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This paper is an attempt to identify the real essence of simplicity of liquids in John Locke’s

understanding of the term. Simple liquids are traditionally defined as many-body systems of classical

particles interacting via radially symmetric pair potentials. We suggest that a simple liquid should be

defined instead by the property of having strong correlations between virial and potential-energy

equilibrium fluctuations in the NVT ensemble. There is considerable overlap between the two definitions,

but also some notable differences. For instance, in the new definition simplicity is not a direct property of

the intermolecular potential because a liquid is usually only strongly correlating in part of its phase

diagram. Moreover, not all simple liquids are atomic (i.e., with radially symmetric pair potentials) and not

all atomic liquids are simple. The main part of the paper motivates the new definition of liquid simplicity

by presenting evidence that a liquid is strongly correlating if and only if its intermolecular interactions

may be ignored beyond the first coordination shell (FCS). This is demonstrated by NVT simulations of the

structure and dynamics of several atomic and three molecular model liquids with a shifted-forces cutoff

placed at the first minimum of the radial distribution function. The liquids studied are inverse power-law

systems (r�n pair potentials with n ¼ 18; 6; 4), Lennard-Jones (LJ) models (the standard LJ model, two

generalized Kob-Andersen binary LJ mixtures, and the Wahnstrom binary LJ mixture), the Buckingham

model, the Dzugutov model, the LJ Gaussian model, the Gaussian core model, the Hansen-McDonald

molten salt model, the Lewis-Wahnstrom ortho-terphenyl model, the asymmetric dumbbell model, and the

single-point charge water model. The final part of the paper summarizes properties of strongly correlating

liquids, emphasizing that these are simpler than liquids in general. Simple liquids, as defined here, may be

characterized in three quite different ways: (1) chemically by the fact that the liquid’s properties are fully

determined by interactions from the molecules within the FCS, (2) physically by the fact that there are

isomorphs in the phase diagram, i.e., curves along which several properties like excess entropy, structure,

and dynamics, are invariant in reduced units, and (3) mathematically by the fact that throughout the phase

diagram the reduced-coordinate constant-potential-energy hypersurfaces define a one-parameter family of

compact Riemannian manifolds. No proof is given that the chemical characterization follows from the

strong correlation property, but we show that this FCS characterization is consistent with the existence of

isomorphs in strongly correlating liquids’ phase diagram. Finally, we note that the FCS characterization of

simple liquids calls into question the physical basis of standard perturbation theory, according to which the

repulsive and attractive forces play fundamentally different roles for the physics of liquids.
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I. INTRODUCTION

Going back to Plato, classification or categorization is
the epistemological process that groups objects based on
similar properties [1]. Having primarily biological ex-
amples in mind, Aristotle defined categories as discrete
entities characterized by properties shared by their mem-
bers [2]. Aristotle, and Locke in 1690 in much more detail,
distinguished between the nominal essence and the real
essence of an object [3]. The nominal essence comes from
experience and represents the object’s appearance, whereas
the real essence represents the object’s deeper, constituting

features. For instance, the real essence of a material thing is
its atomic constitution, because this is the causal basis of
all the thing’s observable properties [4]. A scientific clas-
sification is particularly useful if it reflects the real essence
of the objects in question by identifying their underlying
common features, from which the more obvious and easily
observable nominal properties follow. Having in mind
Locke’s concept of real essence, we argue below for a
new definition of the class of simple liquids.
Physicists love simple systems. This reflects the funda-

mental paradigm that, in order to capture a given phenome-
non, simpler is better. Most classifications in physics are
clear-cut, for example, the classification of elementary
particles into baryons and leptons, whereas classifications
in other sciences usually have a wealth of borderline cases.
Because of the diversity of molecules, it is reasonable to
expect a definition of ‘‘simple liquids’’ to be of the latter
type.
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The concept of a simple liquid is old, but it remains
central as evidenced by the 2003 book entitled Basic
Concepts for Simple and Complex Liquids [5] or the
review of nonsimple liquids entitled Theory of
Complicated Liquids from 2007 [6]. Generations of
liquid-state theorists were introduced to this exciting
topic by studying Hansen and McDonald’s textbook
Theory of Simple Liquids [7]. This book first appeared
in 1976, following a period of spectacular progress in the
theory of liquids, catalyzed by some of the very first
scientific computer simulations.

In Ref. [7] a simple liquid is defined as a classical system
of approximately spherical, nonpolar molecules interacting
via pair potentials. This and closely related definitions
of liquid simplicity have been standard for many years
[8–12]. In this definition, simple liquids have much in
common with the chemists’ ‘‘nonassociated liquids’’
[13], but there are some significant differences. Chemists
generally regard a liquid as simple even if it consists of
elongated molecules, as long as these are without internal
degrees of freedom and interact primarily via van der
Waals forces. Many physicists would probably disagree.
Thus, it is far from trivial to ask: What characterizes a
simple liquid? More accurately: Given a classical system
of rigid bodies with potential energy as a function of the
bodies’ centers of masses and their spatial orientations, is it
possible to give a quantitative criterion for how simple the
system is? If yes, is simplicity encoded uniquely in the
potential-energy function or may the degree of simplicity
vary throughout the phase diagram?

Recent works identified and described the properties of
what we have termed strongly correlating liquids [14–25].
By definition, in these liquids the virialW and the potential
energy U correlate strongly in their constant-volume
thermal-equilibrium fluctuations. Recall that the average
virial hWi gives the contribution to the pressure from inter-
molecular interactions, which is added to the ideal-gas term
NkBT, deriving from momentum transport via particle mo-
tion (belowp is the pressure,V the volume,N the number of
particles, kB Boltzmann’s constant, and T the temperature):

pV ¼ NkBT þ hWi: (1)

The term strongly correlating liquid refers to the case when
theWU correlation coefficient in theNVT ensemble is larger
than 0.9 [17]. If angular brackets denote an NVT ensemble
average, the correlation coefficient R is defined by

R ¼ h�W�Uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihð�WÞ2ihð�UÞ2ip : (2)

An example of a strongly correlating liquid is the standard
Lennard-Jones (LJ) liquid at typical condensed-phase state
points. Many other systems, including some molecular mod-
els, have been shown to be strongly correlating; we refer the
reader to papers that derive and document the several simple
properties of strongly correlating liquids [14–25]. These

properties are summarized briefly in Sec. IVA after the
presentation of the simulation results.
The present work is motivated by developments initiated

by recent findings by Berthier and Tarjus [26,27]. These
authors showed that for the viscous Kob-Andersen binary
Lennard-Jones mixture [28,29] the dynamics is not repro-
duced properly by cutting the potentials at their minima
according to the well-known Weeks-Chandler-Andersen
(WCA) recipe [30]. The role of the cutoff was subse-
quently studied in two papers [31,32], showing that placing
a shifted-forces cutoff at the first minimum of the pair
correlation function—thus defining the first coordination
shell (FCS)—gives good results for Lennard-Jones–type
systems. This is the case not only at moderate densities, but
also at very high densities. Applying the same cutoff to
water does not work properly [33]. Water is an example of
a nonstrongly correlating liquid with R � 0 at ambient
conditions, a consequence of water’s density maximum
[17]. These findings led us to speculate whether it is a
general property of strongly correlating liquids that the
intermolecular interactions may be ignored beyond the
FCS without compromising accuracy to any significant
extent. The main part of this paper shows that, indeed,
using such an ‘‘FCS cutoff’’ gives accurate simulation
results if the liquid is strongly correlating.
The paper presents results obtained from computer simu-

lations of several different systems, only some of which are
strongly correlating. We investigate the role of the FCS in
determining liquid structure and dynamics. Structure is
probed by the radial distribution function (RDF), dynamics
by the incoherent or, in a few cases, coherent intermediate
scattering function (ISF) at the wave vector defined by the
maximum of the static structure factor. The numerical evi-
dence is clear. By varying the cutoff of the intermolecular
forces,we find that in order to get accurate simulation results
it is enough to take into account merely the interactions
within the FCS if and only if the liquid is strongly correlat-
ing. In other words, for strongly correlating liquids, inter-
actions beyond the FCS are unimportant, and this applies
only for these liquids. At present there are no compelling
arguments for this empirical ‘‘FCS property,’’ but we argue
briefly in Sec. IVB that it is consistent with known proper-
ties of strongly correlating liquids.
The FCS property of strongly correlating liquids shows

that these are simpler than liquids in general. A number of
other simple properties of strongly correlating liquids have
been identified previously [14–25]. Altogether, these facts
motivate our new definition of liquid simplicity.
Section II presents the results from molecular dynamics

simulations and Sec. III summarizes the results. Section IV
gives an overview of the many simple properties of
strongly correlating liquids, motivating our suggestion
that a liquid is to be defined as simple if it is strongly
correlating at the state point in question. Section V gives a
few concluding remarks.
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II. MOLECULAR DYNAMICS SIMULATIONS OF
ATOMIC AND MOLECULAR LIQUIDS

In a computer simulation, the interactions, which usually
extend in principle to infinity, are truncated at some cutoff
distance rc beyond which they are ignored. To avoid a
discontinuity in the force, which can severely affect the
results [31,34], the simulations reported below use poten-
tials modified such that the force goes continuously to zero
at rc. This is done by applying a so-called shifted-forces
(SF) cutoff [34–36] where, if the pair potential is vðrÞ and
the pair force is fðrÞ ¼ �v0ðrÞ, the shifted force is given by

fSFðrÞ ¼
8<
:
fðrÞ � fðrcÞ if r < rc

0 if r > rc:
(3)

This corresponds to using the following pair potential
below rc: vSFðrÞ ¼ vðrÞ � v0ðrcÞðr� rcÞ � vðrcÞ. Using
a SF cutoff gives more accurate results and better numeri-
cal stability than using the standard shifted-potential (SP)
cutoff [31]. This is so despite the fact that a SF cutoff does
not have the correct pair force for any r, whereas the pair
force is correct below rc for a SP cutoff. Apparently,
avoiding discontinuity of the force at rc is more important
than maintaining the correct force. It was recently dis-
cussed [18] why adding a linear term to the pair potential
affects neither structure nor dynamics to any significant
extent. The reason is that, when one nearest-neighbor
distance decreases, others increase in such a way that their
sum is virtually constant. This argument is exact in one
dimension and holds to a good approximation in 3D
constant-volume simulations [18] (in constant-pressure
simulations the volume fluctuates and the argument no
longer applies). Coulomb interactions have also been
treated by the SF cutoff procedure. Although the
Coulomb interaction is long ranged and conditionally con-
vergent, when rc is sufficiently large, a SF cutoff gives
results close to those of the standard, much more involved,
Ewald summation method [37,38].

All simulations were performed in the NVT ensemble
with periodic boundary conditions using the Nose-Hoover
algorithm [39–41]. We used the Roskilde University
Molecular Dynamics package developed for state-of-the-
art graphics processing unit (GPU) computing [42]. For
the molecular models, bond lengths were held fixed using
the time-symmetrical central-difference algorithm [43–45].

The effect on the structure and dynamics of varying the
pair-potential cutoff rc was recently investigated for the
single-component Lennard-Jones liquid and the Kob-
Andersen binary LJ mixture [31,32]. For both systems, it
was found that if a SF cutoff is applied instead of the
commonly used SP cutoff, the standard cutoff rc ¼ 2:5�
can be decreased to 1:5� and still give the correct physics.
The value rc ¼ 1:5� is close to the first minimum of the
RDF, implying that all nearest-neighbor interactions are
accounted for. Decreasing the cutoff further quickly affects

the simulations, an effect that is quite pronounced for the
dynamics in the viscous regime [26,27].
In the following we investigate, for several systems,

whether it is possible to choose a FCS cutoff and still get
the correct physics. We start by studying strongly correlat-
ing atomic liquids. Then, data are presented for a few
atomic liquids that are not strongly correlating. Finally,
data are given for two strongly correlating molecular
liquids and a water model. Details of the models studied,
the number of particles, etc., are given in Appendix A.

A. Three inverse-power-law fluids

We consider first systems with 100% correlation be-
tween virial and potential-energy equilibrium fluctuations
in the NVT ensemble. It follows from the definition of the
virial W ¼ �1=3

P
ri � riU [34] that a necessary and

sufficient condition for W to correlate perfectly with U is
that the potential energy is an Euler homogeneous function
of the particle coordinates ri. This is clearly the case for
systems with inverse power-law (IPL) pair potentials
[vðrÞ / r�n], but note that potentials with nontrivial angu-
lar dependence may also be Euler homogeneous.
We simulated single-component IPL pair-potential

systems with exponents n ¼ 18; 6; 4 at density � ¼ 0:85.
Each system was studied at two temperatures. The simu-
lated systems range from n ¼ 18, which is very harsh and
repulsive, to n ¼ 4, which is quite soft and long ranged.
The role of the cutoff is investigated by choosing three
different, fairly small cutoffs: one placed at the first mini-
mum of the RDF (red), one corresponding to the half
height of the RDF from its minimum to its maximum
(blue), and one placed to the right of the RDF first mini-
mum (green), displaced the same amount as the difference
between the first and the second cutoff.
The RDFs gðrÞ are shown for n ¼ 18; 6; 4 in Fig. 1;

n ¼ 12 gives similar results (not shown). The simulations
with a SF cutoff at the first minimum of the RDF—referred
to as FCS-cutoff simulations—give a faithful representa-
tion of the structure. The insets show, as functions of the
cutoff, the deviations in RDF between the results for a FCS
cutoff and the ‘‘true’’ large-cutoff results, quantified by
integrating the numerical difference in the pair correlation
function. Clearly, deviations increase sharply when the
cutoff enters the FCS (blue crosses).
We simulated also the n ¼ 3 and n ¼ 1 IPL fluids. For

both systems, a FCS cutoff does not lead to the correct
physics. Both models do not have a proper thermodynamic
limit, for which the exponent must be larger than the dimen-
sion [46]. For the n ¼ 1 IPL (Coulomb) fluid, this problem
may be solved by introducing a uniform, neutralizing back-
ground of opposite charges, resulting in thewell-knownone-
component plasma model [47]. An indication that a FCS
cutoff works poorly when the IPL exponent approaches the
dimension is seen for the n ¼ 4 simulation, for which the
WU correlation coefficient for the FCS cutoff starts to
deviate significantly from unity. Moreover, but almost

WHAT IS A SIMPLE LIQUID? PHYS. REV. X 2, 011011 (2012)

011011-3



invisible in the figure, the n ¼ 4 pair correlation function’s
first maximum deviates slightly when comparing FCS and
true simulations.

Figure 2 shows the incoherent ISFs evaluated at the
wave vector corresponding to the first maximum of the
static structure factor for the low-temperature state points

of each of the three IPL systems. A good representation of
the dynamics is obtained for all systems when the FCS
cutoff is used.

B. Lennard-Jones liquids

Next, we consider what is probably the most studied
potential in the history of computer simulations, the LJ pair
potential,

vLJðrÞ ¼ 4�

��
�

r

�
12 �

�
�

r

�
6
�
: (4)

Here, � and � define, respectively, the length and energy
scale of the interaction (dimensionless units defined by
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FIG. 1. RDFs for single-component IPL fluids with exponents
n ¼ 18; 6; 4, each simulated at two temperatures at density
� ¼ 0:85. The black and orange curves show reference simula-
tion results with large cutoffs representing the true IPL behavior,
the red and green dots give results from simulations with a FCS
cutoff (marked by the vertical red dashed lines). The insets
quantify the deviations in the RDF from the reference RDF as
functions of the cutoff; deviations increase dramatically when
the cutoff enters the FCS (blue crosses). In panels (a), (b), and
(c) the virial potential-energy correlation coefficient R is given
for the lowest temperature (this quantity is exactly unity for IPL
systems with infinite cutoff).
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FIG. 2. Incoherent ISFs for the IPL fluids at the lowest-
temperature state points of Fig. 1. The black curves give results
for a large cutoff, the red crosses for a FCS cutoff (marked by the
vertical red dashed lines in Fig. 1). (a) n ¼ 18, T ¼ 0:30;
(b) n ¼ 6, T ¼ 0:15; (c) n ¼ 4, T ¼ 0:10.
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� ¼ � ¼ 1 are used below). This potential does not have
100% virial potential-energy correlations, but has still
quite strong correlations with correlation coefficients
R> 0:9 in the condensed-fluid part of the phase diagram
(and also in the crystalline phase [18]). We studied the
single-component LJ (SCLJ) liquid, two generalized
80=20 Kob-Andersen binary LJ (KABLJ) mixtures with
repulsive exponent 12 and attractive exponents n ¼ 4; 10,
and the Wahnstrom 50=50 binary LJ mixture (Fig. 3 and
Appendix A give model details). The influence of a SF
cutoff on simulation accuracy was investigated recently for
the SCLJ liquid and the standard KABLJ mixture (n ¼ 6)
[31,32], but for completeness we include results for the
SCLJ system here as well. See also Table I.

The role of the cutoff is again investigated by choosing
three different cutoffs: one placed at the first minimumof the
RDF (red color in Figs. 4–8), one corresponding to the half
height of the RDF from its minimum to its maximum (blue
color in Figs. 4–8), and one displaced to the right of the
minimum by the same amount as the difference between the
first and the second cutoff (green color in Figs. 4–8).

In Fig. 4, RDFs are shown for the SCLJ liquid at three
different state points. The red circles and curve show results
from simulations with a FCS cutoff (marked by the vertical
red dashed line); the black curves show the corresponding

simulations with a large cutoff (reference system).
The insets quantify the deviations in the simulated RDF
from the reference RDF as a function of the cutoff. The
reference RDF of Figs. 4(a) and 4(b) is clearly well repre-
sented using a FCS cutoff, while choosing the cutoff
inside the FCS results in significant deterioration. At low
density [Fig. 4(c)], deviations occur between FCS-cutoff
simulations and the reference system. As mentioned, the
SCLJ liquid is strongly correlating in large parts of its phase
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n ¼ 4; 6; 10. The model parameters are given in Appendix A.

TABLE I. The results for five state points of the SCLJ liquid.
For each state point is given density, temperature, correlation
coefficient, maximum deviation from the true RDF using a FCS
cutoff, and maximum deviation from the true ISF using a FCS
cutoff. The deviations clearly increase as the WU correlation
decreases.

System � T R j�RDFjmax j�ISFjmax

SCLJ 0.85 1.00 0.97 1:31� 10�2 5:10� 10�3

SCLJ 0.85 0.70 0.96 1:68� 10�2 8:28� 10�3

SCLJ 0.85 0.65 0.96 1:63� 10�2 8:96� 10�3

SCLJ 0.50 1.50 0.69 11:2� 10�2 7:94� 10�3

SCLJ 0.55 1.13 0.50 15:2� 10�2 12:0� 10�3
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FIG. 4. RDFs for the SCLJ liquid at three different state points:
(a)� ¼ 0:85, T ¼ 0:70 (R ¼ 0:96); (b)� ¼ 0:85, T ¼ 1:00 (R ¼
0:97); (c) � ¼ 0:55, T ¼ 1:13 (R ¼ 0:50). The black curves show
reference simulations with large cutoffs; the red dots and curve
show results from simulations with a FCS cutoff (marked by the
vertical red dashed lines). The insets quantify the deviation in RDF
from the reference RDF as functions of the cutoff. At all three state
points, deviations increase significantly when the cutoff enters the
FCS (blue crosses in the insets). For state points (a) and (b), which
are strongly correlating (R> 0:9), a FCS cutoff leads to accurate
results. This is not the case for state point (c).
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diagram, but as density is lowered, the correlations decrease
gradually and the liquid is no longer strongly correlating at
state point (c), where R ¼ 0:50. These simulations suggest
that only when a liquid is strongly correlating, is it possible
to ignore interactions beyond the FCS.

Next, we investigated the SCLJ dynamics at the same
three state points. The dynamics is studied via the inco-
herent ISF. The ISFs are shown in Fig. 5; at all state points
the dynamics is well represented using a FCS cutoff.

We proceed to investigate mixtures of two different
particles (A and B) interacting with LJ type potentials.

The cutoff used for all three interactions (AA; AB; BB) is
placed at the same distance, referring to �AA. In Fig. 6 the
reference and FCS-cutoff results are shown for the
AA-particle RDFs of generalized KABLJ mixtures with
repulsive exponent 12 and attractive exponents n ¼ 4; 10.
For all investigated state points a FCS cutoff gives accurate
results. We found the same using the standard repulsive
exponent n ¼ 6 (results not shown) [32].
The A-particle ISFs for the state points of Fig. 6 are

shown in Fig. 7. For the KABLJ mixture also, placing the
cutoff inside the FCS (blue curves) fails to reproduce
the dynamics properly, whereas the dynamics is well
approximated using a FCS cutoff (red). Slight deviations
are noted for the red curves, an issue considered in
Appendix B, which discusses alternatives for delimiting
the FCS. Similar results are found for the B particles
(results not shown).
We also simulated the Wahnstrom 50=50 binary LJ

mixture [48], finding again that whenever R> 0:9, the
structure and dynamics are well reproduced using a FCS
cutoff. We do not show these results, but show instead
results for the AA coherent ISF at one state point (Fig. 8).
Again, the FCS cutoff (red crosses) gives the correct
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dynamics, whereas reducing the cutoff further does not
give proper results (blue crosses).

In summary, for all LJ–type systems, whenever there are
strong virial potential-energy correlations (R> 0:9), a FCS
cutoff gives accurate results for both the structure and
dynamics.

C. Buckingham liquid

Next, we consider the single-component Buckingham
liquid (SCB). The Buckingham potential [49,50] is similar
to the LJ potential, but does not have an IPL repulsive term;
instead the potential’s short-distance behavior follows a
steep exponential (Fig. 9). Consequently, the Buckingham
potential does not diverge at r ¼ 0. The parameters of the
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Buckingham potential (Appendix A) were chosen such that
the LJ potential is well approximated in the lower-energy
repulsive part of the potential (Fig. 9).

Figures 10(a) and 10(b) show, respectively, the RDF and
ISF for the SCB liquid. The SCB liquid is strongly corre-
lating [50] and a FCS cutoff works well.

D. Dzugutov liquid

Figure 11 shows the Dzugutov (DZ) pair potential
[51], which was originally suggested as a model potential
for which crystallization is impeded by energetically
punishing particle separations corresponding to the next-
nearest-neighbor distance of crystallographic local order.
At short distances the DZ pair potential approximates the
LJ potential.

Figures 12(a) and 12(b) show, respectively, the RDF
and the coherent ISF of the DZ system. For this system,
the use of a FCS cutoff leads to poor results. This is not

surprising given the fact that using a FCS cutoff removes
the maximum of the DZ potential. What is important
here, however, is that the poor FCS-cutoff results
correlate with the fairly weak virial potential-energy cor-
relations (R ¼ 0:71). This suggests studying other non-
strongly correlating liquids in order to investigate whether
this is a general trend.

E. Lennard-Jones Gaussian liquid

The Lennard-Jones Gaussian (LJG) liquid [52] is a non-
strongly correlating liquid with the two-minimum pair
potential shown in Fig. 13. The parameters of the LJG
model (Appendix A) are such that the LJG potential mini-
mum does not coincide with that of the SCLJ system [53].
Results from the simulating structure and dynamics of

the LJG liquid are shown in Figs. 14(a) and 14(b). The FCS
cutoff does not give the correct RDF. Deviations in the
dynamics are fairly small, likely due to the fact that the
dynamics is fast [compare, e.g., the time scale of the decay
to that of the DZ liquid in Fig. 12(b)].
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F. Gaussian core model

The Gaussian core model (GCM) [54,55], which is
not strongly correlating, is defined by a Gaussian pair
potential and thus has a finite potential energy at zero
separation. The high-density regime of the GCM model
(� > 1:5) has recently received attention as a single-
component model glass former [56], because it is not
prone to crystallization and shows the characteristic fea-
tures of glass-forming liquids (large viscosity, two-step
relaxation, etc.).
Figure 15 shows the RDF and ISF for the GCM liquid.

The GCM crystallizes when a FCS cutoff is used. For this
reason, obviously, a FCS cutoff is not able to reproduce the
structure and dynamics of the reference system. Note,
however, that crystallization does not occur when the cut-
off is chosen in the neighborhood of the FCS cutoff (see the
inset).

G. The Hansen-McDonald molten salt model

The final atomic system we studied is the so-called
singly charged molten salt model proposed by Hansen
and McDonald [57]. In Fig. 16 we see that the structure
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is not represented well by a FCS cutoff. Interestingly, the
dynamics is well reproduced using this cutoff—even bet-
ter, in fact, than for a larger cutoff [Fig. 16(b), green curve].

H. Two strongly correlating molecular
model liquids

We finish the presentation of the numerical results by
giving data for three molecular model liquids. In this
subsection, data are given for two strongly correlating
molecular liquid models, the Lewis-Wahnstrom ortho-
terphenyl (OTP) model [58,59] and the asymmetric dumb-
bell model [19], which represent a molecule by three and
two rigidly bonded LJ spheres, respectively. The next
subsection gives data for a rigid water model.

Figures 17(a) and 17(b) show the LJ particle RDF and
ISF of the OTP model. Both quantities are well approxi-
mated using a FCS cutoff, although slight deviations
are noted for the ISF (red curve, see Appendix B for
considerations concerning this). The OTP model is a bor-
derline strongly correlating liquid (R ¼ 0:91).

Figures 18(a) and 18(b) show corresponding figures
for the large (A) particle of the asymmetric dumbbell
model at a viscous state point. The use of a FCS cutoff
gives accurate results for both the structure and dynamics.
The FCS cutoff was placed at the second minimum of
the AA RDF, because the AA RDF has here a lower value
than at the first minimum. If the cutoff is placed at the
first minimum, clear deviations are found (data not
shown).

I. Rigid SPC/E water model

We consider finally the rigid single-point charge (SPC/
E) water model [60] (Fig. 19). This model is not strongly
correlating at ambient conditions, a fact that directly re-
flects water’s well-known density maximum [18]. The
structure of the SPC/E water model is not well represented
using a FCS cutoff. Interestingly, the FCS-cutoff dynamics
shows only slight deviations from that of the reference
curve (black).
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FIG. 18. The effect on the structure and dynamics of varying
the cutoff for the asymmetric dumbbell model. The red and black
curves give, respectively, results for a FCS cutoff and a large
reference cutoff. Note that in this case the FCS cutoff is defined
by using the second minimum (the first minimum is not the
absolute minimum). (a) RDF at � ¼ 0:93 and T ¼ 0:46 (R ¼
0:96). The inset quantifies the deviation in RDF from the
reference RDF (black curve) as a function of the cutoff.
(b) A-particle incoherent ISF at the same state point. For the
lowest cutoff the system crystallized.
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III. SUMMARIZING THE SIMULATION RESULTS

The previous section showed that the structure and
dynamics are well approximated in simulations using a
FCS cutoff for the following atomic and molecular
systems:

(1) Inverse power-law systems (n ¼ 18; 6; 4),
(2) single-component Lennard-Jones liquid at density

� ¼ 0:85,
(3) generalized Kob-Andersen binary Lennard-Jones

mixtures,
(4) Wahnstrom binary Lennard-Jones mixture,
(5) single-component Buckingham liquid,
(6) Lewis-Wahnstrom OTP model,
(7) asymmetric dumbbell model.

These systems are all strongly correlating [17,18,20,21,24].
Thus, for strongly correlating liquids, it is enough to
know the intermolecular interactions within the FCS
in order to accurately simulate the structure and dynamics.

The simulations showed further that for all of the fol-
lowing atomic and molecular systems, structure and/or
dynamics are not properly reproduced when a FCS cutoff
is used:

(1) single-component Lennard-Jones liquid at density
� ¼ 0:55,

(2) Dzugutov liquid,
(3) Lennard-Jones Gaussian liquid,
(4) Gaussian core model,
(5) Hansen-McDonald molten salt model,
(6) rigid SPC/E water model.

For all these systems, larger cutoffs are needed in order to
faithfully reproduce the system’s physics. None of the
latter liquids are strongly correlating.
In conclusion, a shifted-forces FCS cutoff leads to ac-

curate results if and only if the liquid is strongly correlating
at the state point in question. We know of no exceptions to
this empirical rule. This suggests that strongly correlating
liquids are characterized by the property that intermolecu-
lar interactions beyond the FCS can be safely ignored.

IV. THE REAL ESSENCE OF
SIMPLICITY OF LIQUIDS

As discussed in the Introduction, a definition of simple
liquids is most useful if it identifies their real essence in
Locke’s understanding of the term [3], the underlying
fundamental characteristic from which these liquids’ sim-
ple features, their nominal essences, follow. We suggest
below that the class of simple liquids is to be identified
with the class of strongly correlating liquids (Sec. IVC).
This is motivated by first summarizing the many simple
properties of strongly correlating liquids (Sec. IVA), then
showing that this class of liquids can be characterized from
three different perspectives: mathematically, physically,
and chemically (Sec. IVB). This gives three very different
characterizations, indicating that the class of strongly cor-
relating liquids is fundamental, and further motivating the
suggestion that the real essence of liquid simplicity is the
existence of strong correlations of virial potential-energy
equilibrium NVT fluctuations. By connecting to the chem-
ists’ concept of nonassociated liquids, we then discuss
which real-world liquids are simple (Sec. IVD), liquids
near interfaces (Sec. IVE), and give examples of complex
liquid properties (Sec. IV F). Finally, Sec. IVG points out
that our results call into question the physical basis of
traditional perturbation theory, which assumes quite differ-
ent roles of the attractive and the repulsive forces; this
distinction is not deep and fundamental for simple liquids.

A. Strongly correlating liquids and their properties

The simple properties of strongly correlating liquids
follow from the existence of ‘‘isomorphs’’ in their phase
diagram (see below). Some simple properties were identi-
fied before isomorphs were defined in 2009 [21], however,
for instance that
(1) all eight fundamental thermoviscoelastic response

functions are given in terms of just one, i.e., the
dynamic Prigogine-Defay ratio is close to unity [16],
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FIG. 19. The effect on the structure and dynamics of varying
the cutoff for the rigid SPC/E water model [60]. The red and
black curves give, respectively, results for a FCS cutoff and a
large reference cutoff. (a) Oxygen-oxygen RDF at � ¼ 1:00 and
T ¼ 4:00 (R ¼ 0:08). The inset quantifies the deviation in RDF
from the reference RDF as a function of the cutoff. (b) Oxygen
incoherent ISF at the same state point.
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(2) aging may be described in terms of merely one extra
parameter [18,20],

(3) power-law density scaling [61] is obeyed to a
good approximation; i.e., for varying density and
temperature, the relaxation time is a function of
��=T [19].

An isomorph is an equivalence class of state points in the
phase diagram. Two state points (�1; T1) and (�2; T2) are
defined to be isomorphic [21] if the following holds:
Whenever one microconfiguration of state point (1) and
one of state point (2) have the same reduced coordinates

[i.e., �1=3
1 rð1Þi ¼ �1=3

2 rð2Þi for all particles i], these two mi-
croconfigurations have proportional configurational
Boltzmann factors,

e�Uðrð1Þ
1
;...;rð1ÞN Þ=kBT1 ¼ C12e

�Uðrð2Þ
1
;...;rð2ÞN Þ=kBT2 : (5)

For most systems, the isomorph concept is approximate
just as WU correlations are rarely perfect. Thus, we do
not require Eq. (5) to be rigorously obeyed for all micro-
configurations, but only to a good approximation for all
physically relevant microconfigurations. By this we mean
microconfigurations that are not a priori unimportant for
the physics. An isomorph defines a continuous curve of
state points in the liquid’s phase diagram.

Appendix A of Ref. [21] showed that a liquid is strongly
correlating if and only if it has isomorphs to a good
approximation. This was confirmed in Refs. [21,24], which
showed that Lennard-Jones–type atomic liquids have good
isomorphs. Likewise, Ref. [62] recently showed that the
strongly correlating Lewis-Wahnstrom OTP and asymmet-
ric dumbbell models have good isomorphs.

Equation (5) has many consequences. These were derived
and discussed in detail in the original isomorph paper from
2009 (Ref. [21]), to which the reader is referred. Basically,
the structure and dynamics at two isomorphic state points
are identical in reduced units. Quantities that are invariant
along an isomorph include (but are not limited to)

(1) The excess entropy, i.e., the entropy in excess of the
ideal-gas entropy at the same density and tempera-
ture—this is the configurational contribution to the
entropy (a quantity that is negative because a liquid
is always more ordered than an ideal gas at same
density and temperature).

(2) All N-body entropy terms. Recall that the excess
entropy can be expanded in a series of two-body,
three-body, etc., terms; each term is invariant along
an isomorph [21].

(3) The isochoric heat capacity.

(4) The structure in reduced units (defined by ~ri �
�1=3ri for all particles i). Not only the radial distri-
bution function, but all higher-order distribution
functions are isomorph invariant in reduced units.

(5) The Newtonian NVE and Nosé-Hoover NVT equa-
tions of motion in reduced units; likewise Brownian
dynamics.

(6) All autocorrelation functions in reduced units.
(7) All average relaxation times in reduced units.
(8) Reduced transport coefficients such as the diffusion

coefficient, viscosity, etc.
Isomorphs have the further interesting property that

there is no relaxation for an instantaneous change of
temperature and density when jumping from an equili-
brated state point to a different state point isomorphic
with the initial state. The absence of relaxation derives
from the fact that the Boltzmann probabilities of scaled
microconfigurations are identical. Such ‘‘isomorph
jumps’’ have been shown to work very well for the
KABLJ liquid [21], for the asymmetric dumbbell and
for the Lewis-Wahnstrom OTP molecular models [62].
Moreover, the effective temperature of a glass prepared
by a temperature-density jump from an equilibrium state
of a strongly correlating liquid depends only on the final
density [22]; this provides yet another example of a
simple feature of these liquids.
Some further predictions for the class of strongly

correlating liquids deriving from the existence of iso-
morphs are
(1) The solid-liquid coexistence curve is an isomorph

[21,24]. This implies invariance along the coexis-
tence curve of the reduced structure factor, the
reduced viscosity, the reduced diffusion constant,
etc., as well as pressure invariance of the melting
entropy and the reduced-unit Lindemann melting
criterion [21].

(2) Collapse of the two-order-parameter maps of
Debenedetti et al. [63–67] to one-dimensional
curves [21].

(3) Isochronal superposition [68], i.e., the fact that
when pressure and temperature are varied, the aver-
age relaxation time determines the entire relaxation
spectrum [21].

The above listed properties of strongly correlating
liquids all reflect one or the other kind of simplicity of
strongly correlating liquids. A final, recently established
simple property is a thermodynamic separation identity:
For all strongly correlating liquids, if s is the excess
entropy per particle, the temperature as a function of s
and density � factorizes as follows [69]:

T ¼ fðsÞhð�Þ: (6)

Equation (6) has a number of consequences [69],
for instance, the configurational Gruneisen equation of
state and that the isomorphs of LJ liquids—in particular,
the LJ solid-liquid coexistence curve—are given by
ðA�4 � B�2Þ=T ¼ const [70,71].

B. Mathematical, physical, and chemical
characterization of strongly correlating liquids

At a given state point, if the average potential energy
is denoted by hUi, the constant-potential-energy
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hypersurface is defined by � ¼ fðr1; . . . ; rNÞ 2
R3NjUðr1; . . . ; rNÞ ¼ hUig. This is a compact,
Riemannian ð3N � 1Þ-dimensional differentiable mani-
fold. Each state point has its own such hypersurface.
In this way, a family of high-dimensional manifolds is
defined throughout the phase diagram. In Appendix A of
Ref. [21] it was shown that the reduced-unit constant-
potential-energy manifold is invariant along a strongly
correlating liquid’s isomorphs, and that, conversely, in-
variance curves exist for these manifolds only for
strongly correlating liquids. Thus, for such liquids, these
manifolds constitute a one-parameter family of mani-
folds, not two-parameter families as expected from the
fact that the phase diagram is two-dimensional. This
provides a mathematical characterization of the class of
strongly correlating liquids.

The physical characterization of this class was discussed
already: A liquid is strongly correlating if and only if it has
isomorphs to a good approximation; this is shown in
Appendix A of Ref. [21]. The proof utilizes that a liquid
is strongly correlating if and only if its constant-virial
hypersurfaces in the 3N-dimensional configuration space
are (almost) identical to its constant-potential-energy
hypersurfaces.

The chemical characterization of strongly correlating
liquids is the property documented in the present paper:
A liquid is strongly correlating at a given state point if and
only if the liquid’s structure and dynamics are accurately
calculated by simulations that ignore interactions beyond
the first coordination shell. This is an empirical finding for
which we have, at present, no compelling argument. How
can one justify this FCS characterization of strongly cor-
relating liquids? Note first that the property of insignifi-
cance of interactions beyond the FCS is an isomorph
invariant: If a liquid has good isomorphs and if a FCS
cutoff works well at one state point, FCS cutoffs must work
well for all its isomorphic state points. Thus, the chemical
characterization of strongly correlating liquids is consis-
tent with the fact that these liquids have isomorphs. Note
further that it has been shown for the Lennard-Jones liquid
that almost all of the fluctuations in virial and potential
energy come from interparticle separations within the FCS
[18]. Finally, we give an nonrigorous argument that a SF
cutoff works well for any strongly correlating liquid:
Consider an atomic liquid with pair interaction vðrÞ that
is strongly correlating at the state point in question. Since
virial and potential-energy fluctuations correlate, one can
replace vðrÞ by �rv0ðrÞ where � is some constant. Thus the
radial force fðrÞ ¼ �v0ðrÞ can be replaced by
��½rv0ðrÞ�0 ¼ �½fðrÞ þ rf0ðrÞ�. This implies for some
constant � that fðrÞ ��rf0ðrÞ where � indicates equiva-
lence in MD simulations. Assuming the SF cutoff system is
likewise strongly correlating, we get fSFðrÞ ��rf0SFðrÞ.
Since f0ðrÞ ¼ f0SFðrÞ, one concludes that

fðrÞ � fSFðrÞ.

Most likely it is the existence of a well-defined
FCS that implies the almost cancellation of the linear term
of the shifted-force potential. The fact that interactions
beyond the FCS may be ignored shows that interactions
are effectively short ranged, which means that the structure
is dominated by what may be termed packing effects.

C. Defining the class of simple liquids

Section IVA listed several simple properties of strongly
correlating liquids. Section IVB showed that this liquid
class may be characterized from three quite different per-
spectives. It appears that the class of strongly correlating
liquids is fundamental. Since the properties of strongly
correlating liquids are generally simpler than those of
liquids in general, we now propose the following defini-
tion: Simple liquid=strongly correlating liquid. This is the
basic message of the present paper, which implies a quan-
tification of the degree of simplicity via the number R of
Eq. (2), the NVT ensemble equilibrium virial potential-
energy correlation coefficient.
Compared to the standard definition of simple liquids as

those with radially symmetric pair interactions, there are
some notable differences:
(1) Simplicity is quantified by a continuous variable, it

is not an on/off property.
(2) The degree of simplicity generally varies throughout

the phase diagram. Consequently, simplicity is not
merely encoded in a liquid’s intermolecular inter-
actions. In fact, most strongly correlating liquids
lose this property as density is lowered and the gas
phase is approached.

(3) Not all ‘‘atomic’’ liquids (i.e., with radially sym-
metric pair interactions) have simple regions in the
low-pressure part of the phase diagram (compare the
Dzugutov, Lennard-Jones Gaussian, Gaussian core,
and molten salt models);

(4) Not all simple liquids are atomic (compare the
Wahnstrom OTP and the asymmetric dumbbell
models).

According to the new definition of liquid simplicity, the
case where the potential energy is an Euler homogeneous
function of the particle positions (R ¼ 1) sets the gold
standard for simplicity. This is consistent with the many
simple properties of these liquids. Usually one has in mind
IPL systems with pair interactions that scale with the dis-
tance as r�n. However, R ¼ 1 systems as mentioned also
include some with angular dependencies in the potential
energy, as long as these scale with distance the sameway as
all other interactions. Because of the absence of attractions,
IPL fluids have no liquid-gas phase transition. In this sense
it may seem strange to claim that IPL fluids are the simplest
liquids. However, more realistic strongly correlating liquids
like the LJ liquid cease to be so when the liquid-vapor
coexistence line is approached, showing that this phase
transition cannot be understood in the framework of simple
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liquids. This contrasts with the liquid-solid phase transition,
where, for instance, the fact that the coexistence line for
simple liquids is an isomorph—confirmed for the LJ liquid
[24]—explains several previously noted regularities [21].

Is the hard-sphere fluid simple? One may define a con-
figurational virial function for this system, but it is not
obvious how to define a potential-energy function that is
different from zero. Thus, there is no meaningful correla-
tion coefficient R for hard-sphere fluids. On the other hand,
the hard-sphere liquid may be regarded as the n ! 1 limit
of an IPL liquid, and it is well known that, for instance, the
hard-sphere radial distribution function is close to that of,
e.g., an r�20 IPL liquid at a suitably chosen temperature.
This would indicate that hard-sphere liquids are simple,
which is consistent with the prevailing point of view.
Another interesting case is that of the WCA version of
the LJ liquid, which cuts off all attractions by putting the
force equal to zero beyond the potential-energy minimum.
This liquid is strongly correlating [72]. Despite this, we
found in simulations that the WCALJ liquid has somewhat
poorer isomorphs than the LJ liquid.

It is possible that the hard-sphere liquid and the WCALJ
liquid should be both excluded from the class of simple
liquids on the grounds that their potentials are not analytic.
For systems interacting via pair potentials, it could make
good sense to add the extra requirement that the pair
potential is an analytical function of the inverse pair dis-
tance, i.e., that an expansion exists of the form vðrÞ ¼P

nvnr
�n. Such an extra analyticity requirement would

not exclude any strongly correlating liquids occurring in
nature where all potentials are expected to be analytic.

D. Which liquids in the real world are simple?

Real-world liquids may be classified according to the
nature of the chemical bonds between the molecules. There
are five types of bonds [73], which are listed below with a
few typical examples (polymeric systems may be added as
a separate class):

(1) Van der Waals bonds (e.g., argon, toluene, butane,
etc.);

(2) Metallic bonds (e.g., gold, aluminum, alloys, etc.);
(3) Hydrogen bonds (e.g., water, glycerol, ethanol,

etc.);
(4) Ionic bonds (e.g., molten sodium chloride, molten

potassium nitrate, room-temperature ionic liquids,
etc.);

(5) Covalent bonds (e.g., silica and borate melts, etc.).

Most liquids involve elements of more than one type of
chemical bond. For instance, van der Waals forces are
present in all liquids; the first class consists merely of those
liquids that only have van der Waals forces. Another bor-
derline example is a dipolar organic liquid like di-butyl-
phthalate, where van der Waals as well as Coulomb forces
are present; the hydrogen-bonded liquid glycerol also has

strong dipolar interactions, i.e., an element of the ionic
bonds, etc.
Based on computer simulations and known properties of

liquids, we believe that most or all van der Waals and
metallic liquids are strongly correlating [14,16,18], i.e.,
simple. Liquids that are not simple are the hydrogen, ioni-
cally, and covalently bonding liquids. In these cases, the
virial potential-energy correlations are weakened by the
existence of competing interactions, either with different r
dependences (the ionically bonding liquids) or because
angular and radial forces have different r scaling
(the hydrogen and covalently bonded liquids).
Metals play a special role as simple liquids, because

their interatomic forces derive from collective interactions
between ion cores and free electrons [8]. The resulting
interaction is a nondirectional interaction between sym-
metric ion cores, i.e., these systems are simple in the
traditional sense. Preliminary computer simulations show
that metals are strongly correlating [17], so metals are also
simple in the sense of the present paper. However, not all
isomorph invariants are expected to apply for metals. For
instance, the electron gas can influence the collective
dynamics without any structural and relaxational counter-
part [74,75], so isomorph invariance most likely breaks
down for these (fast) collective degrees of freedom.
It should be emphasized that the above considerations

refer to ambient or moderate pressure conditions. It was
recently suggested that all liquids become strongly corre-
lating at high pressure [76]. Thus, e.g., the molten silicates
of the Earth’s upper mantle are predicted to be simpler than
molten silicates at ambient pressure.

E. Liquids near interfaces

It is interesting to consider liquids under more general
circumstances, for instance under confinement or generally
near interfaces. Liquids near interfaces show rich and
complicated behavior. For instance, a liquid confined to
the nanoscale may change its dynamic properties several
orders of magnitude compared to the bulk system.
Predicting these changes is an important challenge relevant
for biological systems, engineered devices, etc. Recently, it
was shown that some liquids retain bulk liquid behavior in
confinement [77–80]. More specifically, it was shown that
Rosenfeld’s excess entropy scaling in the bulk persists in
confinement and is, to a good approximation, independent
of the wall-fluid interaction strength. This was shown for
LJ and hard-sphere liquids, suggesting the possibility of
extending the concept of a simple liquid beyond bulk
systems. More work is needed, however, to clarify the
relevance and consequences of the present definition of
liquid simplicity near interfaces [81,82].

F. A note on complex liquid behavior

Here we give a brief example showing that liquids,
which are not simple in the above defined sense, often
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have complex properties [65,83–86]. Water with its corre-
lation coefficient close to zero at ambient conditions is a
prime example of a complex liquid. It is well known for
water that a certain region of state points in the density-
temperature phase diagram exhibits anomalous thermody-
namic behavior in the sense that isobaric heating implies
densification. Numerical evidence indicates that these state
points lie within a larger region with a diffusion anomaly,
i.e., an increased diffusivity upon isothermal compression
[65], a region that, in turn, lies within a larger region of a
structural anomaly characterized by decreasing order upon
isothermal compression [65].

Different order parameters exist for characterizing the
structural order of liquids, some of which relate purely to
an integral over the RDF [83–85]. In this way, it is possible
to calculate the contribution to structural anomalies from
the different coordination shells [83–85]. It has been shown
[84,85] that the structural anomaly of water and waterlike
liquids is not a ‘‘first-shell effect. Rather, they reflect how
structuring in second and more distant coordination shells
responds to changes in thermodynamic or system parame-
ters’’ [84,85]. Thus, the anomalous behavior of water
derives from interactions beyond the FCS [83,85]. This is
consistent with the results presented in this paper—water is
not simple—since the structure and dynamics of strongly
correlating liquids are given exclusively by the interactions
within the FCS.

G. To which extent do the assumptions
of standard pertubation theory hold?

The finding that the FCS plays a crucial role for a
large class of systems may be taken as a modern dem-
onstration of the classic van der Waals picture of liquids,
in the sense that such liquids can be understood in terms
of packing effects [87]. On the other hand, our results
call into question the basis of traditional perturbation
theory, which is conceptually also usually traced back
to van der Waals [88]. Perturbation theory is based on
the assumption of entirely different roles being played by
the repulsive and the attractive forces [7,30,81,87–90]:
The repulsive forces largely determine the structure and
reduce the entropy compared to that of an ideal gas at
same density and temperature; the attractive forces re-
duce the pressure and energy compared to that of an
ideal gas. From the findings of this and a previous paper
[32] it is clear, however, that this picture applies only at
such low pressures that the FCS coincides with the
region around the pair-potential minimum. At high pres-
sure, the entire FCS is within the range of the repulsive
forces; here, the attractive forces play little role for
simple liquids. In general, what is important for a
strongly correlating liquid is to take into account prop-
erly all forces from particles within the FCS—and only
these. Thus, the well-known WCA reference system,
which ignores the attractions, is a good reference only

at such high pressure that all forces from particles within
the FCS are repulsive [26,27,32].
The dominance of the FCS for simple liquids reflects the

fundamental physics that the characteristic length defining
the pair-potential minimum (e.g., � of the LJ potential) is
much less important than generally believed: � determines
the density of the low-pressure-condensed phase, but for
simple liquids that is all. The physically relevant length for
these liquids is the one given by the macroscopic density:

��1=3. At low pressure, this length is roughly that of the
potential-energy minimum, thus explaining why the latter
has been generally assumed to be important.
The above considerations apply only for simple liquids;

in general, both lengths play important roles for the phys-
ics. The irrelevance of any length defined by the micro-
scopic potential emphasizes that the class of strongly
correlating liquids is at the one end of the ‘‘complexity
scale’’ where, at the other end, one finds systems like
macromolecules, electrolytes, interfaces, micelles, or en-
zymes, for which multiple length scales are important [91].

V. CONCLUDING REMARKS

If you ask a chemist what is a simple liquid, he or she
may likely answer that nonassociated liquids are simple,
whereas associated liquids are generally much more com-
plex. These two concepts are defined as follows in
Chandler’s textbook [13]. The intermolecular structure of
a nonassociated liquid ‘‘can be understood in terms of
packing. There are no highly specific interactions in these
systems.’’ In contrast, water is an example of an associated
liquid, and its ‘‘linear hydrogen bonding tends to produce a
local tetrahedral ordering that is distinct from what would
be predicted by only considering the size and shape of the
molecule’’ [13].
Packing usually refers to purely entropic, hard-sphere-

like behavior. Given that no realistic potentials are infi-
nitely repulsive, it makes good sense to interpret packing
more generally as all short-ranged effects of the intermo-
lecular interactions. If one accepts this interpretation, the
crucial role of the FCS for strongly correlating liquids is
consistent with the understanding that the properties of
nonassociated liquids can be interpreted in terms of pack-
ing: Once the forces from particles within the FCS are
known, basically everything is known.
In other words, for a simple liquid there are no important

long-range interactions, and ‘‘considering the size and
shape of the molecule’’ [13] is enough to account for the
liquid’s physical properties. This applies even for the r�4

IPL fluid, which one would a priori regard as systems with
fairly long-ranged interactions.
The present definition of the class of simple liquids is

thus consistent with the chemists’ general picture of simple
liquids. The new definition goes further, however, by
quantifying simplicity via the virial potential-energy cor-
relation coefficient R of Eq. (2). In particular, simplicity is
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not an on/off property of the potential, but varies continu-
ously with the state point. Thus, even a complex liquid like
water is expected to approach simple behavior under suffi-
ciently high pressure [76] and, conversely, the prototype
strongly correlating LJ liquid becomes gradually more
complex as density is lowered and the critical region and
the gas phase are approached. Is this a problem, given that
everyone agrees that the gas phase is simple? We do not
think so. In fact, the gas phase is simple for an entirely
different reason, namely, that molecules move freely most
of the time, only interrupted by occasional fast and violent
collisions with other molecules. It would be strange if a
system exhibiting one form of simplicity could be trans-
formed continuously in the phase diagram, maintaining its
simplicity, into a system of an entirely different form of
simplicity; one would expect the intermediate phase to be
complex.

Liquid simplicity is characterized by the correlation
coefficient R of Eq. (2) being close to unity, i.e., that
1� R is a small number. This situation is typical in phys-
ics, where simplifying features always appear when some
dimensionless number is small. The obvious question
arises whether a statistical-mechanical perturbation theory
may be constructed around simple liquids, embracing the
more complex ones. Only time will tell whether this is
possible, but it presents a challenge because the properties
of IPL fluids (R ¼ 1) cannot be worked out analytically.

A potentially annoying feature of defining liquid sim-
plicity from the existence of strong correlations of the
virial potential-energy fluctuations is that one cannot
determine whether or not a given liquid is simple di-
rectly from the potential. We believe one should accept
this as an acceptable cost for precisely defining the class
of simple liquids. With the power of today’s computers,
this is much less of a problem than previously. For most
systems, a brief simulation will determine whether or not
the liquid is strongly correlating at the state point in
question. Nevertheless, it would be nice to have an
analytical criterion for liquid simplicity, i.e., for estimat-
ing whether R> 0:9.

Except for IPL fluids, no system is simple in the entire
fluid phase. This paper focused on the condensed liquid
phase, not too far from the solid-liquid-coexistence line,
but far from the critical point and the gas phase—it is here
that some liquids are simple. The present focus on liquids
is not meant to imply a limitation to the liquid phase,
however. Simulations show that when a strongly correlat-
ing liquid crystallizes, the crystal is at least as strongly
correlating [18]. A theory has been developed for (classi-
cal) strongly correlating crystals, showing that the property
of strong virial potential-energy equilibrium fluctuations in
the NVT ensemble is an anharmonic effect that survives as
T ! 0 [18]. Of course, low-temperature crystals are not
classical systems, and for both liquids and crystals an

interesting topic for future work is the implication of the
proposed simplicity definition for the quantum description.
Section IVA summarized the several nominal essences

of simple liquids. What is the real essence of liquid
simplicity? Given that three fundamental characterizations
of strongly correlating liquids are equivalent—the
mathematical, the physical, and the new chemical (FCS)
characterizations—this question cannot be answered
unequivocally. At the end of the day, it is a matter of taste
whether one defines liquid simplicity from the existence of
strong virial potential-energy correlations, from the exis-
tence of isomorphs, from the existence of invariance curves
in the phase diagram of constant-potential-energy hyper-
surfaces, or from the property that interactions beyond the
FCS play little role.
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APPENDIX A: MODEL DETAILS

The model systems investigated are listed below.
Quantities are given in rationalized units defined by putting
� ¼ � ¼ 1. Masses that are not specified are unity.
Single-component inverse-power-law (IPL) fluids.—

N ¼ 1024 particles interacting via vðrÞ ¼ �ð�=rÞn.
Three different fluids were studied (n ¼ 18; 6; 4).
Single-component Lennard-Jones liquid.—N ¼ 1024

particles interacting via Eq. (4).
Generalized Kob-Andersen binary mixture [28,29].—A

binary mixture of 820 A particles and 204 B particles
interacting via vðrÞ ¼ ���=ð12� nÞ½nð���=rÞ12 �
12ð���=rÞn�. Binary mixtures with n ¼ 4; 10 were

studied. The parameters used are �AA ¼ 1, �AB ¼ 1:5,

�BB ¼ 0:5,�AA¼21=6,�AB ¼ 0:8 � 21=6,�BB¼0:88 �21=6.
Wahnstrom binary LJ mixture.—An equimolar binary

mixture of A and B particles (N ¼ 1024) interacting via
the LJ potential. The parameters are �AA ¼ �AB ¼ �BB ¼
1, �AA ¼ 1, �BB ¼ 1=1:2, �AB ¼ ð�AA þ �BBÞ=2, mA ¼
2, mB ¼ 1.
Buckingham liquid.—N ¼ 1000 particles interacting

via vðrÞ ¼ �f6=ð�� 6Þexp½�ð1� r=rmÞ� ��=ð�� 6Þ�
ðrm=rÞ6g. The parameters used are � ¼ 1, � ¼ 14:5,

rm ¼ 21=6.
Dzugutov liquid [51].—N ¼ 1024 particles interacting

via vðrÞ ¼ v1 þ v2 where v1¼fAðr�n�BÞexp½c=ðr�aÞ�g
and v2 ¼ B exp½d=ðr� bÞ� and r � a ) v1 ¼ 0, r �
b ) v2 ¼ 0 (a < b). The parameters used are a ¼ 1:87,
b ¼ 1:94, c ¼ 1:1, d ¼ 0:27, A ¼ 5:82, B ¼ 1:28,
n ¼ 16.
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Lennard-Jones Gaussian liquid [52].—N ¼ 1024
particles interacting via vðrÞ ¼ �fð�=rÞ12 � 2ð�=rÞ6 �
�0 exp½�ðr� r0Þ2=2�2

0�g. The parameters used are �2
0 ¼

0:02, �0 ¼ 1:50, r0 ¼ 1:47.
Gaussian core model [52].—N ¼ 1024 particles inter-

acting via vðrÞ ¼ � exp½�ðr=�Þ2�.
The Hansen-McDonald molten salt model [57].—N ¼

2744 particles forming an equimolar binary mixture of
singly charged cations and anions. The potential between
two particles of charge q� and q� is given by vðrÞ ¼
ð1=9Þr�9 þ q�q�=r, where qþ ¼ 1, q� ¼ �1.

Lewis-Wahnstrom OTP [58,59].—The Lewis-
Wahnstrom OTP model consists of three identical LJ par-
ticles rigidly bonded in an isosceles triangle with unity
sides and a top angle of 75	 (number of molecules studied:
N ¼ 320).

The asymmetric dumbbell model [19].—This molecular
model consists of a large (A) and a small (B) LJ particle,
rigidly bonded with a bond distance of 0:29=0:4963
(number of molecules studied: 500). This model has
�BB ¼ 0:391=0:4963, �BB ¼ 0:669 44=5:726, and mB ¼
15:035=77:106. The AB interaction between different
molecules is determined by the Lorentz-Berthelot mixing
rule.

Rigid SPC/E water [60].—This water model is an isos-
celes triangle with sides 1=3:166 and base line 0.52 (num-
ber of molecules studied: 1000). The oxygen-oxygen
intermolecular interactions are given by the LJ pair poten-
tial (�OO ¼ 1, �OO ¼ 1, and mO ¼ 16). There are no
intermolecular LJ interactions for H-H or H-O. The three
particles are charged with qO ¼ �22:0 and qH ¼ 11:0.

APPENDIX B: HOW TO DELIMIT THE FIRST
COORDINATION SHELL?

In all simulations, the FCS cutoff was defined by placing
the cutoff at the first minimum of the RDF, which is the
standard definition of the FCS for liquids [13]. An alter-
native definition goes back to van der Waals [87]. The FCS
is here identified with a sphere of radius determined by
requiring that the average density �integrated within the FCS

equals the overall average density �mean. For the single-
component LJ liquid, this leads to virtually the same
FCS [31]. Some change occurs for the standard KABLJ
mixture, however. This is clear from Fig. 20 in which
the integrated local density of A particles calculated from
the RDF (including the particle at the center) is shown as a
function of the distance to the origin. The van der Waals
distance is slightly larger than the first minimum of the
RDF.

We applied this alternative definition of a FCS cutoff in
Fig. 21, which shows the A-particle ISF for the (12, 6)-
KABLJ mixture of Fig. 20 simulated with, respectively,
a cutoff at the first minimum of the RDF [Fig. 21(a)]
and a van der Waals cutoff [Fig. 21(b)]. Although the
difference is merely 0.05, the van der Waals cutoff approx-
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FIG. 20. Integrated local density �integrated of the A particles
of the standard KABLJ mixture plotted as a function of
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The dashed black line gives the distance of the minimum of
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FIG. 21. Effect on the A-particle incoherent ISF for the stan-
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(a) FCS identified from the minimum beyond the first peak of the
AA-particle RDF. (b) FCS identified by the van der Waals
distance, i.e., the distance at which the integrated local density
equals the mean density of the system. The van der Waals
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as defining the FCS-cutoff radius gives a better representation of
the dynamics.

WHAT IS A SIMPLE LIQUID? PHYS. REV. X 2, 011011 (2012)

011011-17



imates the reference ISF better than does the RDF mini-
mum cutoff. Thus, it is possible that the van der Waals
distance may serve as a better definition of the FCS than
the standard FCS definition.

Identifying the exact size of the FCS for molecular
systems is less straightforward, especially when different
intermolecular interactions are involved. It is noteworthy
how well the simple cutoff scheme in Fig. 18 represents the
dynamics of the asymmetric dumbbell model. The slight
deviations observed for the OTP model [Fig. 17(b)] dis-
appear when the cutoff is increased from rc ¼ 1:47 to rc ¼
1:56 (Fig. 22). This distance is close, but not identical, to
the van der Waals distance calculated from the particle
RDF (approximately 1.53). More work is needed to clarify
the best way to delimit the FCS and define the FCS
cutoff.
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