUð4Þ model on both the square and triangular lattices
[5,16], with possibly plaquette long-range order on the
square lattice [18,19]. In a variational study based on
projected fermionic wave functions, a gapless spin-
orbital-liquid state has been predicted in Ref. [8] on the
square lattice. These previous conclusions have recently
been challenged for the square lattice [20], for which
spontaneous dimerization (as opposed to tetramerization)
has been demonstrated on the basis of state-of-the-art
infinite projected entangled-pair state (iPEPS) simula-
tions. In the dimerized phase, the dimers are antisymmet-
ric states built out of two of the four colors, and they are
arranged into a columnar pattern in which each dimer has
a neighboring dimer above itself and another one below.
Each dimer is preferentially surrounded by dimers built
out of the other two colors, leading to long-range color
order [20]. In the context of orbital degeneracy, this phase
is likely to be ordered. Indeed, one of the states selected
by the dimerization consists of alternating pairs of a and
b orbitals times a spin singlet. When coupled to the
lattice, such a state is expected to undergo a cooperative
Jahn-Teller distortion that will stabilize orbitals a and b
and hence to lead to long-range orbital order.

In this paper, we consider the symmetric Kugel-
Khomskii model on the honeycomb lattice. The first
motivation is purely theoretical: Since there are no four-
site plaquettes on this lattice, the ground state is unlikely to
be a crystal of singlet plaquettes. The second motivation
comes from experiments: The recent observation of a spin-
liquid behavior in Ba3CuSb2O9 points to the honeycomb
geometry as an outstanding candidate.
The main result of the present investigation is summa-

rized in Fig. 1. The SUð4Þ symmetric Kugel-Khomskii
model is shown to be a quantum spin-orbital liquid with
short-range color correlations that follow the pattern illus-
trated in Fig. 1(a), and strong evidence is provided in favor
of an algebraic spin-orbital liquid with typical conical
singularities in the static structure factor, as shown in
Fig. 1(b).
To reach these conclusions, we have used a variety of

analytical and numerical methods: linear flavor-wave the-
ory (LFWT), iPEPS, exact diagonalization of finite clusters
(ED), and a variational approach based on the Monte
Carlo sampling (VMC) of Gutzwiller projected fermionic
wave functions. Details about each method are found in
Appendix A. These methods are complementary and
shed light on different aspects of the model: LFWT
is a good starting point to test for lattice symmetry break-
ing and color order. iPEPS is a variational approach for
infinite systems that has proven to be very successful for
checking the presence of any kind of long-range order
[20,21]. Exact diagonalizations reveal nearly exact infor-
mation on short-length-scale properties and are extremely
useful for benchmarking other approaches. The variational
Monte Carlo sampling of fermionic wave functions has
proven to provide a remarkably accurate description of
algebraic quantum liquids. As a first test, we compare in

FIG. 1. Summary of the main properties of the spin-orbital liquid of the SUð4Þ model on the honeycomb lattice. (a) Sketch of local
color order. (The fading of colors illustrates the absence of long-range color order.) This pattern is the only one that respects the
sequence of four colors along all the zigzag chains, whatever their orientation (horizontal, �=3, or 2�=3). (b) Color-structure factor of
the Gutzwiller projected �-flux state (VMC). The singular conical peaks are typical of algebraic correlations.
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Fig. 2 the ground-state energies of the various approaches.
A number of conclusions can already be drawn from this
comparison. First, among all the Gutzwiller projected
fermionic wave functions we have considered, only one
is really competitive: the wave function based on the
quarter-filled Fermi sea of standard fermions in the
�-flux state (see Sec. II C for details). Its energy is much
lower than that of the 0-flux state, as well as that of the half-
filled Fermi sea of Majorana fermions with 0 or � flux, and
these alternative fermionic wave functions are not consid-
ered any further [22]. Second, the agreement between
iPEPS, ED, and the Gutzwiller projected �-flux state is
quite remarkable, which suggests that all these methods
constitute appropriate descriptions within their range of
validity [23].

II. SIMULATION RESULTS

A. Absence of lattice symmetry breaking

Lattice symmetry breaking, be it dimerization or pla-
quette formation, leads to bonds of different strengths. At
the classical level, which consists of minimizing the energy
in the subspace of product wave functions of the form
jc i ¼ Q

ijc ii, all bonds are fully satisfied. Indeed, since
the Hamiltonian of a bond Hij is a simple permutation,

hc ic jjHijjc ic ji ¼ jhc ijc jij2 is minimal if neighboring

states are orthogonal. On bipartite lattices such as the
square or honeycomb lattices, it takes only two colors
to achieve orthogonality, and the classical ground state
for more than two colors is massively degenerate. This
degeneracy, however, can in principle be lifted by zero-
point fluctuations. The theory of harmonic fluctuations has
been developed previously; it is called flavor-wave theory.
(See Appendix A 1 for details.) At the harmonic level, the
energy of a bond takes the smallest possible value if the
two colors of the bond are different from colors of all
the other sites directly connected to the bod, i.e., of all
the other sites that are nearest neighbors to one of the sites
of the bond. For the honeycomb lattice, this condition can

be fulfilled for all bonds simultaneously in an infinite
number of ways. The configuration of Fig. 1(a) is the
most symmetric one. In this configuration, all bonds have
the same surrounding up to color permutations. Other
configurations can be generated by exchanging the colors
on a stripe of dimers [see Figs. 3(a) and 3(b)], leading to a

degeneracy of order 2
ffiffiffi
N

p
since, once a direction has been

chosen, this exchange can be done independently on all
dimer stripes. In all configurations, the energy is the same
on all bonds. This is a first hint that, by contrast to the
square lattice, the lattice symmetry is not broken for the
honeycomb lattice.
The same family of degenerate ground states is obtained

with iPEPS if a unit cell with 4� 4 ¼ 16 different tensors
and a small bond dimension D ¼ 2 are used. Upon in-
creasing D, more quantum fluctuations are taken into
account, and the symmetric state of Fig. 3(a) is stabilized.
In this state, all bonds have the same energy [see Fig. 3(c)].
To test how robust this conclusion is, we have challenged it
by performing iPEPS simulations using a 2� 2 unit cell
with only four different tensors. These simulations lead
to a dimerized state with two types of dimers, A and B,
which can be distinguished by their dominant colors, and

(c) (d)

(a) (b)

FIG. 3. Examples of states obtained with LFWT (a),(b) and
iPEPS for small bond dimension D (c),(d). (a) Most symmetric
configuration. (b) Configuration obtained from the most sym-
metric one by exchanging colors on a stripe. (c) Color-ordered
state with one dominant color per site, obtained with a 4� 4 unit
cell and a bond dimension D ¼ 6. (d) Dimer-Néel ordered state
obtained with a 2� 2 unit cell (shaded in blue) and D ¼ 6. Both
the color order and the dimerization vanish in the infinite-D
limit. The pie charts show the local color density on each site,
and the thickness of a bond is proportional to the square of the
energy on the corresponding bond.
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FIG. 2. Energy per site as a function of inverse bond dimension
D (iPEPS) and as a function of inverse system size N (VMC
and ED). We note that the LFWT energy (Es ¼ �1:5, not
shown) is not variational.
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different inter- and intradimer bond energies [Fig. 3(d)].
However, unlike on the square lattice, this dimerization
vanishes in the infinite-D limit, as shown in Fig. 4(a) where
the difference in bond energies, �Eb ¼ maxðEbÞ �
minðEbÞ, is plotted. Thus, both low-energy states found
with iPEPS preserve the lattice symmetry in the large-D
limit.

We have also tested with VMC the stability of the�-flux
state toward the dimerization instability shown in Fig. 3(d)
by strengthening and weakening the hopping amplitude of
the bonds, with the conclusion that the variational energy is
minimal in the absence of any dimerization. Similarly, we
have found no indication toward quadrumerization [SUð4Þ
singlet formation], where the hoppings connected to, say,
red sites (forming a ‘‘tripod’’) in Fig. 1(a) are modified.

Finally, in Fig. 4(b), we show the ED results for the
connected bond-energy correlations (described in the cap-
tion), which provide a way to detect dimerization and
tendencies toward the formation of other bond-energy pat-
terns. The correlations decay quite rapidly with distance,
making dimerization or other patterns unlikely.
Thus, all methods consistently point toward a state that

does not break the lattice symmetry.

B. Absence of SUð4Þ symmetry breaking

The color-ordered states predicted by LFWT and iPEPS
with a small bond dimension (Fig. 3) break the SUð4Þ
symmetry. Here, we show that higher-order quantum fluc-
tuations destroy this color order, i.e., that in the ground
state the SUð4Þ symmetry is in fact not broken.
In Fig. 4(c), we present the iPEPS result for the local

ordered moment,

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3

X
�;�

ðhS��i � ���

4
Þ2

vuut ; (2)

where S�� ¼ j�ih�j are the generators of SUð4Þ and �, �
run over the four different flavors. A finite m implies that
the SUð4Þ symmetry is spontaneously broken in the ther-
modynamic limit. For both low-energy states found with
iPEPS, the local ordered moment is strongly suppressed
with increasing bond dimension, and most likely vanishes
in the large-D limit: Quantum fluctuations, which are
systematically taken into account by increasing D, even-
tually destroy the color order so that the SUð4Þ symmetry is
restored. The situation is different on the square lattice
[20], where the local ordered moment has been found to
remain finite in the infinite-D limit.
Consistent results for the flavor-correlation function are

obtained with ED and VMC for the �-flux state shown in
Fig. 4(d), which decays rapidly with increasing distance,
indicating absence of long-range order. The very good
qualitative and quantitative agreement between the ED
and the VMC results provides substantial evidence that
the �-flux state correctly describes the short-range physics
of the ground state of the Hamiltonian (1). In the next
section, we show that the decay predicted by VMC is
algebraic, i.e., that the state described by this wave func-
tion is an algebraic spin-orbital liquid.

C. Algebraic spin-orbital liquid

A standard way to describe spin liquids for SUð2Þ mod-
els is based on the fermionic representation of the spin
operators [24–28] using a variational wave function
[29,30], where the multiply occupied sites are projected
out from a suitable chosen, noninteracting Fermi sea.
While in the generic case, the Fermi sea has a finite
Fermi surface, there are also other possibilities. For the
SUð2Þ Heisenberg model on the square lattice, Affleck
and Marston have shown that introducing a � flux per

VMC ED
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FIG. 4. Various correlation functions obtained with iPEPS,
ED, and VMCmethods. (a) Difference in bond energies obtained
with iPEPS in the state shown in Fig. 3(d). The difference is
strongly suppressed with increasing bond dimension D and
vanishes in the infinite-D limit. (b) Connected bond-energy
correlations hPijPkli � hPijihPkli calculated with ED in the

ground state of the N ¼ 24 sample. The black bonds denote
the reference bond. Solid blue (dashed red) bonds stand for
positive (negative) correlation functions, and the width of the
bond is proportional to the absolute value of the correlation
function. (c) Local ordered moment m obtained with iPEPS as a
function of inverse bond dimension. The moment vanishes in the
infinite-D limit for both low-energy states shown in Figs. 3(c)
and 3(d). (d) Spin-correlation function in real space, as calcu-
lated from ED (right) and VMC (left) for a 24-site cluster. The
area is proportional to hP0ii � 1=4, where 0 is the index of the
central site, and i labels the sites in the 24-site cluster. The color
keeps track of the sign (blue for positive, red for negative).
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elementary plaquette leads to the formation of Dirac nodes
[31]. At half filling, the Fermi surface of this �-flux state
shrinks to points, and its energy is lower than that of the
state with equal hopping amplitudes and a finite Fermi
surface. In such a spin liquid, the structure factor is singu-
lar at momenta related to the difference between Fermi
points, leading to the algebraic decay of spin correlations.
In one dimension, this type of approach leads to an accu-
rate description of the algebraic decay of the correlations
for the SUð2Þ case [32], and for SUð4Þ as well, using the

representation S�� ¼ fy�f� [8].

On the honeycomb lattice, a Dirac node is already
present at the middle of the band without any flux, and
the Fermi surface reduces to points at half filling. So the
0-flux state would be a good starting point to describe an
algebraic spin liquid for the SUð2Þ Heisenberg model
[33–35]. However, for the SUð4Þ Heisenberg model, the
band must be quarter-filled, and the equivalent of the
Affleck-Marston approach requires one to have a Dirac
node at the Fermi energy of the quarter-filled system. It
turns out that these properties are realized in the �-flux
state, as shown in Fig. 5. As for the square lattice, this state

leads to a lower energy than the 0-flux state, as already
stated above.
Starting from the noninteracting wave function, with a

band populated up to the Dirac node at "D ¼ � ffiffiffi
3

p
t for any

of the four flavored fermions, we implement the Gutzwiller
projection using VMC sampling. The energy of this wave
function, E ¼ �0:894 per site, compares remarkably well
with that of iPEPS (see Fig. 2), especially considering that
no variational parameter was used. Let us also mention that
the state (and the ones related by symmetry) shown in
Fig. 1(a) has the maximal weight in the variational wave
function.
To investigate the physics of this wave function, we have

calculated the spin-spin correlation function as a function
of distance. The results clearly demonstrate an algebraic
decay jhPij � 1=4ij � jrijj��, with an exponent� between

3 and 4, as shown in Fig. 6. If one considers the honeycomb
lattice as built from zigzag chains, these correlations cor-
respond to even distances along one of the zigzag chains,
and the exponent should be compared to that of the domi-
nant correlations with wave vector �=2 of a single chain
[36]. This exponent is equal to 3=2, a number actually very
accurately reproduced by VMC. So color-color correla-
tions decay faster on the honeycomb lattice than on a chain,
but still algebraically. This is a rather peculiar situation in
view of the standard paradigms: the development of long-
range order, as in weakly coupled SUð2Þ chains in square
geometry, or the spontaneous formation of local singlets
and exponentially decaying color-color correlations, as,
e.g., in the SUð4Þ ladder [17].
This Gutzwiller projected �-flux state is actually a pro-

totypical wave function for a phase that should be called

FIG. 5. Properties of the �-flux state. (a) Sketch of the gauge
used to implement the �-flux state: the hopping amplitude is
positive on solid blue bonds, negative on dashed red bonds. The
primitive unit cell (dark magenta) contains four sites, the
hexagonal unit cell eight sites. (b) Brillouin zones and high
symmetry points. The red circles indicate the position of the
Dirac nodes at "D ¼ � ffiffiffi

3
p

t to which the Fermi surface reduces at
quarter filling in the �-flux state. The orange, outermost hexagon
shows the extended Brillouin zone of the triangular lattice
(including sites at the centers of the hexagons in the honeycomb
lattice), the structure factor is maximal and has a cusp at M4 ¼
ð�;�= ffiffiffi

3
p Þ and the symmetry related points. K4 is given by

ð4�=3; 0Þ, K is ð2�=3; 2�=3 ffiffiffi
3

p Þ. (c) The two-fold degenerate
band structure of the �-flux state in the reduced Brillouin zone
of an 8-site hexagonal unit cell.
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FIG. 6. The algebraic decay of the correlation along a zigzag
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dimensional quarter-filled Fermi sea.) While the periodicity of
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the two-dimensional honeycomb lattice.
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algebraic spin-orbital liquid in the present context, in
analogy to the algebraic spin liquids that have been dis-
cussed in the spin-liquid literature [24,26,27,37]. These
states are characterized by the algebraic decay of a number
of correlations, with wave vectors corresponding to
differences between the Dirac cone loci. In our case, for
example, the algebraic spin-orbital correlations are modu-
lated with wave vector M in the standard honeycomb
Brillouin zone, which corresponds to the distance between
two Dirac cones in the �-flux state. Another important
aspect of this wave function is that it has been shown that it
can describe an extended phase in parameter space and not
just an unstable fine-tuned point [26,38]. On adding per-
turbations of suitable strength, many different phases can
be found in the vicinity of an algebraic spin-orbital liquid
[26], making the present model an interesting starting point
for further explorations of exotic phases in spin-orbital
systems.

III. CONCLUSIONS

In conclusion, the results reported in this paper provide
very strong evidence that the SUð4Þ symmetric Kugel-
Khomskii model is a quantum spin-orbital liquid and build
a case in favor of an algebraic spin-orbital liquid. Clearly,
the present results do not allow one to exclude the possi-
bility that the quantum spin-orbital liquid is of another
type, for instance, some kind of resonating valence-bond
liquid with resonances between four-site cluster singlets,
but our results suggest that the corresponding gap would be
quite small. In particular, previous variational studies of
highly frustrated magnets have shown that, as good as its
energy might be, a fermionic variational wave function
might fail to capture the correct low-energy physics. This
seems, for instance, to be the case for the SUð2ÞHeisenberg
model on the kagome lattice, for which the variational
energy of the algebraic spin-liquid wave function [27] is
close to the best numerical estimates [39,40], yet density-
matrix-renormalization-group results have given strong
evidence in favor of a gapped Z2 spin liquid [39,41].
Actually, the algebraic spin liquid seems to be stable
against perturbation of the variational trial state toward a
gapped Z2 liquid [42]. In the present case, not only has the
projected fermionic wave function been tested for its
energy, but correlations have also been shown to be in
remarkable agreement with ED up to intermediate dis-
tances. So we believe that the case for an algebraic spin-
orbital liquid is strong, but not closed.

In any case, the fact that the ground state is a quantum
spin-orbital liquid is quite firmly established. This result is
quite interesting in view of the liquid behavior reported
recently in Ba3CuSb2O9. Among the two scenarios put
forward in Ref. [14], i) a random spin singlet stabilized
by a disordered static Jahn-Teller distortion, or ii) a dy-
namic Jahn-Teller effect with fluctuating spins and orbi-
tals, the ground state of the symmetric Kugel-Khomskii

model proposed in the present paper is closer to the second
one. In particular, there is no sign of glassiness in our
calculations since this would imply a configuration with
random colors and well-developed local moments,
whereas the iPEPS ground state exhibits short-range order
with no local moment. However, to make a detailed com-
parison with experiments, the present model should be
extended in several ways. First, some asymmetry between
spins and orbitals should be introduced, not only because
asymmetry should be present on general grounds (the
SUð4Þ symmetry requires equal hopping amplitudes be-
tween the two types of orbitals and neglects the Hund’s
rule coupling as well as the coupling to phonons), but also
in view of the nearest-neighbor spin-spin singlet correla-
tions detected in experiments [14,43]. Indeed, in the SUð4Þ
symmetric version of the model, the energy of a pair of
neighboring sites can be minimized equally well by a spin
singlet or a spin triplet, provided the orbitals form a triplet
or a singlet, respectively, and it will take some level of
asymmetry to favor spin singlets. In addition, it will be
important to take into account the additional magnetic Cu
sites present in the system on top of the honeycomb lattice
not only because they are coupled to the spins of the
honeycomb lattice, but also because of the disorder they
probably induce in the system. These extensions go far
beyond the scope of the present paper and are left for
future investigation.
Let us also mention that, although it is not chiral, the

�-flux state considered in the present paper can be seen as
a natural extension of the chiral states introduced in
Ref. [44] in the context of SUðNÞ models on the square
lattice [45] and recently shown to provide the best fermi-
onic mean-field candidate for the SUð6Þ Heisenberg model
on the honeycomb lattice [46].
Finally, we note that the SUð4Þ Heisenberg model is a

rather accurate effective model for the 1=N-filled Mott
insulating phase of alkaline-earth metal atoms with N
internal degrees of freedom loaded in an optical lattice
[44,47,48]. Currently, the main issue in that field is to reach
low enough entropies to observe correlations typical of
long-range order, but the next step will definitely be to
realize exotic quantum states. In that respect, the N ¼ 4
case on the honeycomb lattice appears to be a very strong
candidate.
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APPENDIX A: METHODS

1. Linear flavor-wave theory

The LFWT is a method of treating harmonic quantum
fluctuations on top of a mean-field (or Hartree) solution
based on a site-factorized variational wave function
[49,50]. The method starts from a Schwinger boson repre-
sentation of the SUð4Þ operators with four types of bosons.
In a mean-field ground state, each site has a well-defined
color. The corresponding boson is assumed to condense,
and the resulting Hamiltonian is a bosonic quadratic form.
On a nearest-neighbor bond with color � on site i and

color � on site j, the Hamiltonian is given by H fw ¼
Ay
ijAij � 1, with Ay

ij ¼ by�;j þ b�;i where by and b are

bosonic operators. In a given mean-field ground state, the
LFWT Hamiltonian is the sum of independent
Hamiltonians that describe the motion of bosons on the
connected clusters spanned by pairs of colors. The zero-
point energy per bond tends to increase with the cluster size
and is minimal on a two-site cluster, when the ground-state
energy of the Hamiltonian is equal to �1, i.e., there is no
zero-point contribution to the energy. By contrast, larger
clusters lead to finite frequencies, and hence to strictly
positive contributions to the zero-point energy.

2. Infinite projected entangled-pair states

A projected entangled-pair state (PEPS) [51,52], also
called a tensor product state, is a variational ansatz where
the wave function of a two-dimensional system is effi-
ciently represented by a product of tensors, with one tensor
per lattice site. It can be seen as a two-dimensional general-
ization of matrix product states—the class of variational
states underlying the famous density-matrix-renormaliza-
tion-group method [53]. On the square lattice, each tensor
Tp
ijkl has a physical index p carrying the local Hilbert space

of a lattice site with dimension d, and four auxiliary
bond indices i, j, k, l with dimension D that connect to
the four neighboring tensors. Thus, each tensor consists of
dD4 variational parameters, and, by changing the bond
dimension D, the accuracy of the ansatz can be systemati-
cally controlled. A D ¼ 1 PEPS simply corresponds to a
site-factorized wave function (a product state), and, on
increasing D, quantum fluctuations can be systematically
taken into account.

An infinite PEPS (iPEPS) [54,55] consists of a unit cell
of Lx � Ly ¼ NT tensors that is periodically repeated in

the lattice to represent a wave function in the thermody-
namic limit. We use the iPEPS method developed for the
square lattice described in Refs. [20,54,56] to simulate the
model on the honeycomb lattice by mapping it onto a
brickwall lattice as illustrated in Fig. 7(a). The bond
dimension of the auxiliary bonds connecting two sites
that do not directly interact (dotted lines) can be chosen
as D ¼ 1. This ansatz is equivalent to an iPEPS with only
three auxiliary indices on the honeycomb lattice. The

advantage of this mapping is that the codes developed for
the square lattice require only minor modifications to
simulate models on the honeycomb lattice.
Describing the iPEPS method in full detail is beyond the

scope of this paper, and we therefore mention only the
most important technicalities, with corresponding referen-
ces and details, on the simulation parameters in the follow-
ing discussion. For an introduction to PEPS and iPEPS, we
refer to Refs. [52,56].
The optimization of the tensors (i.e., finding the best

variational parameters) is done through imaginary time
evolution, first with the so-called simple update (see
Refs. [56,57]), which is equivalent to the time-evolving
block-decimation method in one dimension [58,59]. The
solution is then used as an initial state for an imaginary
time evolution using the full update [54,56], which is
computationally more expensive, but more accurate than
the simple update, since the full wave function is taken into
account for the truncation of a bond index. We use a
second-order Trotter-Suzuki decomposition with time
steps down to d� ¼ 10�3. For large values of D, a larger
time step d� ¼ 10�2 is used, where the estimated Trotter
error is small compared to symbol sizes [e.g., below 0.5%
for the ordered moment m (2)].
Expectation values of observables can be computed by

contracting the tensor network, i.e., by computing the trace
of the product of all tensors. For the approximate contrac-
tion of the iPEPS, we use the corner-transfer-matrixmethod
described in Refs. [56,60,61]. The accuracy of this contrac-
tion can be controlled by the so-called boundary dimension
�, where we use values up to � ¼ 500 (typically, up to � ¼
350) for large D. Observables like the energy and the
ordered moment are extrapolated in �, with an extrapola-
tion error being small compared to symbol sizes. An ex-
ample is shown in Fig. 7(b) for the ordered moment m (2).

(a) (b)
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D=12
D=14
D=16
D=18

FIG. 7. (a) The honeycomb lattice is mapped to a square lattice
with brickwall structure. There is no Hamiltonian term between
sites connected by a dotted line. A square-lattice iPEPS is used
for this lattice, where we choose the bond dimension along the
dotted lines asD ¼ 1. (b) Local ordered moment as a function of
inverse �, which controls the accuracy of the contraction of the
iPEPS. The values of m for different bond dimensions D depend
only slightly on �.
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To increase the efficiency of the method, we have im-
plemented a Zq symmetry, a discrete subgroup of SUð4Þ, in
the tensors (see Refs. [62,63]), leading to tensors that
have a block structure (similar to a block diagonal matrix)
and to a considerable reduction of the computational cost.

Since iPEPS is an ansatz for an infinite system, symme-
tries such as SUð4Þ or translational symmetry may be
spontaneously broken. In order to test different types of
translational symmetry breaking, we have compared the
variational energies obtained with different unit cell sizes.
We have found two competing low-energy states with unit
cell sizes 2� 2 and 4� 4, shown in Fig. 3, which have
similar energies for large bond dimension. We note that
broken symmetries can be an artifact of a finite bond
dimension D, and that the symmetry can be restored if D
is sufficiently large. In other words, a classical or a low-
entanglement solution (small D) might exhibit order, but
this order can be destroyed by quantum fluctuations that
are systematically included on increasing D. Therefore, it
is important to study order parameters as a function ofD to
verify if they are finite in the large-D limit.

3. Exact diagonalization

We have performed exact diagonalizations of the
Hamiltonian (1) for selected finite-size samples of up to
N ¼ 24 sites. The energies of the samples with 8,14,18 and
24 sites are reported with star symbols in Fig. 2. Note that
only the samples with 8 and 24 sites can form a SUð4Þ
singlet ground state, which explains the relatively high
energy per site for the samples with 14 and 18 sites. Note
also that, due to computational limitations, we were able
to calculate only the energy and eigenfunction of the
ground state in the completely symmetric representation
of the spatial symmetry group of the N ¼ 24 sample.
(The Hilbert space in this symmetry sector contains
4 008 417 658 states, including a cyclic color-permutation
symmetry.) Since this sector is the absolute ground state for
the N ¼ 8 sample, we expect this sector to host the ground
state for N ¼ 24 as well.

4. Fermionic variational Monte Carlo method

The variational wave function for the algebraic spin-
orbital liquid is a Gutzwiller projected noninteracting
Fermi sea at quarter filling,

j�i ¼ X
fjg

Y4

�¼1

wfj�gjj�1 j�2 . . . j�N=4i; (A1)

where j�l denotes the position of the lth fermion with color

�, and the summation is over all N!=½ðN=4Þ!�4 possible
distributions of the fermions so that each site is single
occupied (i.e., fj�g \ fj�g is an empty set for � � �).
The weight of each configuration is given by the Slater
determinant

wfj�g ¼

��������������������

�1ðj�1 Þ �2ðj�1 Þ . . . �N=4ðj�1 Þ
..
. ..

. . .
. ..

.

�1ðj�N=4Þ �2ðj�N=4Þ . . . �N=4ðj�N=4Þ

��������������������

; (A2)

where �kðjÞ is the amplitude of the fermion at site j in the
kth eigenfunction of the hopping Hamiltonian

H f ¼ �X
hi;ji

X4

�¼1

ð�i;jf
y
j;�fi;� þ H:c:Þ: (A3)

The expectation values of operators with this variational
wave function are evaluated by a Monte Carlo sampling
[29,30]. The variational wave function with Majorana
fermions is described in detail in Ref. [8].
The different trial states correspond to different choices

of the �i;j hopping parameters. In the �-flux state, j�i;jj ¼
1, and the phases are chosen so that an electron hopping
around the hexagon picks up a minus sign,

Q
6
k¼1 �ik;ikþ1

¼
�1, where the product is over the bonds of a hexagon.
Many possible choices of phases lead to such a minus sign.
Here, we choose real hopping amplitudes, where every
hexagon has a single bond with a �ij ¼ �1, while the

rest of the bonds have þ1, as shown in Fig. 5(a).
Furthermore, we allow for antiperiodic boundary condi-
tions when a degeneracy of quarter-filled Fermi sea needs
to be removed for a given cluster.
We have considered two families of finite-size clusters

with the full D6 symmetry of the honeycomb lattice:
(i) clusters with N ¼ 2ð2nÞ2 sites defined by the lattice

vectors g1 ¼ ð ffiffiffi
3

p
; 0Þn and g2 ¼ ð ffiffiffi

3
p

=2; 3=2Þn, where
n is an integer (N ¼ 72, 200, 392, and 648 site clusters)
and the bond length is set to unity; and (ii) clusters with

N ¼ 6ð2nÞ2 sites with g1 ¼ ð3 ffiffiffi
3

p
=2; 3=2Þn and g2 ¼

ð0; 3Þn, (N ¼ 24, 96, 216, 384, 600).
We use Monte Carlo sampling of the projected wave

function j�i to evaluate physical quantities. The elemen-
tary step is the exchange of two randomly chosen fermions
with different colors. To speed up the convergence, we
used importance sampling, with acceptance ratios defined
according to the Metropolis algorithm: The new configu-
ration is always accepted if its weight wnew is higher
than the weight wold of the old configuration, but, for
wnew <wold, the configuration is accepted only with a
probability wnew=wold. The configurations are thus repre-
sented with a probability pfjg proportional to their weight

in the wave function,

pfjg / jwfjgj2; (A4)

where wfjg ¼
Q

4
�¼1 wfj�g denotes the coefficient of jfjgi ¼

�4
�¼1jj�1 j�2 . . . j�N=4i in the projected fermionic state j�i

[see Eq. (A2)]. We set the number of elementary steps
between two measurements large enough to avoid autocor-
relation effects. See Table I for details. We have also
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performed a binning analysis as a further test for the
independence of the measurements. The statistical error
for different bin sizes did not show any change, verifying
once more that the sampling distances were large enough.
Furthermore, for each system, we have made several
(5–10) runs with randomly chosen starting configurations
to independently verify the error bars obtained from the
binning analysis.

We have measured diagonal and off-diagonal operators.
The spin-spin correlation function, the average of the off-

diagonal Pk;l, can be expressed using the diagonal n�k n
�
l

operator (where n�k is the occupation number on site k for

the fermion of color �) as

hPk;li ¼ 20hn�k n�l i � 1; (A5)

supposing that the ground state is a singlet wave function—
as is the case when the hopping Hamiltonian is indepen-
dent of the colors. The measurement of the diagonal

hn�k n�l i correlation functions is quite simple using impor-

tance sampling,

hn�k n�l iMC ¼ Nðfk; lg � fj�gÞ
NMC

; (A6)

where Nðfk; lg � fj�gÞ denotes the number of times both k
and l sites are occupied with � fermion among the NMC

measured configurations.
With a little more effort, one can directly calculate the

off-diagonal hPk;li correlation functions as well. Using the

fermionic representation for the Pk;l exchange operator,

the convenient form that follows the convention of the
fermion ordering in the wave function is given as

Pk;l ¼
X
��

S��ðkÞS��ðlÞ ¼ �X
��

fy�ðkÞfy�ðlÞf�ðkÞf�ðlÞ: (A7)

In this case, one follows the same importance
sampling as before, although the measurement itself is
more complicated:

hPk;li ¼
P

fjg;f~jg �wfjgwf~jghfjgjPk;ljf~jgiP
fjg jwfjgj2

¼
P

fjg jwfjgj2 wfj0 g
wfjg

sk;lðfjgÞP
fjg jwfjgj2

¼ 1

NMC

X
fjgMC

wfj0g
wfjg

sk;lðfjgÞ; (A8)

where fj0g is the configuration that leads to fjg by exchang-
ing the color of fermions on sites k and l, and the sum in the
last equation is over the measured configuration fjgMC.
Following Eq. (A7), the sign sk;lðfjgÞ is 1 if the colors of

fermions are the same on sites k and l in the configuration
fjg, and �1 if the colors are different. We have explicitly
verified that the Eq. (A5) holds.
Similarly, one can calculate hPijPkli as well, here for

each fjg configuration jfjgi ¼ PijPkljfj0gi. For the sign that
one should take sk;lðfjgÞsi;jðfjgÞ, here we have assumed that

the sites i, j, k, and l are all different.
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the Kagomé Lattice, Phys. Rev. Lett. 98, 117205 (2007).

[28] A. Paramekanti and J. B. Marston, SU(N) Quantum Spin
Models: A Variational Wavefunction Study, J. Phys.
Condens. Matter 19, 125215 (2007).

[29] H. Yokoyama and H. Shiba, Variational Monte-Carlo
Studies of Hubbard Model. I, J. Phys. Soc. Jpn. 56, 1490
(1987).

[30] C. Gros, Physics of Projected Wavefunctions, Ann. Phys.
(N.Y.) 189, 53 (1989).

[31] I. Affleck and J. B. Marston, Large-n Limit of the
Heisenberg-Hubbard Model: Implications for High-Tc

Superconductors, Phys. Rev. B 37, 3774 (1988).
[32] T.A. Kaplan, P. Horsch, and P. Fulde, Close Relation

between Localized-Electron Magnetism and the
Paramagnetic Wave Function of Completely Itinerant
Electrons, Phys. Rev. Lett. 49, 889 (1982).

[33] M. Hermele, SU(2) Gauge Theory of the Hubbard Model
and Application to the Honeycomb Lattice, Phys. Rev. B
76, 035125 (2007).

[34] A. F. Albuquerque, D. Schwandt, B. Hetényi, S. Capponi,
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Antiferromagnetic Clusters: Large-Scale Exact
Diagonalization Results, Phys. Rev. B 83, 212401
(2011).

[41] S. Depenbrock, I. P. McCulloch, and U. Schollwöck,
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