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Waves, of wavelength �, transmit poorly through apertures of dimensions ‘ � �. Here it is shown that

coupling of a subwavelength aperture to an electromagnetic oscillator makes it possible for a focused,

diffraction-limited beam that impinges on the aperture to undergo perfect transmission. Ignoring non-

radiative losses, and for apertures with closed boundaries in a metallic screen, the transmitted power at the

oscillator’s natural frequency is enhanced by a factor of ð�=‘Þ6 compared with the nonresonant case. As a

nontrivial extension to apertures with open boundaries, an analytically solvable problem is introduced and

analyzed, which involves a pair of arbitrarily small slits in a two-dimensional waveguide. The system

displays perfect transmission at a frequency corresponding to that of a quasilocalized, cavitylike mode

bound to the slits, the frequency of which is below that of the cutoff mode of the continuum. In contrast,

and remarkably, the Fabry-Pérot-like resonance with the extended cutoff mode leads to imperfect

transmission, comparable to that of an individual, nonresonated slit. An explanation of this single-slit-

like behavior is presented, which also applies to the closely related phenomenon of light funneling

concerning transmission through subwavelength channels [see F. Pardo et al., Light Funneling Mechanism

Explained by Magnetoelectric Interference, Phys. Rev. Lett. 107, 093902 (2011), and references therein].
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I. INTRODUCTION

It has been known for a long time that small holes, of
dimensions ‘, are ill suited for transmitting electromag-
netic, acoustic, or other disturbances of wavelength � � ‘.
The normalized transmittance TN defined as the ratio be-
tween the power transmitted and that incident upon the
hole, is at best of order ‘4=�4 [1,2]. More recently, Ebbesen
et al. [3] showed that periodic arrays of small apertures in a
metallic film can lead to an extraordinary enhancement of
the optical transmission, resulting from the excitation of
particular modes of the metallic structure [4–6]. This im-
portant discovery has led to numerous ideas for applica-
tions in areas such as sensing, near-field microscopy,
and light harvesting, that can benefit from the concurrent
enhancement of the electric field in the vicinity of the
apertures [7].

The mechanisms underlying extraordinary transmission
for hole arrays are fairly well understood. In particular, for
electromagnetic waves, the distinct and cooperative roles
played by surface modes (plasmon polaritons) and wave-
guide or Fabry-Pérot-type resonances are now well estab-
lished [6]. The same cannot be said for single apertures.
While the utilization of geometric and plasmon resonances
to enhance the transmission of small, isolated openings has
been considered before [8–16], a unified physical picture

tying the various approaches together has not yet emerged.

Moreover, the distinction between single and multiple

apertures has not been fully appreciated (e.g., a dense array

of grooves give perfect transmission [4], whereas a single

groove does not [11]). Here, we provide an integrated

framework for understanding resonant transmission in

two and three dimensions and uncover significant differ-

ences in the behavior of localized- and extended-mode

resonances [17]. We do so by first introducing a simple

yet comprehensive model of a closed-curve aperture

coupled to an electromagnetic oscillator that gives perfect

transmission, that is, TN � �2=‘2, in the absence of all but

radiative losses. The model draws from ideas that have

been hinted at but not fully treated in the engineering

literature [9,10]. It applies to openings in resonant cavities

[10] and aperture-induced localized states in waveguides,

as well as to approaches involving LC [9] and other

geometric resonances [13,16] for which the resonant wave-

length decreases with the size of the aperture. Next, we

extend these ideas to open-boundary apertures by specifi-

cally considering transmission through a pair of pinholes in

a two-dimensional waveguide. We provide an analytical

solution to this problem, which reveals the existence of a

localized mode bound to the pinholes whose frequency is

below that of the onset of the extended-mode continuum.

Resonance between the incident wave and the localized

mode leads to perfect transmission. Finally, we show that

this problem is related to the well-studied single-slit fun-

neling, that is, extraordinary transmission of waves through

subwavelength channels [8,11,15]. As in funneling, the key

resonance is of the Fabry-Pérot type. However, unlike
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funneling, the transmittance does not decrease with de-
creasing slit width but exactly matches the incident power
for arbitrarily small hole sizes. In funneling and related
cases, we find that resonant coupling to waveguide modes
and, in particular, to the cutoff mode gives imperfect trans-
mission, with transmitted powers that are on the order of
those for single slits off resonance.

II. RESULTS AND DISCUSSION

A. Subwavelength aperture coupled to an oscillator

Consider a small aperture defined by a closed boundary
in a conductive wall, and a resonant system, with natural
frequency�, to which the aperture is coupled. Focusing on
electromagnetic waves, we take m to be the induced,
effective magnetic dipole of the opening and H0 to be
the tangential component of the time-harmonic magnetic
field that would exist in the absence of the opening (similar
considerations apply to the effective electric dipole, which
arises when the boundary problem involves the normal
component of the electric field) [1,18]. We assume that
the magnetic polarizability tensor is diagonal, and that
the only effect of the coupling is to introduce poles at
! � �� so that

m ¼ �2‘3H0

!2 ��2 � i!=�
: (1)

Here ‘ is a characteristic length of the aperture, ! ¼
2�c=� is the angular frequency (c is the speed of light),
and � <1 accounts for losses; a time dependence e�i!t is
understood throughout. In the absence of other sources
of dissipation, the lifetime � can be obtained by equating
the power delivered by the magnetic field, PDð!Þ ¼
Reði!m�H0Þ=2 to that radiated by the dipole, namely,
PRð!Þ ¼ !4jmj2=3�c3.

Consistent with the general theory of small apertures [1],
Eq. (1) givesm � �‘3H0 for! � � and, therefore, PR /
‘6=�4. We then recover the well-known off-resonance
expression TN � ‘4=�4. On the other hand, for j!2 �
�2j � !=�, we have jmj � ��‘3H0 and � ¼
3�c3=2�4‘3. Using these values, the radiated power is

PRð�Þ ¼ 3c�2H2
0=16�; (2)

which is comparable to that of an incident beam focused
down to a spot of approximately � in size. Thus, we obtain
the anticipated result, TNð�Þ � �2=‘2, setting a fundamen-
tal bound to the transmittance [19]. As suggested by a
straightforward application of Babinet’s principle, it is
clear that the transmission enhancement and the enhanced
cross section of resonant antennas (approximately �2; see,
e.g., [20]), are closely related phenomena. Just as for
antennas, the ideal ð�=‘Þ6 enhancement over the value
for ! � � will be significantly reduced in real metals
due to conduction losses. The analysis leading to Eq. (2)
accounts for the interaction of openings with single

plasmons and geometric resonances and, with few changes,
for transmission through a pair of holes in resonant cavities
[10]. However, as discussed later, Eq. (2) does not apply to
single-slit funneling [8,11,15] or other cases involving
extended, waveguide modes that do not interact directly
with the external field. It is also interesting to point out that
jmj doubles its value and, thus, that PR increases by a
factor of 4, if the aperture radiates into half space. In
such cases, the reflected beam of a tightly focused wave
would change its phase by a factor of �.

B. Transmission through a slotted
parallel-plate waveguide

The above arguments can be extended to apertures
bound by an open curve. Consider wave transmission for
the slotted parallel plates shown in Fig. 1; h is the plate
separation and� is the half-width of the slits. The equation
to solve is the two-dimensional Helmholtz equation:�

@2

@x2
þ @2

@z2
þ k2

�
� ¼ 0: (3)

Physically, � represents either one of the Cartesian com-
ponents of the fields in Maxwell’s equations or the free-
space quantum wave function in Schrödinger’s equation;
k ¼ 2�=� where � is the vacuum or the de Broglie wave-
length. We note that perfect transmission in two dimen-
sions requires that TN � �=�. In the following and for
definitiveness, we concentrate on the electromagnetic
problem and assume that the waveguide walls are infini-
tesimally thin and made of a perfect conductor so that the
boundary condition at the walls is � � 0 for the compo-
nent(s) of the magnetic (electric) field perpendicular
(parallel) to the plates. We further take � to embody the

FIG. 1. Geometry of the problem. Slits, defined by z ¼ �h=2,
jxj<�, have been cut in the infinitesimally thin walls of a
parallel-plate waveguide. Empty space fills the regions jzj 	 h=2
and between the slotted screens. Ey � 0 at the walls.
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y component of the electric field Ey. Thus, following

the convention used in recent papers [11,15,21], the
geometry is that of transverse-electric (TE) excitation in
which the magnetic field is perpendicular to the slit
axis. Using results from [22], it can be shown that the
transverse-magnetic (TM) case (magnetic field along y)
does not give perfect transmission. Concerning the labels
TE and TM, we note the unfortunate fact that the current
usage of these terms is a transposition of that in the early
engineering literature [8,22,23].

Let � ¼ �0J1ðk~�Þ sin ~’ be the solution to Eq. (3) in the
absence of the slits, where �0 is a constant, ~�2 ¼ x2 þ
ðz� h=2Þ2, and sin ~’ ¼ ðz� h=2Þ=~�. � is a cylindrical
electric field that contains both the incident and reflected
waves, with diffraction-limited focus on the right plate.
Defining

�ðqÞ ¼
8<
:þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � q2
p

; jqj 
 k

þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � k2

p
; jqj> k;

we write the solution as

Eyðx; zÞ ¼

8>>>>>><
>>>>>>:

Rþ1
�1 FðþÞðqÞeþi�ðz�h=2Þeiqxdqþ� ðz > h=2ÞRþ1
�1

�
AðeÞðqÞ cos�z

cos�h=2 þ AðoÞðqÞ sin�z
sin�h=2

�
eiqxdq ðjzj< h=2ÞRþ1

�1 Fð�ÞðqÞe�i�ðzþh=2Þeiqxdq ðz <�h=2Þ:
(4)

Here, AðeÞ ¼ ðFðþÞ þ Fð�ÞÞ=2 and AðoÞ ¼ ðFðþÞ � Fð�ÞÞ=2
so that both the electric field and the z component of
the magnetic field Hz / @Ey=@x are continuous at the
openings.

As an intermediate step to solve our problem, we review
briefly the analysis for diffraction by a single slit [23].
Taking h ¼ 0, and using

FðqÞ ¼ 1

2�

Z þ�

��
Eyðx0; 0Þe�iqx0dx0;

where FðqÞ ¼ Fð�ÞðqÞ, the continuity of Hx / @Ey=@z

gives

k�0

2
¼�ik2

�
1þ 1

k2
d2

dx2

�Z þ�

��
Eyðx0;0ÞHð1Þ

0 ðkjx0 � xjÞdx0;

where Hð1Þ
0 is a Hankel function. Recalling the expansion

valid for k� � 1,

Hð1Þ
0 ðk�Þ � i

2

�
lnð�k�=2Þ

(� ¼ 1:781 08 . . . ) and the following identity from Hilbert
transform theory [23]:

d2

d�2

Z þ1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �02

q
lnj�� �0jd�0 ¼ �;

we get the following for slits that are narrow relative to the
wavelength:

Eyðx; 0Þ ¼
�
E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=�2

p jxj<�
0 jxj>�;

and, therefore,

FðqÞ ¼ E0�

2

J1ðq�Þ
q�

; (5)

where

E0 � �0

2k�

�
lnð�k�=2Þ þ 2

k2�2

��1
:

Since, to lowest order, E0 / �, it can be shown that
the power transmitted is proportional to �4. It then
follows that TN � �3=�3. A similar procedure gives TN /
ð�=�Þln�2ð�=�Þ for the TM geometry. The difference
between the two cases reflects the fact that the effective
magnetic dipole density for the TM and TE modes are
proportional, respectively, to 1= ln� (dipole along y) and
�2 (dipole along x) [23]. The appearance of a logarithmic
term in the polarizability is a feature of two-dimensional
problems. For closed boundaries, all the terms in the
magnetic and electric polarizability tensor are proportional
to ‘3 [1,18].
Coming back to the slotted parallel-plate problem, one

can invoke the method of moments [24] to prove that, in
the limit � � h, and for source fields that vary slowly in
the scale of the slit width, the approximate solution for
jzj ¼ h=2 must be also of the form (5). That is,

Fð�ÞðqÞ ¼ �ð�Þ J1ðq�Þ
q�

:

The condition that @Ey=@z be continuous at z ¼ �h=2

determines the constant factors �ð�Þ.
Equation (4) exhibits singularities at q ¼ 0 for kh ¼ p�

(integer p > 0) reflecting the cutoff frequencies of the
waveguide or, alternatively, the Fabry-Pérot resonances
of the parallel plates. In the vicinity of the lowest cutoff
frequency !C ¼ �c=h, we write kh ¼ �� & (j&j � 1)
and get

�ðþÞ ¼ A

B2 � A2
k�0; �ð�Þ ¼ �B

B2 � A2
k�0: (6)
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Here A ¼ B� Cþ i�k2=2 with

B � 1

2

Z
jqj<k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2

q
tan½ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � q2

q
Þh=2�dq

� k2

ffiffiffiffiffiffiffi
2�

j&j

s
�

8<
: 1 ð& > 0Þ
i ð& < 0 Þ;

and

C � 4
Z
jqj>k

J1ðq�Þ
q�

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � k2

q
Þeiqxdq

� 4k2
�
lnð�k�=2Þ þ 2

k2�2

�
:

Concerning the transmitted power, one can distinguish

three regimes: (i) C � B results in 0< �ð�Þ �
�ðþÞ � k�2�0; (ii) C ¼ 2B, that is,

& ¼ &R � �

2

�
lnð�k�=2Þ þ 2

k2�2

��2
;

which gives �ð�Þ � �ðþÞ � i�0=�k (TN � �=�); and

(iii) C � B with �ð�Þ���ðþÞ��k�2�0 (TN � �3=�3).
The images in Fig. 2 show representative examples of the
field intensity profile for the three cases. The features in
Fig. 2(a) reflect mainly the spatial interference between the
incident and reflected fields, i.e., j�j2, whereas the inten-
sity pattern in Fig. 2(c) is that of the resonance with the
lowest cutoff mode of the waveguide which, as shown
later, manifests itself as a cusp in the transmittance.
Transmission is negligible for (i); it is much larger and,
surprisingly, comparable to that for a single slit in
case (iii), and significantly larger for (ii). From Eq. (6),
we can establish that the latter case is associated with a
long-lived resonance centered at & ¼ &R, with quality factor

Q� &�3=2
R � ðk�Þ�6, that occurs at a frequency &R!C=�

below the onset of the continuum. As suggested by the data
of Fig. 2(b), the corresponding state acts like a cavity mode
in the sense that it is localized and bound to the orifices inside
the waveguide, but leaks weakly into free space through the
narrow apertures. The existence of aperture-bound cavitylike
modes between conducting plates holds promise for appli-
cations requiring both high spatial resolution and spectro-
scopic discrimination [25]. The localization length can be
gained from Eq. (4). At z ¼ 0, jEyj2 / expð�x=�Þ with

� ¼ �=4ð�&RÞ1=2. It can be further shown that this state is
TE but not TM- active; that is, the fields do not couple to the
localized resonance in the TM configuration.

C. Resonant transmission: Localized (defect)
state vs bulk cutoff mode

We now show that the localized resonance leads to
perfect transmission. At & ¼ &R,

Eyðx;�h=2Þ ¼ 2i�0

�k�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2=�2

q
:

Using the angular spectral decomposition [26], we
obtain the following in the radiation zone (~� � �):

Eyðx; zÞ � i�0

2�k

Z
jqj<k

ei
ffiffiffiffiffiffiffiffiffiffi
k2�q2

p
ðz�h=2Þeiqxdq:

Since the incident field can be written as

�i¼�0J1ðk~�Þsin ~’
¼ �0

2i�k

Z
jqj<k

ðeiðz�h=2Þ
ffiffiffiffiffiffiffiffiffiffi
k2�q2

p
�e�iðz�h=2Þ

ffiffiffiffiffiffiffiffiffiffi
k2�q2

p
Þeiqxdq;

it is clear that the emitted radiation exactly cancels the
reflected beam. This effect is emphasized in Fig. 3 which
shows jEyðx; zÞ=Eyð0; zÞj2; the data are the same as in
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Fig. 2(b). Note that such a normalization makes it appear
that the intensity at x ¼ 0 is nearly the same regardless of
the value of z; actually, the intensity at the origin is
approximately 103 times larger than at the openings.

As pointed out earlier in the discussion of case (iii),
Fig. 2(c), the resonance with the extended cutoff mode
does not give perfect transmission. Rather, the transmitted
power is on the same order as that for a bare single slit. An
inspection of work available in the literature shows that this
also applies to the TM excitation of slotted plates [22] and,
significantly, single-slit funneling, that is, TM transmission
through a narrow slit carved in a metal slab [8,11,21,27].
Just as for our TE case, the power transmitted at the
cutoff frequency (kh ¼ p�) in these two cases is compa-

rable to that for off-resonance excitation of a single slit.
Specifically, using expressions derived in [11,12] we find
that the common leading term for funneling and TM
excitation of the slotted plates is

TN / �=�

ln2ð�=�Þ ; (7)

while, as already mentioned, the TE geometry gives
TN � �3=�3, exactly matching the results for single slits
(note that the transmitted power vanishes for both configu-
rations when � ! 0). Parenthetically, we draw attention
to the differences between funneling through individual
slits and through slit arrays for which the slit separation is
d � � [28]. Arrays behave as continuous anisotropic me-
dia described by effective permittivity and permeability
tensors which, unlike individual slits (but like standard
optical slabs), transmit perfectly TM-polarized plane
waves at the Fabry-Pérot-like resonances [28].
It is apparent from the previous considerations that

Eq. (2) correctly describes the transmission behavior of
the localized resonance whereas, regardless of the geome-
try, it does not apply to bulk cutoff modes, which are
extended. The example of TE excitation of slotted plates
sheds light on the general relationship between cutoff
resonances and single-slit transmission. From Eq. (4) at
kh � �, the difference between the field with and without
the orifices �Ey becomes simply

�Eyðx; zÞ ¼
8<
:
�aO

Rþ1
�1

J1ðq�Þ
q� ei�ð�z�h=2Þeiqxdq ð�z > h=2Þ

aE coskzþ aO
Rþ1
�1

J1ðq�Þ
q�

sin�z
sinð�h=2Þ e

iqxdq ðjzj< h=2Þ:

Here, aE and aO are constants representing the amplitude
of the cutoff mode and that of the correction due to the
presence of the apertures. After eliminating lower-order
terms, the continuity of @Ey=@z gives

aE ¼ ��0=4;

aO � h�0

8�

�
lnð���=2hÞ þ 2h2

�2�2

��1
: (8)

The comparison with Eq. (5) shows that the expression
for the odd term is exactly half that of FðqÞ for an un-
coupled single slit. Moreover, since the magnitude of aE is
equal to half that of the incident field, the resulting fields
acting on the two apertures have the same magnitude but
opposite signs. Hence, the effect of the resonance is to
bring up the amplitude of the cutoff mode so that the
aperture that does not interact directly with the external
field behaves as if it were in contact with a field half its
value. Thus, the net transmission is formally identical to
that of an individual slit. With minor modifications, it can
be shown that these arguments apply as well to the two-slit
TM problem and TM funneling.
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FIG. 3. Contour plot of jEyðx; zÞ=Eyð0; zÞj2 for & ¼ &R. The
values are the same as in Fig. 2(b).

10

10

-4

-3

10
-2

10
-1

1 TM

TE

ωh/c-π

T
R

A
N

S
M

IT
T

E
D

 P
O

W
E

R

-0.02 -0.01 0 0.01 0.02

ωh/c-π

-0.02 0 0.02

0.3

0.4

0.5

 

 

 

T
R

A
N

S
M

IT
T

E
D

 P
O

W
E

R

FIG. 4. Log plot of the transmitted power, normalized to the
value corresponding to perfect transmission, as a function of the
frequency. The data are for � ¼ h=10. Results reported in [22]
were used to get the TM curve. A linear plot for the TM
geometry is shown in the inset.
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To underline the differences between the TE and TM
geometries and recap the main results, we show in Fig. 4
the frequency dependence of the normalized transmittance
in the vicinity of the fundamental Fabry-Pérot resonance.
The TE and TM curves were obtained, respectively, from
Eq. (6) and exact expressions derived in [22]. Both curves
show a cusp at ! ¼ �c=h and, as discussed above, the
transmission at the cusps is on the order of that for a single
unresonated slit [we stress the fact that the transmitted
power for a single slit is a factor of approximate
ð�4=�4Þln�2ð�=�Þ larger for the TM geometry]. As shown
in the inset, the TM cusp corresponds to a maximum in the
transmission. The TE spectrum exhibits not a maximum
but a kink due to interference with the dominant resonance
due to the localized mode.

III. CONCLUSIONS

In summary, we discussed a general model of wave
transmission through apertures that accounts for the
extraordinary properties of subwavelength openings that
interact with a single oscillator. We also presented an
analytically solvable example of perfect transmission
associated with a state bound to openings cut in the walls
of a two-dimensional waveguide, and showed that the
resonance involving the extended cutoff mode of the bulk
exhibits imperfect transmission properties, which are iden-
tical to those of a single, nonresonated aperture. Finally, we
established that such a single-aperture-like behavior is a
general property of resonances involving bulk modes,
which do not interact directly with the incident field, and
ascertained its relevance to the effect known as light fun-
neling, that is, resonant transmission through subwave-
length slits carved in a thick piece of metal.
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