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A number of authors have suggested that nonlinear interactions can enhance resolution of phase shifts

beyond the usual Heisenberg scaling of 1=n, where n is a measure of resources such as the number of

subsystems of the probe state or the mean photon number of the probe state. These suggestions are based

on calculations of ‘‘local precision’’ for particular nonlinear schemes. However, we show that there is no

simple connection between the local precision and the average estimation error for these schemes, leading

to a scaling puzzle. This puzzle is partially resolved by a careful analysis of iterative implementations of

the suggested nonlinear schemes. However, it is shown that the suggested nonlinear schemes are still

limited to an exponential scaling in
ffiffiffi
n

p
. (This scaling may be compared to the exponential scaling in n

which is achievable if multiple passes are allowed, even for linear schemes.) The question of whether

nonlinear schemes may have a scaling advantage in the presence of loss is left open. Our results are based

on a new bound for average estimation error that depends on (i) an entropic measure of the degree to

which the probe state can encode a reference phase value, called the G asymmetry, and (ii) any prior

information about the phase shift. This bound is asymptotically stronger than bounds based on the

variance of the phase-shift generator. The G asymmetry is also shown to directly bound the average

information gained per estimate. Our results hold for any prior distribution of the shift parameter, and

generalize to estimates of any shift generated by an operator with discrete eigenvalues.
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I. INTRODUCTION

In many measurement scenarios, an environmental vari-
able acts to translate or shift a property such as the optical
phase or position of a probe state. Accurate estimation of
the shifted parameter allows a correspondingly accurate
measurement of the environmental variable. For example,
interferometric measurements of quantities ranging from
temperature to gravitational-wave amplitudes rely on the
estimation of an optical phase shift. An important aim of
quantum metrology is to determine the fundamental
bounds on the resolution of such estimates, and how these
bounds scale with available resources such as energy [1–4].

Let us denote the initial probe state by the density
operator �0, and the generator of shifts by some
Hermitian operator G. Then if the shift parameter �
has the value �, the final probe state is �� ¼
expð�iG�Þ�0 expðiG�Þ. In the following discussion, par-
ticular attention is paid to the estimation of a phase shift
parameter, as this is sufficient for discussing various
nonlinear estimation schemes previously proposed in the
literature [5–11]. The generator G in this case has integer
eigenvalues, so that ��þ2� ¼ ��. More generally, how-

ever, our results apply to any shift generator G having a

discrete eigenvalue spectrum. This includes the atomic
scheme proposed in Ref. [12], which has recently led to
the first experimental demonstration of nonlinear quantum
metrology [13].
Returning to an optical example, a linear phase shift

of a single-mode optical probe state corresponds to
G ¼ N, where N is the photon-number operator.
Similarly, for a probe state comprising m such modes,
each undergoing a nonlinear quadratic phase shift, one
has G ¼ ðN1Þ2 þ � � � þ ðNmÞ2 [5,6]. In cases like this, we
quantify the resources n by the total mean photon numberP

jhNji. Alternatively, for a probe comprising n atomic

qubits, each with a Pauli Z operator �ðjÞ
z , one may consider

the generator G ¼ �ð1Þ
z þ � � � þ �ðnÞ

z , and powers thereof,
corresponding to linear and nonlinear Ramsey interfer-
ometers, respectively [7,8,10,11]. Again, n quantifies the
resources.
We note that this quantification of resources n is differ-

ent from the N (which we will denote N ) used in
Refs. [14–18]. The n used here typically corresponds to
the conspicuous physical resources required to generate the
probe state and is what has previously been used to claim
an advantage when using nonlinear interactions [5–13].

If �̂ denotes an estimate of a shift parameter� for some
measurement scheme, then a standard measure [19,20] of
the performance of the estimate is given by the average
estimation error (called rms error in Ref. [19]),

�ð�̂Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ð�̂��Þ2�

q
; (1)
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where the expectation value here is defined as

E½ð�̂��Þ2� �
Z

d�d�̂ð�̂��Þ2pð�̂j�Þ}ð�Þ: (2)

Here, pð�̂j�Þ is the probability density of the estimate
conditioned on a fixed shift value � ¼ �, and }ð�Þ de-
notes the prior probability density of the shift parameter.
Measurement schemes which minimize the average esti-
mation error, for given resources such as the average
photon number or number of qubits available, are of fun-
damental interest in quantum metrology.

However, attention has often focused instead on mini-
mizing a different quantity, the ‘‘local precision,’’ defined
for a fixed value of the shift parameter, � ¼ �, by [21,22]

P�ð�̂Þ :¼
��

�̂

jdh�̂i�=d�j ��

�
2
�
1=2

�
; (3)

where h�i� denotes an average with respect to the condi-

tional probability density pð�̂j�Þ. Some proposed non-
linear measurement schemes can achieve local precisions
that scale in terms of the number of resources n as, for

example, n�3=2 [5,7,8,12,13], n�2 [10], or 2�n [9], for
some value of �. Even so, we show below that the corre-
sponding average estimation errors can scale no better than
the usual Heisenberg scaling, n�1.

For estimates that are, approximately, locally unbiased
for all values of � over some interval [23], one has

Z
d�}ð�ÞP�ð�̂Þ � �ð�̂Þ (4)

for shift parameters confined to this interval, providing a
simple connection to the average estimation error.
However, many phase estimates are unbiased only over
very limited ranges [24], where these ranges are of widths
comparable to the local precision itself. Thus, for example,
while a high local precision of 2�K in some region may
allow the Kth binary digit of a phase shift to be estimated,
it often does not allow the preceding digits to be estimated
with any accuracy. These must either already be known
(e.g., in phase-tracking [25] or phase-sensing [26] applica-
tions), which requires the prior probability distribution
}ð�Þ to be almost as narrow as the posterior distribution
(after the measurement), or they must be determined using
further resources. Hence, unless the phase is already very

well known, the scaling of P�ð�̂Þmay be a very poor guide

to the scaling of �ð�̂Þ.
Indeed, whereas the local precision has a scaling lower

bound set by the rms variance, �G, of the generator for the
probe state [21,22], the average estimation error has an
asymptotically stronger (i.e., higher) lower bound, set by
the entropy, HðGÞ, of the generator [27,28]. Thus, max-
imizing the variance, rather than the entropy, ofG, does not

typically minimize �ð�̂Þ. Here we further generalize
and strengthen this entropic bound, in Secs. II and III, to

replace HðGÞ by the so-called G asymmetry of the probe
state [29]. The fundamental role of this quantity is empha-
sized by showing that it also bounds the mutual informa-

tion between the shift parameter� and any estimate �̂. An
important consequence demonstrated in Sec. IV is that, in a
surprising contrast to the case of local precision, simply
replacing G by some nonlinear function thereof, such as
F ¼ G2, cannot improve the average estimation error or
the information gain.
A careful analysis in Sec. V shows that nonlinearity can

improve the scaling of �ð�̂Þ beyond n�1 for iterative
implementations. These are implementations where the
shift is applied on a sequence of probes of different sizes,
so that G is replaced by a suitable sum of nonlinear gen-
erators. However, for a probe state comprising n qubits, it
is shown that even adaptive variable-pass implementations
of previously proposed nonlinear schemes can at best
achieve scalings exponential in

ffiffiffi
n

p
for the average estima-

tion error. In contrast, in Sec. VI, we show that the best

possible scaling for �ð�̂Þ is exponential in n, for both qubit
and optical probes, regardless of whether the generator is
linear or nonlinear. Moreover, an exponential scaling is in
fact achievable via linear estimation schemes, if multipass
implementations are allowed. Whether nonlinear schemes
are more robust than linear schemes to the presence of loss
is left as a question for future investigation.

II. AN INFORMATION BOUND

The mutual information Hð�̂: �Þ between the shift
parameter and its estimate is a measure of performance
in its own right, quantifying the average number of bits
obtained per estimate. A general upper bound for mutual
information is obtained here, applicable to any generatorG
having a discrete spectrum, which will be used in Sec. III to
obtain a lower bound for the average estimation error.
Several useful properties of this bound are also established.
Consider a parameter � with some prior distribution

}ð�Þ, and define an average prior state �� ¼ R
d�}ð�Þ��.

Then, using the Holevo bound [30], one immediately has

Hð�̂:�Þ � Sð ��Þ�R
d�}ð�ÞSð��Þ ¼ Sð ��Þ�Sð�0Þ. Here

Sð�Þ ¼ �tr½� ln�� denotes the von Neuman entropy of
the state �. Now define

U Gð�Þ :¼
X
g

�g��g ¼ lim
w!1

1

w

Z w

0
d�e�iG��eiG�;

(5)

where �g is the projection onto the eigenspace corre-

sponding to eigenvalue g of G, and the second equality
may be checked by considering a basis diagonal in G. This
map is unital, i.e., it maps the unit operator to itself. Using
the nondecreasing property of von Neumann entropy under
unital maps [30], together with UGð ��Þ ¼ UGð�0Þ, then
yields the desired upper bound,
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Hð�̂: �Þ � AGð�0Þ :¼ S½UGð�0Þ� � Sð�0Þ; (6)

for the mutual information.
The upper bound, AGð�0Þ in Eq. (6), may be recognized

as the increase in quantum entropy due to an ideal mea-
surement of G on the probe state, with postmeasurement
state UGð�0Þ. This entropy increase is relevant to bound-
ing efficiencies in quantum thermodynamics [31]. More
generally, AGð�Þ represents the asymmetry of the state �
with respect to a unitary group G (in this paper, the one-
parameter Abelian group with Hermitian generator G)
[29]. The G asymmetry quantifies the degree to which �0

can break the symmetry of G (in this paper, the extent to
which it carries information about the variable � which is
conjugate to G) [29,32–34]. For the case where G has
integer eigenvalues, AGð�0Þ quantifies to what extent �0

can act as a phase reference, an attribute clearly essential
for detecting phase shifts. Note that, for G with incom-
mensurate eigenvalue gaps, the corresponding group is
noncompact, but expression (5) for UG allows one to
generalize the G asymmetry (6) to this case also.

A form of Eq. (6) has been previously given for the
special case of compact groups where the average prior
state �� is symmetric with respect to the group [32–34]. For
the case of a phase shift (i.e., aGwith integer eigenvalues),
this means a prior distribution }ð�Þ that is uniform over the
unit circle. Equation (6) represents a generalization, for the
case of one-parameter groups, to an arbitrary discrete
generator G and arbitrary prior distributions of the shift
parameter. Note that � ranges over (�1, 1) if e�iG� is
nonperiodic, corresponding to a noncompact group.

Several useful properties of AGð�Þ are required below.
First, if � is pure and/orG is nondegenerate, then the states
�g ¼ �g��g=pg, with pg ¼ tr½��g�, are pure and mu-

tually orthogonal, and Eqs. (5) and (6) yield

AGð�Þ ¼ HðGj�Þ � Sð�Þ; (7)

where HðGj�Þ ¼ �P
gpg lnpg is the entropy of the gen-

erator for state �. Second, one has the general bounds

AfðGÞð�Þ � AGð�Þ � HðGj�Þ; (8)

AG½��þ ð1� �Þ�0� � �AGð�Þ þ ð1� �ÞAGð�0Þ; (9)

where fðGÞ is any function of G, and 0 � � � 1. The
lower bound in Eq. (8) is saturated when f is 1:1, as may
be seen by replacing G by fðGÞ and f by f�1, while the
upper bound is saturated for any pure state from Eq. (7).
The convexity of AGð�Þ, as per Eq. (9), implies that the G
asymmetry is maximized for pure states.

The lower bound in (8) is obtained by noting that the
eigenspaces ofG are subspaces of the eigenspaces of fðGÞ,
so that UG �UfðGÞ ¼ UG, and by using the nondecreas-

ing property of von Neumann entropy under unital maps
[30] for the particular caseUfðGÞð�Þ ! ðUG �UfðGÞÞð�Þ.
To obtain the upper bound, let jc i be some purification of

� on a tensor product of the probe Hilbert space with
an ancilla a, so that � ¼ tra½jc ihc j�. Rewriting AGð�Þ
as

P
gpgSð� k �gÞ, where Sð� k �Þ ¼ tr½�ðln�� ln�Þ�

denotes the relative entropy of � and �, one then has

HðGj�Þ ¼ HðG 	 1jjc ihc jÞ ¼ AG	1ðjc ihc jÞ
¼ X

g

pgS½jc ihc j k ð�g 	 1Þjc ihc jð�g 	 1Þ=pg�


 X
g

pgSð� k �gÞ ¼ Agð�Þ

as desired, where the second equality follows from Eq. (7)
and the inequality from the nonincreasing property of
relative entropy under the operation of tracing over
the ancilla [30]. Finally, Eq. (9) may be obtained via
the representation AGð�Þ ¼ limw!1w�1

R
w
0 d�Sð� k ��Þ,

following from Eq. (5), and using the joint convexity
property of the relative entropy [30].
Equations (6) and (8) imply, in particular, that the mu-

tual information is bounded by the entropy of the generator
for the probe state, i.e.,

Hð�̂: �Þ � HðGj�0Þ: (10)

Thus, for example, for a generator having d distinct eigen-
values, no more than lnd nats, i.e., log2d bits, of informa-
tion can be extracted per probe state about the value of the
shift parameter. (Note that ‘‘nats’’ are the units of mutual
information when evaluated using the natural logarithm
base e, whereas ‘‘bits’’ are the units corresponding to using
the logarithm base 2 [35].)

III. BOUNDS FOR RESOLUTION OF
SHIFT PARAMETERS

A. Average estimation error

A strong bound for the average estimation error in
Eq. (1) may be derived analogously to weaker bounds
obtained in Refs. [28,36], i.e., by combining a quantum
upper bound—such as Eq. (6)—for the mutual information
with the classical lower bound [35,37]

Hð�̂: �Þ 
 Hð�Þ � 1
2 ln½2�e�ð�̂Þ�; (11)

where Hð�Þ ¼ �R
}ð�Þ ln½}ð�Þ�d� denotes the entropy

of the prior probability density }ð�Þ for �. This lower
bound is well known from rate-distortion theory and

follows from the inequality chain [37]Hð�̂:�Þ ¼Hð�Þ�
Hð�j�̂Þ ¼Hð�Þ�Hð�� �̂j�̂Þ 
Hð�Þ�Hð�� �̂Þ 

Hð�Þ� 1

2 ln½2�e�ð�̂Þ�, where HðAjBÞ denotes the condi-

tional entropy HðABÞ �HðBÞ.
In particular, the combination of Eqs. (6) and (11)

immediately yields the fundamental bound

�ð�̂Þ 
 ð2�eÞ�1=2eHð�Þe�AGð�0Þ (12)

for the average estimation error, for any discrete generator
G. This bound both strengthens and generalizes previous
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entropic bounds in the literature [17,27,28,36]. For ex-
ample, Nair [28] and Yuen [36] use weaker upper bounds
for the mutual information, corresponding to replacing
AGð�0Þ in Eq. (12) by the quantum channel capacity
under a fixed photon-number constraint. Hall and cow-
orkers have previously obtained bounds in a different
manner, based on entropic uncertainty relations, which
correspond to replacing AGð�Þ in Eq. (12) by the upper
bound in Eq. (8) [17,27] (and, alternatively, by the upper
bound in Eq. (7) for nondegenerate generators [27]), and

replacing eHð�Þ by 1=qmax, where qmax denotes the maxi-
mum value of }ð�Þ [27].

Note that our bound (12) is applicable to iterative
schemes, including adaptive ones, where the measurement
performed on some probe-state components is dependent
(in practice, through additional known phase rotations) on
the outcomes of earlier measurements on other compo-
nents [4]. This applicability holds because such a measure-
ment scheme is formally equivalent to first applying shift
generators G1; G2; . . . to respective probe components
(e.g., qubits or optical modes), corresponding to applying
the total generator G ¼ G1 þG2 þ . . . , and then perform-
ing the measurements sequentially (and adaptively).

B. Local precision

A bound for the local precision in Eq. (3) follows via the
quantum Cramer-Rao inequality [2,3] and has the form
[21,22]

P�ð�̂Þ 
 ð2�GÞ�1; (13)

where �G denotes the rms deviation of the (total) genera-
torG for the probe state. Note that, taking the averages of �
independent estimates, one obtains the usual statistical
enhancement factor of 1=

ffiffiffi
�

p
for both of the bounds in

(12) and (13). This will not be discussed further here, other

than to remark that, although the latter bound for P�ð�̂Þ
may be asymptotically achievable as � ! 1 [21,22,24,25],
this does not imply anything about the achievability of the

corresponding bound for �ð�̂Þ.

C. Comparisons

For generators with integer eigenvalues, i.e., phase-shift

generators, the scaling of �ð�̂Þ with the exponentiated G

asymmetry e�AGð�0Þ in Eq. (12) implies a scaling with the

rms error �G which is at least as strong as that for P�ð�̂Þ
in Eq. (13) (ignoring multiplicative constants of order
unity). This is a consequence of the inequality chain

e�AGð�Þ 
 e�HðGj�Þ 
 ð2�eÞ�1=2½ð�GÞ2 þ 1=12��1=2

(14)

for such generators, where the first inequality follows from
Eq. (8) and the second is well known [37,38]. For the case
of a completely unknown phase shift, with }ð�Þ ¼
1=ð2�Þ, Eqs. (12) and (14) yield the asymptotic lower

bound �ð�̂Þ * ðe�GÞ�1 for the average estimation error,
which is comparable to the lower bound (13) for local
precision. However, importantly, the bound in Eq. (12) is
significantly more powerful, as we now show.
Consider, for example, a probe comprising n qubits, and

generator G ¼ �ð1Þ
z þ � � � þ �ðnÞ

z . The pure probe state

ðjz; z; . . . ; zi þ j � z;�z; . . . ;�ziÞ= ffiffiffi
2

p
, where j � zi de-

notes the eigenstates of �z, then gives the maximum
possible value �G ¼ n in Eqs. (13) and (14). That is
why this state, equivalent to a NOON state or GHZ state
[39], is often considered in quantum metrology. However,
the correspondingG asymmetry follows via Eq. (7) as only
AGð�0Þ ¼ HðGj�0Þ ¼ ln2, implying via Eq. (12) that the
average estimation error does not decrease at all as a
function of n. The only way an average estimation error
scaling as n�1 would be possible from this state would be if
there were sufficient prior information, that is, from
Eq. (12), if �Hð�Þ þ AGð�0Þ were of order lnn. But since
AGð�0Þ ¼ ln2, this means �Hð�Þ � lnn itself. Hence, the
amount of prior information about the parameter to be
estimated would already be sufficient to locate it with the
precision achievable by the measurement.
It is thus apparent that the lower bounds (12) and (13)

can exhibit markedly different behavior, with the former
bound having an asymptotically stronger scaling in gen-
eral. It follows that probe states generating optimal scaling

for P�ð�̂Þ, obtained by maximizing �G under various

constraints for some value of �, do not necessarily corre-

spond to optimal bounds for �ð�̂Þ. Since it is the latter
quantity that has direct operational significance for the
performance of the estimate, this finding has crucial im-
plications for some nonlinear estimation schemes proposed
in the literature, as will be seen below.

IV. RESOLUTION PUZZLE:
NONLINEARITY VS G ASYMMETRY

A. Probes comprising n qubits

Several nonlinear phase-estimation schemes have been
proposed for Ramsey interferometry, based on a probe
state comprising n qubits [7–11]. For example, defining

Jz :¼ �ð1Þ
z þ � � � þ �ðnÞ

z , the generator ðJzÞq has been con-
sidered in Refs. [7,8,11] for q ¼ 2; 3; . . . , and the generator
nJz in Ref. [10]. A nonlinearity equivalent to J2z , although
defined in terms of a fixed number of bosons shared
between two modes, was considered in Ref. [5].
Furthermore, the generators H and A defined via

H þ iA ¼ ð�ð1Þ
x þ i�ð1Þ

y Þ 	 � � � 	 ð�ðnÞ
x þ i�ðnÞ

y Þ (15)

were considered in Ref. [9].
Now, the linear generator G ¼ Jz has nþ 1 distinct

eigenvalues, �n;�nþ 2; . . . ; n, and hence AGð�Þ �
HðGj�Þ � lnðnþ 1Þ. It follows immediately from
Eq. (12) (see also Eq. (22) of Ref. [27]), that the corre-
sponding average estimation error can scale no better than
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ðnþ 1Þ�1 with qubit number, corresponding asymptoti-
cally to the Heisenberg scaling limit of n�1.

However, noting from Eq. (8) that AfðGÞð�Þ � AGð�Þ, for
any function f, precisely the same conclusion follows for
the nonlinear generators G ¼ ðJzÞq and G ¼ nJz. That is,
the average estimation error cannot achieve better than
Heisenberg scaling for these generators. Moreover, the
nonlinear generators G ¼ H and G ¼ A of Eq. (15) do
not even allow the possibility of Heisenberg scaling, as
they each have only three distinct eigenvalues, 0 and
�2n�1 [40].

The above results are in stark contrast to the best pos-
sible scalings of local precision for these schemes, which
improve on Heisenberg scaling, with n�q for G ¼ ðJzÞq
[5,7,8,11]; n�2 for G ¼ nJz [10]; and 2

�n for G ¼ H or A
[9]. This difference in scalings immediately raises a conun-
drum: How can nonlinearity improve the local precision
yet not the average estimation error?

This puzzle may be further deepened by noting that the
probe states yielding optimal local precisions are generally
an equally weighted superposition of two orthogonal ei-
genstates of G, corresponding to the maximum and mini-
mum eigenvalues of the generator [7,8,10,11]. Thus,
AGð�0Þ ¼ ln2 for such a probe state, implying that the
average estimation error cannot decrease with n at all, as
discussed in Sec. III C above. Indeed, Eq. (10) implies that
no more than 1 bit of information about the phase shift can
be gained via such an ‘‘optimal’’ probe state.

B. Probes comprising optical modes

An analogous puzzle holds for optical probes. As a
simple example, if G ¼ N is the number operator for a
single-mode field, then HðGj�Þ � lnðehN þ 1iÞ, implying
from Eqs. (8) and (12) that the average estimation
error can scale no better than hN þ 1i�1. (See also
Refs. [17,27,28,36].) But for any nonlinear generator G ¼
fðNÞ, AGð�Þ � ANð�Þ � HðNj�Þ from Eq. (8). Hence, the
same scaling bound also applies to nonlinear generators for
single-mode fields.

In contrast, nonlinearity can significantly enhance the
local precision. For example, choosing the coherent probe

state �0 ¼ j�ih�j and nonlinear generatorG ¼ N2, P�ð�̂Þ
can scale as hNi�3=2 for large hNi [5]. For this case, the
photon-number distribution is Poissonian, which is well
approximated by a Gaussian distribution for large hNi.
Thus, using Eq. (7), AGð�0Þ ¼ HðN2j�0Þ ¼ HðNj�0Þ �
ð1=2Þ lnð2�ehNiÞ, implying via Eq. (12) that the corre-
sponding average estimation error can decrease with hNi.
However, it cannot scale even as well as the Heisenberg
limit, hNi�1 but rather is lower bounded by the standard

quantum-limit scaling, hNi�1=2.
These examples again lead to the puzzle that, while

nonlinearity can improve the scaling of the local preci-
sion, it cannot, by itself, influence the scaling of the
average estimation error. This raises the question: Can

nonlinear schemes offer any advantage over linear
schemes?

V. PUZZLE RESOLUTION: ITERATIVE SCHEMES

It has been seen that a simple replacement of a generator
by a nonlinear function thereof cannot lead to an improved
scaling of the average estimation error, in marked contrast
to the situation regarding the local precision. However, a
careful analysis shows that, with a suitable sum of non-
linear generators, the bounds in Eqs. (12) and (6) allow for

an enhanced scaling of �ð�̂Þ, and that this enhanced scal-
ing could, plausibly, be achievable by adaptive measure-
ments. This analysis resolves the above puzzle to some
degree. Significantly, however, the scaling of the average
estimation error does not necessarily achieve the same
scaling as the local precision.
As a first example, let GðlÞ denote the nonlinear genera-

tor ðJzÞ2, for l qubits, and let �ðlÞ denote an equally
weighted superposition of two eigenstates of GðlÞ, corre-
sponding to its minimum and maximum eigenvalues (i.e.,
to 0 and l2 if l is even, and 1 and l2 if l is odd). Now
consider the total generator and corresponding composite
probe state defined by

Git :¼
XK
k¼1

GðnkÞ; �0 :¼ 	K
k¼1�ðnkÞ; (16)

with nk :¼ d2ðk�1Þ=2e (where dxe denotes the smallest inte-
ger not less than x). Since the phase shift generated byGðlÞ
has period approximately equal to 2�=l2, this ensures that
the phase shift generated by GðnkÞ, on the probe state
component �ðnkÞ, has period approximately equal to
ð2�Þ=2k�1.
The basic idea is that the kth bit in a binary expan-

sion of �=ð2�Þ is estimated from the kth component of
the probe state. Note that it is impossible to obtain more
than 1 bit from each component of the probe state, i.e.,
more than ln2 nats, as a consequence of Eq. (6) and the
property AGðlÞ½�ðlÞ� ¼ H½GðlÞj�ðlÞ� ¼ ln2. This is the

idea behind the famous quantum phase-estimation algo-
rithm [30] for linear phase shifts, subsequently general-
ized in Refs. [14–16]. In practice, to achieve the best
scaling for the average estimation error, it may be
necessary to use M> 1 copies of each component of
the probe state to estimate each bit accurately, when
combined with an adaptive measurement sequence
[14,15]. Counterintuitively, it is the least significant
(Kth) bit of �=ð2�Þ that should be determined first, to
allow the optimal measurement of the (K � 1)th bit, and
so on, up to the most significant bit.
The total number of qubits required in the above setup

is n ¼ M
P

knk � Mð2K=2 � 1Þ=ð ffiffiffi
2

p � 1Þ. Furthermore,
there are 2K distinct eigenvalues of G, of the form
approximately equal to

P
kbk2

k�1 for bk ¼ 0 or 1, where
these have a uniform distribution for �0. Taking into

DOES NONLINEAR METROLOGY OFFER IMPROVED . . . PHYS. REV. X 2, 041006 (2012)

041006-5



account the M copies of Git and �0, the corresponding

generator G ¼ Gð1Þ
it þ � � � þGðMÞ

it has eigenvalues rang-

ing from 0 to Mð2K � 1Þ, implying a G asymmetry
AGð	M�0Þ � HðGj 	M �0Þ � ln½M2K�. (Note that for
M> 1 the distribution of G over 	r�0 is not uniform,
and this upper bound is not tight.) Thus Eq. (12) yields
the following lower bound for the average estimation
error,

�ð�̂Þ 
 ð2�=eÞ1=2
M½1þ ð ffiffiffi

2
p � 1Þn=M�2 �

ð2�=eÞ1=2
ð3� 2

ffiffiffi
2

p Þ
M

n2
; (17)

in the worst-case scenario of a completely random phase
shift. Note that this bound is compatible with the scaling
expected for a scheme that determines the first K bits of

�̂, giving �ð�̂Þ � ð2�Þ=2Kþ1 � ðM=nÞ2. In other words,
for M large enough for this bitwise estimation scheme to
work, we would expect the scaling with n in Eq. (17) to
be attainable.

Thus, this adaptive scheme demonstrates the possibility
of an asymptotic n�2 scaling for the average estimation
error. This is the same scaling (up to a constant factor) as
for the optimal local precision for the generator GðnÞ
[7,11]. Furthermore, an n�q asymptotic scaling can be
obtained for an analogous adaptive scheme based on the
nonlinear generator ðJzÞq, with

�ð�̂Þ * cqM
q�1

nq
(18)

for a phase shift random over ½0; 2�Þ, where cq increases

exponentially with q. Analogous results may be obtained
for iterative implementations of the schemes in Refs. [5,6].

However, a correspondence of scalings between P�ð�̂Þ
and �ð�̂Þ does not hold more generally. For example, let
GðlÞ instead denote the nonlinear generator H þ 2l�1 for l
qubits, with H as in Eq. (15) but with l in place of n, and
with the additive constant being chosen to simplify eigen-
value counting. Furthermore, let �ðlÞ denote an equally
weighted superposition of the two eigenstates correspond-
ing to the minimum and maximum eigenvalues 0 and 2l of
GðlÞ (noting that such superpositions include the separable
states jz; z; . . . ; zi and j � z;�z; . . . ;�zi [9,40]).
Successive estimation of l binary digits then corresponds
to nk ¼ k� 1 in Eq. (16), requiring a total qubit number
n ¼ MKðK � 1Þ=2 � MK2=2. One has AGð	M�0Þ �
lnðM2KÞ as before, yielding the lower bound

�ð�̂Þ * ð2�=eÞ1=2M�12�
ffiffiffiffiffiffiffiffiffi
2n=M

p
(19)

for the case of a completely random phase shift. Thus the
scaling with n is considerably worse than the 2�n

scaling of the local precision for the corresponding
single-generator scheme [9].

This last result demonstrates that the local precision
does not necessarily characterize the performance of the
average estimation error even for adaptive implementations.

It follows that comparisons between various schemes,
whether linear or nonlinear, should be made on the basis

of the operationally significant quantity, �ð�̂Þ in Eq. (1),

rather than P�ð�̂Þ in Eq. (3).

VI. LINEAR SCHEMESWITH OPTIMAL SCALING

A. Probes comprising n qubits

Since any generatorG for n qubits has at most 2n distinct
eigenvalues, it follows from Eqs. (7) and (8) that AGð�0Þ �
HðGj�0Þ � n ln2, with equality for a probe state that is an
equally weighted superposition of the corresponding ei-
genstates. Hence, from Eq. (12), the best possible scaling
for the average estimation error satisfies

�ð�̂Þ 
 ð2�eÞ�1=2eHð�Þ2�n: (20)

Estimation schemes having an exponential scaling linear in
n are therefore of fundamental interest. Note, per Eq. (19),
that such a scaling is not attained via an adaptive imple-
mentation of the nonlinear scheme in Ref. [9], despite the
local precision scaling as 2�n for this scheme.
It is possible that nonlinear schemes exist with an ex-

ponential scaling in n for �ð�̂Þ. Here we show that, sur-
prisingly, such a scaling can be achieved with linear
generators. The extra ingredient that makes this possible
is to allow for multiple (and varied) applications of the
phase shift prior to measurement.
In particular, following the ideas in Higgins et al. [14],

consider a probe system comprising m unentangled qubits,

each in the state jþi ¼ ðj � zi þ jziÞ= ffiffiffi
2

p
, where the kth

qubit is subjected to 2k�1 applications of a linear phase

shift generated by ð1þ �ðkÞ
z Þ=2. In Ref. [14], this was

achieved experimentally via multiple passes through a
medium. Another possibility would be to suitably increase
interaction times of the qubits with the phase-shift me-
dium. The total generator and the probe state therefore
have the forms

Git ¼
XK
k¼1

2k�1ð1þ �ðjÞ
z Þ=2; �0 ¼ 	Kjþihþj: (21)

The total phase shift of the kth qubit thus has period
2�=2k�1, and so can be used to estimate the kth bit of
�=ð2�Þ, in the adaptive manner explained above [14].
If, as for the nonlinear schemes above,M copies are used

to estimate each bit accurately, then the total number of
qubits required is n ¼ MK. Following the style of argu-
ments used in the preceding section gives a lower bound on
the average estimation error of

�ð�̂Þ 
 ð2�eÞ�1=2eHð�ÞM�12�n=M: (22)

In this case, it appears that minimizingM could make a big
improvement to the precision, and for M ¼ 1 the ultimate
scaling (20) might be achievable. However, it must be
remembered that Eq. (22) is merely a lower bound.
Moreover, from the arguments in the preceding section, it
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is only forM sufficiently large that we expect these bitwise
estimation schemes to attain the scaling with n of the lower
bounds.

Luckily, in this case, we can compare this bound to the
actual performance of the best-known adaptive schemes
for an initially completely random phase, as this has been
studied extensively. These studies were done using the

Holevo variance VHð�̂Þ [41] rather than the average esti-
mation error, but when these are small (as here, for large

n), VHð�̂Þ � �ð�̂Þ2 � ð�=2Þ2VHð�̂Þ [42]. In terms of scal-
ing with n, the best performance is indeed for M ¼ 1,
which corresponds to the quantum phase-estimation algo-
rithm [30] and yields [15]

�ð�̂Þ ¼ c
 2�n=2: (23)

(The constant c � 1:18 can be evaluated by performing the
integral of the distribution of phase estimates, Eq. (4.5) of
Ref. [15].) Although this is not identical scaling to (20), it
is still exponential in n, unlike (19). For M ¼ 2, 3, and 4,

the performance scales as 2�n=4, while, forM 
 4, it scales

as 2�n=M, achieving the lower-bound scaling in Eq. (22) as
expected for sufficiently large M.

Note that, in terms of N ¼ Mð2Kþ1 � 1Þ, the number
of qubit passes through the phase shift (which is the
resource considered in Refs. [14–17]), the change in scal-
ing as M increases appears quite different. For M ¼ 1 and

M ¼ 2, the scaling isN �1=2; forM ¼ 3, it isN �3=4; and,
for M 
 4, it is N �1. We emphasize that counting re-
sources as above, in terms of the number of qubits n, is
necessary to enable consistent comparison with the non-
linear schemes considered in Refs. [7–11]. Recently, some
other papers have also considered the number of qubits (or,
more strictly, the number of qubit measurements) as a
resource [43,44]. However, as these studies were motivated
by qubit-gate characterization in solid-state quantum com-
puting, they imposed the constraint that the qubit measure-
ment basis is fixed. Under this constraint, the only thing
that can be chosen adaptively is the number of times the
phase shift is applied to a given qubit prior to measure-
ment. In Ref. [43], numerical evidence was presented that,
using a locally optimal (‘‘greedy’’) adaptive algorithm, a
scaling of approximately 2�0:1n is achievable. In Ref. [44],
an analytical argument was given suggesting that a scaling
of approximately 2�0:16n should be achievable. Neither
achieves the scaling (23) of schemes that allows adaptive,
controlled qubit rotations prior to measurement.

B. Probes comprising optical modes

For an optical probe containingm orthogonal modes, let
Nm denote the photon number of the mth mode, and N
denote the total photon number N1 þ � � � þ Nm. The en-
tropy of any generator G ¼ fðN1; . . . ; NmÞ is bounded
above by the joint entropy of N1; . . . ; Nm (since the distri-
bution of G is a coarse graining of the joint distribution),
yielding via Eq. (8)

AGð�Þ � HðGj�Þ � HðN1; . . . ; Nmj�Þ

� m ln

�
1þ hNi

m

�
þ hNi ln

�
1þ m

hNi
�

(24)

� lnemþhNi: (25)

The second line follows from standard statistical mechan-
ics techniques, and the third line from the monotonic
convergence of ð1þ x=yÞy to ex as y increases.
Using Eq. (12), the average estimation error therefore

has the fundamental lower bound

�ð�̂Þ 
 ð2�eÞ�1=2eHð�Þe�me�hNi; (26)

for any generator that is a function of N1; . . . ; Nm. Such
functions include the total photon number, N ¼ N1 þ
� � � þ Nm, in particular [36], but also include, for ex-
ample, the nonlinear generators N2 and ðN1Þ2 þ . . .þ
ðNmÞ2. Similarly, using Eq. (6), one has the fundamental
upper bound mþ hNi for the mutual information

Hð�̂: �Þ.
It follows that estimation schemes with an exponential

scaling linear in the average photon number are of fun-
damental interest. Furthermore, a linear scheme, analo-
gous to the one above for n qubits, is sufficient to obtain
such a scaling (although with a different coefficient). In
particular, the M ¼ 1 linear-multipass scheme of Higgins
et al. [14], equivalent to the quantum phase-estimation
algorithm [30], is precisely such a scheme, involving
m ¼ 2K modes, with each pair of modes in the super-

position state ðj0ij1i � j1ij0iÞ= ffiffiffi
2

p
. Hence, K ¼ hNi ¼

m=2, and, from Eq. (23), �ð�̂Þ ’ 1:18
 e�K lnð2Þ=2
asymptotically, which is consistent with Eq. (26) as
here mþ hNi ¼ 3K. Again, it should be noted, as for
the qubit case above, the measure of resources consid-
ered here is the total mean photon number hNi required
for the scheme, rather than the number of photon passes
N through the phase-shift medium as in Ref. [14].
Again, we use hNi to enable comparison with various
linear and nonlinear estimation schemes [5,6]. Moreover,
photon number is a natural measure of interest to con-
sider, as it characterizes the energy resources required for
a given optical scheme.

VII. DISCUSSION

The average estimation error and mutual information
have been shown to satisfy the general entropic bounds in
Eqs. (6) and (12), for any shift generator having a discrete
spectrum, and for any prior distribution of the shift
parameter. While, for phase-shift generators, the G asym-
metry can be bounded above in terms of the variance of
the generator, via Eq. (14), the G asymmetry is typically
much less than this upper bound. Hence, the average
estimation error can scale very differently to the local
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precision in Eq. (13), in terms of available resources such
as number of qubits or total-input photon number.

Indeed, somewhat surprisingly, a simple replacement of
a linear generator by some nonlinear function thereof may
have no effect on the average estimation error yet lead to a
marked improvement of the local precision. Furthermore,
while such scaling differences can disappear for iterative
estimation schemes, this is not always the case.

It follows that the optimal scaling of the local precision,
for a given value of the shift parameter, should be treated
with some caution. As noted in relation to Eq. (4), the local
precision is a direct measure of the average rms error only
over an interval for which the corresponding estimate is
(approximately) unbiased. However, many estimators in
the literature are unbiased only over a very small interval,
similar in magnitude to the local precision itself. In such a
case (which is relevant, for example, in phase-tracking and
phase-sensing applications [25,26]), for the optimal scal-
ing to be achievable, the amount of prior information
required about the shift parameter is typically so great
that the estimate itself can only extract up to 1 bit of further
information, irrespective of the number of resources n.
Examples of this phenomenon have been given in
Secs. III C and IV

It is concluded from the above discussion that mean-
ingful comparisons between various estimation schemes
are most easily made on the basis of the operationally

significant quantity, �ð�̂Þ in Eq. (1), rather than P�ð�̂Þ in
Eq. (3). Alternatively, if P�0 ð�̂Þ for some�0 is used, then it
should be supplemented by the interval over which this
estimate is (approximately) locally unbiased, i.e., the in-
terval for which the local precision of the estimate corre-
sponds to the actual rms error of the estimate,

hð�̂��Þ2i�. Note that the width of this interval also

bounds the width of any ‘‘sweet spot’’ for which P�ð�̂Þ ¼
P�0 ð�̂Þ, and hence bounds the width of the prior phase-

probability density required to ensure that a precision of

P�0 ð�̂Þ is actually achieved via measurement. Per Eq. (4),

the estimation error averaged over this prior distribution

will then be (approximately) equal to P�0 ð�̂Þ.
Universal lower bounds for the average estimation error

have also been given, in terms of the number of qubits or
photons available, in Eqs. (20) and (26). Like Eq. (12),
these bounds are independent of the form of the generator,
and hence apply equally well to both linear and nonlinear
schemes, including multipass schemes. They imply that it
is impossible to achieve a scaling better than exponential,
in terms of qubit number, and in terms of input photon
number plus number of modes, respectively. Furthermore,
exponential scalings can be attained by multipass linear
estimation schemes, as has indeed been shown experimen-
tally for optical phase shifts [14]. It follows that, in terms of
the best possible scaling that can be achieved relative to
qubit or input photon number, nonlinear schemes offer no

fundamental advantage over linear schemes if multiple
passes are possible.
However, a practical advantage of nonlinear schemes

may be a greater robustness to loss. For example, multipass
linear schemes of the type discussed above will be highly
sensitive to loss due to multiple (or longer) interactions
with the phase-shift medium. Thus it would be interesting
to find alternative physical implementations of the genera-
tor in Eq. (21) and its optical analogue. Furthermore, while
only shot-noise scaling is achievable for simple linear
schemes in the presence of loss [1,45,46] (including for
the average estimation error [28]), there is evidence that
this may not be the case for nonlinear schemes [6]. Hence,
further investigation is required, including the determina-
tion of fundamental scaling bounds for lossy schemes
analogous to Eqs. (20) and (26).
It would also be of interest to investigate the degree to

which results generalize to the case of a generator with a
continuous spectrum, such as spatial translations generated
by a momentum operator. For example, the fundamental
bounds (20) and (26) are universal, since n ln2 and
ðmþ hNiÞ lne are respective upper bounds for mutual in-
formation, following via the Holevo bound. The possibility
of other generalizations is supported by results such as a
universal Heisenberg-type scaling for the average estima-
tion error, in terms of hjGji, which holds for both discrete
and continuous generators [27]. Furthermore, weaker
measurement-dependent entropic bounds on the average
estimation error, given in Ref. [27], may prove helpful.
Note that some differences are to be expected regarding
linearity vs nonlinearity for the continuous case, since, for
example, the property HðfðGÞj�Þ � HðGj�Þ no longer
holds in general.
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