PHYSICAL REVIEW X 2, 031007 (2012)

Layered Architecture for Quantum Computing

N. Cody Jones,l’* Rodney Van Metelr,2 Austin G. Fowler,3 Peter L. McMahon,1 Jungsang Kim,4
Thaddeus D. Ladd,l’5 and Yoshihisa Yamamoto'

YEdward L. Ginzton Laboratory, Stanford University, Stanford, California 94305-4088, USA
*Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa 252-0882, Japan

3Centre for Quantum Computation and Communication Technology, University of Melbourne, Victoria 3010, Australia

*Fitzpatrick Institute for Photonics, Duke University, Durham 27708, North Carolina, USA
>National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
(Received 1 September 2011; revised manuscript received 5 April 2012; published 31 July 2012)

We develop a layered quantum-computer architecture, which is a systematic framework for tackling the
individual challenges of developing a quantum computer while constructing a cohesive device design. We
discuss many of the prominent techniques for implementing circuit-model quantum computing and
introduce several new methods, with an emphasis on employing surface-code quantum error correction. In
doing so, we propose a new quantum-computer architecture based on optical control of quantum dots. The
time scales of physical-hardware operations and logical, error-corrected quantum gates differ by several
orders of magnitude. By dividing functionality into layers, we can design and analyze subsystems
independently, demonstrating the value of our layered architectural approach. Using this concrete
hardware platform, we provide resource analysis for executing fault-tolerant quantum algorithms for
integer factoring and quantum simulation, finding that the quantum-dot architecture we study could solve

such problems on the time scale of days.

DOI: 10.1103/PhysRevX.2.031007

L. INTRODUCTION

Quantum computing as an engineering discipline is still
in its infancy. Although the physics is well understood,
developing devices that compute with quantum mechanics
is technologically daunting. While experiments to date
manipulate only a handful of quantum bits [1], we consider
what effort is required to build a large-scale quantum
computer. This objective demands more than a cursory
estimate of the number of qubits and gates required for a
given algorithm. One must consider the faulty quantum
hardware, with errors caused by both the environment and
deliberate control operations; the classical processing
required when error correction is invoked; the special
treatment required for constructing arbitrary gate sequen-
ces from a limited fault-tolerant set; and so on. This paper
provides a framework for addressing the complete chal-
lenge of designing a quantum computer.

Many researchers have presented and examined compo-
nents of large-scale quantum computing. We study here
how these components may be combined in an efficient
design, and we introduce new methods that improve the
quantum computer we propose. This engineering pursuit is
quantum-computer architecture, which we develop here
in layers. An architecture decomposes complex system

*ncodyjones @gmail.com
Published by the American Physical Society under the terms of
the Creative Commons Attribution 3.0 License. Further distri-

bution of this work must maintain attribution to the author(s) and
the published article’s title, journal citation, and DOL

2160-3308/12/2(3)/031007(27)

031007-1

Subject Areas: Quantum Physics, Quantum Information

behaviors into a manageable set of operations. A layered
architecture does this through layers of abstraction where
each layer embodies a critical set of related functions. For
our purposes, each ascending layer brings the system
closer to an ideal quantum-computing environment.

The paper is organized as follows. The remainder of
Sec. I provides a global view of a layered quantum-
computer architecture, indicating how the topics we ex-
amine are connected to each other. Section II enumerates
the essential components of a quantum computer by
examining a new hardware platform based on the optical
control of quantum dots. Section III discusses control
techniques for suppressing hardware errors prior to using
active error correction. Section IV demonstrates how to
implement and account for the resources of quantum
error correction, with particular emphasis on the surface
code [2]. Section V analyzes the necessary techniques for
constructing universal quantum gates from the limited set
of operations provided by error correction. Section VI
calculates the computer resources necessary to imple-
ment two prominent quantum algorithms: integer factor-
ing and quantum simulation. Section VII discusses
timing issues that affect how the layers in the architecture
interact with each other. Finally, Section VIII discusses
how our findings are applicable to future work in quan-
tum computing.

A. Prior work on quantum-computer architecture

Many different quantum-computing technologies are
under experimental investigation [1], but for each a
scalable system architecture remains an open research

Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevX.2.031007
http://creativecommons.org/licenses/by/3.0/

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

problem. Since DiVincenzo introduced his fundamental
criteria for a viable quantum-computing technology [3],
and Steane emphasized the difficulty of designing systems
capable of running quantum error correction (QEC)
adequately [4,5], several groups of researchers have
outlined various additional taxonomies addressing the
architectural needs of large-scale systems [6,7]. As an
example, small-scale interconnects have been proposed
for many technologies, but the problems of organizing
subsystems using these techniques into a complete archi-
tecture for a large-scale system have been addressed
by only a few researchers. In particular, the issue of het-
erogeneity in system architecture has received relatively
little attention.

The most important subroutine in fault-tolerant quantum
computers considered thus far is the preparation of ancilla
states for fault-tolerant circuits, because these circuits
often require very many ancillas. Taylor et al. proposed a
design with alternating ‘‘ancilla blocks” and ‘data
blocks™ in the device layout [8]. Steane introduced the
idea of “factories” for creating ancillas [9], which we
examine for the case of the surface code in this work.
Isailovic et al. [10] studied this problem for ion-trap
architectures and found that, for typical quantum circuits,
approximately 90% of the quantum computer must be
devoted to such factories in order to calculate ‘““at the speed
of data,” or where ancilla production is not the rate-
limiting process. The findings we present here are in close
agreement with this estimate. Metodi et al. also considered
production of ancillas in ion-trap designs, focusing instead
on a 3-qubit ancilla state used for the Toffoli gate [11],
which is an alternative pathway to a universal fault-tolerant
set of gates.

Some researchers have studied the difficulty of moving
data in a quantum processor. Kielpinski et al. proposed a
scalable ion-trap technology utilizing separate memory
and computing areas [12]. Because quantum error correc-
tion requires rapid cycling across all physical qubits in the
system, this approach is best used as a unit cell replicated
across a larger system. Other researchers have proposed
homogeneous systems built around this basic concept.
One common structure is a recursive H tree, which works
well with a small number of layers of a Calderbank-Shor-
Steane code, targeted explicitly at ion-trap systems
[13,14]. Oskin et al. [15], building on the Kane solid-state
NMR technology [16], proposed a loose lattice of sites,
explicitly considering the issues of classical control and
movement of quantum data in scalable systems, but with-
out a specific plan for QEC. In the case of quantum
computing with superconducting circuits, the quantum
von Neumann architecture specifically considers dedicated
hardware for quantum memories, zeroing registers, and a
quantum bus [17].

Long-range coupling and communication is a signifi-
cant challenge for quantum computers. Cirac et al.

proposed the use of photonic qubits to distribute entan-
glement between distant atoms [18], and other research-
ers have investigated the prospects for optically mediated
nonlocal gates [19-23]. Such photonic channels could be
utilized to realize a modular, scalable distributed quan-
tum computer [24]. Conversely, Metodi er al. consider
how to use local gates and quantum teleportation to move
logical qubits throughout their ion-trap Quantum Logic
Array architecture [11]. Fowler et al. [25] investigated a
Josephson-junction flux-qubit architecture considering
the extreme difficulties of routing both the quantum
couplers and large numbers of classical control lines,
producing a structure with support for Calderbank-
Shor-Steane codes and logical qubits organized in a
line. Whitney et al. [26,27] have investigated automated
layout and optimization of circuit designs specifically for
ion-trap architectures, and Isailovic et al. [10,28] have
studied interconnection and data-throughput issues in
similar ion-trap systems, with an emphasis on preparing
ancillas for teleportation gates [29].

Other work has studied quantum-computer architectures
with only nearest-neighbor coupling between qubits in an
array [30-34], which is appealing from a hardware design
perspective. With the recent advances in the operation of
the topological codes and their desirable characteristics
such as having a high practical threshold and requiring
only nearest-neighbor interactions, research effort has
shifted toward architectures capable of building and main-
taining large two- and three-dimensional cluster states
[35-38]. These systems rely on topological error-
correction models [39], whose higher tolerance to error
often comes at the cost of a larger physical system, relative
to, for example, implementations based on the Steane code
[40]. The surface code [2], which we examine in this work
for its impact on architecture, belongs to the topological
family of codes.

Recent attention has been directed at distributed
models of quantum computing. Devitt er al. studied
how to distribute a photonic cluster-state quantum-
computing network over different geographic regions
[41]. The abstract framework of a quantum multicom-
puter recognizes that large-scale systems demand hetero-
geneous interconnects [42]; in most quantum-computing
technologies, it may not be possible to build monolithic
systems that contain, couple, and control billions of
physical qubits. Van Meter et al. [43] extended this
architectural framework with a design based on nano-
photonic coupling of electron-spin quantum dots that
explicitly uses multiple levels of interconnect with vary-
ing coupling fidelities (resulting in varying purification
requirements), as well as the ability to operate with a
very low yield of functional devices. Although that pro-
posed system has many attractive features, concerns
about the difficulty of fabricating optical components of
adequately high quality and the desire to reduce the

031007-2

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

lattice cycle time of the surface code led to the system
design proposed in this paper.

B. Layered framework

A good architecture must have a simple structure while
also efficiently managing the complex array of resources
in a quantum computer. Layered architectures are a con-
ventional approach to solving such engineering problems
in many fields of information technology, and Ref. [14]
presents a layered software architecture for designing
quantum computers. Our architecture, which describes
the physical design of the quantum computer, consists of
five layers, where each layer has a prescribed set of duties
to accomplish. The interface between two layers is defined
by the services a lower layer provides to the one above it.
To execute an operation, a layer must issue commands to
the layer below and process the results. Designing a sys-
tem this way ensures that related operations are grouped
together and that the system organization is hierarchical.
Such an approach allows quantum engineers to focus on
individual challenges, while also seeing how a process fits
into the overall design. By organizing the architecture in
layers, we deliberately create a modular design for the
quantum computer.

The layered framework can be understood by a control
stack composed of the five layers in the architecture.
Figure 1 shows an example of the control stack for the
quantum-dot architecture we propose here, but the particu-
lar interfaces between layers will vary according to the
physical hardware, quantum error-correction scheme, and
so on, that one chooses to implement. At the top of the
control stack is the Application layer, where a quantum

Layer 5: Application

Quantum algorithms and interface to classical user

Application
measurement qubit gates

Application Application

Logical Logical Logical Injected

measurement qubit CNOT ancilla state

QEC corrects arbitrary system errors if rate is below threshold

Measure Measure Virtual Virtual Virtual

Z-basis X-basis qubit 1-qubit gate CNOT

Layer 2: Virtual

Open-loop error-cancellation such as dynamical decoupling

Layer 4: Logical
Construct a substrate supporting universal quantum computation

QND Physical Host 1-Qubit 2-Qubit
readout qubit system gate gate

Layer 3: Quantum error correction j

[Layer 1: Physical

Hardware apparatus including physical qubits and control operations

FIG. 1. Layered control stack that forms the framework
of a quantum-computer architecture. Vertical arrows indicate
services provided to a higher layer.

algorithm is implemented and results are provided to
the user. The bottom Physical layer hosts the raw
physical processes supporting the quantum computer.
The layers between (Virtual, Quantum Error Correction,
and Logical) are essential for shaping the faulty quantum
processes in the Physical layer into a system of high-
accuracy, fault-tolerant [44] qubits and quantum gates at
the Application layer.

C. Interaction between layers

Two layers meet at an interface, which defines how they
exchange instructions or the results of those instructions.
Many different commands are being executed and pro-
cessed simultaneously, so we must also consider how the
layers interact dynamically. For the quantum computer to
function efficiently, each layer must issue instructions to
layers below in a tightly defined sequence. However, a
robust system must also be able to handle errors caused
by faulty devices. To satisfy both criteria, a control loop
must handle operations at all layers simultaneously while
also processing syndrome measurement to correct errors
that occur. A prototype for this control loop is shown
in Fig. 2.

The primary control cycle defines the dynamic behav-
ior of the quantum computer in this architecture since all
operations must interact with this loop. The principal
purpose of the control cycle is to successfully implement
quantum error correction. The quantum computer must
operate fast enough to correct errors. Still, some control
operations necessarily incur delays, so this cycle does not
simply issue a single command and wait for the result
before proceeding—Pipelining is essential [10,45]. A re-
lated issue is that operations in different layers occur on
drastically different time scales, as discussed later in
Sec. VII. Figure 2 also describes the control structure
needed for the quantum computer. Processors at each
layer track the current operation and issue commands to
lower layers. Layers 1 through 4 interact in the loop,
whereas the Application layer interfaces only with the
Logical layer, since it is agnostic about the underlying
design of the quantum computer (which is explained
in Sec. VI).

D. The QuDOS hardware platform

The layered framework for quantum computing was
developed in tandem with a specific hardware platform,
known as QuDOS (quantum dots with optically con-
trolled spins). The QuDOS platform uses electron spins
within quantum dots for qubits. The quantum dots are
arranged in a two-dimensional array; Fig. 3 shows a
cutaway rendering of the quantum-dot array inside an
optical microcavity, which facilitates control of the elec-
tron spins with laser pulses. We demonstrate that the
QuDOS design is a promising candidate for large-scale

031007-3

N. CODY JONES et al. PHYS. REV. X 2, 031007 (2012)

Issue }
Commands

Compiled Decompose QEC Maintain virtual

algorithm circuits into virtual qubits and gates .
with physical Quantum region

qubits and gates

control sequences

Application
layer

QEC

Virtual layer #
controller controller # @
Store quantum
Logical information
9 . Quantum error -
processing correction Virtual layer
processing processing @

Logical
controller brocess
Pipelined control cycle quantum
information

<

QEC syndrome Physical-to-virtual

processing object translation Measure
quantum
information

syndrome h Virtual layer «_ ' m
processor processor

Construct logical {
substrate for quantum
computing by

decomposing arbitrary

gates into fundamental

gates and ancillas

Layer 5: Application

Process virtual qubit Translate hardware
Layer 4: Logical measurements to readout signal into
Layer 3: QEC determine error measurement of
Layer 2:Virtual syndrome and virtual qubits

update Pauli frame

@ Layer 1: Physical

Process
Results

FIG. 2. Primary control cycle of a quantum computer with the layered architecture. Whereas the control stack in Fig. 1 dictates the
interfaces between layers, the control cycle determines the timing and sequencing of operations. The dashed box encircling the
Physical layer indicates that all quantum processes happen exclusively here, and the layers above process and organize the operations
of the Physical layer. The Application layer is external to the loop since it functions without any dependence on the specific quantum-
computer design.

(a) (b) Laser light

GaAs/AlGaAs
DBR cavity

Quantum dot

FIG. 3. Quantum dots in a planar optical microcavity form the basis of the QuDOS hardware platform. (a) The quantum dots are
arranged 1 pm apart in a two-dimensional square array. The quantum dots trap single electrons, whose spins will be used for quantum
information processing. (b) Side view. The electron spins are manipulated with laser pulses sent into the optical cavity from above, and
two neighboring quantum dots can be coupled by a laser optical field that overlaps them. The purple and green layers are AlGaAs and
GaAs, grown by molecular-beam epitaxy. The alternating layers form a distributed-Bragg-reflector (DBR) optical cavity which is
planar, confining light in the vertical direction and extending across the entire system in horizontal directions.

031007-4

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

quantum computing, beginning with an analysis of the
hardware in the Physical layer.

II. LAYER 1: PHYSICAL

The essential requirements for the Physical layer are
embodied by the DiVincenzo criteria [3], but we are also
interested in performance of the quantum hardware. The
time scale of operations and the degrees of errors, both
systematic and random, are critical parameters that deter-
mine the size and speed of the computer. This section
discusses the essential hardware components of a quantum
computer, accompanied by the QuDOS platform we intro-
duce as an example. We conclude by analyzing the per-
formance of the QuDOS hardware. We caution that many
of the required hardware elements are still under experi-
mental development, but we choose those discussed below
as examples to establish time scales that will affect higher
layers of the architecture.

A. Physical qubit

A quantum computer must have the ability to store
information between processing steps; the object fulfilling
this role is conventionally known as the physical qubit. A
physical qubit may be more complex than a two-level
system, and this issue is addressed by Layer 2 in the
architecture, where control operations are used to form a
true quantum bit as an information unit (see Sec. IIT A).
Examples of physical qubits include trapped ions, photon-
polarization modes, electron spins, and quantum states in
superconducting circuits [1]. The remainder of the
Physical layer is devoted to controlling and measuring
the physical qubit.

The layered-architecture design is flexible in the
sense that the Physical layer can be tailored to a specific
hardware, such as superconducting circuit qubits, with
minimal change to higher layers such as error correction.
The physical qubit we consider in QuDOS is the spin of
an electron bound within an InGaAs self-assembled
quantum dot (QD) surrounded by GaAs substrate
[46-51]. These QDs can be optically excited to trion
states (a bound electron and exciton), which emit
light with a wavelength of approximately 900 nm when
they decay. A transverse magnetic field splits the
spin levels into two metastable ground states [52], which
will later form a two-level system for a virtual qubit in
Layer 2. The energy separation of the spin states is
important for two reasons related to controlling the
electron spin: First, the energy splitting facilitates
control with optical pulses, as explained in Sec. IIC.
Second, there is continuous phase rotation between
spin states |1) and ||) around the o, axis on the qubit
Bloch sphere, which in conjunction with timed optical
pulses provides complete unitary control of the electron
spin vector.

B. Host system

For our purposes, the host system is the engineered
environment of the physical qubit that supports computing.
Examples include the trapping fields in ion-trap designs,
the waveguides in optical quantum computing, and the
diamond crystal surrounding nitrogen-vacancy centers
[1]. The host system defines the immediate environment
of the physical qubit, which will be important for charac-
terizing noise that affects quantum operations.

We noted above that, in QuDOS, the electron spin is
bound within a quantum dot. These quantum dots are
embedded in an optical microcavity, which will facilitate
quantum-gate operations via laser pulses. To accommodate
the two-dimensional array of the surface code detailed in
Layer 3, this microcavity must be planar in design, so the
cavity is constructed from two distributed Bragg reflector
(DBR) mirrors stacked vertically with a A/2 cavity layer
between, as shown in Fig. 3. This cavity is grown by
molecular-beam epitaxy. The QDs are embedded at the
center of this cavity to maximize interaction with antinodes
of the cavity field modes. Using molecular-beam epitaxy,
high-quality (Q > 10°) microcavities can be grown with
alternating layers of GaAs/AlAs [53]. The nuclei in the
quantum dot and surrounding substrate have nonzero spin,
which is an important source of noise (see Sec. Il F).

C. 1-qubit gate mechanism

The 1-qubit gate manipulates the state of a single physi-
cal qubit. This 1-qubit gate mechanism is still a physical
process; only later will these physical control operations be
combined into a “virtual gate” (see Sec. III B). Still, it is
important that the Physical layer delivers sufficient control
of the physical qubit. Full unitary control of a qubit re-
quires at least two adjustable degrees of freedom, such as
rotation around two axes on the Bloch sphere, and three
freely adjustable parameters [54].

The 1-qubit operations in QuDOS are developed using a
transverse magnetic field and ultrafast laser pulses [51-55].
The magnetic field provides a constant-angular-frequency
rotation around the o, axis, while laser pulses enact a
power-dependent rotation around an orthogonal axis,
which we label o . The first nonideal behavior we consider
is that the laser pulse has some finite duration, so that o,
and o, precession happen concurrently, which impairs
manipulation of the spin Bloch vector. To remedy this,
we introduce “Hadamard pulses” [56]: One tunes the laser
pulse power and duration to make the pulse-driven o ,-axis
rotation equal in angular frequency to the o ,-axis preces-
sion from the magnetic field, so that the axis of rotation
becomes H=\/i§(o-x +0,). A “ar pulse” around this axis is

a Hadamard gate. By using two Hadamard pulses and
rotation R_(6) via free precession in the magnetic field,
we can construct any o,-axis rotation by R.(0) =
H-R.0)-H, as shown in Fig. 4. By implementing
Hadamard pulses, we can obtain high-fidelity operations

031007-5

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

(@), | | ,
, Hadamard pulseI | Hadamard pulse
I | | I
: : Rotation about Z axis : :
I | | I
I | | I
I | | I
I | | I
1 ! 1 1
—— P ¢——— r¢+—— >
T, T,
242 242
(b) z z

<

FIG. 4. Hadamard pulses in QuDOS. (a) A short pulse se-
quence generates a o ,-axis rotation on the spin Bloch sphere
with two Hadamard pulses and o,-axis precession from the
magnetic field. The duration of the pulses and the delay between
them is proportional to the Larmor period, T; . (b) Bloch-sphere
diagrams showing the axis of rotation at each time during the
sequence.

with pulses of finite duration. A challenging problem for
QuDOS is how the system executes millions of control
operations in parallel. We envision an optical imaging
system consisting of an array of MEMS mirrors to indi-
vidually steer laser control beams toward or away from
quantum dots, along with electro-optic modulators to pre-
cisely control laser pulse timing. We discuss this approach
in Appendix A, but rigorously engineering such a system is
beyond our scope.

D. 2-qubit gate mechanism

The 2-qubit operation couples two physical qubits,
which can generate entanglement. This mechanism is cru-
cial for quantum computing, yet it is often difficult to
implement experimentally. For example, entangling gates
like CNOT are used frequently in quantum error correction,
so developing fast, high-fidelity 2-qubit gate mechanisms
is imperative for large-scale quantum information process-
ing. In many cases, the 2-qubit gate is the process that
defines the speed and accuracy of a quantum computer.

The construction of a practical, scalable 2-qubit gate in
QuDOS remains the most challenging element of the hard-
ware, and various methods are currently under develop-
ment. A fast 2-qubit gate, fully controlled optically, would
certainly be attractive, and early proposals [47] identified
the importance of employing the nonlinearities of cavity
QED. Ref. [47] suggests the application of two lasers for
both 1-qubit and 2-qubit control; more recent develop-
ments have indicated that both 1-qubit gates [55,57,58]
and 2-qubit gates [59] can be accomplished using only a
single optical pulse.

We consider a 2-qubit gate via the dispersive interaction
proposed in Ref. [59]. The critical figure of merit for the
cavity QED system is the cooperativity factor C, which is

proportional to the cavity quality factor Q divided by the
cavity volume V. For QuDOS, we envision transverse
cavity confinement entirely due to the extended micro-
planar microcavity arrangement, in which cooperativity
factors are enhanced by the angle dependence of the cavity
response, an effect that is enlarged by high index-of-
refraction contrast in the alternating mirrors of the DBR
stack [46]. While existing cooperativity factors achieved
this way are not estimated to be high enough to produce
quantum gates with error rates sufficiently low for fault-
tolerant quantum computing, advanced control techniques
and multispin encodings (such as for “virtual qubits”’; see
Sec. III) may enable this technology to function with
acceptable error rates. Ref. [59] estimates that this gate
will require 10-100 ns to execute. For the present analysis
we assume the value 32 ns, which coincides with a virtual
gate in Sec. III B. Further enhancements to speed or gate
fidelity or both may be available by introducing exchange
interactions using microcavity polaritons [60]; studying
this possibility is the subject of future work.

E. Measurement readout

Measurement is another essential component of quan-
tum computing. At a bare minimum, one must be able to
read the final result of a calculation, but typically measure-
ment is used extensively in fault-tolerant quantum error
correction. For this reason, quantum computers may
require measurement that is comparable in speed and
accuracy to the control operations. Moreover, many situ-
ations call for quantum nondemolition (QND) measure-
ment, where the physical qubit is projected into an
eigenstate of the measurement operator. To illustrate a
counterexample, consider a qubit defined by the ground
and the first optically excited states of a quantum dot. A
possible measurement scheme is to detect a photon emis-
sion, which would indicate that the qubit was in the excited
state. However, the final state of the qubit is the ground
state for either measurement outcome, which is destructive
measurement, so this procedure cannot be repeated.
Conversely, QND measurement is highly desirable because
it can be repeated, so that classical readout noise can be
reduced by time averaging.

QuDOS requires a QND measurement scheme which is
still under experimental development. The proposed
mechanism (shown in Fig. 5) is based on Faraday/Kerr
rotation. The underlying physical principle is as follows:
An off-resonant probe pulse impinges on a quantum dot,
and the optical pulse receives a different phase shift de-
pending on whether the quantum-dot electron is in the
spin-up or spin-down state. (These states are separated in
energy by the external magnetic field.) Sensitive photo-
detectors combined with homodyne-detection measure the
phase shift to enact a projective QND measurement on the
electron spin. Several results in recent years have demon-
strated the promise of this mechanism for measurement:

031007-6

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

(a) M M

Quantum dot

Probe pulse #

(b)
Reflected pulse (|¥)) « ~ —

Reflected pulse (|1)) «

FIG. 5. A dispersive quantum nondemolition (QND) readout
scheme for QuDOS. (a) A probe pulse is sent into a microcavity
containing a charged quantum dot. (b) The cavity-enhanced
dispersive interaction between the pulse and the electron spin
creates a state-dependent phase shift in the light that leaves the
cavity. Measurement of the phase shift can perform projective
measurement on the electron spin.

multishot experiments by Berezovsky et al. [61] and
Atatiire et al. [62] have measured spin-dependent phase
shifts in charged quantum dots, and Fushman et al. [63]
observed a large phase shift induced by a neutral quantum
dot in a photonic crystal cavity. Most recently, Young et al.
observed a significantly enhanced phase shift from a quan-
tum dot embedded in a micropillar cavity [64].

F. Noise sources and errors

Noise and decoherence are the biggest obstacles to
scalable quantum computing. In general, the noise sources
that corrupt the physical qubit or degrade the fidelity of
control operations should be characterized as well as

TABLE I.

possible. For the present analysis, we consider the noisy
environment for an electron spin in QuDOS. The primary
noise in this system is dephasing, likely caused by the
inhomogeneous distribution of nuclear spins in the quan-
tum dot. The ensemble dephasing is characterized by
T; = 2 ns, while the intrinsic dephasing is characterized
by T, = 3 us [65]. When the noise experienced by a qubit
is dominated by dephasing, one can counteract decoher-
ence with control sequences tailored to this noise source
[66]. Section III A introduces a decoupling scheme de-
signed specifically for QuDOS.

G. Hardware performance summary

We summarize the execution times for the essential
Layer 1 (L1) operations in QuDOS in Table I. These are
the quantum processes which are the building blocks of
quantum information operations in Layers 2 and above. For
a complete quantum processor, however, one would also
have to consider the classical control hardware and the
engineering concerns, such as delays, which may occur in a
large system. For example, Ref. [34] considers the impli-
cations of classical control wires, such as routing concerns,
signal timing, and the generation of heat in low-
temperature devices. Although engineering of classical
control hardware is an important problem, it lies outside
the scope of our present analysis, and we reserve it for
future work.

ITI. LAYER 2: VIRTUAL

The Virtual layer is where quantum effects in the
Physical layer are first cast into information primitives—
virtual qubits and quantum gates. We use “‘virtual” as it is
defined in the field of computer science, where a virtual
object obeys a predetermined set of behaviors, without
specifying the structure of this object. As an example, a
virtual qubit may be defined by a decoherence-free sub-
space [67—69] constructed from three electron spins; when
considered as a whole, three spins have many more degrees
of freedom than a single qubit. Similar behavior is seen in
the quantum gates in QuDOS, which actually consist of a

Parameters for Layer 1 quantum operations. Spin-phase precession is determined by the spin-state energy splitting due to

an external magnetic field. To implement a Hadamard gate, the broadband pulse time is 1/ /8 of the Larmor period (71 armor)- Times for
entangling operation and QND measurement are estimated from simulation.

Operation Mechanism Duration Notes

Spin-phase Magnetic-field splitting of spin 40 ps Inhomogeneous nuclear environment causes

precession (o, axis) energy levels spectral broadening in Larmor frequency,

which is the source of T, processes.

Spin-state rotation Stimulated Raman transition with 14 ps Red-detuned from the ground-state—trion

pulse broadband optical pulse transitions of the spins

Entangling operation Nonlinear phase shift of spin states via 32 ns CW laser signal modulated by an electro-optic
coupling to a common cavity mode modulator (EOM)

QND measurement Dispersive phase shift of light reflected 1 ns CW laser signal modulated by an EOM

from planar cavity

031007-7

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

Measure Measure Virtual 1\{|rtu§.lt Virtual
Z basis X basis qubit qubl CNOT
gate

Az

[A

[S
|

. .
i]

ecccccccccagecccccccccaa

\

.o
JPtads Dy,
o’ e.g. 8H Decoupling
id Sequence .. N
.~
4 “=~</ SU(2) State rotation
e.g. Arbitrary Spin Vector
P g rotation
.

.
.
.
]
1]

1]
.
"

.

A A A

B

QND Physical
readout qubit

1-Qubit 2-Qubit

system gate gate

FIG. 6. The mechanics of the Virtual layer. The outputs of Layer 1 are combined in controlled sequences to produce virtual qubits
and gates. Arrows indicate how the output of one process is used by another process.

sequence of laser pulses. This transcription process of
converting many physical elements into a virtual informa-
tion unit is the task of Layer 2, and we clarify the functions
of this layer in this section. Figure 6 gives an overview of
the Virtual layer processes in QuDOS.

In a general sense, the Virtual layer makes the Physical
layer robust to systematic errors. This effect is seen in both
virtual qubits and gates, where we enforce symmetries in
the system (by careful design of control operations) which
cause correlated errors to cancel by interference. The
simplest example of this behavior is the Hahn spin-echo
sequence [70], and in fact decoupling techniques play a
prominent role in how we construct a virtual qubit.

A. Virtual qubit

The virtual qubit shapes the underlying physical qubit
into a two-level system which approximates an ideal qubit.
However, the virtual qubit is modeled as having some finite
amount of decoherence, such as the depolarizing channel
[54]. Where applicable, dynamical decoupling [71-73]
and/or decoherence-free subspaces [67-69] are used to
create long-lived virtual qubits, and the residual decoher-
ence characterizes the lifetime of the virtual qubit. In what
follows, we consider how to construct a virtual qubit with a
charged quantum dot, including the mitigation of several
nonideal effects in this system.

In QuDOS, the virtual qubit is created from the two
metastable spin states of an electron confined to a QD.
As discussed in Sec. ITF, the raw physical system has
dephasing time 75 =~ 2 ns [65] caused by an inhomoge-
neous distribution of nuclear spins in the environment of
the electron. This dephasing time is insufficient for quan-
tum error correction in Layer 3, so this system must be
augmented with dynamical decoupling techniques [74,75],
which extend the dephasing time of the virtual qubit into
the microsecond regime [65].

Constructing the virtual qubit in QuDOS requires Layer
2 to conceal the complexity of controlling the QD spin
state. Because the physical-qubit Bloch vector continu-
ously rotates around the o, axis, control pulses must be
accurately timed so that they perform the desired opera-
tion. Furthermore, control of the QD spin is complicated by
the inhomogeneous nuclear-spin environment which
causes the o,-axis rotation to proceed at a somewhat
uncertain angular frequency. This problem is mitigated
by a dynamical decoupling (DD) sequence, so that the
system is decoupled from environmental noise and brought
into a precisely controlled reference frame at a predictable
time. Figure 7(a) illustrates the ““8H”” decoupling sequence
(so named because it uses eight Hadamard pulses), which
is appropriate for use in QuDOS. This control sequence is
designed both to decouple a qubit from dephasing noise
and to compensate for systematic pulse errors in the pres-
ence of a strong but slowly fluctuating drift term in the
qubit Hamiltonian, which is the case for optically con-
trolled quantum dots in a strong magnetic field. Although
longer sequences consisting of more pulses may in theory
decouple to higher fidelity, we have chosen a sequence
of just eight Hadamard pulses to minimize execution
time. Instead of using a more common sequence like the
Carr-Purcell (CP) sequence [76,77] or Uhrig dynamical
decoupling (UDD) [78], the sequence in Fig. 7 is custom
designed to eliminate to first order the errors that occur in
both the free evolution and the control of the virtual qubit.
(CP and UDD cannot accomplish the latter.) We note,
however, that the 8H sequence does have a structure simi-
lar to the CP sequence.

Figure 8 shows the simulated effectiveness of 8H as
compared to CP and UDD. We have selected 7 = 1 ns
[from Fig. 7(a)], so one iteration of the sequence requires
8 ns. Because this sequence is specifically designed to
account for the errors particular to QuDOS, the performance

031007-8

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

(a)
T

<>

2t + 15T,

R

21+ T,

2t + AT,

>

>

(b)

,,,,,,,,,,,,,,,,,,,,,,,

FIG. 7. A special dynamical decoupling sequence for QuDOS, known as 8H since it requires eight Hadamard pulses. 7} is the
Larmor period determined by the external magnetic field (see Table I). (a) Timing specification for the 8H sequence, where 7 is an
arbitrary time. Each of the pulse pairs enacts a 7 rotation around the o, axis of the virtual-qubit Bloch sphere, as shown in Fig. 4. For
8H to work efficiently, 7 << T,. (b) Four 8H sequences in a row interleaved with arbitrary gates formed from three Hadamard pulses
(orange). The overall sequence forms a virtual gate by way of a BB1 compensation sequence.

exceeds that of the more common dynamical-decoupling
schemes. Nonetheless, 8H may be very effective in other
quantum information systems where the physical qubit
states are separated in energy and the control pulses have
a duration that is comparable to the free-precession
(e.g., Larmor) period of the qubit Bloch vector.

107
107 N
v
=
©
i}
= 10%
-4
1 L L L L L
0-3 -2 -1 0 1 2 3
Pulse error (%)
FIG. 8. Simulation of the decoupling effectiveness of the 8H

sequence compared to CP and UDD (each using 4 X gates) in the
presence of dephasing noise and control errors. Here, ‘“pulse
error”’ is a systematic, relative deviation in the energy of every
pulse. In all cases, two Hadamard pulses are combined to
produce an approximate X gate, as in Fig. 4. The vertical axis
is infidelity after evolution of the sequence in Fig. 7(a) with
7 =1 ns; here, infidelity is 1 — F = 1 — yy;, where yy is the
identity-to-identity matrix element in process tomography for
the decoupling gate sequence with random noise. Since we aim
to execute virtual gates with 1 — F < 1073, laser-pulse errors
must be less than 1% in order for the virtual-qubit memory error
rate to be adequately low.

B. Virtual gate

Virtual gates manipulate the state of the virtual qubit by
combining physical control operations in Layer 1 in a
manner that creates destructive interference of control
errors. Quantum operations must be implemented by
physical hardware, which is ultimately faulty to some
extent. Many errors are systematic, so that they are corre-
lated in time, even if they are unknown to the quantum-
computer designer. Virtual gates suppress systematic errors
as much as possible in order to satisfy the demands of the
error-correction system in Layer 3.

Efficient schemes exist for eliminating systematic er-
rors. Compensation sequences can correct correlated errors
in the gate operations in Layer 1 [79,80]. This situation
arises often for errors due to imperfections in the control
operations, such as fluctuations in laser intensity or the
strength of the coupling of a quantum-dot electron to an
optical field (caused by fabrication imperfections). If these
errors are correlated on time scales longer than operations
in this architecture, a compensation sequence is effective
for generating a virtual gate with lower net error than each
of the constituent gates in the sequence. Many compensa-
tion sequences are quite general, so that error reduction
works without knowledge of the type or magnitude of
error. Dynamically corrected gates are an alternative
scheme where one tunes the time-dependent Hamiltonian
of the control operations [81]. Beyond such open-loop
control techniques, it is also desirable to characterize the
accuracy of operations in the Virtual layer, especially
multiqubit gates and entangled states. Systematically
evaluating quantum operations is an important component
of a research program to develop quantum computers and
merits further investigation; however, it is beyond our
present scope.

031007-9

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

In QuDOS, the ultrafast pulses in Layer 1 would ideally
induce a state rotation in the spin basis (two-level system),
but inevitably the physical system will suffer from some
loss of fidelity by both systematic and random processes.
We attempt to cause destructive interference of any sys-
tematic errors—f{rom both the environment and control
pulses—by embedding a BB1 compensation sequence
within a train of 8H dynamical decoupling sequences, as
shown in Fig. 7(b). The BB1 sequence combines four
pulses with an unknown, systematic bias in a manner that
reproduces the action of a single pulse that has much
higher fidelity. This approach is motivated by the proper-
ties of the physical qubit. The electron spin has a strong but
slowly fluctuating drift term in its Hamiltonian because of
the magnetic field and the nuclear-spin environment. The
8H sequence brings the qubit “into focus’ (analogous to a
“spin echo’’) only at prescribed instants, which are when
the BB1 pulses are applied. This approach is more accurate
than a BB1 sequence without refocusing because of the
time required to implement rotations on the physical qubit
Bloch sphere using Hadamard pulses, for the same reasons
that 8H is more effective at decoupling than CP or UDD
sequences, as shown in Fig. 8. The BB1 compensation
sequence requires four arbitrary gates [79]; hence, the
virtual gate with error cancellation requires 32 ns.

C. Measurement of virtual qubits

Measurement is a crucial operation that must also be
applied to the virtual qubit in a manner consistent with
other control processes. For example, dynamical decou-
pling prevents measurement by isolating a qubit from
environment interactions, so DD may have to be suspended
during readout. Since measurement plays a crucial role in
error correction, this mechanism should be made as fast
and efficient as possible, and a slow measurement process
may suffer loss of fidelity if the physical qubit decoheres
quickly without DD.

Even if the measurement process is much faster than
qubit decoherence, classical noise in the measurement-
readout signal could be a concern. If the Physical layer
provides QND measurement, then the Virtual layer can
repeat the measurement of a virtual qubit multiple times
and overcome noise in readout circuitry by a majority poll
of discrete measurement outcomes. This is a simple yet
robust way to suppress measurement errors. For example,
if the optical measurement pulse in QuDOS requires 1 ns,
then measurement could be repeated about 30 times in the
same window of time as a virtual gate. Another possibility
is to couple a virtual qubit to one or more ancilla qubits
that facilitate measurement [82]. In such a scheme, the
measurement process at the Physical layer could be de-
structive, but since only the ancilla is destroyed, the
backaction on the original qubit is QND measurement,
which can be repeated.

Measurement of the virtual qubit in QuDOS requires
that the DD sequence be halted, because the 8H sequence

interferes with readout. Since the measurement pulse is in
the o, basis, rotations around the o, axis from the mag-
netic environment do not affect the outcome. Neglecting
DD during measurement is acceptable because the longi-
tudinal (7') relaxation time is very long compared with the
measurement pulse duration [83,84].

IV. LAYER 3: QUANTUM ERROR CORRECTION

Fault-tolerant quantum error correction (QEC) is essen-
tial for large-scale quantum computing. In Sec. VIB we
analyze an implementation of Shor’s factoring algorithm
that requires an error-per-gate of order 10~'5, which is
simply infeasible on faulty hardware, even using Layer-2
techniques like dynamical decoupling. The action of error
correction on a quantum information system is to pump
entropy out in the form of an error syndrome; in the process,
new resources—Ilogical qubits and gates—are created.
Whereas Layer 2 causes correlated errors to cancel, Layer
3 isolates and removes arbitrary errors, so long as the error
rate is below a threshold [85]. If this condition is met, QEC
can in principle produce arbitrarily low-error logical qubits
and gates. Such complete error suppression is necessary
because quantum algorithms in the Application layer as-
sume that logical qubits and gates are error free.

The field of quantum error correction has become too
broad to cover in its entirety [54,86,87]. Instead, we ana-
lyze the case of stabilizer codes [88], and we specifically
consider the surface code [2,89,90] for QuDOS. We select
the surface code for its high threshold and two-dimensional
nearest-neighbor interaction geometry. This section fo-
cuses on the aspects of quantum error correction that are
relevant for a quantum-computer architecture, such as
determining the size of a code sufficient for a certain
application, as well as how the errors are tracked by
Pauli frames in classical hardware. Figure 9 shows the
surface-code operations in Layer 3 for QuDOS.

Other error-correction schemes besides the surface code
could also be implemented in a layered architecture. As
examples, the C4/C6 code [91,92] and Bacon-Shor codes
[32-34,93] have also received significant attention as via-
ble schemes for fault-tolerant quantum computation.
Because the layered architecture is modular, replacing
the surface code with another QEC scheme is possible as
long as the Virtual layer supports the necessary operations
of the new code. In general, the QEC code chosen is likely
to impact many aspects of a quantum computing system,
such as device geometry, connectivity, and sensitivity to
defective components, so that the structure and behavior of
the computer is defined in large part by the selected code.
For this reason, much attention should be devoted to opti-
mizing Layer 3 in any quantum-computer architecture.

One key message is worth emphasizing. The threshold
error rate of an error-correcting code is defined as the
error rate at which error correction begins to show a net
gain in protecting information. A functioning quantum

031007-10

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

Logical Logical Logical Injected
measurement qubit CNOT ancilla state
[AAA 4 4 4
L : : H
' .-~ i
s See Lattice defect Defect braiding Lo
) Building block of logical |= == Construct logical gates o’
- < qubits and operations between defects Pid
Pauli frame H prs
Track pauli group gates . ’a'
without applying them : : o P

[N
0 . Se

s
Lattice refresh ‘\’,.-'
Time step through oo s
surface code ‘:
. .
.
: ‘s‘ .
.

-
-
-
-
®
-
1
M

N

.
——‘
.

State injection
Inject raw states to be
purified by distillation

Virtual
Measure Measure Virtual 1- qubit Virtual
Z-basis X-basis qubit gate CNOT

FIG. 9. Process translation in Layer 3 in QuDOS. A surface code is constructed with virtual qubits and gates, ultimately yielding
logical qubits and operations. The arrows in yellow along the bottom are outputs of Layer 2, whereas the green arrows at the top are the
outputs of Layer 3. Dashed black arrows indicate that the output of one process is used by another process.

error-correction system must operate below threshold, and
a practical system must operate well below threshold. We
show in this section that the resources required for error
correction become manageable when the hardware error
rate is about an order of magnitude below the threshold
error rate of the chosen code.

A. Estimating the strength of error correction needed

We consider how to estimate the degree of error
correction required for a given application because this
determines the necessary amount of resources in the
computer. Quantum error-correction schemes generate
protected code spaces within a larger Hilbert space
formed from many qubits. The tradeoff for reducing logical
errors is that, instead of requiring a single qubit, the
quantum computer now requires many virtual qubits to
produce a logical qubit. The number of virtual qubits
required for a single logical qubit is an important
resource-usage quantity. It depends on the performance
aspects of the quantum computer:

(i) error per virtual gate (ey), which is an input to

Layer 3 from Layer 2,

(ii) threshold error per virtual gate of the error-

correcting code (&yreeh)s

(ii1) distance (d) of the code,

(iv) maximum error per logical gate (er), which

is bounded on the upper end by the performance
requirements of the quantum algorithm in Layer 5.

To determine &, the simplest approach, the KQ product,
assumes the worst case. If the quantum algorithm has a
circuit with logical depth K acting on Q logical qubits, then
the maximum failure probability is given by

Peyy =1 — (1- SL)KQ =~ KQ¢L (1

for small &;. Therefore, we demand that g, < 1/KQ.
Given these quantities, the average error per logical gate
in a code operating well below threshold may be closely
approximated [54,85,86,94-96] by

gy

@+1/2
) , @)

gL = C1<C2

Ethresh

where C; is a constant determined by the specific imple-
mentation of the code, C, ~ 1, and, by assumption, ey <
&mresh- 1he data in Ref. [96] suggests C; = 0.13 and
C, = 0.61 for the surface code, which we now use as an
example. Given a known &y and code-specific quantities
{&tresh» C1, Ca}, one can determine the necessary distance d
such that the probability of failure of an entire quantum
algorithm is sufficiently small. For comparison, Aliferis
presents similar analysis for concatenated codes such as
the Bacon-Shor code [97].

Equation (2) illustrates that the error per virtual gate
should be ey < 0.2&y,4; Otherwise, the code distance,
and hence the size of the quantum computer, will be
impractically large. Table II provides an example of these

TABLE II. Parameters determining the size of the surface code
in QuDOS for an implementation of Shor’s factoring algorithm.

Parameter Symbol Value
Threshold error per virtual gate [96] Ethresh 9x 1073
Error per virtual gate ey 1x1073
Circuit depth (lattice refresh cycles) K 1.6 X 10'!
Logical qubits (Shor, Sec. VIB) (0] 72708
Error per lattice refresh cycle L 2.6 X 10720
Surface-code distance d 31
Virtual qubits per logical qubit ny/ng 6240

031007-11

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

calculations for the QuDOS quantum computer. Error per
virtual gate (ey) is also assumed, and the K and Q values
are for Shor’s algorithm factoring a 1024-bit integer
(see Sec. VIB). We require that &, = 1072/KQ, so that
the logical error probability of the quantum algorithm is
less than 1%.

Determining the necessary strength of error correction
also indicates how large the quantum computer is in terms
of qubits. We can estimate the number of virtual qubits per
logical qubit, or ny/n;, by considering the minimum area
needed for the two lattice defects, which make up a logical
qubit, separated by distance d in the surface code [2].
For a typical set of parameters, as might be required in a
large-scale computing application such as Shor’s factoring
algorithm [98], 6240 virtual qubits are needed to construct
a logical qubit. This is a nontrivial overhead, because
quantum algorithms require a substantial number of logical
qubits, as we discuss in greater detail in subsequent sec-
tions. For example, quantum simulation algorithms may
require about 1000-10000 logical qubits [99,100] and
integer factoring may require 100000 logical qubits or
more, depending on the methods of calculating arithmetic
[101]. More detail on why so many logical qubits are
necessary is given in Sec. VB. Combining the size of
quantum computations with the requirements of error
correction means that large-scale quantum-computing
architectures will require millions or billions of virtual
qubits (and hence physical qubits).

B. Pauli frames

A Pauli frame [91,102] is a simple and efficient classical
computing technique to track the result of applying a series
of Pauli gates (X, Y, or Z) to single qubits. The Gottesman-
Knill theorem implies that tracking Pauli gates can be done
efficiently on a classical computer [103]. Many quantum
error-correction codes, such as the surface code, project the
encoded state into a perturbed code word with erroneous
single-qubit Pauli gates applied (relative to states within
the code space). The syndrome, which is the set of mea-
surements that identifies the most likely error configura-
tion, reveals what these Pauli errors are, up to undetectable
stabilizers and logical operators, and error correction is
achieved by applying those same Pauli gates to the appro-
priate qubits (since Pauli gates are Hermitian and unitary).
However, quantum gates are faulty, and applying addi-
tional gates may introduce more errors into our system.

Rather than applying every correction operation, one can
keep track of what Pauli correction operation would be
applied, and continue with the computation. This is pos-
sible because the operations needed for error correction are
in the Clifford group. When a measurement in a Pauli X, Y,
or Z basis is finally made on a qubit, the result is modified
based on the corresponding Pauli gate that should have
been applied earlier, as in Fig. 10. This stored Pauli gate is
called the Pauli frame [91,102], since, instead of applying a
Pauli gate, the quantum computer changes the reference

A

Pauli Frame

T2

+t+1

Time

FIG. 10. Example of a Pauli frame evolving over time with
entries corresponding to virtual qubits forming a surface code.
Each horizontal slice is the Pauli frame at that time. For example,
if the qubit in the top-front-corner position is measured in the X
basis, the interpreted result is the negation of the observed
outcome, because the Pauli frame Z anticommutes with this
measurement basis.

frame for the qubit, which can be understood by remapping
the axes on the Bloch sphere, rather than moving the
Bloch vector.

The Pauli frame is maintained as follows. Denote the
Pauli frame at time ¢ as F;:

F, = @P.()) 3)
J

where P,(j) = {I,X, Y, Z} is an element from the Pauli
group corresponding to qubit j at time ¢. Any Pauli gate in
the quantum circuit is multiplied into the Pauli frame and is
not implemented in hardware, so F,y = (@ ;U1 xv,2)F;
for all Pauli gates Uy xv 5 in the circuit at time 7. Other
gates Uc in the Clifford group are implemented, but they
will transform the Pauli frame by

Fiy = UcF,UL. 4)

The quantum-computer operations proceed normally, with
the only change being how the final measurement of that
qubit is interpreted. The set of Clifford gates is sufficient for
Layer 3, although the next section describes another Pauli
frame for non-Clifford logical operations.

We emphasize that the Pauli frame is a classical object
stored in the digital circuitry that handles error correction.
Pauli frames are nonetheless very important to the func-
tioning of a surface-code quantum computer. Layer 3 uses
a Pauli frame with an entry for each virtual qubit in the
error-correcting code. As errors occur, the syndrome pro-
cessing step identifies a most-likely pattern of Pauli errors.
Instead of applying the recovery step directly, the Pauli
frame is updated in classical memory. The Pauli gates form
a closed group under multiplication (and the global phase
of the quantum state is unimportant), so the Pauli frame
tracks only one of four values (X, Y, Z, or I) for each
virtual qubit in the lattice.

V. LAYER 4: LOGICAL

The Logical layer takes the fault-tolerant resources
from Layer 3 and creates a logical substrate for universal

031007-12

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

Application
measurement

Application
qubit

Application
gate

x4

]
'
]
0
0

p

Pauli frame
Track Logical Pauli
gates in classical
hardware

b geccccccccccan

/

il «

1S

A A

[
L
Arbitrary gate sequence

Approximate arbitrary unitary
operation with limited gate set

,,"-> 7/, and T/, Rotations
e Small angle rotations created with
singular states

State distillation
Distill singular states needed for
small-angle rotations

J

Logical
measurement

Logical
qubit

FIG. 11.

Logical
CNOT

Singular
state

Organization of processes in the Logical layer. Logical qubits from Layer 3 are unaltered, but faulty singular states are

distilled into high-fidelity states |Y) = %(IO} +i|1)) and |A) = %(IO} + ¢i7/4|1)). The distilled states are used to create arbitrary

gates with specialized quantum circuits [39,105-107].

quantum computing. This task requires additional process-
ing of error-corrected gates and qubits to produce any
arbitrary gate required in the Application layer, as shown
in Fig. 11. Quantum error correction provides only a lim-
ited set of gates—To see why, consider that no finite
number of syndrome bits can distinguish arbitrarily small
rotation gate errors. A common set of gates provided by
QEC is the Clifford group; although circuits from this set
can be simulated efficiently on a classical computer by the
Gottesman-Knill theorem [54], the Clifford group forms
the backbone of quantum circuits. Still, some QEC
schemes, such as the surface code, do not provide the full
Clifford group without some sort of ancilla. We identify the
set of fault-tolerant gates generated by Layer 3 without the
use of ancillas as the fundamental gates. The Logical layer
then constructs arbitrary gates from circuits of fundamental
gates and ancillas injected into the error-correcting code.
For example, surface code architectures inject and purify
the ancillas |Y>=\/i5(|0>+ i|1)) and |A =ﬁ(|o>+ e/ 1));
then the surface code consumes these ancillas in quantum
circuits to produce S = ¢/"/Y9z and T = ¢/(7/8)9z gates,
respectively [2,54]. This section discusses the important
functions of the Logical layer: implementing logical Pauli
frames; distilling ancilla states like |Y) and |A); implement-
ing the full Clifford group in the surface code without
measurement; and approximating arbitrary quantum gates
for the Application layer.

A. Fundamental gates and the logical Pauli frame

Fundamental gates are provided natively by the error-
correcting code in Layer 3. For example, Table III shows
the fundamental gates used in QuDOS. In practice, Pauli

gates are implemented with a logical Pauli frame, which is
qualitatively the same as the Pauli frame in Layer 3 for
virtual qubits (Sec. IV B). However, in Layer 4 we may
also need to apply gates Uyc outside the Clifford group
(NC). The gate we actually implement, U, results from a
Pauli frame transform:

Ne = F,UxcF}. (5

Note the distinction between this expression and Eq. (4),
where the Pauli frame is changed by a Clifford gate.

The fundamental gate set in Table III is particular to the
surface code, and it is not the full Clifford group because it
is missing the phase gate S. Section V C illustrates a
method to construct S using an ancilla, without measure-
ment, which is efficient since it uses a small number of
fundamental gates and the ancilla can be reused. The
remaining logical gates to produce a universal set in the

TABLE III. Fundamental gates in QuDOS using surface-code
QEC (Ref. [2]). The execution time here is one possible imple-
mentation, but in many cases the surface-code computation can
be deformed into other topologically equivalent circuits which
yield faster execution at the expense of more spatial resources, or
vice versa.

Execution time

Gate Implementation [lattice steps]
X, Y, Z Pauli frame Instantaneous
CNOT Defect braiding 13[d/4]
H (Hadamard) Shift lattice 13[d/8]

MX, MZ (measurement) Measure stabilizers 1

031007-13

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

surface code require ancilla states which are injected and
distilled [2].

B. Magic-state distillation

The conventional method for making a universal set of
quantum gates in a fault-tolerant manner is to produce a
certain ancilla state and use it in a quantum circuit equiva-
lent to the desired logical gate [44,54,97]. In some cases
these circuits require measurement that consumes the an-
cilla, so that the number of ancilla states required is pro-
portional to the number of gates in the quantum algorithm.
For example, the algorithms discussed in Sec. VI require
around 10'> or more ancilla states, which are typically
manufactured as needed.

To complicate matters, ancillas must be produced by
methods that are not fault tolerant, such as initializing a
virtual qubit and applying the appropriate virtual gate. This
ancilla state can then be injected into a QEC code in
Layer 3 [2], but it carries with it the errors in its production.
Fortunately, a few ‘““magic states’ can be distilled by using
several low-fidelity ancillas and fundamental gates to pro-
duce one high-fidelity ancilla. Once the ancilla fidelity is
higher than the necessary logical-gate fidelity, we may
construct arbitrary fault-tolerant logical gates. We examine
here the resource costs for this process; each distillation is
expensive, and very many ancillas must be distilled. We
characterize the performance of the magic-state distillation
because it will probably dominate the resource costs of any
quantum computer that uses it. Accordingly, this is an
important area for future optimizations.

We focus first on distilling the ancilla state |[A) = 715 X

(J0) + €'™4|1)), which is used to construct the T or 7/8
phase gate [2,90,104]. In the next section, Fig. 14 provides
an illustration of why this process is important by showing
the fault-tolerant construction of a Toffoli gate in Layer 5
using resources in Layer 4; specifically, ancilla distillation
circuits constitute over 90% of the computing effort for a
single Toffoli gate. As a result, the analysis in Appendix B
1 contends that these distillation circuits account for the
majority of resources in a surface-code quantum computer
executing Shor’s algorithm. In particular, for every qubit
used by the algorithm, approximately 10 qubits are work-
ing in the background to generate the necessary distilled
ancillas. The ancilla distillation circuit in Fig. 14 shows
one level of |A) distillation, but a lengthy program like
Shor’s will typically require two levels (one concatenated
on another). Moreover, since perhaps trillions of distilled
|A) ancillas will be needed for the algorithm, we create a
“distillation factory” [9,43], which is a dedicated region of
the computer that continually produces these states as fast
as possible. Speed is important, because ancilla distillation
can be the rate-limiting step in quantum circuits [10].
Each |A) distillation circuit will require 15 lower-level
|A) states, but they are not all used at the same time. For
simplicity we will use a clock cycle for each gate equal to

TABLE IV. Resource analysis for a distillation factory. These
factories are crucial to quantum computers that require ancillas
for universal gates. Magic-state distillation uses Clifford gates
and measurement, so the circuit can be deformed to reduce depth
and increase area, or vice versa, while keeping volume approxi-
mately constant.

Parameter Symbol Value
Circuit depth 6 clock cycles
Circuit area Adgisiin 12 logical qubits
Circuit volume v(lADY) 72 qubits X cycles

RfaCtOT}’(lA(n)» Afactory/v(lA(n)»

ancillas/cycle

Factory rate
(level n)

the time to implement a logical CNOT (see Sec. VII for
more on this point), so that, with initialization and mea-
surement, the distillation circuit requires 6 cycles. By using
|A) ancillas only when they are needed, the circuit can
be compacted to require at most 12 logical qubits at a given
instant. We characterize the computing effort by a “circuit
volume,” which is the product of logical memory space
(i.e., area of the computer) and time. The circuit volume
of |A) distillation is V(JAV)) = (12 logical qubits) X
(6 clock cycles) = 72. A two-level distillation will require
16 distillation circuits, or a circuit volume of V(|A®)) =
1152. An efficient distillation factory with area Ag,cory Will
produce on average Agciory/ V(|A@)) distilled ancillas per
clock cycle. Analysis of this problem in the context of
Shor’s algorithm is given in Appendix B 1, and Table IV
lists a summary of these results.

C. Logical phase gate without measurement

The S gate, or phase gate, is the final component of the
Clifford group absent from the fundamental set of fault-
tolerant gates discussed in Sec. VA. Previous implementa-
tions of the surface code presented a method for creating
this gate by consuming a distilled |Y) state in a projective
measurement-based circuit [2,90]. However, this approach
forces the quantum computer to distill a high-fidelity |Y)
ancilla for each S gate, which can be very costly in both
fundamental gates and qubits.

We consider an alternative method that uses the |Y)
ancilla without consuming it to make the S gate, which
was originally presented in Ref. [97]. The circuit uses only
four fundamental gates and, unlike the previous technique,
is deterministic because measurement is not needed. Since
|Y) ancillas are not consumed, one can distill a handful of
such states when a quantum computer is turned on, and
then preserve them for later use. The circuit in Fig. 12 is
equivalent to a simple S gate on the control qubit. This
equivalence is because |Y) is the +i eigenstate of the
operator iY, and so the controlled-iY gate will impart a
phase +i only if the control qubit is in the state |1), which
is identical to the S gate. Note also that ST can be created

031007-14

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

¥ lw)
ly) ——H}o—{H]— ly) ————

FIG. 12. Circuit decomposition for a logical S gate that uses an
ancilla |Y) but does not consume it. The inverse operation st can
be created by running this circuit in reverse.

by running the circuit in Fig. 12 backward. This technique
allows one to implement the entire Clifford group without
measurement in the surface code. Moreover, since S gates
are used frequently in quantum algorithms, this improved
gate construction substantially reduces the complexity of a
quantum computer because fewer of the resource-intensive
state distillations are necessary.

D. Approximating arbitrary logical gates

The primary function of the Logical layer is to decom-
pose arbitrary unitary gates from the quantum algorithm
into circuits that contain fundamental gates available from
the QEC layer. The circuits in the Logical layer act on
application qubits (used explicitly by the quantum algo-
rithm) and ancilla logical qubits, both of which facilitate
universal quantum computation, as shown in Fig. 13. Since
arbitrary quantum gates are not available directly, they
must be approximated in some fashion, where the total
resources required is a function of the approximation
accuracy. We cover briefly some of the methods that can

Application
qubits

Reused
ancilla
qubits

Consumed
ancilla
qubits

0000 000 000
C

FIG. 13. Constructing an arbitrary gate in the Logical layer.
Application qubits are visible to the quantum algorithm, while
logical ancilla qubits facilitate universal quantum computation.
Some ancillas are reused, such as |Y) for S gates, while other
ancillas are consumed, such as |A) for T gates. Often, when an
ancilla is consumed in a circuit that uses measurement, the
circuit is probabilistic, and the Pauli frame is updated conditional
on the measurement result.

be employed to produce such arbitrary gates; a more
comprehensive survey of techniques is given in Ref. [105].

When constructing approximations to a unitary operation
in the Logical layer, one seeks to implement a quantum
circuit that approximates the desired unitary operation with
minimal overhead in terms of gates and ancillas produced
by Layer 3. We denote approximation accuracy as

d— |tr(U1L Ua rox)l
Eapprox — \/ P e (6)

where Uppprox 18 the fault-tolerant quantum circuit that
approximates the desired unitary U, and d is the dimen-
sionality of these operators [106]. Several techniques exist
for approximating arbitrary single-qubit gates, which can
be generalized to arbitrary multiqubit gates:

(i) Gate approximation sequences, such as those pro-
duced by the Solovay-Kitaev algorithm [54,107] or
Fowler’s algorithm [106], generate a sequence of
gates from the fault-tolerant set (e.g., the set
{X,Y, Z,H, S, T}) that approximates the desired uni-
tary U. The depth of these sequences scales as
O[log®(€,pprox)] With ¢ =~ 4 for Solovay-Kitaev se-
quences and O[log(&,pprox)] for Fowler sequences.

(i) Phase kickback uses a special ancilla register and a
quantum adder to produce fault-tolerant phase rota-
tions [39,108,109]. The depth of phase-kickback
circuits is O[log(&,pprox)] OF O[loglog(epprox)], de-
pending on the quantum adder [110-112]. The an-
cilla register, which is not consumed and can be
reused, has size m qubits to approximate a phase
rotation to a precision of 5 radians, which is also
O[IOg(Sapprox)l

(iii) “Teleportation gates” [29] can yield very fast

quantum circuits, but typically a special-purpose
ancilla required for each such gate must be com-
puted in advance, which demands a larger and more
complex quantum computer. Teleportation gates
that increase performance in large-scale quantum
computing are used extensively in the architecture
of Ref. [10] and in the simulation algorithms ana-
lyzed in Ref. [105].

Choosing among these methods depends on the capabil-
ities of the quantum architecture, such as available logical
qubits for parallel computation, and on the performance
characteristics desired for the computer.

VI. LAYER 5: APPLICATION

The Application layer is where quantum algorithms are
executed. The efforts of Layers 1 through 4 have produced a
computing substrate that supplies any arbitrary gate needed.
The Application layer is therefore not concerned with the
implementation details of the quantum computer—It is an
ideal quantum programming environment. We do not in-
troduce any new algorithmic methods here, but rather we

031007-15

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

are interested in how to accurately estimate the quantum
computing resources required for a target application. This
analysis can indicate the feasibility of a proposed quantum-
computer design, which is a worthwhile consideration when
evaluating the long-term prospects of a quantum-
computing research program.

A quantum engineer could start here in Layer 5 with a
specific application in mind and work down the layers to
determine the system design necessary to achieve desired
functionality. We take this approach for QuDOS by exam-
ining two interesting quantum algorithms: Shor’s factoring
algorithm and simulation of quantum chemistry. A rigor-
ous system design is beyond the scope of the present work,
but we consider the computing resources required for each
application in sufficient detail that one may gauge the
engineering effort necessary to design a quantum computer
based on QuDOS technology.

A. Elements of the Application layer

The Application layer is composed of application qubits
and gates that act on the qubits. Application qubits are
logical qubits used explicitly by a quantum algorithm (see
Fig. 13). As discussed in Sec. V, many logical qubits are
also used to distill ancilla states necessary to produce a

Application layer

universal set of gates, but these distillation logical qubits
are not visible to the algorithm in Layer 5. When an
analysis of a quantum algorithm quotes a number of qubits
without reference to fault-tolerant error correction, often
this means the number of application qubits [99,113-115].
Similarly, Application-layer gates are equivalent in most
respects to logical gates; the distinction is made according
to what resources are visible to the algorithm or deliber-
ately hidden in the machinery of the Logical layer, which
affords some discretion to the computer designer.

A quantum algorithm could request any arbitrary gate in
Layer 5, but not all quantum gates are equal in terms of
resource costs. We saw in Sec. VB that distilling |A)
ancillas, which are needed for T gates, is a very expensive
process. For example, Fig. 14 shows how Layers 4 and 5
coordinate to produce an Application-layer Toffoli gate,
illustrating the extent to which ancilla distillation con-
sumes resources in the computer. When ancilla preparation
is included, T gates can account for over 90% of the
circuit complexity in a fault-tolerant quantum algorithm
(cf. Ref. [10] as well). For this reason, we count resources
for applications in terms of Toffoli gates. This is a natural
choice, because the level of ancilla distillation, number
of virtual qubits, etc., depend on the choice of hardware,

: T gate ancilla distillation circuit

| 1 ! 1
1 'L 1 .
E Toffoli gate E : : E‘A(k)> O—P @ ‘A(k+1)>i
: =] 11 AD) {My] !
5 | | [4%) —— (4] ;
: x ! 1 A4Y) ’ (4] :
E_ _______________ E E Ancilla distillation factories E # E ‘A(k)> D D H— M, E
_________________] : ' AB) P b—P—{ M,] !
; ; 4®) o0 My ;
: I 1 AD) o——{M] :
:] {4®) —& S :
' 4®) >+ M, !
| 4®) — -] 5
" Toffoli circuit using T gate ancillas 7 : E\A(")> SO M| :
L) I Ez - 4®) —o—————{]
1
: |42) & ' :‘A(k)> S—p—P M, X
b M 5] » | A®) — DD M, |
1 1 I_ _____________________________ 1
E s’ E
' 2y {E} 7 |z@a) 1
: |4?) — E
: !
: .

|42) —4

__

FIG. 14. AToffoli gate (|x, y, z) — |x, y, z ® xy)) at the Application layer is constructed with assistance from the Logical layer, using
the decomposition in Ref. [54]. There are only three application qubits, but substantially more logical qubits are needed for distillation
circuits in Layer 4. The |[A®) ancillas are the result of two levels of distillation (JA?) is an injected state) on the ancilla required for T
gates. Note that, each time an ancilla is used with measurement, the Pauli frame may need to be updated. The ancilla-based circuit for

S gates (see Fig. 12) is not shown here, for clarity.

031007-16

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

error correction, and many other design-specific parame-
ters. By comparison, the number of Toffoli gates is ma-
chine independent since this quantity depends only on the
algorithm (much like the number of application qubits
mentioned above). To determine error correction or hard-
ware resources for a given algorithm, one can take the
Layer-5 resource estimates and work down through
Layers 4 to 1, which is an example of modularity in this
architecture framework. Using the analysis in the preced-
ing sections, an Application-layer Toffoli gate in QuDOS
has an execution time of 930 us (31 logical gate cycles
including the S gate circuits, discussed in Sec. VII).

B. Shor’s algorithm

Perhaps the most well-known application of quantum
computers is Shor’s algorithm, which decomposes an in-
teger into its prime factors [98]. Solving the factoring
problem efficiently would compromise the RSA crypto-
system (named after the authors of Ref. [116]). Because of
the prominence of Shor’s algorithm in the field of large-
scale, fault-tolerant quantum computing, we analyze the
resources required to factor a number of the size typical for
RSA cryptography.

A common key length for RSA public-key cryptography
is 1024 bits. Factoring a number this large is not trivial,
even on a quantum computer, as the following analysis
shows. Figure 15 shows the expected run time on QuDOS

10" | v Speed-of-data -
‘= Size fixed at 10° qubits
© Total execution time:
o
;:§ 109 | 10 days on QuDOS . ."‘> i
o 4
=
ES 90 days [
g | ,
o° v :
= 60 d ;
3 10°} day e N
(&) ' 30 days A
_Q
1024 2048 4096
107 1 1 1 1
512 1024 2048 4096

Bits to factor (N)

FIG. 15. Execution time for Shor’s algorithm, using the same
circuit implementation as in Ref. [43]. The vertical axis shows
circuit depth, in terms of Toffoli gates, and the plot is labeled
with estimated runtime on the QuDOS architecture. The blue
trace (with triangles) is a quantum computer whose size in
logical qubits scales as necessary to compute at the speed of
data (no delays). The green trace (with squares) is a machine
with 10° logical qubits, which experiences rapidly increasing
delays as problem size increases beyond 2048 bits since insuffi-
cient resources are available to distill ancillas for T gates, a
necessary component of Shor’s algorithm. The inset shows the
same data on a linear vertical scale, illustrating when the
quantum computer experiences delays for lack of enough qubits.

for one iteration of Shor’s algorithm versus key length in
bits for two different quantum computers: one where sys-
tem size increases with the problem size, and one where the
system size is limited to 10° logical qubits (including
application qubits). For the fixed-size quantum computer,
the runtime begins to grow faster than the minimal circuit
depth when factoring numbers 2048 bits and higher. Fixing
the machine size highlights the importance of the ancilla
distillation factories. For this instance of Shor’s algorithm,
about 90% of the machine should be devoted to distillation;
if insufficient resources are devoted to distillation, per-
formance of the factoring algorithm plummets. For ex-
ample, the 4096-bit factorization devotes about 75% of
the machine to distillation, but about 3 times as many
factories would be needed to achieve maximum execution
speed in the lower trace in Fig. 15. Many design parameters
in an implementation of Shor’s algorithm can be tuned as
desired; we collect the details of our analysis in
Appendix B 1. We should also mention here that Shor’s
algorithm is probabilistic, so a few iterations may be
required [98].

C. Quantum simulation

Quantum computers were inspired by the problem that
simulating quantum systems on a classical computer is
fundamentally difficult. Feynman postulated that one
quantum system could simulate another much more effi-
ciently than a classical processor, and he proposed a quan-
tum processor to perform this task [117]. Quantum
simulation is one of the few known quantum algorithms
that solves a useful problem believed to be intractable on
classical computers, so we analyze the resource require-
ments for quantum simulation in the quantum architecture
we propose.

We specifically consider fault-tolerant quantum simula-
tion. Other methods of simulation are under investigation
[118-120], but they lie outside the scope of this work. The
particular example we select is simulating the Schrodinger
equation for time-independent Hamiltonians in first-
quantized form, where each Hamiltonian represents the
electron-nuclear configuration in a molecule [100,121].
An application of such a simulation is to determine ground-
and excited-state energy levels in a molecule. We select
first-quantized instead of second-quantized form for better
resource scaling at large problem sizes [122].

Figure 16 shows the time necessary to execute the
simulation algorithm for determining an energy eigenstate
on the QuDOS computer as a function of the size of the
simulation problem, expressed in number of electrons and
nuclei. First-quantized form stores the position-basis infor-
mation for an electron wave function in a quantum register,
and the complete Hamiltonian is a function of one- and
two-body interactions between these registers. For these
reasons, this method does not depend on the particular
molecular structure or arrangement; hence, the method is

031007-17

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

9

x 10
25

Total execution time: o
g 2% 200aysonqupos Manine | e
g (C4H,NO,) P
= .~"'
S | R
% 1.5 Propane :.«*’. 7
= (CgHy) -
s .,»‘"
5
% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, l»»,«" ,,,]
= ~y
3 o
= s
(@] i B

\ \ \ \
40 60 80 100

Particles (electrons and nuclei)

FIG. 16. Execution time for simulation of a molecular
Hamiltonian in first-quantized form, as a function of problem
size. The horizontal axis is number of particles being simulated,
and the plot is labeled with some interesting examples from
chemistry. The vertical axis is circuit depth in Toffoli gates,
and the plot is labeled with estimated runtime on QuDOS.
Each simulation uses 12-bit spatial precision in the wave func-
tion and 2'° time steps for 10-bit precision in readout, or at most
about 3 significant figures. The linear scaling in algorithm
runtime versus problem size is due to two-body potential-energy
calculations, which constitute the majority of the quantum
circuit. The number of potential-energy calculations increases
quadratically with problem size, but through parallel computa-
tion they require linear execution time, as described in
Appendix B 2.

very general. Note that the calculation time scales linearly
in problem size, as opposed to the exponential scaling seen
in classical methods. The precision of the simulation scales
with the number of time steps simulated [99]; this example
uses 2!° time steps for a maximum precision of about 3

significant figures. Details of this simulation algorithm can
be found in Appendix B 2.

D. Large-scale quantum computing

The factoring algorithm and quantum simulation repre-
sent interesting applications of large-scale quantum com-
puting; for each the computing resources required of a
layered architecture based on QuDOS are listed in
Table V. The algorithms are comparable in total resource
costs, as reflected by the fact that these two sample prob-
lems require similar degrees of error correction (hence very
similar KQ product). The simulation algorithm is more
compact than Shor’s, requiring, in particular, fewer logical
qubits for distillation, which reflects the fact that this
algorithm performs fewer arithmetic operations in parallel.
However, Shor’s algorithm has a shorter execution time in
this analysis. Both algorithms can be accelerated through
parallelism if the quantum computer has more logical
qubits to work with [101,105].

VII. TIMING CONSIDERATIONS

Precise timing and sequencing of operations are crucial
to making an architecture efficient. In the framework we
present here, an upper layer in the architecture depends on
processes in the layer beneath, so that logical gate time is
dictated by QEC operations, and so forth. This system of
dependence of operation times is depicted for QuDOS in
Fig. 17. The horizontal axis is a logarithmic scale in the
time to execute an operation at a particular layer, while the
arrows indicate fundamental dependence of one operation
on other operations in lower layers.

Examining Fig. 17, we see that the time scales increase
as one goes to higher layers because a higher layer must
often issue multiple commands to layers below. Using
QuDOS as an example, the Virtual layer must construct a

TABLE V. Summary of the computing resources in a layered architecture based on the
QuDOS platform, for Shor’s algorithm factoring a 1024-bit number (same implementation as
in Ref. [43]) and the ground-state simulation of the molecule alanine (C3H;NO,) using first-
quantized representation. Further details about the algorithms are provided in Appendix B.

Shor’s algorithm

Molecular simulation

Computing resource (1024-bit) (alanine)
Layer 5 Application qubits 6144 6650
Circuit depth (Toffoli) 1.68 X 108 1.27 X 10°
Layer 4 Logical distillation qubits 66 564 15 860
Logical clock cycles 5.21 X 10° 3.94 x 10'0
Layer 3 Code distance 31 31
Error per lattice cycle 2.58 X 10720 2.58 X 10720
Layer 2 Virtual qubits 4.54 X 108 1.40 X 108
Error per virtual gate 1.00 X 1073 1.00 X 1073
Layer 1 Quantum dots 4.54 x 108 1.40 X 108
Area on chip 4.54 cm? 1.40 cm?
Estimated execution time 1.81 days 13.7 days

031007-18

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

Lattice
refresh

- >

Logical
Toffoli gate o
Layer 5: Application
4
1
Logical Logical
CNOT S gate B
. > Layer 4: Logical
|
Defect
braiding

Layer 3: QEC

T
Virtual gate BT
Virtual (1-qubit) Virtual gate ! T, (Dephasing)
measurement 'T ? W (2-qubit) R [Layer 2: Virtual
N
Spin state Measurement Entangling
rotation pulse operation Optical pulses
: | | } P P
1 4 Layer 1: Physical
1
: EOM/AOM Micromirror .
: switching A=zt } Optical control hardware
1
I I I
L=49P (107 (10) (10%)

FIG. 17. Relative time scales for critical operations in QuDOS within each layer. Each bar indicates the approximate time scale of an
operation, and the width indicates that some operation times may vary with improvements in technology. The gray arrows indicate
dependence of higher operations on lower layers. The red arrow signifies that the surface-code lattice refresh must be 2-3 orders of
magnitude faster than the dephasing time in order for error correction to function. The Application layer is represented here with a
Toffoli gate, which is a common building block of quantum algorithms. Complete algorithm runtimes can vary significantly, depending
on both the capabilities of the quantum computer and the specific way each algorithm is compiled, such as to what extent calculations
are performed in parallel. The optical-control hardware is discussed in Appendix A.

virtual 1-qubit gate from a sequence of spin-state rotations.
This process includes the duration of the laser pulses and
the delays between pulses, which all add together for the
total duration of the virtual gate. A crucial point shown in
Fig. 17 is that the time to implement a logical quantum gate
can be orders of magnitude greater than the duration of
each individual physical process, such as a laser pulse. This
increase in operation time is an important consideration for
quantum-computer designs that rely on comparatively
slower physical processes. At the same time, a quantum
computer with a subset of very fast control mechanisms is
limited by the slowest essential gate process, as QuDOS
can only operate as fast as the 2-qubit entangling gate in
Layer 1 permits. For large-scale quantum computing, the
speed of logical, error-corrected operations is the crucial
figure of merit.

Figure 17 also highlights the fact that different control
operations in the computer occur on substantially different
time scales; achieving synchronization of these processes
is an important function for a quantum-computer architec-
ture. To facilitate this process, each layer in the architec-
ture has an internal ‘“‘clock frequency,” which is
characteristic of the time scale of operations in that layer.

These clock cycle times for each layer in QuDOS are listed
in Table VI, along with the operations that define them.
Even within the same layer, some processes may take
different lengths of time to execute, so setting a clock cycle
synchronizes these operations. Accordingly, as one layer
builds on operations in a lower layer, the two layers are
naturally synchronized.

Synchronization alone is not sufficient for a quantum
computer to function. Consider again the control cycle
depicted in Fig. 2. Extracting and processing the error
syndrome must be executed on time scales of the same

TABLE VI. Clock cycle times for Layers 1 to 4 in our analysis
of QuDOS. The cycle time in each layer is determined by a
fundamental control operation. Many operations possess some
flexibility that would permit tradeoffs in execution time and
system size, and better methods may be discovered.

Layer Clock cycle Limiting operation

4: Logical 30 us Logical cNOT

3: QEC 256 ns Lattice refresh (syndrome circuit)
2: Virtual 32 ns Virtual 1-qubit gate

1: Physical 8 ns Laser-pulse repetition frequency

031007-19

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

order as the duration of a logical gate or errors will
accumulate faster than they can be detected. This function
is performed by classical circuitry, but the required com-
puting effort may not be trivial. Fast quantum operations
can be a burden when error correction requires complex
(classical) calculations, as is the case for the surface code.
Devitt et al. [37] and Fowler et al. [96,123] examined this
problem, finding that the processing requirements for
surface-code error correction are not trivial; performing
these calculations ‘““live” where the results may be needed
within e.g., 10 us could be one of the more important
problems for engineering a quantum computer. Still, the
recent progress in this area suggests that some combination
of improved algorithm software and custom hardware can
achieve the necessary performance [123].

VIII. DISCUSSION

We have presented a layered framework for a quantum-
computer architecture. The layered framework has two
major strengths: it is modular, and it facilitates fault
tolerance. The layered nature of the architecture hints at
modularity, but the defining characteristic of the layers we
have chosen is encapsulation. Each of the layers has a
unique and important purpose and bundles the related
operations to fulfill this purpose. Additionally, each layer
plays the role of resource manager, since often many
operations in a lower layer are combined in a higher layer.
Since technologies in quantum computing will evolve over
time, layers may need replacement in the future, and
encapsulation makes integration of new processes a more
straightforward task.

Fault tolerance is at present the biggest challenge
for quantum computers, and our organization of layers
is deliberately chosen to serve this need. Arguably,
Layers 1 and 5 define any quantum computer, but the layers
in between are devoted exclusively to creating fault toler-
ance in an intelligent fashion. Layer 2 uses simple control
to mitigate systematic errors, so this layer is positioned
close to the Physical layer where techniques like dynami-
cal decoupling and decoherence-free subspaces are most
effective. Layer 3 hosts quantum error correction (QEC),
which is essential for large-scale circuit-model quantum
computing on any hardware, such as executing Shor’s
algorithm on a 1024-bit number. There is a significant
interplay between Layers 2 and 3, because Layer 2 enhan-
ces the effectiveness of Layer 3. Finally, Layer 4 fills the
gaps in the gate set provided by Layer 3 to form any desired
unitary operation to arbitrary accuracy, thereby providing
a complete substrate for universal quantum computation
in Layer 5.

QuDOS, a specific hardware platform we introduce
here, demonstrates the power of the layered-architecture
concept, but it also highlights a promising set of technol-
ogies for quantum computing, which are particularly note-
worthy for the fast time scales of quantum operations, the

high degree of integration possible with solid-state fabri-
cation, and the adoption of several mature technologies
from other fields of engineering. The execution times for
fundamental quantum operations are discussed in Sec. II G,
but the importance of these fast processes becomes clear in
Fig. 17, where the overhead resulting from virtual gates in
Layer 2, QEC in Layer 3, and gate constructions in Layer 4
increases the time to implement quantum gates from nano-
seconds in the Physical layer to milliseconds in the
Application layer, or 6 orders of magnitude. In this context,
a quantum computer needs very fast physical operations.
One of our principal objectives is to better understand
the resources required to construct a quantum computer
that can solve a problem intractable for classical com-
puters. Common figures of merit for evaluating quantum-
computing technology are gate fidelity, operation time, and
qubit coherence time. This investigation goes further to
show how connectivity and classical control performance
are also crucial. Designing a quantum computer requires
viewing the system as a whole, such that tradeoffs and
compatibility between component choices must be ad-
dressed. A holistic picture is equally important for compar-
ing different quantum-computing technologies, such as ion
traps or superconducting circuits. This work illustrates how
to approach the complete challenge of designing a quan-
tum computer, so that one can adapt these techniques to
develop architectures for other quantum-computing tech-
nologies we have not considered here. Using this design,
differing system proposals can be compared within a com-
mon framework, which gives aspiring quantum engineers
a common language for determining the best quantum-
computing technology for a desired application.

ACKNOWLEDGMENTS

This work was supported by National Science
Foundation Contract No. CCF-0829694, the University of
Tokyo Special Coordination Funds for Promoting Science
and Technology, NICT, and the Japan Society for the
Promotion of Science (JSPS) through its Funding
Program for World-Leading Innovative R&D on Science
and Technology (FIRST Program). N. C.J. was supported
by the National Science Foundation. A. G. F. acknowledges
support from the Australian Research Council, the
Australian Government, and from the U.S. National
Security Agency (NSA) and the Army Research Office
(ARO) under Contract No. W911NF-08-1-0527.

APPENDIX A: PARALLEL CONTROL OF
LASER PULSES IN QUDOS

The QuDOS design depends on applying millions (or
billions) of laser control pulses in parallel. For complete-
ness, we outline here a method for achieving this level of
control, but a detailed analysis of the engineering problem
lies outside the scope of this work. Imagine that the 2D

031007-20

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

50:50 beamsplitter

Measurement
pulses

b

MEMS Array B

2-qubit
pulses

<

Phase-shift mask

Electro- optic '
—— modulators

MEMS Array A

Quantum dot array

Phase-shifted
pulse

Projection optics

FIG. 18. Optical setup in QuDOS which controls many quantum dots in parallel. Phase-shift masks are used to produce diffraction-
limited optical patterns which entangle the physical qubits (bottom). Computation is achieved by measuring the resulting cluster state;
the measurement pattern is controlled by MEMS mirrors (top). Two MEMS-mirror arrays are multiplexed with electro-optic

modulators, so that one can reposition mirrors while the other is

array of quantum dots in a cavity is an image plane, like a
projector screen. The challenge is to create a precisely
controlled optical pattern on this screen. We need two
key elements for this scheme to work: the ability to modu-
late laser pulses to each point on the screen (i.e., quantum
dot) and the ability to focus laser signals near the diffrac-
tion limit. Similar concepts are presented in Ref. [5]

To solve the first problem, we propose to use an array
of MEMS mirrors. This technology was developed for
high-definition projectors and optical switches for tele-
communications [124,125], but the same devices are being
adapted for use in quantum information processing
[126,127]. Since MEMS mirrors are based on the same
fabrication techniques as used for integrated circuits, a
controllable mirror array with millions of units has been
demonstrated commercially [124], and even larger arrays
may be possible.

The 2-qubit gate mechanism in Sec. IID requires the
quantum dots to be in relatively close proximity (1 pm),
which is close to the wavelength of the laser light (920 nm).
Therefore, any optical patterns will have to compete with
diffraction. This is a familiar problem in photolithography,
so we propose to adopt the method of phase-shift masking
[128,129] from that field. In essence, a “mask’ is defined
by a transparent plate patterned in such a way that light
passing through the mask receives a phase shift that is a
function of position within the image plane. This technique
creates interference of light coming from different direc-
tions in such a manner that one can produce diffraction-
limited patterns on the quantum-dot array.

The MEMS mirrors and phase-shift masks work to-
gether as follows. Operations on the surface code follow
a highly regular pattern of virtual gates; more specifically,

“active.”

the surface code can be constructed by building a cluster
state and performing measurement on selected virtual qu-
bits to create defects in the lattice [90]. The cluster-state
operations are decomposed into a sequence of laser pulses,
which are in turn created by appropriately designed phase-
shift masks. Separately, a pattern of measurement pulses
for each virtual qubit is modulated by a MEMS array. All
of these optical signals are multiplexed together and sent to
the quantum-dot array, which is depicted in Fig. 18.

The configuration of defects in the surface code changes
more slowly than one cycle of the syndrome extraction
circuit. Because the defect boundaries must all be sepa-
rated by the code distance d, the pattern of defects can be
rearranged every d/4 lattice steps. Therefore, the MEMS
mirrors, which control where measurements are made, can
be rearranged every 2 us in QuDOS, which is compatible
with current technology [130]. Still, one has to account for
the time required to reposition a set of mirrors. Two sets of
mirrors are used in an alternating sequence: One is being
repositioned while the other is actively in use, as shown in
the top of Fig. 18. Electro-optic modulators can quickly
multiplex laser pulses between the two mirror arrays.

APPENDIX B: APPLICATION-LAYER DETAILS

We provide here a brief summary of the computational
complexity for Shor’s algorithm and quantum simulation
in first-quantized form. This analysis produces the resource
estimates in Sec. VL.

1. Shor’s algorithm

We adopt the same implementation of Shor’s algorithm
given in Van Meter et al. [43]. In order to determine the
performance of Shor’s algorithm at Layer 5, we must look

031007-21

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

TABLE VII. Generation rates and maximal consumption rates
for a 10°-qubit quantum computer running Shor’s factoring
algorithm. When the speed-of-data consumption rate is higher
than the distillation rate, Shor’s algorithm experiences delays.

Ancilla-factory

Bits to cross-ection Distillation rate Max. consumption
factor (logical qubits) (|A) per cycle) rate (|A) per cycle)
512 96928 84.1 32.1
1024 93856 81.5 57.8
2048 87712 76.1 105.1
4096 75424 65.5 192.7
8192 50848 44.1 355.7
16384 1696 1.5 660.6

at how efficiently Layer 4 prepares Toffoli gates. Let us
suppose that the quantum computer has capacity for 10°
logical qubits; in general, one can interchange logical
capacity and algorithm-execution time. To factor an
N-bit number, approximately 6N application qubits are
used by the algorithm itself, with the remainder of the
logical qubits used to produce the crucial |A) ancillas.
Implementations with fewer application qubits are possible
[113,115], but the performance of such circuits is dramati-
cally slower, especially if one is restricted to a limited set
of gates. As shown in Sec. V B, one round of |A) distillation
requires a volume of computing resources with cross-
section of 12 logical qubits and time of 6 CNOT cycles.
We arrange the excess (10° — 6N) qubits in factories
which distill ancillas as fast as possible.

As before, we define a Logical-layer clock cycle as one
CNOT gate. We express the rate at which the factory gen-
erates ancillas by mean number of ancillas produced per
clock cycle. Two levels of distillation will require 16
distillation circuits (15 at the first level, 1 at the second
level), which uses a circuit volume of Vg =
16 X (12 logical qubits) X (6 clock cycles). For a given
cross-section area Ap,ciory Of the quantum computer de-
voted to distillation, the maximal rate of ancilla production
is given by A,cory/ Vaisan- Calculations of these values are
given in Table VIIL.

We need to determine whether the quantum computer can
run as fast as the circuit depth in Layer 5, or whether the
distillation of |A) states limits performance. Using a con-
struction like Fig. 14, the depth of the Toffoli gate is 31
clock cycles, where each S gate requires 4 cycles as shown
in Fig. 12, and the circuit requires 7 distilled |A) ancillas.
The circuit uses the carry-lookahead adder construction in
Ref. [112], which requires approximately 10N Toffoli gates
in total with a circuit depth of (about 4logyN)trosoris OF
about 124log, N cycles. Using these figures, the maximal
consumption rate of ancillas can be calculated, as shown in
Table VII. As the size of the number to be factored in-
creases, a fixed-size quantum computer is at some point
unable to generate enough ancillas to run the algorithm at

— U(T) — = — V(T)] UQFF] T(T)] UQFI‘ —

FIG. 19. Circuit representation for one iteration of the
Hamiltonian propagator in first-quantized form. The QFT is
performed on the wave function, transforming between position
basis and momentum basis.

maximum speed; when this happens, execution time is
limited by the distillation process. One can make a crude
estimate from Table VII that an efficient quantum computer
for Shor’s algorithm must devote 90% of its resources to
distillation. By similar arguments, a minimal-size quantum
computer that holds just the algorithm qubits and distills
one |A) ancilla at a time will be very slow.

2. Quantum simulation

We utilize the method in Ref. [100] to perform simula-
tion in first-quantized form. Each electron wave function is
represented on a three-dimensional Cartesian grid with
12 bits of precision in each dimension, which requires a
quantum register of 36 qubits per particle. We elect to use a
different set of adders and multipliers than Ref. [100],
opting instead for simple ripple-carry adders which suffice
for 12-bit precision [111]. First, the potential energy op-
erator is calculated in the position basis. We transform the
wave function representation from position basis to mo-
mentum basis with the quantum Fourier transform (QFT),
allowing efficient evaluation of the kinetic energy operator.
The inverse QFT transforms our system back to position
basis. The quantum circuit representation of the system
propagator ‘U is depicted in Fig. 19.

The resource requirements for each of the kinetic (7),
potential (V), and QFT operators are summarized in
Table VIII. The parameters in Table VIII were derived
assuming parallel calculation of commuting operator
terms; for example, the Coulomb interaction between par-
ticles & and 8 can be calculated simultaneously as y and &,
because these terms in the Hamiltonian commute and the
circuits are disjoint [105]. Moreover, we have used the
preceding analysis here in Appendix B 2 to include in

TABLE VIII. Resource requirements for the operators in first-
quantized molecular simulation with B particles and 12-bit
spatial precision including ancilla distillation.

Maximum memory size Circuit depth

Operator (logical qubits) (Layer 4 clock cycles)
Kinetic cnergy 334X B 1.55 X 10°
Potential cnergy 369 X B 6.26 X 10° X B
QFT 272 X B 2.57 X 10*

031007-22

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

1)
42)

1)

=

ly) { qUeFlyHUeH Y - s —UR) -

FIG. 20. The time evolution of the Hamiltonian is produced by
iterating the system propagator over many time steps. After
evolution, a quantum Fourier transform of the time vector trans-
forms the system into the energy eigenbasis, allowing readout of
an energy eigenvalue.

these figures the size of ancilla factories, which is approxi-
mately 260B logical qubits in order to simulate a system
of B particles. For this parallel-simulation algorithm,
ancilla production consumes about 70% of the quantum
computer.

The circuit construction in Fig. 19 is just one iteration of
the system propagator. Estimating an energy eigenvalue
requires simulation of the system at discrete time steps, so
the propagator is repeated many times [99], as shown in
Fig. 20. After evolving the propagator along these time
steps, the system is transformed to the energy eigenbasis by
means of a QFT operation on the time vector |7) [54]. The
precision in the final answer is limited by the number of
bits in |7), so for this analysis we assume the system is
evolved for 2!° time steps, which offers at most about 3
decimal digits of precision.

[1] T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C.
Monroe, and J.L. O’Brien, Quantum Computers, Nature
(London) 464, 45 (2010).

[2] Austin G. Fowler, Ashley M. Stephens, and Peter
Groszkowski, High-Threshold Universal — Quantum
Computation on the Surface Code, Phys. Rev. A 80,
052312 (2009).

[3] David P. DiVincenzo, The Physical Implementation of
Quantum Computation, Fortschr. Phys. 48, 771 (2000).

[4] Andrew M. Steane, Quantum Computer Architecture
for Fast Entropy Extraction, Quantum Inf. Comput. 2,
297 (2002) [http://dl.acm.org/citation.cfm?id=2011480].

[5] Andrew M. Steane, How to Build a 300 Bit, 1 Giga-
Operation Quantum Computer, Quantum Inf. Comput. 7,
171 (2007) [http://dl.acm.org/citation.cfm?id=2011718].

[6] Timothy P. Spiller, William J. Munro, Sean D. Barrett, and
Pieter Kok, An Introduction to Quantum Information
Processing: Applications and Realizations, Contemp.
Phys. 46, 407 (2005).

[71 Rodney Van Meter and Mark Oskin, Architectural
Implications of Quantum Computing Technologies, ACM
Journal on Emerging Technologies in Computing Systems
2, 31 (20006).

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[18]

[19]

[20]

(21]

(22]

(23]

031007-23

J.M. Taylor, H.-A. Engel, W. Diir, A. Yacoby, C.M.
Marcus, P. Zoller, and M.D. Lukin, Fault-Tolerant
Architecture for Quantum Computation Using
Electrically Controlled Semiconductor Spins, Nature
Phys. 1, 177 (2005).

A.M. Steane, Space, Time,
Requirements for Reliable
Fortschr. Phys. 46, 443 (1998).
N. Isailovic, M. Whitney, Y. Patel, and J. Kubiatowicz, in
35th International Symposium on Computer Architecture,
Beijing, China 2008 (ISCA ’08) (IEEE Conference
Publications, Los Alamitos, 2008), p. 177.

Tzvetan S. Metodi, Darshan D. Thaker, Andrew W. Cross,
Frederic T. Chong, and Isaac L. Chuang, in MICRO-38:
Proceedings of the 38th Annual International Symposium
on Microarchitecture (IEEE Computer Society, Los
Alamitos, 2005), p. 305.

D. Kielpinski, C. Monroe, and D. Wineland, Architecture
for a Large-Scale lon-Trap Quantum Computer, Nature
(London) 417, 709 (2002).

Dean Copsey, Mark Oskin, Tzvetan Metodiev, Frederic
T. Chong, Isaac Chuang, and John Kubiatowicz, in
Proceedings of the Fifteenth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA "03) (ACM,
New York, 2003), p. 65.

K.M. Svore, A.V. Aho, A.W. Cross, I. Chuang,
and I.L. Markov, A Layered Software Architecture for
Quantum Computing Design Ttools, Computer 39, 74 (2006).
M. Oskin, F.T. Chong, I.L. Chuang, and J. Kubiatowicz,
in 30th International Symposium on Computer
Architecture, 2003 (ISCA ’03) (IEEE Conference
Publications, San Diego, California, 2003), p. 374.

B.E. Kane, A Silicon-Based Nuclear Spin Quantum
Computer, Nature (London) 393, 133 (1998).

Matteo Mariantoni, H. Wang, T. Yamamoto, M. Neeley,
Radoslaw C. Bialczak, Y. Chen, M. Lenander, Erik
Lucero, A.D. O’Connell, D. Sank, M. Weides, J.
Wenner, Y. Yin, J. Zhao, A.N. Korotkov, A.N. Cleland,
and John M. Martinis, Implementing the Quantum von
Neumann Architecture with Superconducting Circuits,
Science 334, 61 (2011).

J.1. Cirac, P. Zoller, H.J. Kimble, and H. Mabuchi,
Quantum State Transfer and Entanglement Distribution
among Distant Nodes in a Quantum Network, Phys. Rev.
Lett. 78, 3221 (1997).

S.J. van Enk, H.J. Kimble, J.I. Cirac, and P. Zoller,
Quantum Communication with Dark Photons, Phys. Rev.
A 59, 2659 (1999).

A.M. Steane and D.M. Lucas, Quantum Computing
with Trapped Ions, Atoms and Light, Fortschr. Phys. 48,
839 (2000).

L.-M. Duan, M.D. Lukin, J.I. Cirac, and P. Zoller,
Long-Distance Quantum Communication with Atomic
Ensembles and Linear Optics, Nature (London) 414,

Parallelism and Noise
Quantum Computing,

413 (2001).
R. Van Meter, K. Nemoto, and W.J. Munro,
Communication Links for Distributed Quantum

Computation, IEEE Trans. Comput. 56, 1643 (2007).
L.-M. Duan and C. Monroe, Colloquium: Quantum
Networks with Trapped Ions, Rev. Mod. Phys. 82,
1209 (2010).

http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1038/nature08812
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1103/PhysRevA.80.052312
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C771::AID-PROP771%3E3.0.CO;2-E
http://dl.acm.org/citation.cfm?id=2011480
http://dl.acm.org/citation.cfm?id=2011718
http://dx.doi.org/10.1080/00107510500293261
http://dx.doi.org/10.1080/00107510500293261
http://dx.doi.org/10.1145/1126257.1126259
http://dx.doi.org/10.1145/1126257.1126259
http://dx.doi.org/10.1145/1126257.1126259
http://dx.doi.org/10.1038/nphys174
http://dx.doi.org/10.1038/nphys174
http://dx.doi.org/10.1002/(SICI)1521-3978(199806)46:4/5%3C443::AID-PROP443%3E3.0.CO;2-8
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1038/nature00784
http://dx.doi.org/10.1109/MC.2006.4
http://dx.doi.org/10.1038/30156
http://dx.doi.org/10.1126/science.1208517
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevA.59.2659
http://dx.doi.org/10.1103/PhysRevA.59.2659
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C839::AID-PROP839%3E3.0.CO;2-V
http://dx.doi.org/10.1002/1521-3978(200009)48:9/11%3C839::AID-PROP839%3E3.0.CO;2-V
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1038/35106500
http://dx.doi.org/10.1109/TC.2007.70775
http://dx.doi.org/10.1103/RevModPhys.82.1209
http://dx.doi.org/10.1103/RevModPhys.82.1209

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

[24]

[25]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(35]

(36]

(37]

(38]

Jungsang Kim and Changsoon Kim, Integrated Optical
Approach to Trapped Ion Quantum Computation,
Quantum Inf. Comput. 9, 181 (2009) [http://dl.acm.org/
citation.cfm?id=2011782].

Austin G. Fowler, William F. Thompson, Zhizhong Yan,
Ashley M. Stephens, B.L.T. Plourde, and Frank K.
Wilhelm, Long-Range Coupling and Scalable
Architecture for Superconducting Flux Qubits, Phys.
Rev. B 76, 174507 (2007).

M. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz,
in Proceedings of the 4th International Conference
on Computing Frontiers (CF ’07) (ACM, New York,
2007), p. 83.

M. Whitney, N. Isailovic, Y. Patel, and J. Kubiatowicz,
in 36th International Symposium on Computer
Architecture 2009 (ISCA ’'09) (ACM, Austin, Texas,
2009), p, 383.

N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz, in
33rd International Symposium on Computer Architecture,
2006 (ISCA’06) (IEEE Conference Publications, Boston,
Massachusetts, 2006), p. 366.

Daniel Gottesman and Isaac L. Chuang, Demonstrating
the Viability of Universal Quantum Computation Using
Teleportation and Single-Qubit Operations, Nature
(London) 402, 390 (1999).

Jeremy Levy, Quantum-Information Processing with
Ferroelectrically Coupled Quantum Dots, Phys. Rev. A
64, 052306 (2001).

Austin G. Fowler, Simon J. Devitt, and Lloyd C.L.
Hollenberg, Implementation of Shor’s Algorithm on a
Linear Nearest Neighbour Qubit Array, Quantum Inf.
Comput. 4, 237 (2004) [http://dl.acm.org/citation.cfm?
id=2011828].

Panos Aliferis and Andrew W. Cross, Subsystem Fault
Tolerance with the Bacon-Shor Code, Phys. Rev. Lett. 98,
220502 (2007).

James E. Levy, Anand Ganti, Cynthia A. Phillips,
Benjamin R. Hamlet, Andrew J. Landahl, Thomas M.
Gurrieri, Robert D. Carr, and Malcolm S. Carroll, The
Impact of Classical Electronics Constraints on a Solid-
State Logical Qubit Memory, arXiv:0904.0003v1.

James E. Levy, Malcolm S. Carroll, Anand Ganti, Cynthia
A. Phillips, Andrew J. Landahl, Thomas M. Gurrieri,
Robert D. Carr, Harold L. Stalford, and Erik Nielsen,
Implications of Electronics Constraints for Solid-State
Quantum Error Correction and Quantum Circuit Failure
Probability, New J. Phys. 13, 083021 (2011).

Yaakov S. Weinstein, C. Stephen Hellberg, and
Jeremy Levy, Quantum-Dot Cluster-State Computing
with Encoded Qubits, Phys. Rev. A 72, 020304
(2005).

René Stock and Daniel F. V. James, Scalable, High-Speed
Measurement-Based Quantum Computer Using Trapped
lons, Phys. Rev. Lett. 102, 170501 (2009).

Simon J. Devitt, Austin G. Fowler, Todd Tilma, W.J.
Munro, and Kae Nemoto, Classical Processing
Requirements for a Topological Quantum Computing
System, Int. J. Quant. Info. 08, 121 (2010).

Simon J. Devitt, Ashley M. Stephens, William J.
Munro, and Kae Nemoto, Integration of Highly
Probabilistic ~ Sources into Optical — Quantum

(39]

[40]

[41]

[42]

[43]

[47]

(48]

[49]

[50]

[52]

[53]

031007-24

Architectures: Perpetual Quantum Computation, New J.
Phys. 13, 095001 (2011).

Alexei Yu. Kitaev, Alexander H. Shen, and Mikhail N.
Vyalyi, Classical and Quantum Computation (American
Mathematical Society, Providence, 2002), 1st ed.

Mark Oskin, Frederic T. Chong, and Isaac L. Chuang, A
Practical Architecture for Reliable Quantum Computers,
Computer 35, 79 (2002).

Simon J. Devitt, William J. Munro, and Kae Nemoto, High
Performance Quantum Computing, Progr. Informat. 8, 49
(2011).

Rodney Van Meter, Kae Nemoto, W.J. Munro, and
Kohei M. Itoh, Distributed Arithmetic on a Quantum
Multicomputer, Computer Architecture News 34, 354
(2006).

Rodney Van Meter, Thaddeus D. Ladd, Austin G.
Fowler, and Yoshihisa Yamamoto, Distributed Quantum
Computation Architecture Using Semiconductor
Nanophotonics, Int. J. Quant. Info. 08, 295 (2010).

John Preskill, Fault-Tolerant Quantum Computation,
arXiv:quant-ph/9712048.

John Paul Shen and Mikko H. Lipasti, Modern Processor
Design: Fundamentals of Superscalar Processors
(McGraw-Hill Higher Education, New York, 2005).
Gunnar Bjork, Stanley Pau, Joseph Jacobson, and
Yoshihisa Yamamoto, Wannier Exciton Superradiance in
a Quantum-Well Microcavity, Phys. Rev. B 50, 17336
(1994).

A. Imamoglu, D.D. Awschalom, G. Burkard, D.P.
DiVincenzo, D. Loss, M. Sherwin, and A. Small,
Quantum Information Processing Using Quantum
Dot Spins and Cavity QED, Phys. Rev. Lett. 83,
4204 (1999).

N. H. Bonadeo, Gang Chen, D. Gammon, and D. G. Steel,
Single Quantum Dot Nonlinear Optical Spectroscopy,
Phys. Status Solidi B 221, 5 (2000).

J.R. Guest, T. H. Stievater, Xiaoqin Li, Jun Cheng, D.G.
Steel, D. Gammon, D.S. Katzer, D. Park, C. Ell, A.
Thrianhardt, G. Khitrova, and H. M. Gibbs, Measurement
of Optical Absorption by a Single Quantum Dot Exciton,
Phys. Rev. B 65, 241310 (2002).

J. Hours, P. Senellart, E. Peter, A. Cavanna, and J. Bloch,
Exciton Radiative Lifetime Controlled by the Lateral
Confinement Energy in a Single Quantum Dot, Phys.
Rev. B 71, 161306 (2005).

Y. Yamamoto, T.D. Ladd, D. Press, S. Clark, K. Sanaka,
C. Santori, D. Fattal, K.-M. Fu, S. Hofling, S. Reitzenstein,
and A. Forchel, Optically Controlled Semiconductor Spin
Qubits for Quantum Information Processing, Phys. Scr.
T137, 014010 (2009).

M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov,
A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T.L.
Reinecke, S.N. Walck, J. P. Reithmaier, F. Klopf, and F.
Schifer, Fine Structure of Neutral and Charged Excitons
in Self-Assembled In(Ga)As/(Al)GaAs Quantum Dots,
Phys. Rev. B 65, 195315 (2002).

S. Reitzenstein, C. Hofmann, A. Gorbunov, M. Strau8,
S.H. Kwon, C. Schneider, A. Loffler, S. Hofling, M.
Kamp, and A. Forchel, AlAs/GaAs Micropillar Cavities
with Quality Factors Exceeding 150.000, Appl. Phys. Lett.
90, 251109 (2007).

http://dl.acm.org/citation.cfm?id=2011782
http://dl.acm.org/citation.cfm?id=2011782
http://dx.doi.org/10.1103/PhysRevB.76.174507
http://dx.doi.org/10.1103/PhysRevB.76.174507
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1038/46503
http://dx.doi.org/10.1103/PhysRevA.64.052306
http://dx.doi.org/10.1103/PhysRevA.64.052306
http://dl.acm.org/citation.cfm?id=2011828
http://dl.acm.org/citation.cfm?id=2011828
http://dx.doi.org/10.1103/PhysRevLett.98.220502
http://dx.doi.org/10.1103/PhysRevLett.98.220502
http://arXiv.org/abs/0904.0003v1
http://dx.doi.org/10.1088/1367-2630/13/8/083021
http://dx.doi.org/10.1103/PhysRevA.72.020304
http://dx.doi.org/10.1103/PhysRevA.72.020304
http://dx.doi.org/10.1103/PhysRevLett.102.170501
http://dx.doi.org/10.1142/S021974991000637X
http://dx.doi.org/10.1088/1367-2630/13/9/095001
http://dx.doi.org/10.1088/1367-2630/13/9/095001
http://dx.doi.org/10.1109/2.976922
http://dx.doi.org/10.2201/NiiPi.2011.8.6
http://dx.doi.org/10.2201/NiiPi.2011.8.6
http://dx.doi.org/10.1145/1150019.1136517
http://dx.doi.org/10.1145/1150019.1136517
http://dx.doi.org/10.1142/S0219749910006435
http://arXiv.org/abs/quant-ph/9712048
http://dx.doi.org/10.1103/PhysRevB.50.17336
http://dx.doi.org/10.1103/PhysRevB.50.17336
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1002/1521-3951(200009)221:1%3C5::AID-PSSB5%3E3.0.CO;2-H
http://dx.doi.org/10.1103/PhysRevB.65.241310
http://dx.doi.org/10.1103/PhysRevB.71.161306
http://dx.doi.org/10.1103/PhysRevB.71.161306
http://dx.doi.org/10.1088/0031-8949/2009/T137/014010
http://dx.doi.org/10.1088/0031-8949/2009/T137/014010
http://dx.doi.org/10.1103/PhysRevB.65.195315
http://dx.doi.org/10.1063/1.2749862
http://dx.doi.org/10.1063/1.2749862

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

Michael A. Nielsen and Isaac L. Chuang, Quantum
Computation and Quantum Information (Cambridge
University Press, Cambridge, England, 2000), 1st ed.
David Press, Thaddeus D. Ladd, Bingyang Zhang, and
Yoshihisa Yamamoto, Complete Quantum Control of a
Single Quantum Dot Spin Using Ultrafast Optical
Pulses, Nature (London) 456, 218 (2008).

Kristiaan De Greve, Peter L. McMahon, N. Cody

Jones, Christian Schneider, Martin Kamp, Sven
Hoefling, and Yoshihisa Yamamoto, All-Optical,
Ultrafast Hadamard Gates: High-Fidelity, Direct

Implementation of a Quantum Information Primitive
(unpublished).

Sophia E. Economou, L.J. Sham, Yanwen Wu, and
D.G. Steel, Proposal for Optical U(l) Rotations of
Electron Spin Trapped in a Quantum Dot, Phys. Rev. B
74, 205415 (2006).

Susan M. Clark, Kai-Mei C. Fu, Thaddeus D. Ladd,
and Yoshihisa Yamamoto, Quantum Computers
Based on Electron Spins Controlled by Ultrafast Off-
Resonant Single Optical Pulses, Phys. Rev. Lett. 99,
040501 (2007).

T.D. Ladd and Y. Yamamoto, Simple Quantum Logic Gate
with Quantum Dot Cavity QED Systems, Phys. Rev. B 84,
235307 (2011).

G.F. Quinteiro, J. Fernandez-Rossier, and C.
Piermarocchi, Long-Range Spin-Qubit Interaction
Mediated by Microcavity Polaritons, Phys. Rev. Lett. 97,
097401 (2006).

J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz,
L.A. Coldren, and D.D. Awschalom, Nondestructive
Optical Measurements of a Single Electron Spin in a
Quantum Dot, Science 314, 1916 (2000).

Mete Atatiire, Jan Dreiser, Antonio Badolato, and Atac
Imamoglu, Observation of Faraday Rotation from a Single
Confined Spin, Nature Phys. 3, 101 (2007).

Ilya Fushman, Dirk Englund, Andrei Faraon,
Nick Stoltz, Pierre Petroff, and Jelena Vuckovic,
Controlled Phase Shifts with a Single Quantum Dot,
Science 320, 769 (2008).

A.B. Young, R. Oulton, C.Y. Hu, A.C.T. Thijssen, C.
Schneider, S. Reitzenstein, M. Kamp, S. Hofling, L.
Worschech, A. Forchel, and J.G. Rarity, Quantum-
Dot-Induced Phase Shift in a Pillar Microcavity, Phys.
Rev. A 84, 011803 (2011).

David Press, Kristiaan De Greve, Peter L. McMahon,
Thaddeus D. Ladd, Benedikt Friess, Christian Schneider,
Martin Kamp, Sven Hofling, Alfred Forchel, and
Yoshihisa Yamamoto, Ultrafast Optical Spin Echo in a
Single Quantum Dot, Nature Photon. 4, 367 (2010).
Panos Aliferis and John Preskill, Fault-Tolerant Quantum
Computation against Biased Noise, Phys. Rev. A 78,
052331 (2008).

D.A. Lidar, IL.L. Chuang, and K.B. Whaley,
Decoherence-Free Subspaces for Quantum Computation,
Phys. Rev. Lett. 81, 2594 (1998).

Daniel A. Lidar and K. Birgitta Whaley, in Irreversible
Quantum Dynamics, Lecture Notes in Physics, Vol. 622,
edited by F. Benatti and R. Floreanini (Springer,
Berlin, 2003), p. 83 [http://www.springerlink.com/content/
m26k4533p0v85331/].

[69]

[70]
[71]

[72]

(73]

[74]

[75]

[76]

(771

[80]

(81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

031007-25

Matthew Grace, Constantin Brif, Herschel Rabitz,
Ian Walmsley, Robert Kosut, and Daniel Lidar, Encoding
a Qubit into Multilevel Subspaces, New J. Phys. 8,
35 (20006).

E.L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
Lorenza Viola, Emanuel Knill, and Seth Lloyd,
Dynamical Decoupling of Open Quantum Systems, Phys.
Rev. Lett. 82, 2417 (1999).

K. Khodjasteh and D.A. Lidar, Fault-Tolerant
Quantum Dynamical Decoupling, Phys. Rev. Lett. 95,
180501 (2005).

Michael J. Biercuk, Hermann Uys, Aaron P. VanDevender,
Nobuyasu Shiga, Wayne M. Itano, and John J. Bollinger,
Optimized Dynamical Decoupling in a Model Quantum
Memory, Nature (London) 458, 996 (2009).

Lorenza Viola and Emanuel Knill, Robust Dynamical
Decoupling of Quantum Systems with Bounded Controls,
Phys. Rev. Lett. 90, 037901 (2003).

Hui Khoon Ng, Daniel A. Lidar, and John Preskill,
Combining Dynamical Decoupling with Fault-Tolerant
Quantum Computation, Phys. Rev. A 84, 012305 (2011).
H.Y. Carr and E. M. Purcell, Effects of Diffusion on Free
Precession in Nuclear Magnetic Resonance Experiments,
Phys. Rev. 94, 630 (1954).

U. Haeberlen and J.S. Waugh, Coherent Averaging
Effects in Magnetic Resonance, Phys. Rev. 175,
453 (1968).

Gotz S. Uhrig, Keeping a Quantum Bit Alive by Optimized

m-Pulse Sequences, Phys. Rev. Lett. 98, 100504
(2007).

Kenneth R. Brown, Aram W. Harrow, and Isaac L.
Chuang, Arbitrarily Accurate Composite Pulse

Sequences, Phys. Rev. A 70, 052318 (2004).

Y. Tomita, J.T. Merrill, and K.R. Brown, Multi-Qubit
Compensation Sequences, New J. Phys. 12, 015002
(2010).

Kaveh Khodjasteh and Lorenza Viola, Dynamically Error-
Corrected Gates for Universal Quantum Computation,
Phys. Rev. Lett. 102, 080501 (2009).

P. Cappellaro, J. Emerson, N. Boulant, C. Ramanathan, S.
Lloyd, and D. G. Cory, Entanglement Assisted Metrology,
Phys. Rev. Lett. 94, 020502 (2005).

J.M. Elzerman, R. Hanson, L. H. Willems van Beveren, B.
Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven,
Single-Shot Read-Out of an Individual Electron Spin in a
Quantum Dot, Nature (London) 430, 431 (2004).

Miro Kroutvar, Yann Ducommun, Dominik Heiss, Max
Bichler, Dieter Schuh, Gerhard Abstreiter, and Jonathan J.
Finley, Optically Programmable Electron Spin Memory
Using Semiconductor Quantum Dots, Nature (London)
432, 81 (2004).

D. Aharonov and M. Ben-Or, in Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of
Computing (STOC ’97) (ACM, New York, 1997), p. 176.
John Preskill, Reliable Quantum Computers, Proc. R. Soc.
A 454, 385 (1998).

Simon J. Devitt, Kae Nemoto, and William J. Munro, The

Idiots Guide to Quantum Error Correction,
arXiv:0905.2794.
D. Gottesman, Ph.D. thesis, California Institute of

Technology, Pasadena, CA, 1997.

http://dx.doi.org/10.1038/nature07530
http://dx.doi.org/10.1103/PhysRevB.74.205415
http://dx.doi.org/10.1103/PhysRevB.74.205415
http://dx.doi.org/10.1103/PhysRevLett.99.040501
http://dx.doi.org/10.1103/PhysRevLett.99.040501
http://dx.doi.org/10.1103/PhysRevB.84.235307
http://dx.doi.org/10.1103/PhysRevB.84.235307
http://dx.doi.org/10.1103/PhysRevLett.97.097401
http://dx.doi.org/10.1103/PhysRevLett.97.097401
http://dx.doi.org/10.1126/science.1133862
http://dx.doi.org/10.1038/nphys521
http://dx.doi.org/10.1126/science.1154643
http://dx.doi.org/10.1103/PhysRevA.84.011803
http://dx.doi.org/10.1103/PhysRevA.84.011803
http://dx.doi.org/10.1038/nphoton.2010.83
http://dx.doi.org/10.1103/PhysRevA.78.052331
http://dx.doi.org/10.1103/PhysRevA.78.052331
http://dx.doi.org/10.1103/PhysRevLett.81.2594
http://www.springerlink.com/content/m26k4533p0v85331/
http://www.springerlink.com/content/m26k4533p0v85331/
http://dx.doi.org/10.1088/1367-2630/8/3/035
http://dx.doi.org/10.1088/1367-2630/8/3/035
http://dx.doi.org/10.1103/PhysRev.80.580
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.82.2417
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1103/PhysRevLett.95.180501
http://dx.doi.org/10.1038/nature07951
http://dx.doi.org/10.1103/PhysRevLett.90.037901
http://dx.doi.org/10.1103/PhysRevA.84.012305
http://dx.doi.org/10.1103/PhysRev.94.630
http://dx.doi.org/10.1103/PhysRev.175.453
http://dx.doi.org/10.1103/PhysRev.175.453
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevLett.98.100504
http://dx.doi.org/10.1103/PhysRevA.70.052318
http://dx.doi.org/10.1088/1367-2630/12/1/015002
http://dx.doi.org/10.1088/1367-2630/12/1/015002
http://dx.doi.org/10.1103/PhysRevLett.102.080501
http://dx.doi.org/10.1103/PhysRevLett.94.020502
http://dx.doi.org/10.1038/nature02693
http://dx.doi.org/10.1038/nature03008
http://dx.doi.org/10.1038/nature03008
http://dx.doi.org/10.1098/rspa.1998.0167
http://dx.doi.org/10.1098/rspa.1998.0167
http://arXiv.org/abs/0905.2794

N. CODY JONES et al.

PHYS. REV. X 2, 031007 (2012)

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Robert Raussendorf and Jim Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two
Dimensions, Phys. Rev. Lett. 98, 190504 (2007).

R Raussendorf, J Harrington, and K Goyal, Topological
Fault-Tolerance in Cluster State Quantum Computation,
New J. Phys. 9, 199 (2007).

E. Knill, Quantum Computing with Realistically Noisy
Devices, Nature (London) 434, 39 (2005).

Panos Aliferis, Daniel Gottesman, and John Preskill,
Accuracy Threshold for Postselected Quantum
Computation, Quantum Inf. Comput. 8, 181 (2008) [http://
citeseerx.ist.psu.edu/viewdoc/summary ?doi=10.1.1.148
.2937].

Dave Bacon, Operator Quantum Error-Correcting
Subsystems for Self-Correcting Quantum Memories,
Phys. Rev. A 73, 012340 (2006).

Austin G. Fowler, David S. Wang, and Lloyd C.L.
Hollenberg, Surface Code Quantum Error Correction
Incorporating Accurate Error Propagation, Quantum
Inf. Comput. 11, 8 (2011) [http://dl.acm.org/citation
.cfm?id=2011385].

David S. Wang, Austin G. Fowler, and Lloyd
C.L. Hollenberg, Surface Code Quantum Computing with
Error Rates over 1%, Phys. Rev. A 83, 020302 (2011).
Austin G. Fowler, Adam C. Whiteside, and Lloyd
C.L. Hollenberg, Towards Practical Classical
Processing for the Surface Code, Phys. Rev. Lett. 108,
180501 (2012).

Panos Aliferis, Ph.D. thesis,
Technology, Pasadena, CA, 2007.
Peter W. Shor, Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer, SIAM J. Comput. 26, 1484 (1997).

Alan Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love,
and Martin Head-Gordon, Simulated Quantum
Computation of Molecular Energies, Science 309, 1704
(2005).

Ivan Kassal, Stephen P. Jordan, Peter J. Love, Masoud
Mohseni, and Alan Aspuru-Guzik, Polynomial-Time
Quantum Algorithm for the Simulation of Chemical
Dynamics, Proc. Natl. Acad. Sci. U.S.A. 105, 18681
(2008).

Rodney Van Meter and Kohei M. Itoh, Fast Quantum
Modular Exponentiation, Phys. Rev. A 71, 052320
(2005).

David P. DiVincenzo and Panos Aliferis, Effective Fault-
Tolerant Quantum Computation with Slow Measurements,
Phys. Rev. Lett. 98, 020501 (2007).

Simon Anders and Hans J. Briegel, Fast Simulation of
Stabilizer Circuits Using a Graph-State Representation,
Phys. Rev. A 73, 022334 (2006).

Sergey Bravyi and Alexei Kitaev, Universal Quantum
Computation with Ideal Clifford Gates and Noisy
Ancillas, Phys. Rev. A 71, 022316 (2005).

N. Cody Jones, James D. Whitfield, Peter L. McMahon,
Man-Hong Yung, Rodney Van Meter, Alan Aspuru-Guzik,
and Yoshihisa Yamamoto, Simulating Chemistry
Efficiently on Fault-Tolerant Quantum Computers,
arXiv:1204.0567.

Austin G. Fowler, Constructing Arbitrary Steane Code
Single Logical Qubit Fault-Tolerant Gates, Quantum Inf.

California Institute of

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

031007-26

Comput. 11, 867 (2011) [http://dl.acm.org/citation.cfm?
1d=2230946].

Christopher M. Dawson and Michael A. Nielsen, The
Solovay-Kitaev Algorithm, Quantum Inf. Comput. 6, 81
(2006) [http://dl.acm.org/citation.cfm?id=2011685].
A.Yu. Kitaev, Quantum Measurements and the Abelian
Stabilizer Problem, arXiv:quant-ph/9511026v1.

R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca,
Quantum Algorithms Revisited, Proc. R. Soc. A 454,

339 (1998).
Vlatko Vedral, Adriano Barenco, and Artur Ekert,
Quantum Networks for Elementary Arithmetic

Operations, Phys. Rev. A 54, 147 (1996).

Steven A. Cuccaro, Thomas G. Draper, Samuel A. Kutin,
and David Petrie Moulton, A New Quantum Ripple-Carry
Addition Circuit, arXiv:quant-ph/0410184.

Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and
Krysta M. Svore, A Logarithmic-Depth Quantum Carry-
Lookahead Adder, Quantum Inf. Comput. 6, 351 (2006)
[http://dl.acm.org/citation.cfm?id=2012090].

Stéphane Beauregard, Circuit for Shor’s Algorithm Using
2n + 3 Qubits, Quantum Inf. Comput. 3, 175 (2003)
[http://dl.acm.org/citation.cfm?id=2011525].

Christof Zalka, Shor’s Algorithm with Fewer (Pure)
Qubits, arXiv:quant-ph/0601097.

Yasuhiro Takahashi and Noboru Kunihiro, A Quantum
Circuit for Shor’s Factoring Algorithm Using 2n + 2
Qubits, Quantum Inf. Comput. 6, 184 (2006) [http://dl.acm
.org/citation.cfm?id=2011669].

R.L. Rivest, A. Shamir, and L. Adleman, A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems, Commun. ACM 21, 120 (1978).

Richard Feynman, Simulating Physics with Computers,
Int. J. Theor. Phys. 21, 467 (1982).

Iulia Buluta and Franco Nori, Quantum Simulators,
Science 326, 108 (2009).

Julio T. Barreiro, Markus Miiller, Philipp Schindler,
Daniel Nigg, Thomas Monz, Michael Chwalla, Markus
Hennrich, Christian F. Roos, Peter Zoller, and Rainer
Blatt, An Open-System Quantum Simulator with Trapped
Ions, Nature (London) 470, 486 (2011).

J.D. Biamonte, V. Bergholm, J.D. Whitfield, J.
Fitzsimons, and A. Aspuru-Guzik, Adiabatic Quantum
Simulators, AIP Adv. 1, 022126 (2011).

C. Zalka, Simulating Quantum Systems on a Quantum
Computer, Proc. R. Soc. A 454, 313 (1998).

Ivan Kassal, James D. Whitfield, Alejandro Perdomo-Ortiz,
Man-Hong Yung, and Alan Aspuru-Guzik, Simulating
Chemistry Using Quantum Computers, Annu. Rev. Phys.
Chem. 62, 185 (2011).

Austin G. Fowler, Adam C. Whiteside, and Lloyd C.L.
Hollenberg, Towards Practical Classical Processing for
the Surface Code: Timing Analysis, arXiv:1202.5602.
Texas Instruments (2011) [http://www.dlp.com].

J. Kim, C.J. Nuzman, B. Kumar, D.F. Lieuwen,
J.S. Kraus, A. Weiss, C.P. Lichtenwalner, A.R. Papazian,
R.E. Frahm, N.R. Basavanhally er al, 1100 X 1100
Port MEMS-Based Optical Crossconnect with 4-dB
Maximum Loss, IEEE Photonics Technol. Lett. 15, 1537 (2003).
Changsoon Kim, C. Knoernschild, Bin Liu, and Jungsang
Kim, Design and Characterization of MEMS

http://dx.doi.org/10.1103/PhysRevLett.98.190504
http://dx.doi.org/10.1088/1367-2630/9/6/199
http://dx.doi.org/10.1038/nature03350
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.2937
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.2937
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.148.2937
http://dx.doi.org/10.1103/PhysRevA.73.012340
http://dl.acm.org/citation.cfm?id=2011385
http://dl.acm.org/citation.cfm?id=2011385
http://dx.doi.org/10.1103/PhysRevA.83.020302
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://dx.doi.org/10.1103/PhysRevLett.108.180501
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1126/science.1113479
http://dx.doi.org/10.1126/science.1113479
http://dx.doi.org/10.1073/pnas.0808245105
http://dx.doi.org/10.1073/pnas.0808245105
http://dx.doi.org/10.1103/PhysRevA.71.052320
http://dx.doi.org/10.1103/PhysRevA.71.052320
http://dx.doi.org/10.1103/PhysRevLett.98.020501
http://dx.doi.org/10.1103/PhysRevA.73.022334
http://dx.doi.org/10.1103/PhysRevA.71.022316
http://arXiv.org/abs/1204.0567
http://dl.acm.org/citation.cfm?id=2230946
http://dl.acm.org/citation.cfm?id=2230946
http://dl.acm.org/citation.cfm?id=2011685
http://arXiv.org/abs/quant-ph/9511026v1
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1098/rspa.1998.0164
http://dx.doi.org/10.1103/PhysRevA.54.147
http://arXiv.org/abs/quant-ph/0410184
http://dl.acm.org/citation.cfm?id=2012090
http://dl.acm.org/citation.cfm?id=2011525
http://arXiv.org/abs/quant-ph/0601097
http://dl.acm.org/citation.cfm?id=2011669
http://dl.acm.org/citation.cfm?id=2011669
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1007/BF02650179
http://dx.doi.org/10.1126/science.1177838
http://dx.doi.org/10.1038/nature09801
http://dx.doi.org/10.1063/1.3598408
http://dx.doi.org/10.1098/rspa.1998.0162
http://dx.doi.org/10.1146/annurev-physchem-032210-103512
http://dx.doi.org/10.1146/annurev-physchem-032210-103512
http://arXiv.org/abs/1202.5602
http://www.dlp.com
http://dx.doi.org/10.1109/LPT.2003.818653

LAYERED ARCHITECTURE FOR QUANTUM COMPUTING

PHYS. REV. X 2, 031007 (2012)

[127]

[128]

Micromirrors for lon-Trap Quantum Computation, IEEE
J. Sel. Top. Quantum Electron. 13, 322 (2007).

Caleb Knoernschild, Changsoon Kim, Bin Liu, Felix P. Lu,
and Jungsang Kim, MEMS-Based Optical Beam Steering
System for Quantum Information Processing in Two-
Dimensional Atomic Systems, Opt. Lett. 33, 273 (2008).
Y. Liu and A. Zakhor, Binary and Phase Shifting Mask
Design for Optical Lithography, IEEE Trans. Semicond.
Manuf. 5, 138 (1992).

[129]

[130]

031007-27

Joanna Aizenberg, John A. Rogers, Kateri E. Paul, and
George M. Whitesides, Imaging Profiles of Light Intensity
in the Near Field: Applications to Phase-Shift
Photolithography, Appl. Opt. 37, 2145 (1998).

G. N. Nielson, R. H. Olsson, P. R. Resnick, and O. B. Spahn,
in Conference on Lasers and Electro-Optics, 2007
(CLEO 2007) (Optical Society of America, Washington,
DC, 2007), pp. 1-2 [http://www.opticsinfobase.org/
abstract.cfm?URI=CLEO-2007-CMP2].

http://dx.doi.org/10.1109/JSTQE.2007.893561
http://dx.doi.org/10.1109/JSTQE.2007.893561
http://dx.doi.org/10.1364/OL.33.000273
http://dx.doi.org/10.1109/66.136275
http://dx.doi.org/10.1109/66.136275
http://dx.doi.org/10.1364/AO.37.002145
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CMP2
http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CMP2

