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We study a carbon-nanotube quantum dot embedded in a superconducting-quantum-interference-device

loop in order to investigate the competition of strong electron correlations with a proximity

effect. Depending on whether local pairing or local magnetism prevails, a superconducting quantum

dot will exhibit a positive or a negative supercurrent, referred to as a 0 or � Josephson junction,

respectively. In the regime of a strong Coulomb blockade, the 0-to-� transition is typically controlled by a

change in the discrete charge state of the dot, from even to odd. In contrast, at a larger tunneling

amplitude, the Kondo effect develops for an odd-charge (magnetic) dot in the normal state, and quenches

magnetism. In this situation, we find that a first-order 0-to-� quantum phase transition can be triggered at

a fixed valence when superconductivity is brought in, due to the competition of the superconducting gap

and the Kondo temperature. The superconducting-quantum-interference-device geometry together with

the tunability of our device allows the exploration of the associated phase diagram predicted by recent

theories. We also report on the observation of anharmonic behavior of the current-phase relation in the

transition regime, which we associate with the two accessible superconducting states. Our results finally

demonstrate that the spin-singlet nature of the Kondo state helps to enhance the stability of the 0 phase far

from the mixed-valence regime in odd-charge superconducting quantum dots.
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I. INTRODUCTION

Realizing a Josephson junction with a carbon nanotube
as a weak link opened up the way to a new class of nano-
electronic devices that combine both quantum confinement
at the nanoscale and the Josephson effect [1–16]. In such a
junction, a simplified view would predict a maximum
critical current when a discrete electronic level of the
quantum dot comes into resonance with the Cooper con-
densate of the electrodes, thus allowing an electrostatic
tuning of the critical current magnitude determined by the
quantum-level position [17]. The Josephson effect in a
quantum dot is more complex, however, because it is
governed by the interplay of electronic pairing and strong
Coulomb interaction on the dot [18–28]. When supercon-
ductivity dominates, the superconductor wave function
spreads over the dot, inducing a BCS-singlet ground state,
i.e., a standard Josephson junction (dubbed the 0 state in
what follows) [17]. In the other extreme regime of large
electron-electron interactions, the quantum dot enters the
Coulomb-blockade domain, and its charge is locked to
integer values, altering the superconducting state. For an
odd occupancy, the quantum dot behaves like a spin
S ¼ 1=2 magnetic impurity that competes with

Cooper-pair formation, and the ground state can become
a magnetic doublet. In this situation, dissipationless current
mainly transits through a process involving four tunneling
events that reorders the spins of Cooper pairs, thus leading
to a negative sign of the supercurrent, which is referred to
as the�-type Josephson junction [3,4,29]. The antagonist 0
and � superconducting states, associated with a sharp sign
reversal of the dissipationless current at zero temperature,
can hence allow a first-order quantum phase through tuning
of the microscopic parameters in the quantum dot. In the
case of a very strong Coulomb blockade, the 0-� transition
is achieved by modifying the parity of the electronic charge
on the dot (the valence is easily changed using electrostatic
gates), so that the supercurrent sign reversal occurs at the
edges of the Coulomb diamonds. A more intriguing regime
occurs for intermediate Coulomb repulsion (associated
with moderately small values of the tunneling amplitude
compared to the charging energy), in which Kondo corre-
lations take place: In the normal state, the magnetic impu-
rity of the odd-charge state is screened through spin-flip
cotunneling processes [30], providing a nonzero density of
states at the Fermi energy. This so-called Kondo resonance
allows the Cooper pairs to flow normally in the super-
conducting state, and a 0-type Josephson junction is there-
fore recovered [15,16,19,23,24]. Here, we explore in detail
how superconducting transport is affected by the presence
of Kondo behavior, and we finely tune the 0-� quantum
phase transition in this intermediate Coulomb-repulsion
regime by controlling the microscopic parameters of the
quantum dot.
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II. CHARACTERIZATION OF THE NANO-SQUID

A. Sample fabrication

In this section, we investigate supercurrent reversal
in a carbon-nanotube Josephson junction using the
nano-superconducting-quantum-interference-device (nano-
SQUID) geometry, which implements two Josephson junc-
tions in parallel built with a single carbon nanotube [4]. The
single-wall carbon nanotubes are obtained using laser abla-
tion and then dispersed in a pure dichloroethane solution
using low-power ultrasounds. A degenerately phosphorus-
doped silicon wafer with a 450-nm layer of SiO2 on top is
used as a backgate. The first optical-lithography step pro-
vides alignment marks which are then used to locate the
nanotubes by scanning electron microscopy. The supercon-
ducting loops and the sidegates are fabricated using aligned
e-beam lithography, which is followed by e-beam evapora-
tion of the Pd-Al bilayer (with respective thicknesses of
4 nm and 50 nm). All measurements are performed in a
dilution refrigerator with a base temperature of T ¼
35 mK, and the filtering stages are similar to the ones
performed in Ref. [4]. Samples are current-biased for both
DC and lock-in measurements (with an AC amplitude of
10 pA), so that the switching current or the differential
resistance of the device can be measured directly. The
nano-SQUID switching currents Isw are detected via a digi-
tal filter that monitors the estimated variance of the average
DC voltage. (See Appendix C 1 and Ref. [31].)

Figure 1(a) shows a scanning electron micrograph of the
measured nano-SQUID with two 350-nm-long nanotube
Josephson junctions (JJ1 and JJ2). Using the second quan-
tum dot as a tunable reference junction, we gain a precise
control over the energy �0 and linewidth � of the first
quantum dot by tuning a pair of local sidegates and
a backgate (VSG1, VSG2, VBG, respectively); see the
discussion in Secs. II B and II C. Such a geometry allows

us to directly measure the Josephson current of a single
junction via the magnetic-field modulation of the SQUID
switching current Isw; see Ref. [4]. Indeed, the critical
current of an asymmetric SQUID with a sinusoidal
current-phase relation (taken here for simplicity) can be
written as

Ic ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where � is the flux modulation of the SQUID, �0 ¼ h=2e
is the magnetic-flux quantum, �1; �2 are the intrinsic phase
shifts (0 or �) of the two Josephson junctions, and Ic1; Ic2
are the respective critical currents of the junctions.
The critical-current modulation is thus shifted by �0=2
between the 0-0 and the �-0 SQUID configurations.

B. Normal-state transport properties

Figure 1(b) presents the nano-SQUID stability diagram,
where dI=dVsd at zero bias plotted as a function of VSG1

and VSG2 in the normal state (a perpendicular magnetic
field of B ¼ 75 mT is applied to suppress superconductiv-
ity), at a given backgate VBG ¼ 0 V. This diagram resem-
bles a slightly tilted checkerboard pattern, which is typical
for two parallel, uncoupled quantum dots in the Coulomb-
blockade regime, with a weak crosstalk of about 4%. The
linecut at fixed VSG2 ¼ �5:25 V emphasizes the regions of
high and low differential conductance associated with the
Kondo ridges and Coulomb-blockaded valleys, respec-
tively. One can indeed distinguish easily between even
and odd occupancies in each dot from the sequence of
conducting and blocked regions: Dark blue pockets denote
regimes where both dots are blocked (in an even-even
configuration of the double-dot setup); green lines
correspond to the situation where one of the dots is in the
Kondo regime (see arrows) while the other remains
blocked (in an even-odd configuration); and orange spots
show the case where both dots undergo the Kondo effect
(in an odd-odd configuration) [4,30].
An operating region at a different backgate voltage

VBG ¼ �0:3 V is shown in greater detail in Fig. 2(a).
For VSG1 between 1.70 V and 1.95 V, JJ1 has an odd
occupancy associated with a differential conductance close
to 2e2=h due to a well-developed Kondo effect.
Furthermore, JJ2 clearly has an even number of electrons
for VSG2 between �4:85 V and �5:15 V, because of its
small contribution to transport in this range. In order to
show the influence of the backgate voltage VBG, we have
plotted in Fig. 2(b) the differential conductance vs VSG1 for
the odd-occupancy region of JJ1 corresponding to the
white cut in Fig. 2(a), for five different values of VBG

from �0:3 V to �0:7 V. Upon application of VBG, the
sidegates 1 and 2 experience a capacitive crosstalk of
�21:5% and �17:4%, respectively, as seen by the global
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FIG. 1. Nano-SQUID characteristics. (a) Scanning-electron-
microscopy micrograph of the measured nano-SQUID. The
two sidegates (SG1, SG2) are green, the nanotube defining two
quantum dots is orange, and the superconducting leads are blue.
(b) Map of the normal-state zero-bias conductance dI=dVsd vs
the two sidegate voltages at magnetic field B ¼ 75 mT, tem-
perature T ¼ 35 mK, and backgate voltage VBG ¼ 0 V. Black
triangles indicate the odd-occupancy regions of the first quantum
dot (QD1). A line cut of the linear conductance at fixed VSG2 ¼
�5:25 V is also shown, in black.
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shifts of the conductance traces. The application of a
backgate voltage thus modifies not only the occupation
number on the dot, but also the tunnel linewidth �
[11,32]. Indeed, by varying the backgate voltage and cor-
recting the voltages of the sidegates for crosstalk, it is
possible to keep the local Coulomb repulsion U and the
level position �0 on the quantum dots relatively constant
[16], while the hybridization � of the first quantum dot
(QD1) to the leads experiences sizeable variations up to
about 20% as we discuss next.

C. Tuning the hybridization with the gates

In Fig. 2(c), the Kondo resonances taken in the middle of
the odd-occupancy region of QD1 [see corresponding red
star in Fig. 2(a)] are superimposed for different values of
VBG. The hybridization � can be extracted for different
values of the backgate voltage VBG from the half-width at
half-maximum VK of the Kondo resonance in the finite-
bias conductance. In order to systematically extract VK, we
use a Lorentzian line shape with a fixed background
corresponding to the QD2 contribution to transport and

to a small elastic cotunneling component for QD1 [33].
Qualitatively, we note the clear increase of VK that is
achieved by shifting the backgate voltage to more negative
values, which is related to the gate-induced enhancement
of the hybridization � reported above. More precisely, in
the scaling limit of the Kondo problem [34], a universal
behavior of all physical observables is obtained as a
function of the Kondo scale, here expressed as a Kondo
voltage VK,

VK ¼ �
ffiffiffiffiffiffiffi
�U

p
exp

���U

8�

�
1� 4

�20
U2

��
; (2)

with U the Coulomb repulsion on the dot, � its total
hybridization to the leads, and �0 its energy shift (taken
by convention to be zero in the middle of the diamond).
This expression applies in the limit of U � � (for
�U=2< �0 <U=2), and contains a yet-undetermined
prefactor �, which depends on the coupling regime U=�.
To obtain the value of the charging energy U, we have
considered the Coulomb-stability diagram of JJ1 (see
Appendix B 1) and extrapolated the diamond edges to
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FIG. 2. Kondo correlations and voltage/current characteristics. (a) Zero-bias conductance dI=dVsd vs the sidegate voltages VSG1 and
VSG2 in the normal state (under an applied magnetic field B ¼ 75 mT) at VBG ¼ �0:3 V, where JJ1 presents a well-established Kondo
ridge for 1:7 V< VSG1 < 1:95 V and JJ2 has an even occupancy for�5:15 V< VSG2 <�4:85 V. (b) Zero-bias dI=dVsd conductance
vs sidegate voltage VSG1 in the normal state along the white line in panel (a) for five backgate voltages VBG between �0:3 V and
�0:7 V. VSG2 has been corrected for crosstalk in order to follow the white line, but VSG1 is shown as measured. (c) Finite-bias
differential conductance dI=dVsd vs source-drain voltage Vsd in the normal state, taken in the middle of the Kondo ridge of JJ1 [red star
in panel (a), corresponding to a level position �0 ¼ 0] for seven backgate voltages VBG between�0:7 V and�0:3 V. The width of the
Kondo resonance is modified by the backgate voltage while �0 and U are kept constant, implying a variation of �. (d) Typical
superconducting voltage-current characteristics of the nano-SQUID for three arbitrary values of the gate voltages (VSG1, VSG2). The
data are analyzed throughout the paper by recording the switching currents Isw obtained from such voltage-current plots; see
Appendix C 1 for information on the experimental technique.
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large bias. Because of the large linewidth of our strongly
coupled nanostructure, the determination of U leads to
moderate error bars, and our estimate is U ¼ 0:80�
0:05 meV. Focusing on the differential conductance
dI=dVsd from now on, we set a more precise
definition of � by our choice of VK as the half-width at
half-maximum of the finite-bias Kondo peak. In a near-
equilibrium situation (corresponding to a very asymmetric
barrier to the left and right leads) and in the regime where
U * 6�, we find that the unknown parameter is given by
�eq ’ 2:8 from numerical renormalization-group calcula-
tions [35]. However, in our experiment, the conductance is
tuned to its maximum value of 4e2=h (i.e., 2e2=h per dot),
corresponding to an equally balanced tunneling amplitude
from each of the leads. (We note that values slightly above
4e2=h can be achieved in our double-dot device, which we
attribute to small extra elastic contributions from
symmetry-broken orbital states of the carbon nanotube.)
In that case of symmetrically coupled quantum dots, deco-
herence of the Kondo anomaly is induced by the antagonist
pinning of the Kondo resonance to the split Fermi levels
of each lead, reducing the half-widthVK of the finite-bias
conductance peak compared to the equilibrium situation.
For the relevant regime U * 6�, one can estimate [36] a
reduction by 50% of the linewidth, so that we finally fix
� ¼ 1:4. Because there is to date no fully controlled theory
of the finite-bias Kondo resonance, we believe that the
imprecise choice of � will introduce the largest error in
our determination of �, and hence of the phase boundary to
be analyzed in Sec. III B. The final backgate dependence of

the hybridization � is shown in Fig. 3 for the middle point
(particle-hole symmetric) of the Coulomb diamond of JJ1.
The variations of � with the backgate VBG are quite size-
able (up to 20%), according to the exponential dependence
of the Kondo scale (2), and they constitute a central piece
of the analysis in the superconducting state, allowing us to
span a large part of the phase diagram of the 0-� transition.
We also stress that changing the local sidegates not only
allows us to tune the energy levels in the dots, as is clear in
Fig. 1(b), but also modifies the hybridization �. The com-
plete evolution of � with backgate and sidegate voltages
can be tracked by the analysis of the Kondo anomalies
using Eq. (2) and leads to a greater range of variations
(up to 50%).

III. EXPERIMENTAL STUDY OF THE
FIRST-ORDER 0-� TRANSITION

Having characterized the normal-state properties of our
device, we now focus on the superconducting behavior of
the nano-SQUID. Figure 2(d) shows typical voltage-
current characteristics obtained at three arbitrary gate volt-
ages in the superconducting state. For all set points that we
have measured, the nano-SQUID shows an abrupt transi-
tion to the finite-voltage branch indicating an underdamped
device, with hysteretic voltage-current characteristics
[2,4]. The current at which this sharp jump occurs defines
the switching current Isw, which can be precisely deter-
mined via a digital filter [31] by calculating the maximum
variance of the measured DC voltage; see Appendix C 1.
Switching currents of approximately 3 pA up to a few nA
can thus be detected in a fully automated fashion.

A. Comparison between valence-induced and
Kondo-induced 0-� transition

Here we focus on a comparison of the 0-� transition
behavior in two different correlation regimes, achieved in
two distinct regions of the sidegate checkerboard diagram.
Figures 4(a) and 4(d) show both operating regions:
(a) corresponds to the situation already studied in the
normal state, where fully developed Kondo correlations
take place for the odd-charge region of JJ1, while
(d) reveals an odd-charge state of JJ1, where Kondo corre-
lations do not arise. (The Kondo temperature is lower than
the base temperature of the cryostat.) These distinct physi-
cal regimes are similarly witnessed in Figs. 4(b) and 4(e),
which show the normal-state-conductance trace along the
white line in the conductance maps. In panel (b), the
Coulomb blockade is fully overcome by the Kondo effect
in the odd-charge region of JJ1, while in panel (e), the
Coulomb blockade is robust throughout the entire gate
range. The most interesting comparison between the two
regimes occurs in the superconducting state [see Figs. 4(c)
and 4(f)]. In panel (c), a supercurrent reversal [indicated by
the crossing of the two curves associated with two different
magnetic fluxes as seen in Eq. (1) and Appendix C 2]
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FIG. 3. Total hybridization � vs backgate voltage VBG. Blue
diamonds represent the determined � from measured VK at
different backgate voltages. This determination is performed in
the middle of the Coulomb diamond of JJ1; see text for details. A
control with 20% amplitude variations of � is thus achieved by
tuning the backgate. For visibility, error bars are not indicated
here, but they are plotted in Fig. 6(a). Clearly, the backgate-
voltage variation of the hybridization is not monotonous and can
affect the left-right symmetry of the hybridization of the QD as
well. This backgate-voltage range (� 0:3 V to �0:7 V) is
chosen in order to minimize the asymmetric change of the
hybridization, which is a subleading effect compared to the
exponential change of the Kondo temperature associated with
the variations of �.
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occurs within the odd-charge state of JJ1, showing that the
Kondo effect plays a crucial role in triggering the 0-�
transition. In contrast, panel (f) shows that the supercurrent
changes sign concomitantly with the increase of the
valence of the dot, in agreement with expectations in the
strong-Coulomb-blockade regime [29].

B. Tuning the 0-� transition with controlled
changes in the Kondo temperature

As shown in Sec. II C, it is possible to tune the hybrid-
ization � with the gates, which we exploit to characterize
more globally the 0-� transition phase boundary. Indeed,
we have seen previously that Kondo correlations in JJ1 are
strengthened when VBG goes from �0:3 V to �0:7 V in
the operating region of Fig. 2(a). In order to explore

precisely the influence of Kondo correlations on the 0-�
transition, we present in Fig. 5 six plots of ISW vs VSG1

[along the white line in Fig. 2(a)] at different backgate
voltages and magnetic fields.
The traces exhibit two high switching-current peaks

corresponding to the Coulomb-degeneracy points on the
sides of the Kondo ridge in an odd-occupancy valley of
QD1. Recording such traces at different magnetic fields
provides access to the flux modulation of the switching
current in the nano-SQUID. Increasing the magnetic flux�
from 0 to�0=2 leads to a steady decrease of Isw outside the
odd-occupancy region of JJ1, which corresponds to a
standard 0-type behavior [3,4] in the Coulomb-blockaded
even-occupancy valleys of QD1; see Eq. (1) and
Appendix C 2. The flux dependence of the switching
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current within the odd-charge Kondo domain turns out to
be more interesting, as we will analyze next. Clearly, the
magnetic-field dependence of Isw is reversed deep inside
the odd-occupancy region of QD1, as the switching current
is greater for � ¼ �0=2 than for � ¼ 0, indicating a
�-type Josephson behavior. One can therefore identify
precisely, from the crossing of the switching-current traces,
at which sidegate voltage VSG1 (related to the dot energy)
the behavior changes from 0 to � type. This allows us to
define a 0-� phase boundary for a given backgate voltage.
Now, by similarly examining the Isw characteristics at
different backgate voltages (which allows us to tune the
linewidth �), we note that decreasing the backgate voltage
(i.e., enhancing �) reduces the range for � behavior, until
the � phase completely collapses below the critical VBG ¼
�0:65 V, and a 0 junction is maintained all along the

Kondo ridge. This physical behavior can be expected
from the stronger Kondo screening at larger � that tends
to favor the 0 state. From these measurements, we can
unambiguously assign a 0 or � behavior to the JJ1, as a
function of both the level position �0 and the width � of
QD1, as determined previously from the analysis of the
normal-state transport data. For all recorded transitions
(corresponding to the black arrows in Fig. 5), we extract
the corresponding microscopic parameters � and �0, and
plot them on an experimental phase diagram shown in
Fig. 6(a).
As a quantitative test of our analysis, we display in

Fig. 6(a) the theoretical phase diagram obtained from a
self-consistent description of Andreev-bound states [28]
for U=� � 10, which corresponds to the experimentally
measured U ’ 0:8 meV and � ’ 80 �eV. Error bars take
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into account the uncertainty in the determination of �
from the finite-bias Kondo resonances; see Sec. II C. The
bell shape of the phase boundary together with the nearly
quantitative agreement with the theory gives strength to
the interpretation of the 0-� transition as a first-order
phase transition associated with the crossing of the
Andreev-bound states at the Fermi level [19,26]. A key
point here is that Kondo screening is decisive in allowing
the existence of the 0 phase in the center of the
odd-charge Coulomb diamond in our experimental con-
ditions (U ’ 6�); see Fig. 7 in Appendix A. While the
0-� transition is always related to a simple Andreev level
crossing, comparison between theory and our data (Fig. 6)

clearly demonstrates that it is the competition between the
normal-state Kondo temperature TK and the supercon-
ducting gap � that determines the precise location of
the 0-� phase boundary [26,28].
From theoretical expectations [18,27], a second possible

smoking gun for the first-order 0-� phase transition lies in
the anharmonic behavior (in phase) of the Josephson junc-
tion in close vicinity to the 0-� phase boundary. This
prediction motivates us to consider the field modulation
of the switching current Isw with fine changes of the back-
gate voltage. This is plotted in Fig. 6(b), where the
quantum-dot level is taken in the center of the odd-
occupancy Kondo valley [the point of the particle-hole
symmetry �0 ¼ 0, corresponding to the red star in
Fig. 2(a) and to the fine mesh of dots in Fig. 6(a)]. For
VBG >�0:6 V, modulations show that JJ1 is a � junction
because of the �0=2 shift. In contrast, for VBG <�0:7 V,
modulations turn back to the standard behavior, indicating
that JJ1 is a 0 junction. However, for�0:6>VBG >�0:7,
the nano-SQUID switching-current modulations show
strong anharmonicities. For this range of backgate volt-
ages, the critical current of JJ1 is very small, leading to a
strongly asymmetric SQUID; thus JJ2 always switches at
the same phase difference, implying that Isw directly re-
flects the current-phase relation of JJ1 [37]. The observed
nonharmonic signal can be interpreted as a further indica-
tion of the bistable behavior of the junction associated with
the first-order 0-� transition [18–20,23,27].

IV. CONCLUSION

In conclusion, we have realized a nano-SQUID based on
superconducting carbon-nanotube quantum dots. It is fully
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FIG. 6. 0-� phase transition diagram and nano-SQUID modulations. (a) The experimentally determined phase boundary between
0- and �-junction behavior of JJ1 (orange diamonds connected by the dashed line) is given as a function of the dot energy �0=U and
the level width �=U. The Coulomb repulsion U � 0:8 meV is estimated from the finite-bias spectroscopy of the Coulomb-blockade
diamond, and� � 80 �eV from the proximity effect; see Appendix B. Error bars indicate the uncertainty in the estimate of � from the
analysis of the Kondo resonances. The purple solid line represents the theoretical phase diagram for the experimentally determined
ratio U=� ¼ 10; it slightly overestimates the experimental phase boundary. (b) Magnetic-field modulations of the nano-SQUID
switching current taken in the middle of the odd-charge Kondo ridge [shown as the red star in Fig. 2(a)] for different backgate voltages
associated with the fine mesh of dots at �0 ¼ 0 in panel (a). For better comparison, the switching-current modulations are all
normalized to the maximum current amplitude, which is strongly suppressed in the transition region. A clear nonharmonic regime
occurs near the 0-� phase boundary, where the bistable behavior (in phase) of the supercurrent may be attributed to the first-order
transition between the 0 and � states.
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tunable thanks to a set of electrostatic gates, allowing a
precise control of the microscopic parameters of the de-
vice. This allows us to determine an experimental phase
diagram for the 0-� transition in the Kondo regime, which
is in good agreement with theoretical calculations based on
the competition between the Kondo temperature and the
superconducting gap. The observation of anharmonic be-
havior in the supercurrent phase relation near the phase
boundary is consistent with the first-order nature of the 0-�
transition associated with the crossing of Andreev levels.
Fascinating prospects offered by this work are the control
and monitoring of the 0-� transition from supercurrent
measurements, as performed here, with simultaneous local
spectroscopy of the Andreev spectrum on the quantum dots
in the spirit of the recent measurements of Pillet et al. [38].
Such future developments of our experiment, which should
be achievable by probing the nano-SQUID with a scanning
tunneling microscope, would bring strongly correlated
superconducting nanostructures to a new level of control
and understanding.
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APPENDIX A: THEORETICAL ANALYSIS
OF THE 0-� PHASE DIAGRAM

1. Model for a superconducting quantum dot

The standard Hamiltonian for describing a single super-
conducting quantum dot is given by the superconducting
Anderson model,

H ¼ X
i¼L;R

Hi þHd þ
X

i¼L;R

HTi
; (A1)

where

Hi ¼
X
~k;�

� ~kc
y
~k;�;i

c ~k;�;i �
X
~k

ð�ic
y
~k;";ic

y
� ~k;#;i þ h:c:Þ;

Hd ¼
X
�

ð�0 þU=2Þdy�d� þUn"n#;

HTi
¼ X

~k;�

ðtdy�c ~k;�;i þ h:c:Þ:

In the above equations, d� is the annihilation operator of an
electron with spin � on the dot; c ~k;�;i the annihilation

operator of an electron with spin � and the wave vector ~k

in the lead i ¼ L, R; and n� ¼ dy�d�. The leads are de-
scribed by standard s-wave BCS Hamiltonians Hi with
superconducting gaps �i ¼ �ei’i . The phase difference
between left and right leads is noted as ’ ¼ ’L � ’R.
Furthermore, the leads are assumed to have flat and sym-
metric conduction bands, i.e., the kinetic energy � ~k;i

measured from the Fermi level ranges in ½�D;D�,
and the density of states is �0 ¼ 1=ð2DÞ. We assume
~k-independent and symmetric tunneling amplitudes t be-
tween the dot and both superconducting leads. The dot is
described by a single energy level �0 submitted to the
Coulomb interaction U. (In our convention, �0 vanishes
at the center of the Coulomb diamond.)

2. Renormalized Andreev-bound states
and phase diagram of the 0-� transition

In the superconducting state, the four atomic states of
the quantum dot evolve into renormalized Andreev-bound
states (ABS) that possibly live within the gap. A quantita-
tive description of this process was proposed in Ref. [28],
beginning with bare values of the ABS splitting in the limit
of infinite gap:

�E0� ¼ E0� � E0
� ¼ U

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ �2

’

q
; (A2)

�E0þ ¼ E0þ � E0
� ¼ U

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�20 þ �2

’

q
; (A3)

with

�’ ¼ �
2

�
arctan

�
D

�

�
cos

�
’

2

�
: (A4)

In this simplified (and unrealistic) limit, the 0-� transition
corresponds to the crossing of the j�i and j�i states, which
occurs for �E0� ¼ 0, leading to a domelike shape in the
(�0=U-�=U) plane. However, the phase boundary
quantitatively depends on the precise value of the super-
conducting gap �, which must be more realistically in-
cluded in the calculation. This is done by calculating the
corrections at order 1=� to the ABS positions [28], fol-
lowed by a self-consistency loop that takes into account the
leading logarithmic singularities:

�E�ð�Þ ¼ �E0� � �

�

Z D

0
d�

�
2

E� �E�ð�Þ �
1

Eþ �E0þ

� 1

Eþ �E0�
þ 2�

E
uv

��������cos
�
’

2

���������
�

2

E� �E�ð�Þ
� 1

Eþ �E0þ
þ 1

Eþ �E0�

��
þ 2j�’juv (A5)

and
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�Eþð�Þ ¼ �E0þ � �

�

Z D

0
d�

�
2

E� �Eþð�Þ �
1

Eþ �E0þ

� 1

Eþ �E0�
þ 2�

E
uv

��������cos
�
’

2

���������
� �2

E� �Eþð�Þ
� 1

Eþ �E0þ
þ 1

Eþ �E0�

��
� 2j�’juv; (A6)

with E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p
, and where �E0�, �E0þ have been

defined in Eqs. (A2) and (A3). The numerical resolution
of the self-consistent equation (A5) provides an accurate
determination of the phase boundary under the condition
�E�ð�Þ ¼ 0, which we successfully compared to the ex-
perimental data. Note that we correct here a misprint in
Ref. [28], namely, a factor 2 that is missing in front of the
second term within the integral in (A5) and (A6).

To stress the key role of the Kondo effect for the 0-�
transition in our experimental conditions, we compare the
phase diagram at the particle-hole symmetry (�0 ¼ 0)
obtained from the renormalized-ABS theory [28] and
from static Hartree-Fock mean-field theory [18]. (See
Fig. 7.) Because the renormalized-ABS approach includes
the Kondo scale (at one-loop order), this approach allows
the extension of the 0-� boundary for arbitrary large values
of U=�. In contrast, the static mean-field approach is
unable to restore a 0 state for Coulomb interaction such
that U * ��, and it fails to reproduce our experimental
observation of a supercurrent reversal in the regime
U ’ 6�. This comparison shows that the phase boundary
in our experiment is indeed associated with a competition
between the normal-state Kondo temperature and the
superconducting gap, in agreement with theoretical expec-
tations [26,28].

APPENDIX B: DETERMINATION
OF THE MICROSCOPIC PARAMETERS

OF THE NANO-SQUID

1. Charging energy

Because the charging energy U in a carbon-nanotube
quantum dot results from the confinement between fixed

contacts, one does not expect large variations of U for a
small detuning of the backgate. In order to determine the
experimental phase diagram for the 0-� transition, an
estimate of U is required. We obtain it by considering the
Coulomb-stability diagram of JJ1 for two values of the
backgate (see Fig. 8) and extrapolating the diamond edges
to large bias.

2. Proximity gap

We have performed current-bias measurements to di-
rectly access both the superconducting switching current
and the differential conductance of the nano-SQUID at
T ¼ 35 mK. In the presence of superconductivity, the
two cotunneling peaks associated with the quasiparticle
current in the differential conductance [10] appear at
V ¼ �2�=e � �160 �V, where 2� is the superconduct-
ing gap provided by the proximity effect on the nanotube.
(See Fig. 9.) This measurement allows us to extract the
superconducting gap in our device, � � 80 �eV, which is
reduced from the bulk value of �bulk ¼ 175 �eV for alu-
minum, due to the thin palladium contact layer between the
carbon nanotube and the aluminum electrodes.
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APPENDIX C: SWITCHING-CURRENT
DETECTION AND SWITCHING-CURRENT

MAGNETIC-FIELD MODULATION

1. Switching-current detection

To have an accurate method of extracting the switching
current from voltage/current characteristics, even for
small transition voltage jumps to the dissipative state,
we have implemented a digital filter based on the work
of Liu et al. [31]. The main purpose of this filter is the
detection of transitions from a noisy signal, which we
apply to the superconducting/normal transition. The op-
eration consists of estimating the variance of the first-
order moment of the signal in a sliding window. A sche-
matic view of the filter is presented in Fig. 10(a). To
begin, the first-order moment �ðtÞ is estimated via a
classic averaging filter in a sliding window characterized
by the impulse response h1ðtÞ ¼ Rectðt=L1Þ=L1, where
RectðtÞ is the normalized rectangular function and L1 is

the filter length. Finally, the estimated variance is ob-
tained by h�ðtÞ2i-h�ðtÞi2 with another averaging filter
h2ðtÞ of length L2. For the switching-current detection
with a sample rate of 1000, we have taken L1 ¼ L2 ¼
4. Such a filter provides a sharp signal from the steplike
features of our voltage/current characteristics, as pre-
sented in Fig. 10(b).

2. Switching-current magnetic-field modulation
around the 0-� transition

The main experimental signature of a transition between
a 0 junction and a� junction is the� shift that occurs in the
switching-current magnetic-field modulation; see Eq. (1).
To reveal this phase shift, one can display the switching
current vs backgate or sidegate voltage at two different
magnetic fields corresponding to fluxes in the nano-SQUID
loop of, respectively, � ¼ 0 and � ¼ �0=2, as presented
in the main paper. A more systematic illustration is given
here by the complete switching-current magnetic-field
modulation recorded around the 0-� transition, as shown
in Fig. 11.
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Ondarçuhu, and M. Monthioux, Carbon Nanotube
Superconducting Quantum Interference Device, Nature
Nanotech. 1, 53 (2006).

[5] C. B. Winkelmann, N. Roch, W. Wernsdorfer, V. Bouchiat,
and F. Balestro, Superconductivity in a Single C60

Transistor, Nature Phys. 5, 876 (2009).

- 2.35 -2.30 -2.25 -2.20 -2.15

1.0

0.5

0.0

-0.5

-1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3

VSG1 (V)
IS

W
(n

A
)

B
(m

T
)

FIG. 11. Complete modulation of the switching current by the
applied magnetic field around the 0-� transition. ISW vs mag-
netic field and sidegate voltage VSG1 around the 0-� transition in
JJ1, corresponding to the trace in Figs. 4(d)–4(f). The 0 state is
stabilized for VSG1 <�2:25 V, while the � state occurs for
VSG1 >�2:20 V. Nonharmonic behavior of ISW as a function
of magnetic flux is clearly observed in the intermediate transition
range.

( )2

( )2

-

+
h1(t)

h2(t)

h2(t)

x(t) µ(t) σµ
2(t)

(a) (b)

-20

-10

0

10

20

1 -0.5 0.0 0.5 1

60
50
40
30
20
10
0

x10
-12

σ
<V

> 2 (a.u.)

I (nA)

V
sd

 (
µV

)

FIG. 10. Digital filter for switching-current detection. (a) Schematic view of the implemented filter based on the work of Liu et al.
[31]. The first-order moment �ðtÞ of the signal xðtÞ in a sliding window is obtained through the filter h1ðtÞ ¼ Rectðt=L1Þ=L1, where
RectðtÞ is the normalized rectangular function and L1 is the filter length. The variance �2

�ðtÞ of �ðtÞ is simply calculated as

h�ðtÞ2i-h�ðtÞi2 in a sliding window with h2ðtÞ ¼ Rectðt=L2Þ=L2. (b) Voltage-current characteristics and the estimated variance of the
first-order moment obtained by the implemented digital filter.

ROMAIN MAURAND et al. PHYS. REV. X 2, 011009 (2012)

011009-10

http://dx.doi.org/10.1038/nnano.2010.173
http://dx.doi.org/10.1038/nature04550
http://dx.doi.org/10.1038/nature05018
http://dx.doi.org/10.1038/nnano.2006.54
http://dx.doi.org/10.1038/nnano.2006.54
http://dx.doi.org/10.1038/nphys1433


[6] L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger,
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