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We demonstrate a fully tunable realization of a multistate Fano resonance, in which a pair of remote

quantum states experience an effective coupling due to their mutual overlap with a continuum. Our

mesoscopic implementation of this system exploits the ability of the semiconductor nanostructures known

as quantum point contacts (QPCs) to serve, in the low-density limit close to pinch-off, as an on-demand

localized state. By coupling the states formed on two separate QPCs, through a two-dimensional electron

gas that serves as a continuum, we observe a robust effective interaction between the QPCs. To explain

this result, we develop a theoretical formulation, based on the ideas of the Schrieffer-Wolff trans-

formation, which is able to reproduce our key experimental findings. According to this model, the robust

character of the interaction between the two remote states arises from the fact that the interaction is

essentially mediated by a large number of degenerate continuum states. While the continuum is often

viewed as a source of decoherence, our experiment therefore instead suggests the possibility of using this

medium to support the interaction of quantum states, a result that may allow new approaches to coherently

couple nanostructures in extended geometries.
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I. INTRODUCTION

The interaction of discrete quantum objects allows for
the emergence of complex phenomena in solid-state phys-
ics, with prominent examples provided by the interaction
of localized and mobile spins in the Kondo effect and the
phonon-mediated pairing of electrons in superconductivity.
When the interaction arises from wave-function overlap
among different atoms, the result is the emergence of
covalent bonding that supports the formation of stable
molecules and crystals. Yet another important form of
interaction is that which arises widely in atomic physics:
when the discrete levels of a particular atom are coupled to
a continuum of unconstrained states. The role of this
coupling was first revealed in studies of atomic autoioniza-
tion, a process that arises from the interference of two
separate channels for ionization [1,2]. One of these
channels consists of the direct excitation of an electron to
the continuum, while the second involves an intermediate,
discrete state that is coupled to the continuum through a
so-called configuration interaction [1]. The characteristic
signature of the interference of these channels is the Fano
resonance (FR) that is observed in scattering experiments,

with a line shape that intimately reflects the relative trans-
mission amplitudes of the two ionization pathways [1–9].
An important goal that has emerged in the field of

mesoscopic physics is to mimic the interactions that arise
in nature, as a means to extend the functionality of semi-
conductor nanodevices. In addition to the technological
importance of this issue, this approach provides an invalu-
able way to explore quantum-mechanical interactions at
the microscopic level, with a control that is simply not
possible in conventional atomic systems. There have been
numerous reports [10–18], for example, concerning the use
of quantum dots as artificial atoms, providing a highly
tunable system for investigations of new aspects of FR
phenomenology (see the reviews of Refs. [19,20]). In other
work, coupled quantum-dot molecules have been used to
provide a controlled implementation of a two-level system,
in which the strength of the interdot coupling is determined
by the overlap of the decaying dot wave functions inside a
common tunnel barrier. With each of these dots occupied
by just a single electron, this overlap can be used to
regulate the exchange interaction of the associated electron
spins (as recently reviewed in Ref. [21]).
Building on the ideas developed in the works cited

above, the objective of this work is to demonstrate how a
robust interaction can be achieved between mesoscopic
devices, by, perhaps counter intuitively, separating them
from each other. In this approach, which utilizes the
discrete-state/continuum coupling that is the hallmark of
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the FR, localized states are formed on two separate quan-
tum dots and interact indirectly with each other through an
interconnecting continuum. In spite of this nonlocal cou-
pling, our experiments show evidence of a remarkably
robust interaction between the two states, significantly
larger than that which typically arises in quantum-dot
molecules. Theoretically, we attribute this finding to the
fact that each of the discrete states overlaps strongly with
the states of the continuum, and that a large number of
degenerate continuum states are involved in this interac-
tion. This observation should be contrasted with the situ-
ation in quantum-dot molecules, whose interaction matrix
element is governed by the overlap of just a single pair of
states. While one often views the continuum as a source of
decoherence, our work therefore instead suggests the pos-
sibility of using this medium to support the interaction of
quantum states, a result that may allow new approaches to
coherently couple nanostructures in extended geometries.

The remainder of this paper is organized as follows.
Since our experimental demonstration of the continuum-
mediated coupling is based on exploiting the specific prop-
erties of quantum point contacts (QPCs) near pinch-off, in
Sec. II we first briefly review our recent work [22–26] in
which we have shown how these structures may be used as
an on-demand source of a localized quantum state. In
Sec. III, we demonstrate the use of these devices to realize
the remote-coupling scheme, showing that it gives rise to a
surprisingly robust interaction. In Sec. IV, we introduce a
theoretical model that reproduces the key aspects of our
experiment by explicitly treating how the coupling is me-
diated through the continuum states. We conclude with a
discussion of the implications of our findings in Sec. V.

II. BOUND-STATE FORMATION
IN QUANTUM POINT CONTACTS

The background to our work is provided by the extensive
interest that continues to focus on the nature of the elec-
tronic structure of QPCs near pinch-off, and the connection
of this structure to electron transport (for recent reviews,
see Refs. [27,28]). Since the carrier density at the QPC
center becomes vanishingly small near pinch-off, it has
been suggested that many-body phenomena can modify the
electronic structure in this regime. A scenario proposed in
several of these studies is that such modifications can lead
to the formation of a quantum-dot-like bound state (BS),
capable of localizing a single electron, at the QPC center
[29–34]. The microscopic structure of this BS remains the
subject of debate [35,36], however, so that further experi-
ments are called for to confirm its existence. Utilizing the
FR as a key signature of the presence of a discrete state, we
have implemented a mesoscopic version of the FR experi-
ment, in which the mutual interaction between a pair of
coupled QPCs reveals the signature of the BS [22–26]. In
these experiments, one QPC (the detector) is configured
with fixed gate bias, while the gate voltage applied to the

second (swept) QPC is varied continuously, driving it to
pinch-off where BS formation is expected. As illustrated
schematically in Fig. 1, the two QPCs are coupled to each
other through an intervening region of two-dimensional
electron gas (2DEG), which provides the main means for
their interaction [25]. The key observation in such experi-
ments is that, as the swept QPC is pinched-off, an isolated
resonance occurs in the detector conductance. This reso-
nance is not a transient feature, observed only while sweep-
ing the different gate voltages, but rather is a static
signature in the detector conductance that is reproduced
with high fidelity when sweeping the swept QPC either
toward, or away from, pinch-off. (See the Supplemental
Material [37] for further details.) Confirming that this
feature is associated uniquely with physics that arises
near pinch-off, no other resonances are observed as higher
subbands of the swept QPC are subsequently populated.
The resonance is reproduced, however, in devices with
different gate configurations [22,24], in various QPCs fab-
ricated on the same chip [24–26], and in multiple cooling
cycles performed over a period of several years. From these
collective observations, we are able to infer that the reso-
nance does indeed result from the intrinsic properties of the
QPC and is not a random-impurity effect.
In Ref. [23], we developed a phenomenological theory

to account for the findings of our experiment, by making
the initial assumption that a BS is present in the swept QPC
near pinch-off. With the coupling of this BS to the detector
mediated through the intervening 2DEG, it was shown that
a resonance should occur in the detector conductance as the
swept-QPC gate voltage drives its BS upwards through the

FIG. 1. Schematic illustration of the Fano resonance exhibited
by a detector QPC that is coupled through a region of
two-dimensional electron gas to a bound state in another QPC
[22–26]. An electrochemical-potential difference between source
and drain is used to drive electrons (thick red line) through the
detector. A correlation then arises between the bound state and the
detector, due to tunneling of electrons (thin blue line) to and from
the bound state, and is resonantly enhanced when the bound-state
energy matches the Fermi level in the reservoir.
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Fermi level (�0 in Fig. 1). According to this model, the
resonance arises from a modification of the detector con-
ductance due to a tunnel correlation, which develops when
electrons, emerging from the detector (thick line in Fig. 1),
tunnel onto the BS and back out again (thin blue line in
Fig. 1). This mechanism, therefore, has all the ingredients
of a Fano resonance; the transmission (and so conductance)
of the detector is determined by the interference of two
distinct processes, the first consisting of direct injection
into the 2DEG, while the second involves initial tunneling
from the detector to the BS, followed by tunneling back to
the 2DEG. This Fano character was demonstrated convinc-
ingly in Ref. [25], in which we investigated the dependence
of the resonance line shape (through the so-called asym-
metry parameter, q [1]) on the separation of the two QPCs.
Our experiments revealed a systematic evolution of the line
shape, indicating that excitation of the two pathways re-
sponsible for the FR can be regulated directly, simply by
changing the spatial arrangement of the coupled QPCs.

Taking advantage of the fact that the FR provides a
highly characteristic signature of the presence of a discrete
state, we have utilized the detector resonance to reveal
a number of key microscopic properties of the self-
consistently formed BS on QPCs. A vital feature of these
experiments is that they provide information on the micro-
scopic state of the QPC beyond pinch-off, a regime in
which direct measurements of QPC conductance yield
little or no information. From studies of the temperature
dependence of the detector resonance [24], we have been
able to infer a robust confinement of the BS, of meVorder,
while an in-plane magnetic field has been shown to induce
Zeeman splitting into spin-up and spin-down branches
[24]. From studies in which a DC bias was used to inves-
tigate the nonlinear characteristics of the detector reso-
nance, we were able to infer the BS lever arm (its
effective energy shift for a change in swept-QPC voltage)
and to therefore confirm that the above-mentioned Zeeman
splitting is characterized by a significantly enhanced g
factor (g� 2) [26]. In the discussion that follows, we
will make direct use of many of these findings to assist
our analysis.

III. EXPERIMENTAL RESULTS

A. Experimental methods

The device that we study is that of Refs. [24–26]. It
features a multigate geometry that allows coupled QPCs to
be configured in various configurations [see Fig. 2(b)]. This
device was realized in a high-mobility GaAs/AlGaAs
quantum well (Sandia sample EA750), whose 2DEG
had these features: density 2:3� 1011 cm�2, mobility
4� 106 cm2=Vs, Fermi wavelength 53 nm, and mean
free path 31 �m (all at 4.2 K). The mean free path de-
creased to 4 �m at 77 K, still much longer than the largest
inter-QPC separation in the device (< 1 �m). Using eight
contacts positioned around the perimeter of the device, we

could independently determine the conductance of the
various QPCs [24–26]. Measurements (from 4.2–40 K)
were performed by lock-in detection with 30 �V excita-
tion, leaving unused gates grounded to ensure that they
exerted minimal influence on the resulting behavior.

B. Configuring the system

In this report, we demonstrate how the technique that we
have developed for probing QPC BSs can be extended to
realize systems in which two BSs, formed on separate
QPCs, interact through a common 2DEG. The manner in
which this is achieved is illustrated in Fig. 2, in which
Fig. 2(a) is a schematic that shows the key mechanisms for
interaction in the multi-QPC system. In Fig. 2(b), we use
micrographs of the actual device to show the two different
gate configurations that were used to implement the inter-
acting BSs. (See the Supplemental Material [37] for a
detailed description of the measurement procedure.) In
both of these configurations, which are actually geometri-
cally equivalent, the detector gates (biased at Vd) are
indicated with red shading, while those of the swept QPC
(biased at Vs) that defines one of the BSs (BS1) are shown
in blue. The other BS (BS2) is realized within the control
QPC, which is formed by one of the gates of the swept
QPC, and by the additional control gate (biased at Vc)
highlighted in yellow. The resulting system is one in which
the two BSs, being separated by a distance of as much as
400 nm, are not coupled directly to each other, but rather
they interact through a mutual 2DEG that also supports
their wave-function overlap with the detector. For the
purpose of the discussion below, it is important to recog-
nize that the swept QPC (BS1) is formed by Vs alone, while
the control QPC (BS2) is defined by both Vs and Vc.
Consequently, as Vc is made more negative, pinch-off of

FIG. 2. (a) Schematic illustration of the manner in which we
use a multi-QPC device to implement remotely interacting BSs.
BS1 and BS2 are formed in the swept and control QPCs,
respectively, and are coupled to each other, and to the detector,
via intervening regions of 2DEG (thin blue lines). (b) Scanning
electron micrographs of our multi-QPC device are used to
illustrate the manner in which we implemented the system in
(a) experimentally. Uncolored gates were held at ground
potential in the experiment and so had no influence on the
underlying 2DEG.
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the control QPC should shift to the less-negative Vs, while
that of the swept QPC should be unaffected.

C. Demonstrating the continuum-mediated interaction

Experiments were performed by measuring the variation
of the detector conductance (Gd), after first fixing Vc and
then sweeping Vs over some fixed range. In the various
panels of Fig. 3, we show the resulting Gd(Vs) for several
different values of Vc. Figure 3(a) corresponds to the case
of least-negative Vc, for which, as Vs is varied, the swept
QPC (whose conductance is indicated by the black line)
pinches-off well before the control QPC. Figure 3(f), in
contrast, was obtained for the most-negative Vc, for which
the control QPC (conductance shown by the green line)
pinches-off first. Also plotted (as the red line) in each panel
of Fig. 3 is the associated variation of Gd, which in
Figs. 3(a) and 3(f) exhibits a single resonance (denoted
as R1 and R2, respectively). As we have discussed else-
where [22–26], the resonance serves as a detector of BS

formation, and the correlation of R1 and R2 to pinch-off of
the swept and control QPCs allows us to relate these
resonances to BS1 and BS2, respectively. Also shown in
the figures are fits of the resonances to the Fano form [1]

Gd / ð"þ qÞ2
1þ "2

; " ¼ Vs � V0

�=2
; (1)

where q is the asymmetry parameter and � and � are the
position and width of the resonance (measured in terms of
Vs), respectively. (Such fitting is possible because, for a
sufficiently narrow range centered around V0, variation of
Vs translates directly to a linear shift of the BS energy, as
demonstrated experimentally in Ref. [26].) According to
Eq. (1), the asymmetry parameter determines the detailed
line shape of the FR and physically provides information
on the relative contributions of the continuum and the
discrete state to the resonance [1]. A symmetric resonance
is obtained when q ! 1, corresponding to the case where
the BS dominates, but the asymmetry grows as the role of
the continuum increases. Maximal asymmetry that is a FR
with a local maximum and minimum in close proximity to
each other is obtained for q ¼ 1, which corresponds to the
situation in which the discrete and continuum channels are
excited with similar amplitude. In Ref. [25], we found that
the asymmetry of the detector FR grows systematically as
the separation of the detector and swept QPCs is reduced,
consistent with an associated, and similarly systematic,
evolution of the asymmetry parameter. The resonances
shown in Figs. 3(a) and 3(f) are clearly well described by
the form of Eq. (1), and the resulting values of the asym-
metry parameter (q ¼ �22 and �7, respectively) are in
good agreement with those reported for equivalent con-
figurations in Ref. [25].
Having discussed the details of Figs. 3(a) and 3(f), we

now focus on the behavior observed in the remaining
panels of Fig. 3. While Fig. 3(a) shows just a single
resonance (R1), since the control QPC pinches-off outside
the range of the figure, in Fig. 3(b) the more-negative
value of Vc causes this QPC’s resonance (R2) to clearly
appear in the data window. As Vc is made more negative
yet, there is a clear trend for R2 to track from left to right,
as pinch-off of the control QPC occurs progressively
earlier. In Figs. 3(c) and 3(d), the two resonances can
still be distinguished but appear very close to overlapping
with each other. Finally, in Figs. 3(e) and 3(f), for which
the control QPC pinches-off before the swept QPC, only a
single resonance is observed. On the basis of the corre-
lation of this resonance to the pinch-off of the control
QPC [Fig. 3(f)] we identify it as R2, an assignment that is
further confirmed by the value of the asymmetry parame-
ter characterizing this FR [25].
In Fig. 4, we present the results of measuring GdðVsÞ for

the two different configurations of Fig. 2(b), as we vary Vc

in a more systematic manner than in Fig. 3. The behavior
exhibited in both panels of Fig. 4 is clearly very similar in

FIG. 3. Measurements of the detector conductance [GdðVsÞ]
for Configuration I of Fig. 2(b), at 4.2 K and for several different
values of the control-QPC gate voltage (Vc, indicated in each
panel). Also shown in the top-left (bottom-right) panel, as the
black (green) line, is the corresponding variation of the swept-
QPC (control-QPC) conductance ðGs;cÞ, along with fits [25]

(open circles) to the FR formula of Eq. (1). Top-left panel:
q ¼ �22 and � ¼ 0:082 V. Bottom-right panel: q ¼ �7 and
� ¼ 0:225 V.
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character, in spite of the fact that the two configurations use
different gates to implement the various QPCs. That being
so, the measurements of Fig. 4 represent results for two
mesoscopically distinct implementations of the coupled-
BS system. Indeed, the two panels of this figure were
obtained during different thermal cycles, performed
more than a year apart, and thus truly provide measure-
ments of microscopically distinct potential landscapes.
Furthermore, we have also configured the two-BS system
using other gate combinations than those shown in
Fig. 2(b), and again we find behavior similar to that in
Figs. 3 and 4. These various experiments therefore give us a
high degree of confidence in the generic character of the
behavior revealed in these figures.

With regard to the evolution of the resonances revealed
in Fig. 4, this is consistent with the evolution already
discussed for Fig. 3. Notably, the different dispersions of
R1 and R2 in the (Vs, Vc) plane are clearly apparent, and
consistent with the manner in which the two BSs are
defined; the value of Vs at which R1 occurs is largely
insensitive to variation of Vc, while R2 shifts to less-
negative Vs as Vc is made more negative. Because of these
different dispersions, it might be expected that there should
actually be a specific combination of Vs and Vc for which
the two resonances should cross each other. Both panels of

Fig. 4 show an avoided crossing, however, indicating that
the two peaks experience level repulsion that maintains at
least a minimal separation between them [as in Fig. 3(d)].
The form of this anticrossing is quite unusual, since one of
its four branches appears to be missing (as we indicate for
the regions enclosed by red dotted lines). Nonetheless, it is
clear for both configurations of Fig. 4 that R1 is repelled
toward less-negative Vs as R2 approaches it. In fact, ob-
servation of the three-branched anticrossing is a critical
finding, since it confirms that the coupling among the
different components of our system is mediated through
the interconnecting 2DEG, rather than arising from direct
electrostatic crosstalk. We arrive at this conclusion by
correlating the variation of Gd in Fig. 4 to our associated
measurements of the swept- and control-QPC conductance
[as in Figs. 3(a) and 3(f), for example]. In this way, we
infer that the missing branch of the avoided crossing,
which corresponds to the range over which the resonance
R1 should be observed, is associated with the situation for
which the control QPC pinches-off before the swept QPC
as Vs is varied. Under such conditions, the wave function
coupling between BS1 and the detector is suppressed, and
it is for this reason that R1 is therefore not observed. (We
return to discuss this point again below.) In contrast, if R1

were somehow associated with the charge-sensing scheme
that has been used in studies of quantum dots [38],
there would be no reason to expect that it should be so
dramatically modified by pinching-off the control QPC.
The missing branch of the anticrossing noted above can

actually be reconstructed in experiment by using an alter-
native measurement configuration in which the pinched-off
control QPC now serves as a detector to monitor the swept
QPC. This is easily achieved in experiment by making use
of appropriate Ohmic contacts to the 2DEG, and results
from such a configuration are shown in Fig. 5(a). This
shows that the conductance (Gc) of the control QPC
exhibits a small peak that is closely correlated to the
pinch-off of the swept QPC [shown in Fig. 5(b)].
(Accompanying the peak is a steplike change in Gc, which
we observe quite commonly in experiments in which the
detector itself is very close to pinch-off. The step most
likely reflects a change in the local electrostatic environ-
ment of the control QPC, which occurs once the swept
QPC fully pinches-off [38].) By utilizing the peak in
Fig. 5(a) as a detector of the resonance due to BS1, in
Fig. 5(c) we plot as black symbols the position of this
resonance. It is clear from this figure, which also plots
the resonance positions determined from the correspond-
ing panel of Fig. 4, that the two different sets of data in
Fig. 5 connect smoothly to each other. Most notably, the
combination of the two data sets allows the full structure
of the anticrossing between R1 and R2 to become clear.
(It should be noted that the input impedance of the
Signal Recovery 5210 lock-in amplifiers that we use is
100 M�. In most of our experiments, this is many orders

FIG. 4. The left panel shows the variation of GdðVsÞ at 4.2 K,
for Configuration I of Fig. 2(b). From the lowest curve up, Vc is
incremented from �0:96 V to �2:21 V in 50-mV steps, and
from �2:31 V to �2:91 V in 100-mV steps. Curves are shifted
up in increments of 0:1� 2e2=h. The right panel shows the
variation of Gd(Vs) at 4.2 K, for Configuration II of Fig. 2(b).
From the lowest curve up, Vc is incremented from �0:50 V to
�2:30 V in 50-mV steps. Curves are shifted up in increments of
0:05� 2e2=h. The red dotted lines in both panels denote the
missing portions of the resonance spectrum.
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of magnitude larger than the detector resistance, which
is typically less than 10 k�. In the measurements of
Fig. 5(a), however, the measured resistance is likely loaded
somewhat by the input impedance—particularly on the
low-conductance side of the step after the swept QPC
pinches-off—but this loading will not affect the gate-
voltage position of the detector resonance, which is the
main feature of interest for evaluating the avoided
crossing.)

While Fig. 5(c) plots the position of the two resonances
as a function of Vsand Vc, these data can be related to
equivalent energy shifts by utilizing the results of our prior,
nonlinear bias-spectroscopy experiments [26]. In these, a
DC bias was applied across the detector to induce a shift
in the gate voltage (Vs) position of its resonance and to

therefore deduce the lever arm that connects a change of Vs

to an equivalent shift of the BS energy. Using such cali-
brations for the separate QPCs, in the upper inset of
Fig. 5(c) we replot the data from the main panel in terms
of associated energy shifts. Our plot is restricted to the
region near the avoided crossing, where the level repulsion
of the two resonances is clearly seen to be of order a few
(2–3) meV. While such strong coupling, much larger than
that ( � 100 �eV) typically reported for quantum-dot
molecules [21], may seem surprising, particularly given
that the two BSs are coupled only indirectly through a
2DEG, we nonetheless emphasize that our estimates are
consistent with the fact that we are able to clearly observe
the avoided crossing at 4.2 K. Indeed, shortly below, we
develop a theoretical model that explains the robust cou-
pling between the two BSs precisely in terms of the fact
that it is mediated by a large number of degenerate states of
the intervening 2DEG.
Further insight into the nature of the coupling between

the two BSs is provided by the results of the temperature-
(T) dependent studies that we present in Fig. 6. In Fig. 6(a),
we show measurements of the detector conductance at a
number of different temperatures. These data were ob-
tained for Configuration I of Fig. 2(b), but for a different
thermal cycle than the measurements of Figs. 3 and 4, after
first adjusting Vc to bring R1 and R2 into close proximity at
the lowest temperature (4.2 K). In Fig. 6(b), we plot the
values of the swept-QPC gate voltage (Vs) at which the two
resonances occur, from which figure we identify two dis-
tinct regimes of behavior. Over the range from 10–40 K,
both R1 and R2 shift to more-negative Vs with increasing
temperature, a trend that we have discussed previously in
our investigations of the interaction between the detector
and just a single BS [24]. The reason for this behavior is
easily understood and follows from the fact that, with
increasing temperature, the pinch-off condition for any
QPC systematically shifts to more-negative gate voltage.
Consistent with the idea that it provides a signature of a BS
that forms near pinch-off, the detector resonance therefore
also tracks to more-negative gate voltage with increase of
temperature [24], just as we see at higher temperatures in
Fig. 6(b). At temperatures below 10 K, however, very
different behavior is observed; while extrapolation from
higher temperatures suggests that R1 and R2 should ap-
proach even closer as T is reduced, we instead clearly
observe a crossover to peak repulsion. This is indicated
by the curves with open symbols in Fig. 6(a), and its onset
is also denoted by the arrow in the color contour of
Fig. 6(b) [a replotting of the data of Fig. 6(a)]. In the inset
to Fig. 6(c), we have used the data for R1 to infer an
effective level repulsion, by first (linearly) extrapolating
the high-temperature variation of the resonance position to
the lowest temperatures. After subtracting this from the
actual data, and using the gate-voltage lever arm (� ¼
0:14 meV=mV; see Ref. [26]) to convert from gate voltage

FIG. 5. (a) GcðVs; VcÞ for Configuration I of Fig. 2(b) at 4.2 K.
Data are for the range of Vs;c where the control QPC is extremely

close to pinch-off. (b)GsðVs; VcÞ for Configuration I for the same
gate-voltage range and temperature as in (a). White dotted lines
in (a) and (b) denote the same variation of Vs � Vc. The black
dotted line at the front of the contour in (a) is a guide to show the
line shape of GcðVsÞ. (c) Evolution of R1 and R2 for
Configuration I as a function of Vc and Vs. Black symbols
were obtained using the control QPC as a detector; red symbols
were inferred directly from the data of Fig. 4. The plot shown in
the inset was obtained by using the lever arm [26] of the two BSs
to convert variations of Vc;s to corresponding BS-energy shifts.
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to a BS-energy shift, we thus arrive at the inset to Fig. 6(c).
According to this plot, the level repulsion grows from a
value of zero near 10 K to reach as much as 8 meVat 4.2 K,
a value within a factor of 2 of the level repulsion inferred
from the inset to Fig. 5(c).

Importantly, the peak repulsion apparent in the results of
Figs. 6(a)–6(c) is found only when the two gate voltages
(Vsand Vc) are in close proximity to each other. This
is confirmed by the results of Fig. 6(d), which show
the corresponding temperature-dependent evolution of
R1 and R2, measured under conditions where they are
detuned significantly from the anticrossing. Clearly, there
is no evidence of the peak repulsion in this figure; instead,
the individual resonances shift monotonically to more-
negative gate voltage with increasing temperature, for the
reasons that we have already discussed. It is also worth
noting that the individual resonances survive to tempera-
tures beyond 30 K [as in Fig. 6(a)], indicating that the
effective confinement of the associated BSs should be of
meVorder, just as we have demonstrated previously in our
work on single-BS detection [24–26].

IV. THEORETICAL ANALYSIS

A. Modeling the system

The key result of our experiment is that a robust inter-
action, significantly larger than that typical of quantum-dot
molecules, may be generated between a pair of remote
quantum states by coupling them through a continuum.
For insight into the mechanism that supports this interac-
tion, we model the experiment as indicated in Fig. 2(a).
Our description of the system in this manner is motivated
by our understanding of the way in which the self-
consistent potential of a QPC should evolve in a scenario
involving BS formation. Prior to pinch-off, while the QPC
is conducting, its potential consists of a two-dimensional
saddle that supports a set of equally spaced harmonic-
oscillator levels [21]. As the gate voltage is made more
negative, the lateral confinement of electrons inside the
QPC increases, and these one-dimensional subbands are
driven upward in energy. As pinch-off is approached, the
many-body interactions that arise from the locally reduced
electron density around the QPC are thought to fundamen-
tally alter the saddle potential, generating a local minimum
at its center that supports the BS. Although the precise
manner in which the BS evolves with gate voltage is not
completely understood, its confinement presumably in-
creases as the QPC is driven from just below the last
plateau toward full pinch-off (where, as the QPC barrier
is eventually driven far above the Fermi level, the BS must
presumably vanish.) Over this range, the QPC may essen-
tially be considered as a naturally formed quantum dot,
whose nanoscale dimensions should result in a significant
charging energy (denoted here asUn for BSn, n ¼ 1, 2) for
the addition of a second electron [23,29]. Indeed, our prior
experiments [24] suggest that this charging energy is of
meVorder, consistent with numerical estimates [29]. With
these considerations, the local density of states of a QPC
may be represented as a single discrete state, which lies
below a set of transverse oscillator levels with free disper-
sion in the direction of current flow.When the QPC is open,

FIG. 6. (a) Measurements of the double-peak structure at differ-
ent temperatures. The data are for Configuration I of Fig. 2(b) and
a slowly varying background, with an average value of 3:5�
2e2=h, has been subtracted fromGd. Successive curves are shifted
upward in increments of 0:02� 2e2=h. Curves with open sym-
bols denote curves for which the peak separation increases with
decreasing T. From bottom to top, respectively, temperatures are:
40, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 15, 13, 11, 9, 8, 7, 6, 5, and
4.2 K. (b) Data from (a), plotted as a contour, to show appearance
of peak repulsion (see arrow) below 10K. (c) Themain panel plots
the Vs position of the two peaks R1 and R2 from (a) as a function
of T. The inset plots the energy splitting inferred from the
separation between the actual position of R2 and the linear
extrapolation indicated in the main figure by the dotted line.
(See text for further details.) (d) The main panel plots the Vs

position of the two peaks R1 and R2, obtained with Vsand Vc

configured so that the two resonances are far from their avoided
crossing. The inset illustrates the temperature dependence of the
two resonances under these conditions. The results of two sepa-
rate measurements are combined at each temperature, since each
measurement exhibits just one resonance (due to BS1 or BS2).
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its BS should lie well below the Fermi level so that the
regular one-dimensional subbands govern the conduc-
tance. As pinch-off is approached, however, and the entire
level structure is pushed upward, the discrete state nears
the Fermi level and is then able to influence transport. With
the above picture in mind, we can return to Fig. 2(a), which
shows that we describe our experiment in terms of two
localized states, BS1 in the swept QPC and BS2 in the
control QPC, that are coupled to a detector, and to each
other, via 2DEG in Regions (1) and (2). Our objective is to
calculate the manner in which the detector conductance
then reflects the interaction between the BSs, and we
achieve this by starting from the Hamiltonian (whose
formulation in the language of second quantization is
presented in the Supplemental Material [37])

H ¼ H det þH con þH swe þH ð1Þ þH ð2Þ
þH BS1 þH BS2 þH int: (2)

The first three terms on the right-hand side of this equation
represent, respectively, the states of the detector, the con-
trol QPC and the swept QPC. These states correspond
(see the Supplemental Material [37]) to noninteracting
one-dimensional subbands that are hybridized with free-
electron-like states in 2DEG regions (1) and (2). The fourth
and fifth terms in Eq. (2) describe the 2DEG states in these
regions, while the sixth and seventh terms represent the
two BSs:

H BSn ¼
X
�

"n�nn� þUnnn"nn#; (3)

where �n� is the energy of BSn (n ¼ 1, 2) for spin projec-
tion �, Un is the charging energy noted already, and nn� is
the charge-number operator. [There is no term in Eq. (2)
for a BS in the detector, since this typically has a conduc-
tance larger than 2e2=h and its BS is therefore either not
formed or exerts no influence on transport.] While the two
BSs are taken to interact with electrons in the 2DEGs via
tunneling, for simplicity we neglect any interaction be-
tween each BS and the one-dimensional subbands in its
QPC, since such an interaction should not fundamentally
affect our main conclusions.

The last term in Eq. (2) describes the interaction between
the different components of the system, where, to ensure a
close connection to experiment, we take BS1 to be coupled
to Region (1) whileBS2 is coupled to Regions (1) and (2). It
is this common coupling to the same region of 2DEG that
provides an effective interaction between the BSs, as can be
shown explicitly by considering the subsystem comprising
the two BSs and the 2DEG of Region (1). Through appli-
cation of the Schrieffer-Wolff transformation [39], we show
in the Supplemental Material [37] that the Hamiltonian for
this subsystem can be recast as

H BS ¼ �1
2

X
nm�

Wnmd
y
n�dm� þ charging interactions: (4)

This form implies a direct interaction between the BSs that

can be expressed as W12d
y
1�d2�, where the operators dyn�

(dn�) create (annihilate) electrons at BSn. In the
Supplemental Material [37], we show that the interaction
potential is given by

Wnm ¼ X
k

v�
k�nvk�m

�
1

Ek � "n�
þ 1

Ek � "m�

�
; (5)

where, crucially, the summation runs over all electron states
of the 2DEG (both occupied and unoccupied states with
momentum k and energy Ek) and the coupling of these
states to BSn is described by the matrix element vk�n. As
the two BSs approach each other in energy ("1� ¼ "2�,
whichwe achieve in the experiment by suitable tuning ofVs

and Vc) and for Ek close to the Fermi energy (EF, which is
taken here as the zero of energy)

Wnmð"k� ¼ EFÞ � �2
jvnj2
"n�

; (6)

wherevn ¼ vk�n ¼ vk�m. The key result that follows from
this form is that the coupling Wnm diverges as the BS
energies approach the Fermi level in the 2DEG reservoir;
under this condition, we have j"n�=vnj & 1, and the cou-
pling jWnmj * 2jvnj. That is, the effective coupling of the
two BSs, mediated through the 2DEG, is much larger than
the hybridization of either BS with the 2DEG (vn).
Formally, this result arises from the fact that the inter-BS
coupling is mediated by all (both occupied and unoccupied)
states of the intervening 2DEG. The only assumption that
should hold to ensure the validity of this model is that
transport between the two BSs be ballistic, a requirement
that is reasonable in our experiments, performed on high-
mobility 2DEG systems at low temperatures.
In addition to establishing the presence of a 2DEG-

mediated coupling between the BSs, we are also interested
in understanding how this coupling is manifested in
the detector conductance. For this purpose, in the
Supplemental Material [37], we modify the BS subsystem
of Eq. (4) by adding a coupling through Region (2) to the
detector. After solving the resulting Hamiltonian with
Green-function techniques, we are then able to calculate
the local density of states (LDOS) for the BS subsystem
and to compute the modification to the detector conduc-
tance due to the coupling to the two BSs.

B. Simulation results

The key findings of our theoretical model are presented
in Fig. 7, in which we compare calculations of the LDOS
and the detector conductance for the system of Fig. 2(a).
While the manner in which these calculations are per-
formed is described in detail in the Supplemental
Material [37], we emphasize here that our choice of key
parameters is motivated directly by feedback from experi-
ment: (1) In Ref. [26], we showed from bias spectroscopy
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that a change of gate voltage translates to a linear shift in
BS energy. In Fig. 7, we therefore represent the effect of
varying Vc or Vs as associated BS-energy shifts, and it
should be noted that the range of these axes (in meV) is
similar to that in the inset to Fig. 5(c). (2) As in experiment,
the energy of BS1 is taken to be determined by Vs alone,
while that of BS2 is depends on both Vs and Vc. For
convenience, we take the energy of BS2 (�2�) to be zero
whenever Vs þ Vc ¼ 0 in Fig. 7. This does not affect our
quantitative conclusions regarding the inter-BS interaction,
however. (3) The noninteracting one-dimensional sub-
bands of the swept and detector QPCs are taken as
harmonic-oscillator levels with a spacing (!p ¼ !q ¼
1 meV) consistent with bias spectroscopy of such struc-
tures [40]. For positive gate voltages (Vs > 0), the sub-
bands in the swept QPC lie below the Fermi level, while
negative Vs corresponds to the regime where the swept
QPC is pinched-off. In this situation, only BS1 is occupied
in this QPC. For the detector QPC, the subband bottoms
are taken as �20þm!p, where !p ¼ 1 meV and m ¼
1; . . . ; 20. The detector is therefore in the multimode limit,
although this does not significantly affect our conclusions.
(4) The charging energies that appear in Eq. (3) are taken as
Un ¼ 1:5 meV, a choice that is motivated by the results of
self-consistent calculations of the QPC electronic structure
[29] and by our own experiment [24]. (5) Temperature is
included through its influence on the different number
operators, via the Fermi distribution, and is taken here to
be 4.2 K to match experiment.

In Figs. 7(d) and 7(f), we show the corresponding con-
tributions of the two BSs to the detector conductance,

obtained by numerical calculation of Eq. 35 in the
Supplemental Material [37]. Figure 7(d) shows the varia-
tion of the second term on the right-hand side of this
equation and represents the correction to the detector con-
ductance due to its coupling to BS1. Figure 7(f) similarly
shows the correction to the conductance due to its coupling
to BS2, provided by the first term of Eq. 35. Figure 7(e)
represents the full variation of the detector conductance,
obtained by summing both of these terms, and so it is the
quantity that should be compared with the results of ex-
periment. In Fig. 7(e), we see a resonance in the detector
conductance due to BS2, which precisely follows the evo-
lution of this state [shown in Fig. 7(c)]. In marked contrast,
Fig. 7(d) plots the contribution to Gd from BS1, but it
shows only the resonance due to this BS for Vc >
5 meV, in spite of the fact that the LDOS confirms the
presence of this state over the entire range of the plot.
Consequently, in Fig. 7(e), where we plot the total contri-
bution to the detector conductance due to the two
BSs, rather than obtaining the full anticrossing revealed
in Fig. 7(b), we instead obtain the three-branched structure
that is highly reminiscent of our experiment. Consistent
with our experiment, the reason for this unusual structure is
readily identified: The missing branch of the avoided cross-
ing occurs when the coupling of BS1 to the detector QPC
becomes cut off, due to the full depletion of the intervening
control QPC. Under these conditions, there is no wave-
function overlap between the detector and BS1, and so the
detector’s conductance is featureless. The very clear cor-
respondence between our experiment and these simula-
tions provides strong support for the notion that the
interaction between the two BSs in our system is indeed
mediated through the intervening continuum.
Turning now to the results of Fig. 7, Figs. 7(a) and 7(c)

show the calculated LDOS (as a function of Vcand Vs) for
BS1 and BS2, respectively, and clearly reveal the signature
of a localized state in each QPC. In both of these panels,
the peak that is observed in the LDOS is actually split into
two components, which are separated by the charging
energy of 1.5 meV and indicate the population of the
associated BS by its first and second electrons.
Consistent with the experiment, the Vs position of BS1 is
unaffected by variation of Vc, while BS2 shifts to less-
negative Vs as Vc is made more negative. Over the range
where a crossing of the two BSs would be expected, their
respective LDOS are strongly modified, and Fig. 7(b),
which plots the cumulative LDOS for the two BSs, clearly
reveals that this behavior is associated an avoided crossing
of these BSs. Reading off a tunnel splitting from the
structure of this avoided crossing, we obtain a value of
around 3 meV, in good agreement with our experiment
[Fig. 5(c)].
The different configurations that are achieved in the two-

BS system as the gate voltages (Vs;c) are varied are sum-

marized in Fig. 8. In the upper part of this figure, we replot

FIG. 7. The upper row of panels shows the calculated LDOS
for (a) BS1, (b) BS1 and BS2, and (c) BS2 as functions of the gate
voltages Vs and Vc (expressed as BS-energy shifts, in meV). As
in the experiment, BS1 is defined by Vs alone while BS2 is
formed by Vs and Vc. The lower row of panels shows the
correction to the detector conductance, calculated from Eq. 35
in the Supplemental Material [37]. (d) Contribution from first
term. (e) Contribution from both terms. (f) Contribution from the
second term. A description of the parameter values used in these
calculations is provided in the Supplemental Material [37].

COUPLING QUANTUM STATES THROUGH A CONTINUUM: . . . PHYS. REV. X 2, 021003 (2012)

021003-9



(from Figs. 4 and 7) the measured and calculated variations
of GdðVs;cÞ as three-dimensional contours. This compari-

son is particularly useful since it demonstrates the extent to
which our calculations achieve a high degree of quantita-
tive accuracy relative to the experiment. In the lower part
of the figure, we use electron micrographs of the device to
denote the relationship of the different branches of the
resonance spectrum (numbered I through IV in the 3D
contours) to the state of the swept and control QPCs. As
we indicate in Figs. 9(a) and 9(b), these different regions
are related to discrete changes in the number of electrons
that occupy the two BSs. Figure 9(a) shows the total
population of the two-BS system (see the Supplemental
Material [37] for further details) and exhibits distinct re-
gions for which the total electron number (N) associated
with the BSs ranges from zero to four. [This plot should be
compared with Fig. 7(b).] In Fig. 9(b), on the other hand,
we show how the two separate BSs contribute to this
change in electron number. We mentioned already that
the LDOS exhibits a double-peak structure [see Fig. 7(b),
for example], which arises from the population of each BS
by its first and second electron. According to our theory,
the energy separation of these two peaks is simply given by
the BS on-site energy (Un), which is taken here to be
1.5 meV. Evidence of such a doublet structure has been
found in prior experiment [24].

V. CONCLUDING REMARKS

Our experiment has demonstrated a robust coupling
between a pair of BSs, significantly stronger than that
which typically arises from the direct wave-function over-
lap in quantum-dot molecules, by coupling the two states
through a continuum. Formally, we have explained this
result within the framework of the Schrieffer-Wolff trans-
formation by noting that the effective interaction between
the BSs is essentially mediated by all states of the inter-
vening continuum to which the BSs are separately coupled.
The implication of our analysis is that we can essentially
replace the setup consisting of the two BSs and their
intervening 2DEG [Fig. 10(a)] with an effective model
that more closely resembles the double-well potential
characteristic of quantum-dot molecules [Fig. 10(b)]. In

FIG. 8. The upper-left panel shows the data of Fig. 4
(Configuration I), replotted as a 3D contour, while the upper-
right panel shows a similar replotting of Fig. 7(e). The lower four
panels use electron micrographs of the device to indicate its
configuration, for each of the four resonances (I through IV)
identified in the upper 3D contours.

FIG. 9. (a) Total electron population of the two BSs and its
variation with Vc;s. (b) Corresponding populations (N1 and N2)

of the two separate BSs (BS1 and BS2, respectively) for the same
variation of Vc;s.

FIG. 10. (a) Schematic potential diagram showing two BSs
formed on QPCs that are separated by an intervening 2DEG.
The coupling of each BS to this reservoir is denoted by the
matrix element vk�1ð2Þ. (b) The system shown in (a) is replaced

here with an equivalent setup consisting of two BSs that are
directly coupled through a thin tunnel barrier, with an effective
tunneling rate of W12.
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this representation, the two BSs can be considered to
effectively be directly coupled to each other by a potential
barrier that is actually lower than the barriers that couple
the BSs to the 2DEG. With this coupling strength denoted
as Wnm [as defined in Eq. (5)], the two BSs should form
coherent molecular states with energies

E�� ¼ 1
2

�X
n

ð"n� þWnÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4jW12j2

q �
; (7)

where � ¼ "1� þW1 � "2� �W2 is the detuning of the
BSs. At resonance we have � ¼ 0, so that the effective
tunnel splitting of the BSs reduces to just jEþ� � E��j ¼
2jW12j. As we have noted already [see the discussion of
Eq. (6)],W12 can be much larger than vk�1ð2Þ, and it is this
characteristic that leads us to replace the system of
Fig. 10(a) with that of Fig. 10(b). A comment that should
be made here concerns the relative amplitude of the con-
fining barriers that localize the BS on a QPC, and those
barriers that control the coupling to the external reservoirs
in conventional, Coulomb-blockaded, quantum dots.
While our temperature-dependent studies [24] suggest
that the effective barriers induced in QPCs should be
around a few meV high, those in intentionally formed
quantum dots are expected to be significantly higher
(> 10 meV, for example) and wider. This difference in
barrier strength should also be important for enhancing the
interdot coupling in our experiments.

In the Schrieffer-Wolff transformation that we have used
to describe the interaction between the two BSs, the robust
character of this interaction is understood as arising from
the fact that each of the BSs is coupled to a highly degen-
erate set of states in the 2DEG. One aspect of our experi-
ment that we have not addressed, however, concerns the
temperature-dependent studies of Fig. 6. These reveal that
the level repulsion of the two BSs appears only when the
temperature is reduced below 10 K and that for tempera-
tures higher than this the BSs appear independent of each
other. At present, we are unable to account for this behav-
ior within our model, in which the role of temperature is
simply included through Fermi-Dirac statistics. The sig-
nificance of this temperature cutoff is suggested, however,
by considering the characteristic length scales that govern
coherent transport in the 2DEG that couples the BSs. The
first of these lengths is the dephasing length, which is the
characteristic distance traveled between dephasing events
and can be estimated by noting that, for 2DEG systems, a
typical value for the dephasing time is around 1 ps at 10 K
[41]. For the Fermi velocity (vF ¼ 2� 105 m=s) in our
high-mobility 2DEG, this translates to a ballistic coherence
length of around 200 nm. The other length scale is the
thermal length, which, for ballistic transport, is expressed
as LT ¼ @vF=kBT, yielding LT ¼ 160 nm at 10 K with the
aforementioned vF. From these estimates we therefore
see that 10 K corresponds to a characteristic crossover

temperature, at lower values than which the 2DEG should
support coherent coupling between the BSs, while at
higher temperatures it should become incoherent. One
possibility, therefore, is that the enhancement of the tunnel
splitting that we see below 10 K (Fig. 6) is connected to the
temperature dependence of the coherence lengths, leading
to a larger number of states contributing to Wnm at lower
temperatures. Further theoretical studies are required, how-
ever, to clarify this point, which at present is beyond the
scope of our calculations.
In this work, we have focused on explaining the ob-

served resonances in the conductance of the detector QPC
and have emphasized the origin of these features in terms
of a continuum-mediated coupling between the BSs. While
our theoretical analysis quantitatively establishes this
interpretation, we nonetheless should at least consider the
possibility of other mechanisms. The first is just a capaci-
tive coupling among the various components of the system,
analogous to that which arises in charge-sensing experi-
ments (such as Ref. [38]). In such charge sensing, however,
the QPC that serves as the detector must be formed in very
close proximity to the quantum dot that it monitors (in fact,
it is usually integrated into this structure), and it must
furthermore be configured close to pinch-off to allow its
conductance to be sensitive to single-electron charging of
the dot. This is very different from the situation in our
experiments, in which the detector QPC is separated from
the BSs that it monitors and in which its conductance is
typically well above pinch-off. Under such conditions, it is
reasonable to expect that the detector should be largely
insensitive to electrostatic effects arising from single-
electron charging of a remote bound state. In fact, in
Ref. [24] we showed that the amplitude of the detector
resonance is dramatically reduced as pinch-off is ap-
proached (behavior that is also apparent in Fig. 4 here),
which is actually the opposite dependence from that found
in usual charge-sensing experiments. Another possible
mechanism of interaction is an RKKY effect, reminiscent
of reports for quantum dots [42–44]. Such a mechanism
would also be mediated through the intervening 2DEG and
is actually accounted for via the exchange term (Jn�ðkÞ)
that appears in Eq. 9 of the Supplemental Material [37].
Our results of Figs. 7 and 8 were obtained by neglecting the
role of this exchange term, however, which suggests that an
RKKY mechanism is not required to produce the effects
that we observe. Indeed, in prior work on the RKKY
mechanism in quantum dots, we note that the coupling
was suppressed as the temperature was increased to just
1 K [44], an order of magnitude smaller than the tempera-
ture cutoff that we find in our experiment. At the same
time, however, we cannot definitively rule out the possi-
bility that this mechanism may also contribute to the
behavior that we observe. In fact, we note the presence
of some remnant minor structure in the missing branch of
the avoided crossing of the right panel of Fig. 4, which may

COUPLING QUANTUM STATES THROUGH A CONTINUUM: . . . PHYS. REV. X 2, 021003 (2012)

021003-11



point to the presence of interaction beyond that which we
consider. We do not have a definitive conclusion regarding
this point at present, but this should not affect our main
conclusions regarding the origins of the BS coupling.

An interesting aspect of our experimental results that
we have not thus far emphasized is that the system we
have implemented provides a mesoscopic realization of a
multistate FR. While FRs have been investigated for more
than half a century, by far the vast majority of these
investigations have focused on the interference arising
from coupling a continuum to just a single discrete state.
In his original analysis, however, Fano also predicted the
possibility of more-complicated multistate resonances, in
which two or more discrete states interfere with each
other through their coupling to a common continuum
[1]. Examples of such behavior are rare, however, with
the phenomenon of q reversal due to intruder states in
Rydberg atoms having been most widely studied [6–9]. In
this effect, the discrete series of FRs arising from a
specific manifold of levels in a Rydberg atom is strongly
modified by its interference with other manifolds in the
same energy range. That being so, this behavior is there-
fore a one-atom effect, in which the levels involved in the
multistate resonance all arise within the same atom. This
should be contrasted with the situation in our experiment,
in which the component states involved in the multistate
resonance are realized on spatially remote nanostructures,
making this behavior a truly nonlocal phenomenon. While
one often views the continuum as a source of decoher-
ence, our work therefore suggests the possibility of using
this medium to support the interaction of quantum states,
a result that has the potential of opening up new ap-
proaches to coherently couple nanostructures in complex
geometries. The nonlocal coupling considered here has
been proposed, for example, as a means to achieve an
electronic analog of the Dicke effect [16,45], a well-
known effect in quantum optics [46,47] in which
superradiance arises when a photon field mediates the
interaction of excited atoms. Our demonstration of
extended-molecule formation demonstrates the potential
of realizing new electronic devices by transferring con-
cepts from quantum optics.
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