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Complex networks are a highly useful tool for modeling a vast number of different real world

structures. Percolation describes the transition to extensive connectedness upon the gradual addition

of links. Whether single links may explosively change macroscopic connectivity in networks

where, according to certain rules, links are added competitively has been debated intensely in the

past three years. In a recent article [O. Riordan and L. Warnke, Explosive Percolation is Continuous,

Science 333, 322 (2011).], O. Riordan and L. Warnke conclude that (i) any rule based on picking a fixed

number of random vertices gives a continuous transition, and (ii) that explosive percolation is continuous.

In contrast, we show that it is equally true that certain percolation processes based on picking a fixed

number of random vertices are discontinuous, and we resolve this apparent paradox. We identify and

analyze a process that is continuous in the sense defined by Riordan and Warnke but still exhibits infinitely

many discontinuous jumps in an arbitrary vicinity of the transition point: a Devil’s staircase. We

demonstrate analytically that continuity at the first connectivity transition and discontinuity of the

percolation process are compatible for certain competitive percolation systems.
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Percolation, the transition to extensive connectedness of
a network, governs the dynamics of many social and
physical systems as well as in epidemic spreading of
infectious diseases and information propagation [1–3].
Adding links is often not a purely random process but
rather a competitive one [4,5]. In fact, with a spreading
disease, travelers choose between one of several routes and
destinations. As a result, the mobility patterns of those
infected are often governed by competitive elements
[6,7]. Consider epidemic spreading of an infectious dis-
ease. Assume that the dynamics is well described by
the susceptible-infected model [8] where a population of
N individuals at any point in time is decomposed into
susceptibles S and infected I such that N ¼ I þ S. Let
the infected instantaneously transmit the disease to the
susceptibles, S ! S� 1; I ! I þ 1, according to a given
contact-network dynamics [4]. A link represents an infec-
tious contact and is introduced to the system whenever a
susceptible is infected by an infected individual. The order
parameter as a function of the number of links added is the
size of the largest component (of infected) in the evolving
(contact) network. Across all percolating systems, once
the number of added links exceeds a certain critical value,
the system undergoes a phase transition characterized by
a sudden emergence of a giant component. In the case
of contact-network dynamics, the emergence of a giant

component corresponds to an epidemic outbreak. Hence,
the first emergence of a giant component has traditionally
attracted the most attention in percolation theory [1,2,9].
In contrast, multiple transitions in percolating systems

have, however, been overlooked so far. Multiple phase
transitions–which occur in competitive percolation, as we
will demonstrate–are of high interest in various fields,
particularly in geophysics and the physics of liquid crystals,
but also generally in classical thermodynamics and solid
state physics; see, e.g., [10–16] and references therein.
Infectious diseases, such as measles, sometimes exhibit

multiple outbreaks [8]. Thus, it is not only the evolution of
the size of the largest component of infected I at the first
transition t1, where the number of infected becomes mac-
roscopic for the first time, that decisively determines the
spread but also its evolution after the first transition
Iðt > t1Þ—and all other possible successive outbreaks.
The dynamics of networked systems where macroscopic
components emerge abruptly is virtually impossible to
predict or control, whereas systems exhibiting continuous
transitions are, in principle, controllable. Hence, the type
of transition is crucial for the prediction and control of
many social and technological networked systems [3,17],
for example, in epidemic spreading.
In a seminal paper, Achlioptas et al. [18] found strong

numerical evidence for abrupt transitions in processes
where links compete for addition rather than being intro-
duced to the network purely at random. The authors called
these abrupt transitions ‘‘explosive’’ since there was no
analytical evidence that the transitions they had found
numerically were truly discontinuous. Seemingly abrupt
transitions involving power law divergences with very
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small exponents have been characterized as ‘‘weakly dis-
continuous’’ [5]. In contrast, truly abrupt transitions are
sometimes called ‘‘most explosive’’ [19].

Explosive percolation has been extensively studied over
the past three years in a number of follow-up works (see
[5,19–30] and references therein). Most publications
present further numerical evidence that such competitive
processes exhibit discontinuous transitions. However, a
small number of publications has emerged that presents
increasing evidence that they might have continuous fea-
tures [5,21,22].

The question is therefore the following: Given the
mechanism by which links are being added to a networked
system, will the transition from the unconnected phase to
global connectedness be continuous or abrupt? Very
recently, Riordan and Warnke have studied the type
of the first transition for a large class of percolation pro-
cesses [31]. The authors grouped the rules receiving the
most attention into three classes, in increasing order of
generality: Achlioptas processes (AP), merging l-vertex
(ML) rules, and general l-vertex (GL) rules [31–33].
Importantly, Riordan and Warnke considered two different
types of continuity: continuity of the first connectivity (fc)
transition, and global continuity (gc), i.e., continuity
throughout the process. Their primary claim, which is
made in [31], is that Achlioptas processes are fc continu-
ous, that is, at the first connectivity transition. In [32],
however, they demonstrate that processes of all three
classes are fc continuous, and processes of classes AP
and ML are also gc continuous. Riordan and Warnke state
that (i) any rule based on picking a fixed number of random
vertices gives a continuous transition, and (ii) that explo-
sive percolation is continuous.

In the Achlioptas processes at each time step, two (or
more) randomly chosen links compete for addition, and one
of themwins the competition and is added. In this article,we
focus on processes of the most general class, GL where a
number of vertices are repeatedly chosen at random, and
subsequently, according to a certain rule, two of the chosen
vertices are linked [31]. The number l of vertices to be
chosen in each step is considered to be constant throughout
the process. However, if l ! 1 as N ! 1, e.g., for l� N,
then the rule that joins the two smallest distinct components
involves a single discontinuous transition [5,28,31]. Such
discontinuous processes are, however, necessarily trivial in
the sense that the jump in the order parameter occurs at the
very end of the process—as in well-known discontinuous
percolation on a one-dimensional lattice [5].

We now construct a percolation process that is seem-
ingly contradictory to both (i) and (ii). As we will see later,
the process exhibits a continuous transition at the first
transition point together with infinitely many discontinu-
ous jumps in an arbitrary vicinity of the transition. Hence,
competitive percolation processes are not necessarily
continuous.

(i) Model.—Start with an empty graph GðV ; EÞ of a
finite number N of vertices, jV j ¼ N, together with
the empty set of edges E ¼ ;. Consider the follow-
ing process: At each step, three different vertices v1,
v2, and v3 are chosen uniformly fromV . Let s1, s2,
and s3 denote the sizes of the (not necessarily dis-
tinct) clusters in which they reside. Consider the
absolute value of the differences �i;j ¼ jsi � sjj,
i; j 2 f1; 2; 3g of the cluster sizes. Connect those
two vertices, vi and vj, for which �i;j is minimal

(see Fig. 1). If necessary, choose randomly among
multiple minima, whose corresponding vertices are
to be linked. As a ‘‘final rule,’’ when there are only
two clusters left in the system, connect these. In fact,
the process forbids the single largest cluster to merge
with substantially smaller components. Note that the
rule applies also if the vertices to be linked reside in
the same component.
For a sketch of the process, see Fig. 2. Seemingly
paradoxical, the case example here represents a pro-
cess of the most general class, GL, which is continu-
ous at the first transition. However, the continuity
involves successive discontinuous transitions.

(ii) Resolving the paradox.—How then do we resolve
the apparent paradox? We analytically demonstrate,
in the following, that arbitrarily close to the onset of
the continuous transition there exist infinitely many
discontinuous transitions. For convenience, wemake
use of the Bachmann-Landau notation to characterize
the size of a component Ci in the thermodynamical
limit N ! 1 [9]. Components that are not macro-
scopic are characterized by the small-o notation
Ci ¼ oðNÞ such that Ci=N ! 0 as N ! 1, whereas
macroscopic components Ci ¼ OðNÞ do not vanish

3
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FIG. 1. Sketch of the model. Select three vertices and connect
those two vertices that reside in clusters whose size difference is
minimal. Here, a link between a cluster of size 10 and size 11 is
established because the other two differences, 10� 3 ¼ 7 and
11� 3 ¼ 8, are both larger than 11� 10 ¼ 1. The model does
not suppress the growth of the largest cluster by definition—
contrary to many other explosive percolation processes. In con-
trast to what the sketch might suggest, no spatial embedding and
hence no metric is involved here.
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as Ci=N ! c0; c0 > 0 as N ! 1. In addition, we
assume throughout the manuscript that the indices
i; j label the components’ size rank as C1 � C2 �
C3 � . . . � C�, for some �, which is the index of the
size of the smallest component.
Let us now assure ourselves of the following obser-
vation, which actually holds for any percolation pro-
cess that is based on picking l vertices at random from
a graph.

(iii) Observation 1: Upper limit for the number of mac-
roscopic components.—With an l-vertex rule, there
cannot exist more than l� 1 macroscopic clusters
over any extended period of time: LetM�ðTÞ be the
number of clusters larger than �N at time T, i.e.,
after T (time) steps, for 0<�< 1. Then

jfT: M�ðTÞ � lgj
N

! 0 as N ! 1; (1)

where jfT: M�ðTÞ � lgj denotes the number of
events during the process, satisfying the condition
M�ðTÞ � l.
To check this observation, let us estimate the ex-
pected time that it takes until two clusters, which
are at least �N in size, join once M�ðTÞ � l. Let
A be the event by which, in one step, two clusters,
at least �N in size, join and let B be the event that
we pick, in one step, all l vertices from distinct
clusters at least �N in size. When all vertices are
from distinct clusters at least �N in size , two
clusters at least �N in size necessarily have to
merge as, in each step, two vertices have to be
connected; hence,B impliesA. Therefore, we get

prob ðAÞ � probðBÞ � �l; (2)

where �l is a (rough) lower bound for probðBÞ.
This is found by picking l distinct clusters at least
�N in size, C1; C2; . . . ; Cl, and then assuming the l
vertices are picked from these one by one.
Thus, the expected number of steps that it takes
until two clusters at least �N in size join, given that
M�ðTÞ � l, is bounded from above by 1=�l. As
this number of steps is independent of N, in re-
scaled time a merging of two clusters at least �N in
size would happen instantaneously.
Furthermore, at most 1=� distinct clusters at least
�N in size can be created during the process; i.e.,
this number is independent of N. Thus, the new
creation of clusters at least �N in size cannot make
up for the fast merging of these clusters.
Although, as opposed to traditional random net-
work percolation, for l-vertex rules, multiple giant
components can coexist [19]; the maximal number
of coexisting giants, however, is limited by the
parameter l of the l-vertex rule.
In order to understand why the case example with
l ¼ 3 exhibits the staircase shape, we now analyze
how the largest component increases by the addi-
tion of single links.

(iv) Observation 2: The largest component of the system
can only merge with components whose sizes are
larger than or equal to half of its size (except at the
end of the process).—If this were false, we could
encounter a situation where the largest cluster of
size C1 merges with a cluster that is less than C1=2
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FIG. 2. The continuity of the transition and infinitely many
discontinuities in any neighborhood of the onset of the phase
transition are compatible. (a) Staircase shape of the multiple-
discontinuous stochastic process for N ¼ 655 360 (single real-
ization for l ¼ 3); inset: blowup of the transition region. The
evolution of the two largest components, C1 (black curve), and
C2 (green curve), are displayed. The stairs follow approximately
the rule, C1 ! 3

2C1, already established for small system sizes.

The second largest component exhibits multiple continuous
transitions. Mergers with the largest component involve break-
downs of C2. In the thermodynamic limit, the process shows
infinitely many discontinuous jumps but is still continuous
according to the continuity property (fc) described in the text.
Panel (b) shows a sketch of the staircase process for N ! 1,
characterizing a continuous transition at t1 ¼ Tc=N by infinitely
many discontinuities.

CONTINUOUS PERCOLATION WITH DISCONTINUITIES PHYS. REV. X 2, 031009 (2012)

031009-3



in size. But in this case the other two vertices,
which are not in the largest cluster, would both
have to reside in clusters less than C1=2 in size,
and the size difference between the two smaller
clusters would be less than C1=2 (as the size of
both is already less than C1=2). Therefore, we
merge the two smaller clusters (if at all), and not
the largest cluster, with one of them. As a result, if
the largest cluster merges at all, the size difference
between any of the two smaller clusters and the
largest cluster must be necessarily greater than or
equal to C1=2.
For the following, we write with high probability
(whp) to express that a certain statement does not
necessarily hold for every realization of a large
system, but the probability of it occurring gets
arbitrarily close to 1 as N ! 1. (A rigorous treat-
ment is given in the Supplemental Material [34].)

(v) Observation 3: With high probability, the largest
component cannot be overtaken when already mac-
roscopic.—Assume that C1 ¼ OðNÞ. The merging
of two smaller clusters, together larger than
the largest component, will only take place (whp)
if they are of similar size, i.e., if they exhibit
the same system size scaling. This rules out (whp)
overtaking [5] (at some time T) as C1ðT þ 1Þ ¼
Ci�2ðTÞ þ Cj�2ðTÞ ifCi�2ðTÞ¼oðNÞ butCj�2ðTÞ¼
OðNÞ. Since C1 is OðNÞ, the combination
Ci�2 ¼ oðNÞ, and Cj�2 ¼ oðNÞ, is also ruled out

(whp). Therefore, a merging of two macroscopic
components such that Ci�2 ¼ OðNÞ and Cj�2 ¼
OðNÞ represents (whp) the only type of possible
overtaking. This in turn requires the existence of
three macroscopic components to be picked.
However, from Observation 1 (cf. also [32]), we
conclude that for any process based on picking l
vertices, the probability of the coexistence of l
components of size OðNÞ tends to zero as N ! 1.
Since we have here l ¼ 3, a continuous growth ofC1

is (whp) impossible when C1 ¼ OðNÞ.
The implication of these observations are as follows.
The shape of c1ðtÞ is solely given by either plateaus,
or discontinuous jumps [at least c1ðtÞ=2 in size],
where t ¼ T=N, and ci ¼ Ci=N are scaled varia-
bles, for N ! 1. The second largest component
c2—and all other smaller components ci, i > 2—
exhibit multiple continuous transitions, together
with multiple breakdowns, cf. Fig. 2. In particular,
mergers of c1 and c2 coincide with breakdowns of
c2. The evolution of the system is governed by a
hierarchy of continuous transitions of smaller com-
ponents: Any discontinuous transition of c1 involves
a precedent-continuous transition of c2. Any con-
tinuous transition of c2 involves a precedent transi-
tion of c3, and so forth. The percolation process is

discontinuous in any extended interval, which in-
cludes a small vicinity of the transition point of the
first (continuous) transition.
Nevertheless, according to [31] the process must be
continuous at the distinct point of the first transition
ðt1; 0Þ in the ðt; c1Þ plane.
How many discontinuities occur?

(vi) Observation 4: The process exhibits infinitely many
discontinuities in an arbitrary vicinity of the onset
of the continuous transition ðt1; 0Þ.—Let us
parametrize the evolution of the staircase heights

as CðnÞ
1 � 3

2C
ðn�1Þ
1 , n integer (see also Fig. 2).

Calculate the number of discontinuous jumps n?

from the emergence of the largest component to the
fixed macroscopic size C1=N ¼ � for N ! 1.
We estimate this by the number of steps n? from

Cð0Þ
1 ¼ �N� at the phase transition where we as-

sume sublinear asymptotics as 0< �< 1 [9], to

Cðn?Þ
1 ¼ �N, for some �> �. Hence, Cðn?Þ

1 �
�ð32Þn

?
N� ¼ �N, for fixed N, and we obtain

n? � log3=2ð�=�Þ þ ð1� �Þlog3=2ðNÞ ! 1;

as N ! 1: (3)

Since the occurrence of a transition at some t1 � 0,
where C1 is OðNÞ for the first time, is guaranteed
[31], the staircase necessarily approaches exactly the
point ðt1; 0Þ, as N ! 1. As a result, the staircase
process exhibits infinitelymany discontinuous jumps
arbitrarily close to the onset of the first phase tran-
sition. Interestingly, this consequence can be deduced
alreadyusing only (fc) continuity andobservations 1–
3 (cf. also Supplemental Material [34]).
To conclude, we have resolved the following para-
dox. Riordan and Warnke have shown that all three
classes of percolation processes they considered ex-
hibit a transition that is continuous (in themathemati-
cal sense) at one point. They have further shown that
AP andMLprocesses are globally continuous but did
not state anything about continuity beyond that single
point for the most general class, GL. As we demon-
strated above, GL processes are not necessarily glob-
ally continuous but may well exhibit (possibly
infinitely many) discontinuities. In contrast to the
current view, continuity at the first transition does
not imply the existence of a continuous divergence,
such as the power law divergences (with small ex-
ponents) that have been identified and analyzed in
competitive percolation [21]. All rigorously studied
percolation processes, where the largest component
canmergewith smaller components, have been found
to exhibit single continuous transitions. In contrast,
we have falsified thehypothesis that ‘‘a discontinuous
transitioncanonlyoccur if one avoids connecting two
components that are already large’’ [35]. The process,
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in particular, represents the first proposed example in
explosive percolation where the largest component
is allowed to merge with smaller components, but
where multiple-discontinuous jumps still occur.
We have focused on a particular model because it
serves as a counterexample for the claim that com-
petitive percolation is always continuous. The order
parameter of the model displays a Devil’s staircase
with an infinite hierarchy of discontinuous jumps. To
our knowledge, such a phase transition has not been
reported in classical statistical mechanics of critical
phenomena, except for a very recent study where the
authors found strong numerical evidence for multiple
jumps [36].
We have established that all processes based on pick-
ing three ormore vertices at random, followed by any
rule that essentially forbids the largest picked com-
ponent tomergewith componentswhose sizes are not
similar, exhibit discontinuous transitions. As a result,
competitive percolation is not always continuous.
However, the necessary conditions for observing
abrupt transitions in network percolation remain to
be explored.
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