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Quantum Hall (QH) and quantum spin Hall (QSH) phases have very different edge states and, when

going from one phase to the other, the direction of one edge state must be reversed. We study this

phenomenon in graphene in the presence of a strong perpendicular magnetic field on top of a spin-orbit

(SO)-induced QSH phase. We show that, below the SO gap, the QSH phase is virtually unaffected by the

presence of the magnetic field. Above the SO gap, the QH phase is restored. An electrostatic gate placed

on top of the system allows the creation of a QSH-QH junction which is characterized by the existence of

a spin-polarized chiral state, propagating along the topological interface. We find that such a setup

naturally provides an extremely sensitive spin-polarized current switch which could pave the way to novel

spin-based electronic devices.
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I. INTRODUCTION

Electronic properties of graphene and topological insu-
lators have received considerable attention these last few
years [1,2]. Graphene is a two-dimensional crystal whose
electronic band structure is that of a gapless semiconduc-
tor, with conduction and valence bands touching each other
at two inequivalent points, K andK0, commonly referred to
as valleys. The energy of charge carriers vanishes at these
points and disperses linearly with momentum in their
vicinity, forming a so-called Dirac cone. Low-energy ex-
citations are massless Dirac fermions. These exotic quasi-
particles carry a topological Berry phase which has been
shown to give rise to many unusual transport phenomena
such as the suppression of backscattering (also known as
Klein tunnelling) [3,4], weak antilocalization [5,6], and a
‘‘relativistic’’ quantum Hall effect [7–9]. Some of these
properties, however, are not robust to the presence of
disorder—as soon as the latter is sufficiently short ranged
to induce valley mixing—due to the existence in graphene
of an even number of Dirac cones.

On the other hand, the recently discovered topological
insulators are insulating in the bulk and characterized by
the existence of robust gapless excitations at their surface
[2,10–14]. In two dimensions, the topologically insulating
phase possesses gapless states propagating along its edges.
There are two famous examples of this phase: the quantum
Hall (QH) insulator, which can be obtained by applying a
strong magnetic field perpendicular to the plane and
is characterized by chiral spin-degenerate edge states
[Fig. 1(b)], and the time-reversal-symmetric quantum
spin Hall (QSH) insulator, which is induced by a strong

spin-orbit (SO) interaction [10,12,15] and is characterized
by states with opposite spins propagating in opposite
directions [Fig. 1(a)].
Whereas examples of three-dimensional topological

insulators have been found to abound in nature, two-
dimensional systems exhibiting the QSH phase are so far
limited to HgTe=CdTe heterostructures, which only a few
experimental groups in the world can synthesize. It was
recently suggested [16] that graphene might come to the
rescue, much like it did with two-dimensional electron
gases, which were until a few years ago limited to epitax-
ially grown semiconducting heterostructures. Graphene’s
versatile fabrication methods and insensitivity to ambient
temperature and chemical conditions have indeed raised
important expectations for all sorts of applications in elec-
tronics [17]. Following the seminal observation by Kane
and Mele that graphene with SO coupling should be a QSH
insulator [10], Weeks et al. [16] numerically predicted the
possibility of opening a substantial QSH gap in graphene
by depositing on it heavy adatoms (such as In or Tl), which
can locally induce strong SO coupling in the system. In a
previous paper [18], we studied in detail the transport in
graphene randomly covered by diluted adatoms and
showed that the QSH phase was insensitive to the inhomo-
geneity in the coverage nad and that, for all purposes, the
system could be mapped to a homogeneous phase with a
renormalized SO coupling strength �eff

so ¼ �sonad. We ex-
plore in this article the fate of the QSH phase when a strong
perpendicular magnetic field is applied to graphene.
Surprisingly, we show that the QSH phase is preserved
for energies below the QSH gap, even for extremely strong
magnetic fields or in the presence of disorder. As we will
see, this can be traced back to the peculiar relativistic
aspect of the QH effect in graphene (as well as to the
negligible contribution of Zeeman splitting in graphene).
The often-quoted simplified picture of SO coupling acting
as an effective magnetic field with opposite signs for
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opposite spins clearly breaks down in this situation.
Next, we turn to the investigation of the transport
properties of a junction between a QSH and a QH phase
[Fig. 1(c)]. We show that this setup features a robust state,
localized at the interface between the two topological
insulators, analogous to the ambipolar ‘‘snake’’ states
that arise in graphene quantum Hall n-p junctions [19],
and take advantage of this state by demonstrating how it
can serve to realize a topologically protected spin-
polarized charge-current switch.

The paper is organized as follows. In Sec. II, we recall
the basic features of the QH and QSH phases and introduce
the physical question at the root of this work. In Sec. III, we
discuss the band structure of our system, and we show in
Sec. IV how the use of topological Chern numbers can
provide us with a clean and simple interpretation for the
band structure. Numerical transport calculations are pre-
sented in Sec. V, in which we show that all regimes (below,
above, and at the topological transition) possess character-
istic signatures. The effects of geometry and disorder are
discussed. Transport in the presence of a heterojunction
between our two topologically insulating phases is ana-
lyzed in Sec. VI. There, we discuss similarities with other
setups such as quantum Hall n-p junctions, and comment
on the possibility of realizing a spin-polarized current

switch with huge on/off ratios. Our results are summarized
in Sec. VII.

II. HOW TO REVERSE THE DIRECTION OF
PROPAGATION OFAN EDGE STATE

The issue of how time-reversal symmetry breaking can
affect the QSH phase has been addressed previously in the
literature in different settings [20–23]. To the best of our
knowledge, however, transport signatures of the competi-
tion between QH and QSH phases in graphene have not
been considered yet, with the exception of the work by
Abanin et al. [24], in which the QSH phase arose from
a different mechanism (Zeeman splitting), which is ex-
tremely weak [25] and can therefore easily be destroyed
by local fluctuations of the magnetic field. In contrast, we
study the model introduced by Kane and Mele [10], to
which we add the presence of a strong perpendicular
magnetic field:

H ¼ vFð�̂x�x�z þ �̂y�yÞ þ�so�z�zsz: (1)

�̂ ¼ p̂þ eA is the generalized momentum, which ac-
counts for the presence of the magnetic vector potential
A associated with a perpendicular magnetic field B ¼ Bz
(r�A ¼ B); �so is the SO-induced QSH gap; and vF ¼
3taC�C=ð2@Þ is the Fermi velocity [expressed as a function
of the microscopic lattice parameters t (nearest-neighbor
hopping amplitude) and aC�C (nearest-neighbor distance),
which we choose in the following discussion as our work-
ing units of energy and length, respectively]. f�; �; sg are
Pauli matrices in, respectively, sublattice, valley, and spin
spaces.
The band structures of a graphene ribbon in the QSH and

QH phases are quite different. In the QH phase, the per-
pendicular magnetic field gives rise to Landau levels

�n ¼ �ð@vF=lBÞ
ffiffiffiffiffiffiffiffiffi
2jnjp

, with lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðeBÞp

, which become
dispersive close to the edges of the graphene ribbon
[Fig. 2(a)]. When the Fermi level is placed between two
of these Landau levels, transport is characterized by spin-
degenerate edge states, as shown in Fig. 1(b), which propa-
gate in a direction imposed by the sign of the magnetic
field. In the QSH phase, the band structure consists of
hyperbolic bands above the QSH gap and a pair of linearly
dispersing bands below it [Fig. 2(b)]. These linear bands
correspond to spin-polarized states, localized at the edges
of the graphene ribbon on a characteristic length scale
�so ¼ @vF=�so. When the Fermi level is below the QSH
gap, transport in the system can be described by counter-
propagating edge states, as shown in Fig. 1(a). By compar-
ing Figs. 1(a) and 1(b), one observes that one spin
species—hereafter referred to as the ‘‘unhappy’’ spin
(dotted red lines in Fig. 1)—has to reverse its direction
of propagation when going from one phase to the other.
This article is devoted to the study of how this reversal
happens in two different setups: a homogeneous sample,

FIG. 1. Schematics for the edge states in a four-terminal
Z-shape geometry when the system is in the (a) QSH phase
and the (b) QH phase. In (a), opposite spins (thick blue lines and
red dotted lines) propagate in opposite directions on a given
edge, while in (b), they propagate in the same direction.
(c) Topological heterojunction, with QSH edge states on the
left and QH edge states on the right. This junction can be
achieved experimentally by applying a top gate (shaded region)
on the right half of the sample. While one of the spin species
(thick blue line) can propagate through this junction, the other
one (red dotted line) cannot, giving rise to a chiral state,
localized at the interface between QH and QSH phases, which
connects both edges.
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where the quantum phase transition between QH and QSH
phases is driven by electrostatic doping, and a heterojunc-
tion between the two phases.

III. BAND STRUCTURE

The first insight is given by the spectrum of Eq. (1)
in the presence of graphene edges. The energy spectrum
for a bulk system described by Eq. (1) reads

�n ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

Bjnj þ �2
so

q
, with �B ¼ ð@vF=lBÞ

ffiffiffi
2

p
. The low-

est level n ¼ 0 stands out from the others, as each branch
(�) can be shown to host only one of the two spin species
[22] [Fig. 2(c)]. Whereas n > 0 levels will all disperse in
the same direction when confinement is taken into account,
the fate of the lowest level is more subtle. To be more
quantitative, we make use of a tight-binding model on the
graphene hexagonal lattice, which in the presence of both
Kane-Mele SO coupling and perpendicular magnetic field
can be written as

H ¼ �t
X
hi;ji;�

ei�ijcyi;�cj;� þ i�so

X
hhi;jii;�;�

	ije
i�ijcyi;�s

z
��cj;�:

(2)

Indices (i, j) label lattice sites, (�, �) label spin indices,
while symbols hi and hhii respectively refer to nearest-
neighbor coupling (with hopping amplitude t) and next-
nearest-neighbor coupling (with SO-induced hopping

amplitude �so ¼ �so=ð3
ffiffiffi
3

p Þ [10]). The Peierls phase�ij ¼
ðe=@ÞRri

rj
A � dr takes into account the contribution from

the magnetic flux threading the lattice, and 	ij ¼ �1 de-

pending on whether sites are coupled clockwise or counter-
clockwise. Note that, in order for the system to remain
gauge invariant, Peierls substitution has to be performed on
all hopping matrix elements: nearest-neighbor and (SO)
next-nearest-neighbor. To compute transport properties
numerically, we make use of the software KNIT, which is
based on an advanced recursive Green’s function technique
[28], and we work in the linear response regime. The
numerical calculations are done with semimetallic arm-
chair boundary conditions, but our results are qualitatively
unaffected by this choice. An important technical point is
that the magnetic field should be present in the entire
sample, including in the leads, in order to avoid spurious
reflection at the lead-sample interface. The multiterminal
Peierls-substitution prescription that allows us to do that is
described in the Appendix.
The full tight-binding band structure of a semimetallic

armchair graphene ribbon described by the Hamiltonian
in Eq. (2) is shown in Fig. 2(c). It can be summarized in
very simple terms: For Fermi energies inside the SO gap
jEFj< �so (shaded region), the system is in the QSH
phase, with opposite spin channels on a given edge
propagating in opposite directions, while for energies
jEFj> �so, the system is in the QH phase, with opposite
spin channels on a given edge propagating in the same
direction. Hence, for a given value of �so, the transition
between the two phases is governed solely by the Fermi
energy and does not depend at all on the value of the
magnetic field (once again neglecting Zeeman splitting,
which is very small in graphene). This quite remarkable
result is a direct consequence of the existence in graphene
of a B-independent zero-energy Landau level: As soon as
�so � 0, the spin degeneracy of the zero-energy Landau
level is lifted, as opposed to all other Landau levels, which
remain spin degenerate [22]. This lifting leads to a QSH
phase in the corresponding SO gap, as can be understood
with the help of topological invariants.

IV. TOPOLOGICAL ORDER

In this section, we discuss the topological order of the
phases obtained by varying the chemical potential in the
energy spectrum of Fig. 2(c). In particular, we relate
the unique transition between the QSH topological order

FIG. 2. Band structure of a (semimetallic armchair) graphene
ribbon in the (a) QH and (b) QSH phase. When both magnetic-
field coupling and SO coupling are present (c), the resulting band
structure leads to a QSH phase for jEFj<�so (shaded region)
and a QH phase for jEFj>�so. Compared to the pure QH and
QSH cases, the spin degeneracy is lifted (blue thick lines and red
dotted lines), seen as particularly prominent in the lowest band
which consists of spin-polarized branches at E ¼ ��so. As the
Fermi energy crosses the SO gap, the localization of the unhappy
spin (red dotted lines) shifts from one edge to the other, while it
is fully localized in the bulk when EF ¼ �so. This is illustrated
in the corresponding current-density plots (d). On the other hand,
the happy spin (thick blue) gets increasingly localized on the
same edge as the Fermi energy crosses the transition region (not
shown). The parameters used are �so ¼ 0:02, lB ’ 8, and a
ribbon width W ¼ 40

ffiffiffi
3

p
.
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and the QH topological order in the presence of SO
coupling to the specificities of the QH physics of Dirac
fermions in graphene. Let us start by recalling the standard
topological-number characterization of Landau levels
when �so ¼ 0. Each Landau level n and its associated
eigenfunctions over the first Brillouin zone are character-
ized by a topological invariant, the so-called Chern number

[29]. This topological number takes a value CðnÞ�;s ¼ þ1 for
each Landau level, independent of the Landau n, valley �,
or spin s indices. For each value of the Fermi energy, we
can characterize the corresponding phase by a topological

number C ¼ P
�;s

P
�n<EF

CðnÞ�;s obtained by summing the

Chern numbers of all filled energy bands [29]. For gra-
phene and any Dirac system, however, this procedure
would yield an ill-defined topological number C due to
the presence of an infinite number of filled Landau levels
below EF. As shown recently through the use of the non-
commutative Berry’s connection [30], the correct topologi-
cal number for a single Dirac cone takes a value
C�;s ¼ �1=2 for ��1 < EF < �0, and C�;s ¼ þ1=2 for

�0 <EF < �1, where �n are the usual Landau levels and

C�;s ¼ P
�n<EF

CðnÞ�;s. In the discussion below, we will make

use of the more convenient topological Chern number per
spin species, Cs ¼

P
�C�;s, which takes values twofold

larger.
Let us now turn to the energy spectrum of Fig. 2(c),

where �so � 0. The presence of the SO coupling does not
modify any of the Chern numbers per Landau level, but it
lifts the spin degeneracy of the n ¼ 0 Landau level into the
two levels at E ¼ ��so. As the z component of spin is
conserved, the topological Chern numbers per spin species
introduced above turn out to be useful quantities for char-
acterizing the topological order in this new spectrum. They
read

C" ¼ �1; C# ¼ �1 for ��1 <EF <��so; (3a)

C" ¼ þ1; C# ¼ �1 for � �so <EF < �so; (3b)

C" ¼ þ1; C# ¼ þ1 for �so < EF < �1; (3c)

C" ¼ þ3; C# ¼ þ3 for �1 < EF < �2; (3d)

this time with �n the modified Landau levels introduced at
the beginning of Sec. III. The difference between C" and C#
for jEFj< �so signals the appearance of a Z2 topological
order characteristic of the QSH phase. Indeed, when the z
component of spin is conserved, the Z2 topological index
characterizing the QSH phase is defined as 	 ¼
ðC" � C#Þ=2 (mod 2) [2,31]. As all Landau levels n � 0
are still spin degenerate, we have C" ¼ C# and thus 	 ¼ 0
for all Fermi energies jEFj> �so. For these values of EF,
the system lies in a QH phase characterized by the usual
topological Chern number C ¼ C" þ C#. However, for

jEFj< �so, Eq. (3) leads to a nontrivial Z2 index 	 ¼ 1,
while the total Chern number simultaneously vanishes
C ¼ C" þ C# ¼ 0. The system then lies in a different

topologically insulating phase: the QSH insulator. This
shows that as the Fermi energy crosses the values ��so,
the system undergoes a quantum phase transition between
two topological insulators: a QH phase and a QSH phase:

	 ¼ 0; C ¼ �2 for ��1 < EF <��so: QH; (4a)

	 ¼ 1; C ¼ 0 for ��so <EF < �so: QSH; (4b)

	 ¼ 0; C ¼ 2 for �so < EF < �1: QH; (4c)

	 ¼ 0; C ¼ 6 for �1 < EF < �2: QH: (4d)

This transition appears crucially tied to the Dirac physics
of graphene and the presence of the n ¼ 0 Landau level: In
the present case, we do not need a SO coupling to over-
come an energy gap in order to drive this transition, as
would be the case for nonrelativistic fermions with Landau
gap @!c or if graphene had a trivial mass gap m�z. The
spin-degeneracy lifting of the n ¼ 0 level is all that is
required here. Let us note finally that, while this argument
formally uses the conservation of the Sz spin component,
the robustness of topological numbers proves it to remain
valid if non–Sz-conserving terms are included in the
Hamiltonian, provided two branches of the n ¼ 0 Landau
level with opposite spins remain nondegenerate.

V. TRANSPORT SIGNATURES

A. Ballistic regime

Let us now study how this topological phase transition
appears in transport. We will study the multiterminal
(dimensionless) differential conductance Tab, which ex-
presses how much current dIa is collected in lead a when
the voltage in lead b is raised by dVb:

dIa
dVb

¼ e2

h
Tab: (5)

Additionally, in order to observe the edge states directly,
we also study (in color plots) the differential local current
density dið~rÞ=dVa, which allows us to clearly observe the
edge states inside the sample. In Fig. 2(d), we show local
current-density plots which illustrate how the behavior of
the unhappy spin changes as a function of the Fermi
energy: It goes from propagating along one edge when
EF <�so (left panel) to propagating along the other as
EF >�so (right panel), while it gets localized in the bulk
at the critical point EF ¼ �so (middle panel). We find that
the energy window where this localization is observed is
extremely narrow and decays exponentially with the width
of the sample. Note that this scenario is completely differ-
ent from what one would expect starting from the naı̈ve toy
model of SO coupling acting as a spin-dependent magnetic
field Bsozsz. In this case, for a critical value of the real
magnetic field B ¼ Bso, the unhappy spin would feel no
magnetic field at all and be fully delocalized. On the
contrary, we observe that the QSH phase is virtually inde-
pendent from the real magnetic field and that the unhappy
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spin actually gets localized when EF ¼ �so, illustrating the
limitations of the toy model in this situation.

In the vicinity of the transition, the unhappy spin keeps
propagating along a given edge but its classical cyclotron
orbit center xc ¼ �kyl

2
B (with ky the longitudinal wave

vector component) is shifted inwards as the Fermi energy
increases [see Fig. 2(c)]. On the other hand, the ‘‘happy’’
spin gets increasingly localized on the same edge when the
Fermi energy increases, which is qualitatively equivalent to
the usual QH case. One can indeed show that the notion of
a classical cyclotron orbit center remains well defined
here, despite the presence of SO coupling and that the
corresponding eigenstates are very similar to those found
in the pure QH regime [22].

Before presenting the rest of our numerical data on
transport in the vicinity of the QSH-QH transition, we
should say a few words about the shape of the spectrum
corresponding to the nonzero Landau levels. While the
branches corresponding to the happy spin seem basically
unaffected by the SO coupling, the two branches of the
unhappy spin display very different behaviors [Fig. 2(c)].
In particular, one of them is significantly bent by the
SO coupling, such that counterpropagating states along
the same edge appear in a finite window of energy. This
leads to the possibility of backscattering and therefore
destroys the robustness of the QH phase in this energy
window, the size of which can nevertheless be significantly
reduced by increasing the width of the graphene ribbon.
Note that, at negative energies, EF <��so, happy and
unhappy spin species exchange their roles [see Fig. 2(c)].

We proceed to investigate further how the transition
between QSH and QH phases appears in transport, and
consider the four-terminal �-shape geometry depicted in
the inset of Fig. 3(a). In the core of Fig. 3(a), we plot as a
function of the Fermi energy the current collected in leads
1, 2, and 3 when injected from lead 0. Nothing unexpected
happens away from the transition: The transmission coef-
ficients feature characteristic signatures of current-carrying
edge states [left and right panels of Fig. 2(d)]. Around the
critical value EF ¼ �so, however, we observe in Fig. 3(a)
that the unhappy spin is fully transmitted in lead 2. This can
be understood as follows. As the transition point is ap-
proached, the classical cyclotron orbit center is shifted
(inwards) away from the edge (as discussed above) by
a distance which can reach 2Rc, where Rc ¼ l2B=�so is the

classical cyclotron radius of the n ¼ 0 level. When
2Rc >W1=2, where W1 is the width of lead 1, then, some-
where in the vicinity of the transition, the incoming state
cannot penetrate lead 1, hence leading to perfect direct
transmission to lead 2, as observed in Fig. 3(a). This
feature could in principle be checked experimentally by
simply varying the strength of the magnetic field close to
the transition: For wider systems or at larger magnetic
field, the width of the peak of direct transmission from 0
to 2 shrinks and eventually disappears.

A clear way to distinguish between QH and QSH phases
in a transport measurement is to plot the ‘‘direct’’ dimen-
sionless differential conductance from lead 0 to lead 2 as a
function of the classical cyclotron radius Rc / B�1. This is
illustrated in Fig. 3(b): Below the QSH gap, the direct
transmission is zero for any value of the magnetic field;
on the other hand, above the QSH gap, transmission can

FIG. 3. QSH-QH transition in a four-terminal�-shape geome-
try. (a) Dimensionless differential conductance from lead 0,
where the current is injected, to outgoing leads 1, 2, and 3 in
the geometry depicted in the inset, as a function of the Fermi
energy (�so ¼ 0:02, lB ’ 8, and lead widths W0 ¼ 64

ffiffiffi
3

p
,

W1 ¼ 22
ffiffiffi
3

p
). Below the SO gap, current is carried by QSH

edge states, which propagate on different edges (left inset), while
above the SO gap it is carried by QH edge states, which
propagate on the same edge (right inset). (b) Dimensionless
differential conductance from lead 0 to lead 2 as a function of
the classical cyclotron radius Rc [same values of �so,W0, andW1

as in (a)]. Circular symbols correspond to data with EF <�so,
while other symbols (dashed lines) correspond to data with
EF >�so: respectively, EF=�so ¼ 1:06 (blue diamonds);
EF=�so ¼ 1:25 (violet triangles); and EF=�so ¼ 1:44 (red
squares). While this direct transmission is vanishingly small
and independent of the magnetic field below the SO gap, it
increases with both Rc and EF above the SO gap. The latter
situation arises because the QH phase is destroyed as 2Rc * W1,
and because the number of transmitting channels increases with
lB and EF.
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become nonzero as the magnetic field weakens, due to the
breakdown of the QH effect when Rc becomes larger than
the width of the system. It thus interpolates between zero
(in the QH regime) and a finite value which depends on the
number of occupied bands at the Fermi level in the ribbon
when B ¼ 0. Of course, in the latter limit, the topological
protection is lost and the value of the transmission will
strongly depend on the disorder configuration.

B. Effect of disorder

In this section, we study the robustness of the results
described in the ballistic regime with respect to the pres-
ence of various types of disorder. In the absence of a
magnetic field, the QSH phase is known to be very robust
with respect to the presence of scalar disorder (i.e., dis-
order that breaks neither time-reversal symmetry nor
spin-rotational symmetry), as introducing backscattering
between edge states involves tunneling through the gapped
bulk region. On the other hand, disorder that breaks both
time-reversal symmetry and spin-rotational symmetry
(such as magnetic impurities) leads to scattering between
the two counterpropagating edge states of the same edge,
which leads to intraedge backscattering. If this intraedge
backscattering becomes strong (or the edges are very long),
edge states may eventually get localized, such that no edge
transport occurs anymore. In this paper, as we explicitly
break time-reversal symmetry with a magnetic field, dis-
order that breaks only spin-rotational symmetry (such as
Rashba-like SO terms arising from adatoms) effectively
behaves as magnetic impurities and could potentially lead
to the same breakdown of the QSH phase.

In order to study these effects quantitatively, we add the
general perturbation

Hdis ¼
X
i;�;�

cyi;�
� X

¼0;x;y;z

Vi;
s


��

�
ci;� (6)

to our tight-binding Hamiltonian Eq. (2). The onsite poten-
tials Vi;
 are independent random variables uniformly dis-

tributed inside a given interval on each site of the system
(Anderson disorder). We study three different sorts of dis-
order with different symmetries: Vi;0 2 ½�Vs=2; Vs=2�
takes into account scalar (spin-independent) disorder;Vi;z 2
½�Vz=2; Vz=2� represents Zeeman-like (Sz-conserving)
impurities, and fVi;x; Vi;yg 2 ½�Vm=2; Vm=2� captures the

influence of Sz-nonconserving impurities.
The results are presented in Fig. 4 for the four-terminal

�-shape geometry [depicted in the inset of Fig. 3(a)]. Note
that, in order to obtain a significant effect of disorder, we
used extremely (unrealistic) high values of disorder, much
higher than the SO gap itself. A first general qualitative
conclusion is that the ballistic results presented above are
extremely robust with respect to all kinds of disorder. More
precisely, we find, as expected, that extremely large values
of Vs or Vz are needed to significantly affect the tran-
sport coefficients. ‘‘Magnetic’’ impurities (Vm), which can

induce intraedge backscattering, do affect the QSH phase
at weaker values. We note, however, that the system
remains topological (i.e., it does not become a simple
ordinary insulator), as transport is still dominated by
edge contributions. For instance, at Vm ¼ 0:5, the direct
transmission probability T20 (from lead 0 to lead 2) re-
mains many orders of magnitude smaller than T10 (from
lead 0 to lead 1). The topological nature of the phase is
encoded in the Z2 topological invariant, which cannot
change unless the bulk gap is closed by the perturbations
we consider. We checked (not shown) that the above results
are essentially unaffected upon changing the SO gap by a
factor of 2, putting all three sorts of disorder simulta-
neously, or changing the Fermi energy (inside the SO gap).
To rule out any concerns raised by the intraedge scatter-

ing due to Vm, the corresponding intraedge mean free path
le (or equivalently the localization length, as both are
roughly equal for one-dimensional states) can be estimated
using Fermi’s golden rule: le ¼ vd�e, where vd ¼
@
�1ðdE=dkÞ is the drift velocity of the edge states
(extracted, for instance, from Fig. 2), and @=�e /
ðVmÞ2jdk=dEj. Alternatively, one may extract it
directly from the numerical calculations of Fig. 4, since
T10 � 1� ðL=leÞ (with L the length along the edge, or
roughly 5 nm, in this instance). Fitting the small Vm regime
with T10 � 1� 3:0V2

m, we obtain (in nm)

0 0.2 0.4 0.6 0.8 1
Vm

0

0.2

0.4

0.6

0.8

1

T
j0

T
10

T
20

FIG. 4. Effect of very strong disorder on the QSH phase in the
four-terminal �-shape geometry. We plot the dimensionless
differential conductance from lead 0 to leads 1 and 2 as a
function of disorder strength for �so ¼ 0:02, lB ’ 8, EF ¼
0:05, and otherwise the same system as in Fig. 3. Circular
symbols stand for T10 and triangular symbols for T20. The
behavior for T30 (not shown) is the same as for T10. Dashed
black lines correspond to purely scalar disorder (Vs), dotted (red)
lines correspond to purely Zeeman-like disorder (Vz), and filled
blue symbols correspond to purely Sz nonconserving disorder
(Vm). The latter is clearly the dominant effect on T10, although
unrealistically large values are required to quantitatively affect
the edge-state transmission. (See main text for a mean-free-path
estimate.) Each data point has been averaged over 48 disorder
configurations. Unless shown, error bars are smaller than symbol
sizes. Full black line: fit y ¼ 1� 3:0x2.
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le � ðVm=tÞ�2; (7)

where we have explicitly restored the hopping amplitude t
(our energy unit) in order to get numbers. The ballistic
results are essentially unaffected for systems smaller than
le, while the edge states become localized for larger sys-
tems. In the context of a QSH phase induced by adatoms
(using, for instance, the indium atoms proposed by Weeks
et al. [16]), a possible source of Vm-like disorder comes
from the SO coupling induced by the adatoms themselves.
Typical values for Vm are smaller than 1 meV, which
translates into extremely large intraedge mean free paths
le > 1 mm. Hence, we estimate that this perturbation
should be largely irrelevant in realistically sized samples.

To summarize, all of our results are essentially unaf-
fected by the presence of disorder, except when the Fermi
energy lies in the vicinity of the QSH-QH transition, in
which case strong disorder can give rise to a random net-
work of QH and QSH regions through which a percolating
cluster connecting opposite edges can therefore lead to
backscattering [32].

VI. TOPOLOGICAL HETEROJUNCTION

We take advantage of the above-described topological
quantum phase transition as a function of the Fermi energy
to propose a setup that allows for a direct junction between
two different topological phases in the same sample. Let us
consider the case in which an additional electrostatic gate
enables one to split the system in two parts: one in which
the Fermi level is in the QSH phase, and the other in
which the Fermi level is in the QH phase [Fig. 1(c)].
This constitutes a QSH-QH junction, which shares some
similarities with quantum Hall n-p junctions previously
fabricated in graphene [34,35]. Indeed, the incoming un-
happy spin at the junction has no choice but to propagate
along the interface in order to reach the only other avail-
able channels that lie on the opposite edge. This is remi-
niscent of the situation both spin channels must face in the
QH regimewhen theymust cross a n-p junction, since their
direction of propagation on a given edge is reversed for
negative energies. Various theoretical models have been
proposed in the latter setup [36–39], but they all fail to
explain the experimental observations [34,35], probably
due to some dephasing mechanism taking place in the
vicinity of the Dirac point which is obscured by charge-
density fluctuations (so-called electron-hole puddles). The
system we consider could therefore provide a new perspec-
tive for solving this puzzle, as the QSH-QH transition takes
place at a value of energy which can be far away from
the Dirac point [40] for realistic values of SO-induced
QSH gap.

More generally, our proposal offers the possibility of
studying the nature of the state that propagates at the
interface between QSH and QH phases, which are charac-
terized by different topological invariants [11,29]. What

we usually refer to as QSH (or QH) edge states are states
propagating between QSH (or QH) insulators and a trivial
insulator (the vacuum, typically). As the QSH insulator is
characterized by a Z2 number, there is only one QSH
topological phase: Junctions between QSH phases with
different Fermi energies (including n-p junctions) have
no effect on transport, as the spin-polarized states can
propagate through these junctions. On the other hand, the
QH topological invariant is a Z number, which counts the
number of edge channels, and the notion of QH junctions
therefore makes sense. In this case, one expects the exis-
tence of chiral propagating states, localized at the interface
corresponding to the Landau level crossing. For QH n-n0
junctions, these states are ‘‘bubbling’’ states [39], which
simply follow the drifting Hall motion of charge carriers
subjected to crossed electric and magnetic fields. For QH
n-p junctions, these states are ambipolar snake states [19],
which can be seen as classical skipping orbits of mixed
electron-‘‘hole’’ character. The characteristics of the state
propagating at the interface between QSH and QH insu-
lators, on the other hand, are still unclear as far as we know.

FIG. 5. Heterostructure in a four-terminal Z-shape sample as
depicted in Fig. 1(c). Transmission probabilities from lead 0,
where the current is injected, to outgoing leads 1 (dotted lines),
2 (dashed lines), and 3 (solid lines) as a function of the top gate
voltage Vg. When Vg < ð�so � EFÞ, such that left and right

regions are in the QSH phase, current is perfectly transmitted
by the QSH edge states, as shown in the current-density plot in
the left inset. When Vg is high enough [Vg > ð�so � EFÞ] that the
right part of the sample enters the QH phase, a QSH-QH junction
is created, characterized by a chiral state propagating along the
interface. This is illustrated in the current-density plot shown in
the right inset. Once it has reached the opposite edge, this chiral
state is partially transmitted in lead 2 and partially transmitted in
lead 3, with proportions shown in the main plot. The light red
curves correspond to an abrupt voltage change across the junc-
tion region while the dark blue curves correspond to a smooth
transition. Parameters are EF=�so ¼ 0:58 (in the left half of the
sample), �so ¼ 0:02, lB ’ 8, and widths W0 ¼ Wc ¼ 40

ffiffiffi
3

p
for

the leads and central region.
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Our proposal is as follows. Consider the Z-shape ge-
ometry shown in Fig. 1(c). It is split into two regions: the
left half and the right half. A top gate is applied on the right
half in order to tune the Fermi level in both regions
independently. In Fig. 5, we plot, for a given value of the
Fermi energy in the left half inside the QSH gap, the
differential conductance Ti0 from lead 0 to leads 1, 2,
and 3 as a function of the gate voltage (which determines
the value of the Fermi energy in the right half). While the
Fermi energy in the right half remains below the value of
�so, transport characteristics remain unaffected by the gate
(left inset of Fig. 5). However, as soon as the Fermi energy
in the right half crosses the QSH gap, it gives rise to a
QSH-QH junction characterized by a topological state at
its interface (right inset of Fig. 5). This chiral state prop-
agates along the interface until it reaches the opposite edge,
and then it gets partially transmitted in lead 2, and partially
transmitted in lead 3, with proportions which depend on
the microscopic details of the model. (Those details in-
clude Fermi energies, the length of the interface, the
smoothness of the potential step, the amount of disorder,
the possible valley-space polarization of the edge states,
and so on, the study of which is left to subsequent work.)
This system constitutes a very efficient spin-polarized,
charge-current switching mechanism, as the current in
lead 1 (respectively, 2) can be reversibly switched from
one (respectively, zero) to zero (respectively, nonzero)
while simultaneously being spin polarized (see Fig. 5).
Additionally, this switching can be activated by simply
tuning the voltage in the top gate over a very small energy
range (whose lower bound will depend on the magnitude of
the disorder in the vicinity of the transition), and should
yield extremely sharp transitions with values of on/off
current topologically protected from the presence of dis-
order [41].

VII. CONCLUSION

In summary, we have shown that the transition between
QSH and QH phases in graphene is independent of the
value of the magnetic field (neglecting the weak effect of
Zeeman splitting) and can be crossed simply by tuning the
value of the Fermi energy across the SO-induced QSH gap.
In a heterojunction, one of the spin species gives rise to a
chiral state propagating along the interface between QSH
and QH phases. The nature of this special state is a fasci-
nating issue which could bring new light concerning the
unresolved mystery of conductance plateaus observed in
quantum Hall n-p junctions [34,35]. We have also shown
that the tunable transition between the QSH and QH
topological phases could serve as a spin-polarized
charge-current switch with potentially extremely high,
topologically protected, on/off ratios. An interesting future
direction of research could be to investigate whether this
tunable topological phase transition can arise in bilayer

graphene [42], which also possesses zero-energy Landau
levels [43] and has very recently been shown to host a Z2

topologically insulating phase [44] for strong enough
Rashba SO coupling.
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APPENDIX: MAGNETIC FIELD IN
MULTITERMINAL CALCULATIONS

In this appendix, we explain how to compute the Peierls
phase �ij between two atoms i and j in multiterminal

systems [45]. The phase is given by

�ij ¼
Z ri

rj

A � dr; (A1)

where ri ¼ ðxi; yiÞ is the spatial position of site i. A com-
mon choice for A is the Landau gauge (Lg),

ALgðx; yÞ ¼ �By
1

0

 !
; (A2)

which leads to

�Lg
ij ¼ �Bðxi � xjÞ

yi þ yj
2

(A3)

(using linear paths between atoms). The numerical pre-
scription follows simply: One calculates the real coordi-
nates of the two atoms and uses the above equation to get
�ij. An important aspect of the Landau gauge is that the

phase depends on the x coordinate only through the differ-
ence of x between the two atoms i and j. This aspect is
crucial for taking magnetic field into account in the leads:
The leads are semi-infinite periodic systems made of
layers. They are described by an intralayer Hamiltonian
H0 and an interlayer Hamiltonian V. Within the Landau
gauge, we find that the matrices H0 and V of horizontal
leads are layer independent, which allows the use of stan-
dard schemes to calculate their self-energies. However,
general samples (such as the �-shaped sample studied in
this article) can have leads with an arbitrary angle � with
respect to the y axis. For those leads, the corresponding
gauge choice is

A ðrÞ ¼ �Bðr � e2Þe1; (A4)

with

e1 ¼
cos�

sin�

 !
; e2 ¼

� sin�

cos�

 !
; (A5)

which leads to
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�ij ¼ �
Lg
ij þ�i ��j; (A6)

where the potential

�i ¼ Bð1� cos2�Þ xiyi
2

þ B sin2�
x2i � y2i

4
(A7)

is a pure gauge potential allowing one to go from one
choice of gauge to the other. A (possible) general prescrip-
tion for an arbitrary system is now the following: One
assigns a potential �i ¼ 0 to all sites except those belong-
ing to a lead. For lead sites, one uses Eq. (A7) with the
appropriate angle �. Then one calculates the phases �ij

according to Eq. (A6).
All the prescriptions above are given in real space. It is

of course possible to calculate analytically the equivalent
prescriptions in terms of the integer coordinates on the
Bravais sublattices, as both are in one-to-one correspon-
dence. However, for numerical purposes, it is more conve-
nient to calculate the real-space positions of the atoms
numerically and then use Eqs. (A3), (A7), and (A6), in
order to use a lattice-independent prescription.
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