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We propose a method to get experimental access to the physics of the ultrastrong- and deep-strong-
coupling regimes of light-matter interaction through the quantum simulation of their dynamics in standard

circuit QED. The method makes use of a two-tone driving scheme, using state-of-the-art circuit-QED
technology, and can be easily extended to general cavity-QED setups. We provide examples of
ultrastrong- and deep-strong-coupling quantum effects that would be otherwise inaccessible.
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L. INTRODUCTION

The Jaynes-Cummings model (JCM) [1] is a cornerstone
of the field of quantum optics. It describes the interaction
between a quantized electromagnetic (EM) field mode and
a two-level atom under two important assumptions. First,
the interaction is accurately modeled by a dipolar coupling
between the field and the atom. Second, one can apply the
rotating-wave approximation (RWA) because the coupling
is small enough when compared to the sum of the frequen-
cies of the two-level atom and EM field. These restrictions
yield a solvable model where the atom and field exchange
one excitation.

To study experimentally the physics of the JCM, the
interaction needs to reach the strong-coupling (SC) regime.
This can be done by isolating the two-level system from
free space by means of a cavity with highly reflecting
mirrors, making the coupling strength much larger than
the spontaneous emission rate and the cavity decay rate.
This type of setup is known as cavity quantum electro-
dynamics (cavity QED) [2,3]. Many relevant features of
the JCM have been successfully tested in actual experi-
ments using cavity-QED technology. For instance, the
observation of the vacuum Rabi mode splitting in the
optical domain with alkali atoms was reported [4], while
in the microwave regime, vacuum Rabi oscillations using
Rydberg atoms have also been realized [3,5].

In 2004, an important step forward was made when an
artificial two-level atom (or a qubit) was shown to be
strongly coupled to the EM field inside a superconducting
1D transmission-line resonator [6]. The newly born circuit-
QED technology was rapidly recognized as a promising
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architectural platform from which the study of light-matter
interaction can be extended [7]. Although most circuit-QED
implementations were restricted to the SC regime of the
JCM, key experiments showing the breakdown of the RWA
have been recently realized in semiconductor microcavities
[8] and circuit QED [9,10]. They have opened up new
directions of research into the ultrastrong-coupling (USC)
regime of light-matter interaction [11,12], where the RWA
can no longer be used, leading to novel features such as the
creation of photons from the quantum vacuum [11]. Even
though these works show that reaching the ultrafast dynam-
ics is feasible, its controllability becomes very demanding
as the light-matter coupling increases [13].

In this work, we introduce the quantum simulation of the
USC and deep-strong-coupling (DSC) dynamics in circuit
QED with a qubit-cavity system in the SC regime. Our
treatment makes use of a novel two-tone orthogonal driv-
ing to the qubit. We show through analytical and numerical
calculations that our proposal will have access to the
regimes of USC (0.1 < g/w < 1, where g/w is the ratio
of the coupling over the resonator frequency) and DSC [14]
(g/w = 1). This will pave the way for the implementation
of a quantum simulator [15] for a wide range of regimes of
light-matter coupling [16] in systems where they are un-
attainable. As we will discuss below, this includes the
simulation of relativistic quantum phenomena, the Dicke
spin-boson model, Kondo physics, and Jahn-Teller
instability [17]. Although we present our method in the
language of circuit QED, it can also be realized in micro-
wave cavity QED [3,18].

II. THE MODEL

The physical system we consider consists of a super-
conducting qubit strongly coupled to a microwave-
resonator mode. If we work in the qubit degeneracy point,
the Hamiltonian is given by [6]
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where w,, @ are the qubit and photon frequencies, and g
stands for the coupling strength. Likewise a(a®) represent
the annihilation (creation) operators of the photon-field
mode, whereas o, = o' + o = |le)g| + |g)el, o, =
leXe| — |g)Xgl, where |g), |e) are the ground and excited
eigenstates of the qubit. In a typical circuit-QED imple-
mentation, this Hamiltonian can be simplified further by
applying the RWA. Precisely, if {|lo — 0 |, ¢} < 0 + o,
[19], then it can be effectively approximated as

h
H = %UZ +hwa'la —hg(ota+ oa®), ()

which resembles the celebrated JCM of quantum optics.
Performing the RWA amounts to neglecting counterrotat-
ing terms, oa and o*a*, leading to a Hamiltonian equa-
tion, (2), where the number of excitations is conserved.

This Hamiltonian, (2), will be the starting point of our
derivations. Consider that the qubit is now orthogonally
driven by two classical fields. The Hamiltonian of the
driven system reads

h
5{:%0} +hwata—nhg(cTa+ oal)

—hQ, (e o+ e it gt) =, (et g+ eI o),
3)

where (), w; stand for the amplitude and frequency of the
Jjth driving. Note that the orthogonal drivings couple to the
qubit in a similar fashion as the resonator field. To obtain
(3), we have implicitly assumed that the RWA applies not
only to the qubit-resonator interaction term, but also to
both drivings. Next, we will write (3) in the reference
frame rotating with the frequency of the first driving, w,,
that is

Hh =hgaz +1(w—w)ata—hg(ota+ oat)

— 1O (o + o) —hQ, (el @20t g 4 gmilwr—w)i gt
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This allows us to transform the original first driving
term into a time-independent one FH é‘ =—nQ,(oc+ o),
leaving the excitation number unchanged. We will assume
this to be the most significant term and treat the others
perturbatively by going into the interaction picture with
respect to H L, H(1)=e o (H L1 — L) =iy 1/,
The physical implementation of this transformation based
on an additional drive pulse is described later in the text.
Using the rotated spin basis | +) = (|g) = |e))/+/2, we have

g{f(z)=—hw(e—mw|+><—|+H.c.)+h(w—w1)a+a
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By tuning the parameters of the external drivings as w; —
w, = 20}, we can choose the resonant terms in this time-
dependent Hamiltonian. Then, if we have a relatively strong
first driving, ), we can approximate the expression above
by a time-independent effective Hamiltonian as

Hop = o — w)ata + hTQZO'Z - tha'x(a +al). (6)
Note the resemblance between the original Hamiltonian (1)
and (6). While the value of the coupling g is fixed in (6), we
can still tailor the effective parameters by tuning the ampli-
tudes and frequencies of the drivings. If we can reach values
such that Q, ~ (0w — w;) ~ g/2, the dynamics of the
original system will simulate that of a qubit coupled to the
resonator with a relative interaction strength beyond the SC
regime—ideally in the USC and DSC. The coupling regime
reproduced through the effective Hamiltonian (6) can be
quantified by the ratio g.g/wes, Where goe = g/2 and
Weff = W — Wy.

III. NUMERICAL ANALYSIS

To study the feasibility of our proposal, we have per-
formed numerical calculations with realistic parameters for
circuit QED [6] and compared the evolution described by
the exact and effective Hamiltonians. In principle, the
choice of (); is unimportant as long as it is strong com-
pared to the other parameters involved in this problem.
Indeed, the evolutions of the Hamiltonians of Egs. (3) and
(6) become more similar with increasing (). Nonetheless,
experimental restrictions are expected to set the limit of
this driving strength. Throughout the rest of this work, we
assume {); ~ 27 X 0.7 GHz, which is a realistic value.

After the discussion regarding the DSC dynamics [14],
an interesting experiment would be the following. Assume
we prepare the original SC undriven system in its ground
state, i.e., |g, 0), and then at time r = 0 we switch on the
external drivings. Now the system evolves according to
the unitary operator, which is computed by integrating the
driven Hamiltonian equation, (3). For the sake of simplic-
ity, we now assume that the evolution of the state is
calculated in the rotating reference frame of Hamiltonian
H(#). Later we will discuss how this step can be imple-
mented. The solid line in Fig. 1 shows the evolution of
P,(t) for two different cases. Both show a very good
agreement when compared to the same probability but
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FIG. 1. P,(r) obtained by integrating the exact (solid line)

equation, (3), and the effective (circles) Hamiltonian equation,
(6). With the set of parameters in the text, {}; = 277 X 700 MHz,
we have two cases: left panel: (), = 0, right panel: Q, =
277 X 10 MHz. The simulated ratio is geg/ @esr = 1.

computed from the effective Hamiltonian (circles) of
Eq. (6) derived in the strong driving limit. All these simu-
lations are done with values of w ¢ = 27 X 8.01 GHz, w =
2mX8.01GHz, g =27 X 20 MHz, w; = 27 X 8 GHz,
w, =27 X 6.6 GHz, and ), = 27 X 0.7 GHz. Clearly
such an amplitude for the first strong driving suffices,
even to simulate the dynamics of a system reaching
gefi/ werr = 1. A feature characteristic of the DSC dynamics
is the existence of a well-defined periodic evolution for the
probability, P,(z), in the case of a degenerate qubit.
Starting from 1, P,(#) decays to 0.5 quite rapidly in order
to have a subsequent revival at a time that is equal to the
inverse of the effective resonator frequency. This is accom-
panied by the generation of photon-number wave packets
that oscillate in time [14]. Putting ), = 0 (Fig. 1, left
panel) in our simulation, we observe that Pg(t) presents
nearly perfect revivals that take place at wggley, =
Zefitiey = 27, which corresponds to t,., = 0.1 wsec for
the set of parameters used. If the effective energy of the
simulated qubit (), is not zero (Fig. 1, right panel) the
evolution becomes nonperiodic, producing a distortion of
the revival peak, which no longer reaches unity.

IV. ADDITIONAL DRIVE PULSE

The computation of the probability P,(¢) for the exact
Hamiltonian equation, (3), in Fig. 1 has been done in the
rotating reference frame used to derive Hamiltonian
JH'(f). However, without going into this interaction pic-
ture, the evolution of P, () would show a fast oscillating
term, depicted by the light solid line shown in Fig. 2. Here,
we propose the following scheme based on an additional
drive pulse, in order to get rid of this strong oscillation in
an experiment. Imagine that after letting the system evolve
with the Hamiltonian of Eq. (3) for a time ¢, we switch off
nonadiabatically both of the external drivings and apply a
detuning of about —27 X 200 MHz to the frequency of the
qubit w, from its original value 277 X 8.01 GHz. Next, we
switch on a third driving with the frequency detuned by
—2 X 200 MHz, from the value of w; = 27 X 8 GHz,
and with amplitude —(); (opposite phase relative to the
first one). The application of this additional drive pulse will

1 1%
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FIG. 2. P,() obtained by integrating the exact Hamiltonian
equation, (3), (light solid line, shaded area), and after applying an
additional drive pulse (dark solid). Both are compared to the
effective (circles) Hamiltonian equation, (6), evolution. The same
parameters of Fig. 1 are used: left panel: ), = 0, right panel: (), =
27 X 10 MHz. During the additional drive pulse, qubit energy and
driving frequency are detuned by —27 X 200 MHz.

take the same time ¢. The wiggly dark solid line of Fig. 2
corresponds to the measurement of P,(¢) following this
method, which matches the evolution obtained from the
effective (circles) Hamiltonian equation, (6).

V. NONCLASSICAL STATES AND
DIRAC EQUATION

Nonclassical states of the EM field are a paramount
resource for quantum information processing. However,
their generation using all-optical devices is challenging
due to the lack of strong nonlinearities. Through the strong
coupling between a qubit and a confined EM field, circuit-
and cavity-QED technology provides a way to overcome
these limitations [20-22]. Here we show that our setup can
be used to generate highly nonclassical states of the field
mode, without requiring the projective measurement of the
qubit and/or the ability to control accurately the qubit-field
interaction strength.

The nonclassicality of a bosonic field can be signaled by
the Wigner quasiprobability distribution function (WF),
which is defined as

W(a) = 2 D! @ D@1 ()
where p, is the field-density matrix and D(a) =
exp(aa’ — a*a) is the coherent displacement operator
with amplitude «. To show the ability of our setup to
produce nonclassical states of the EM field, we plot in
Fig. 3 the WF of the field for the same set of parameters
studied before, with the the evolution time set at g ¢t = 7.
The top-left panel in Fig. 3 depicts the WF of the state
generated when (), = 0 and the qubit is measured in its
ground state. The result is a well-known coherent
Schrodinger-cat  state with time-dependent amplitude
(gefr/ wegr) (e =" — 1), which is nonclassical. However,
when the qubit is not measured, the state of the field after
tracing out over the qubit will have as WF the plot of top-
right panel in Fig. 3, where a classical mixture of coherent
states with opposite phases is left and any quantum feature
is erased. When (), # 0, a surprising property shows up
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FIG. 3. Wigner function W(x,y) of the field state after
interaction time g = 7, calculated ab initio with the parameters
of Fig. 1. Top-left panel: )y = 0, w.i = ges» qubit postselected
in the ground state. Top-right panel: Qs =0, W = Lefrs
qubit traced out. Center-left panel: ), =27 X 10 MHz,
Weit = Zeir» qubit postselected in the ground state. Center-right
panel: O, =27 X 10 MHz, w. s = g, qubit traced out.
Bottom-left panel: (), =27 X 10 MHz, . =0, qubit
postselected in the ground state. Bottom-right panel: Q, =
2w X 10 MHz, w.¢ = 0, qubit traced out.

after the qubit is traced out: The nonclassicality of the field
is not completely lost (center-right panel in Fig. 3). This
effect is more evident when w. = 0 (bottom-right panel
in Fig. 3). The setup might be enhanced by taking advan-
tage of the cavity output and novel measurement tech-
niques [23] to produce nonclassical propagating
microwaves and lasing in circuit-QED [24].

The case of w.y = 0 is physically most relevant, as it
relates to the quantum simulation of the 1 + 1 Dirac equa-
tion [25]. If one repeats the derivation from Eq. (3) but
assumes that both external driving come with an additional
phase, ¢ = 7/2, ie., —th(e"(“’f”‘b)a' + H.c.), and uses
the rotated qubit basis |*=,) = (|g) * e"1?]e))/\/2, then
H o becomes

hQZ hg

Hoy="22 4

> p ®)

S a.p
N
forw = wy, 0, = i(o — o), p=—i(a —a’)/v/2.Inthe
appropriate representation, the Schrodinger equation of our
system is now formally equivalent to that of the 1 + 1
Dirac equation of a relativistic spin-1/2 particle,

L dy .

lhz = (cpo, + mco,) g, 9)
where p represents the momentum of a Dirac particle of
mass m and c represents the speed of light. This shows the

ability of our proposal to access a wide range of physical
models. Through the engineered Hamiltonian, a qubit at
rest coupled to the EM field would behave as a massive
spin-1/2 particle moving near the speed of light. To ob-
serve peculiar effects, such as Zitterbewegung, in our setup
one must pay attention at the mapping of the bosonic
degree of freedom. While in the original Dirac equation,
(9), the operator p corresponds to the momentum of the
Dirac particle, in our Hamiltonian Eq. (8) this role is
played by the quadrature p = —i(a — a')/+/2 of the EM
field mode in the resonator. Hence, in the simulated Dirac
equation the dynamics of Zitterbewegung will show up in
the expectation value of the field quadrature X =
(a+ah)/ /2, which has the same time evolution as the
expectation value of the position operator ¥ of a Dirac
particle.

VI. DISCUSSION AND CONCLUSIONS

Although we have disregarded the possible coupling
between the orthogonal driving and the resonator field, it
is easy to show that the effect of such a spurious coupling
could be sorted out by adding a driving to the cavity
(acting as a counter coherent displacement). Another
source of error stems from qubit dephasing and relaxation
rates, as well as the cavity decay rate. Nonetheless, the
interaction times considered in all numerical simulations
are well below standard decoherence times. To avoid the
excitation of higher levels in the qubit, it is possible to
design flux qubits where the splitting to the third level is
above 30 GHz [9,10]. Our method can be extended to the
case of a slightly anharmonic qubit via Gaussian shaped
derivative removal by adiabatic-gate pulses [26].

The proposed quantum simulation of a broad range
of regimes of light-matter coupling may become a build-
ing block in simulations of physics inaccessible in stan-
dard quantum optics. This includes the Dicke model for
multiple qubits, the spin-boson model when the resonator
is replaced by an open transmission line, Jahn-Teller
instability for several discrete modes in the resonator,
and relativistic quantum physics such as the scattering
of relativistic particles [27]. Efficient computations of
these problems may be beyond current numerical
capabilities.
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