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Song and Bernevig (SB) have recently proposed a topological heavy-fermion description of the physics
of magic angle twisted bilayer graphene (MATBG), involving the hybridization of flat-band electrons with
a relativistic conduction sea. Here, we explore the consequences of this model, seeking a synthesis of
understanding drawn from heavy-fermion physics and MATBG experiments. Our work identifies a key
discrepancy between measured and calculated on-site Coulomb interactions, implicating renormalization
effects that are not contained in the current model. With these considerations in mind, we consider a SB
model with a single, renormalized on-site interaction between the f electrons, containing a phenomeno-
logical heavy-fermion binding potential on the moiré AA sites. This feature allows the simplified model to
capture the periodic reset of the chemical potential with filling and the observed stability of local moment
behavior. We argue that a two-stage Kondo effect will develop in MATBG as a consequence of the
relativistic conduction band: Kondo I occurs at high temperatures, establishing a coherent hybridization at
the Γ points and a non-Fermi liquid of incoherent fermions at the moiré K points; at much lower
temperatures, Kondo II leads to a Fermi liquid in the flat band. Utilizing an auxiliary-rotor approach, we
formulate a mean-field treatment of MATBG that captures this physics, describing the evolution of the
normal state across a full range of filling factors. By contrasting the relative timescales of phonons and
valence fluctuations in bulk heavy-fermion materials with that of MATBG, we are led to propose a valley-
polaron origin to the Coulomb renormalization and the heavy-fermion binding potential identified from
experiment. We also discuss the possibility that the two-fluid, non-Fermi liquid physics of the relativistic
Kondo lattice is responsible for the strange-metal physics observed in MATBG.
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I. INTRODUCTION

The discovery of magic angle twisted bilayer graphene
(MATBG), developing flat bands at “magic angles” [1–6],
has opened a new avenue for the exploration of quantum
materials. At integral filling, novel spin and valley polarized
[7–11] Mott insulators develop, which on doping transform
into strange metals [12–20] and superconductors [4,21] that
have attracted intense theoretical study [22–49]. It is as if by
tuning the gate voltage one can now explore a family of
compounds along an entire row of the periodic table. This
“gate-tuned chemistry” poses a novel challenge to theo-
retical work.

Various experiments suggest that electrons localized in the
moiré hexagons ofMATBG resemble quantumdots [50–52],
forming localized moments with valley and spin degeneracy
near integer filling. This evidence includes the lifting of spin
and valley degeneracy observed in Landau fans [53], a field-
tunable excess electronic entropy at integer filling [54], and
the appearanceof upper and lowerHubbard bandlike features
in scanning tunnelingmicroscopymeasurements [55].While
the Bistritzer-MacDonald [2] model for magic angle gra-
phene provides an accurate description of the plane-wave
single-particle physics, the presence of local moments
governed by short-range Coulomb interactions underlines
the importance of developing a real-space description of the
physics while taking the topology of the system into
account [22–25,47,56–67].
Various works have suggested a close analogy between

MATBG and f-electron heavy-fermion materials [22–25],
opening the problem up to the diverse conceptual and
computational methodologies developed for these systems.
This paper explores the implications of a recent theory by
Song and Bernevig (SB) [24,68] which succinctly describes
TBG as a topological heavy-fermion problem: Rather
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remarkably, the moiré potential focuses the electron waves
into Wannier states that are tightly localized at the center of
each moiré hexagon. These localized “heavy fermions”
carry spin (σ ¼ �1), valley (η ¼ �1), and orbital (α ¼ �1)
quantum numbers, forming an eightfold degenerate multi-
plet that becomes mobile through the effects of valence
fluctuations into a topological conduction band.
The hybridization of these flat-band (“f”) Wannier states

with a topological conduction (“c”) band captures the
essential mirror, time reversal, and particle-hole symmetries
of the Bistritzer-MacDonald model (Fig. 1). In particular,
the SB model establishes the correct band symmetries at
the ΓM andMM points of the Brillouin zone, giving rise to a
pair of Dirac cones of the same chirality at the KM points
of each valley. The C2zT and particle hole symmetry
anomalies responsible for the Dirac cones are reproduced
by a quadratic conduction band touching at ΓM: When
hybridization is turned on, this anomaly is injected into the
f-electron band (Fig. 2).
Previous studies on the SB model [69–74] have adopted

a fixed neutrality assumption, in which the on-site

Coulomb interaction takes the form ðU=2Þðnf − 4Þ2 and
departures from neutrality are accomplished by varying
a uniform chemical potential, while treating all other
interactions in a Hartree-Fock approximation. Various
approaches have been used to describe the on-site physics,
including auxiliary bosons [72], impurity approximations
with Wilsonian renormalization group [73], dynamical
mean-field theory [23,74], and a slave boson approach [72].
In this paper, we build on these early Kondo lattice

models of MATBG, seeking to combine the key features of
the SB model with insights drawn from experiment and
bulk heavy-fermion physics. In this paper, we focus on the
paramagnetic phases of MATBG that develop away from
integral filling factors. Highlighted aspects of our work are
as follows.

(i) A discrepancy identified between the ab initio scale
of on-site interactions U0 ∼ 100 meV in the SB
model and the experimentally observed values of
U ∼ 30 meV, pointing to renormalization effects
that lie beyond the current model.

(ii) An f-electron binding potential of strength −Uκν,
introduced phenomenologically to model the peri-
odic reset in chemical potential and the diminished
average inverse compressibility Δμ=Δν ¼ Uð1 − κÞ.

(iii) An auxiliary-rotor mean-field theory [75,76] to
describe the alternating patterns of Kondo and
valence fluctuations in the paramagnetic phases
across all filling factors ν∈ ½−4; 4�.

(iv) Two temperature scales—The Dirac character of the
conduction sea in MATBG profoundly affects the
Kondo effect, leading to two competing fixed points:
a high-temperature scale Tð1Þ

K associated with the
formation of the topological band and a considerably

lower temperature Tð2Þ
K associated with the develop-

ment of coherence at the moiré K points.
Key to the heavy-fermion model of MATBG is an

understanding of the binding potential that stabilizes

FIG. 1. Hexagonal lattice of exponentially localized Wannier f
states (orange) on each moiré AA site submerged in a sea of
topological relativistic c electrons (blue).

FIG. 2. Schematic illustration of the Song-Bernevig model [24,68], showing (a) the unhybridized flat (f) band (blue) and relativistic
conduction band (c) (orange)with quadratic touchingΓ3 symmetry (green diamond) andΓ1;2 symmetry points (red disk)with an excitation
gapM; (b) hybridization causes band inversion between the Γ3 and Γ1;2 points, injecting topological conduction states into the flat f band.
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localized f states at various integer filling factors ν. The
simplest view treats the back gate of MATBG as a capacitor
that subjects the conduction sea and f level to a single
chemical potential; in this picture, a unit increase in the filling
requires the chemical potential to shift by the Coulomb
energy—i.e., the coarse-grained inverse compressibility is
given byΔμ=Δν ¼ U. Experimentally, however, the chemi-
cal potential rises by an amount that is considerably smaller
than the observed on-site interaction. For example, STM
experiments at the AA sites of MATBG observe cascades in
the electronic structure associated with an on-site U ∼
30 meV (blue read off from the upper and lower Hubbard
band position from the AA data in Ref. [50] and rounded up
from 23� 5 meV), yet the coarse-grained inverse compress-
ibility is of the order of Δμ=Δν ≈ 15 meV [50].
To shed further light on this physics, it is useful to

contrast gate-tuned MATBG with bulk heavy-fermion
materials [77–84], where the f states are bound by a
nuclear potential whose depth progressively increases with
atomic number Z, accommodating the electron repulsion
that rises with the filling factor. The slow rise and periodic
reset in the chemical potential with filling factor observed
in MATBG suggests a corresponding binding mechanism
in MATBG: We choose to incorporate the observed physics
in a phenomenological Hamiltonian

H ¼ H0 þ
U
2

X
R

ðν̂fR − κνÞ2; ð1Þ

where H0 is the noninteracting SB Hamiltonian, combined
with an on-site Coulomb interaction of strength U among
the f electrons centered in the moiré unit cell at R, where
ν̂fR ¼ n̂fR − 4 is their number operator relative to half
filling. This shifts the neutrality point of the Coulomb
interaction to nf ¼ 4þ ν, where ν ∝ Vg is directly propor-
tional to the back-gate voltage.
While we introduce the attractive binding potential

−Uκνν̂fR phenomenologically to explain the partial chemi-
cal potential reset seen in experiment [50–52,60], this
mechanism appears implicitly in previous DMFTþ
Hartree studies [47,74] from an ad hoc Hartree treatment
of the interactions between the dispersive and localized
states [24,47,74]. Our work explicitly highlights the vital
role of this term in producing the chemical potential resets
and provides a new interpretation of this term as an
attractive binding potential for localized states. Given the
uncertainties in the Hartree approximation, particularly
when the on-site interaction is treated at much higher order
in DMFTand the c-f hybridization is handled dynamically,
we have adopted a phenomenological approach which
leaves the microscopic origin of the binding potential to
future debate.
There are two salient insights from our approach which

we discuss in depth at the end of this paper. First, contrary
to heavy-fermion materials, the optical phonon dynamics in

twisted bilayer graphene are fast compared to valence
fluctuations of the localized f electrons. The phonons
modify the “atomic” Hamiltonian for the localized f
electrons in MATBG, giving rise to a Holstein model of
the form

H ¼ ω0b†bþ gðbþ b†Þf†τxf; ð2Þ

where b† creates the optic phonon and the τx couples to the
valley degree of freedom. Bridging disparate fields, this
leads us revive a previously abandoned concept [85,86]
from heavy-fermion physics, proposing that the slow
valence fluctuations in MATBG are dressed by intervalley
phonons, forming intervalley polarons. Such polarons
address the disparity between the measured and calculated
on-site Coulomb by inducing the necessary renormaliza-
tions but also could provide a natural contribution to the
emergent heavy-fermion binding potential −κU:

κU ¼ g2

ω0

; ð3Þ

where g is the electron-phonon coupling in Eq. (2). This
new perspective offers an attractive synthesis of the high-
energy electron-phonon physics, notably present in super-
conducting samples [87], and low-energy strong correlation
physics in MATBG.
A second key insight is that the relativistic character of

the Kondo lattice in the SB model sets it apart from
conventional bulk heavy-fermion physics. In the corre-
sponding single-impurity problem, a linear conduction
density of states generates non-Fermi liquid Kondo screen-
ing behavior, with a residual entropy [88]. We posit that the
topological character of the flat bands protects this physics
in the SB Kondo lattice, providing a possible origin for the
observed strange-metal phenomena in these materials. We
present a demonstration that this framework yields two
characteristic energy scales: a high-temperature scale, due
to scaling away from an unstable Withoff-Fradkin fixed
point [89], corresponding to the onset of topological
effects, and a low-temperature scale associated with the
emergence of flat-band coherence and scaling toward a
conventional heavy Fermi liquid.
We note that while strain effects [90–94] and substrate

alignment [95,96], particularly with hexagonal boron
nitride (h-BN), have been demonstrated to impact certain
MATBG samples, these effects are omitted here. A brief
discussion of these effects is included at the end of
the paper.
The outline of the paper is as follows. Section II reviews

the Song-Bernevig model; in Sec. III, we use a renormal-
ized Anderson model for MATBG to account for the
behavior of both the chemical μ½ν� and inverse compress-
ibility dμ½ν�=dν as functions of the filling ν within the
moiré atomic limit of the model. Section IV discusses the
effects of turning on interactions in MATBG, identifying
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the two characteristic scales of the underlying Landau
Fermi liquid. Section IV B examines Kondo scaling in
MATBG, using the single-impurity limit to gain insight into
the lattice physics, arguing that the presence of a “Withoff-
Fradkin fixed point” in the weak-coupling physics intro-
duces two characteristic temperature scales in MATBG. In
Sec. V, we employ the auxiliary-rotor mean-field
approach [75,76] to describe the low-energy physics of
our periodic Anderson model for MATBG. The strength of
the auxiliary-rotor method is that it is exact in the strong-
and weak-coupling limits; hence, we are able to capture the
valence fluctuations and Kondo effect in MATBG at all
filling factors using a single theory. Section VI describes
the results of calculations using the rotor method. Finally,
Sec. VII discusses the physics beyond the current model,
including the origins of the renormalization of the on-site
Coulomb U and the emergent heavy-fermion potential
−Uκν, speculating on the implications of our findings
for the future understanding of MATBG.

II. SONG-BERNEVIG MODEL

The one-particle Hamiltonian of the SB model,

H0 ¼ Hc þHfc − μN̂; ð4Þ

hybridizes exponentially localized Wannier f-electron
states centered on the moiré AA sites with topological
conduction electrons defined by the Hamiltonian

Hc ¼
X
jkj<Λc
a;a0ησ

c†kaησH
ðηÞ
aa0 ðkÞcka0ησ: ð5Þ

Here, c†kaησ creates a conduction electron with orbital,
valley, and spin quantum numbers a∈ ð1; 4Þ, ν ¼ �, and
σ ¼ �1, respectively. The conduction electron dispersion

HðηÞðkÞ¼
�

v⋆ðηkxα0þ ikyαzÞ
v⋆ðηkxα0− ikyαzÞ Mαx

�
ð6Þ

describes the momentum-dependent mixing between the
four orbitals in each valley η. The off-diagonal terms give
rise to an asymptotically linear dispersion with velocity v⋆,
where the Pauli matrices αμ ≡ ðα0; α⃗Þ (μ ¼ 0, 3) act on the
two-dimensional blocks. The first two entries of the matrix
(a ¼ 1, 2) refer to electrons with Γ3 symmetry at the ΓM,
point k ¼ 0, while the lower block-diagonal a ¼ ð3; 4Þ
describes two orbitals of Γ1 and Γ2 symmetry, split by a
mass M.
Hc gives rise to four bands with a fourfold spin-valley

degeneracy at eachk. The low-energy dispersion is quadratic
at ΓM and becomes relativistic jEj ∼ v⋆k at energies
jEj≳M, with a bandwidth D ∼ v⋆Kθ. The single-particle
model for TBG in each valley has a symmetry anomaly in the
C2zT and particle-hole P symmetries, corresponding to two

Dirac cones at the Fermi level with the same chirality. Since
the local orbitals are topologically trivial, the unhybridized
conduction electron band structure carries the symmetry
anomaly.
The hybridization between the conduction sea and f

electrons at each moiré AA site R is described by

Hfc ¼ γ0
X
Rαησ

ðf†RαησcRαησ þ H:c:Þ: ð7Þ

Here, f†Rαη creates an f electron with Γ3 symmetry, orbital
character α ¼ 1, 2, and valley and spin quantum numbers η
and σ, respectively. The total degeneracy of the bare f
states is, thus, 2Nf ¼ 8. c†Rαη creates a c electron in a
nonexponentially localized Wannier state centered at R
with the same Γ3 symmetry, orbital, spin, and valley
quantum numbers as the f electron; it is related to the
normalizable continuum c†kaησ states by

cRαησ ¼
1ffiffiffiffiffiffi
Ns

p
X
k;G;a

jkþGj<Λc

eik·R½ϕðηÞðkþG; γ0Þ�αackþGaησ; ð8Þ

where the sum over all momenta has been divided up into a
sum over reciprocal lattice vectors G of the moiré lattice
and a sum over momentum k restricted to the first moiré
Brillouin zone. The matrix form factor is

ϕðηÞðkÞ¼e−jkj2λ2=2
�
−α0þa⋆ðηkxαxþkyαyÞ; 02×2

�
; ð9Þ

where a⋆ sets the length scale of the hybridization and λ is a
damping factor proportional to the real-space spread of the
localized f-Wannier states. Remarkably, the focusing effect
of interference of the moiré potential produces Wannier
states of size λ ∼ aM=5, about a fifth of the moiré unit cell
size aM. The natural bandwidth of the free theory is given
by D ∼ v⋆Kθ, but, after hybridization, M becomes the
bandwidth of the moiré flat bands, while γ0 is the energy of
the Γ3 irrep of the higher-energy bands at the ΓM point. In
MATBG, the case where M ¼ 0 corresponds to the special
chiral limit of twisted bilayer graphene, where the hybrid-
ized f-c band is completely flat [97,98].
Finally, N̂ is the total electron count measured relative to

neutrality:

N̂¼
X
jkj<Λc
aησ

�
c†kaησckaησ −

1

2

�
þ

X
Rαησ

�
f†RαησfRαησ −

1

2

�
; ð10Þ

and μ is the chemical potential.
The approximate scales for the parameters in the SB

model are [24,68] D ¼ v⋆Kθ ≈ 133 meV, γ0 ¼ 25 meV,
M ¼ 3.7 meV, v⋆ ¼ −4.3 eVÅ, Kθ ¼ 0.031 Å−1, a⋆ ¼
65 Å, and λ ¼ 0.225aM ¼ 29 Å for the size of the Wannier
states, which gives λ̃ ¼ λKθ ¼ 0.90.
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The noninteracting SB model reproduces the band
structure of the Bistritzer-MacDonald model, giving rise
to a central band of width 2M, split off by an energy γ0 from
the upper and lower bands as illustrated in Fig. 2. The
central band can contain up to eight electrons, and, in the
noninteracting model, an applied chemical potential causes
the band structure to move rigidly, so that, by changing the
chemical potential μ over a range from −M to M, the
electron count per moiré unit cell can be tuned from 0 to 8.
We note that the chiral limit [97,98] of the Bistritzer-

MacDonald model, corresponding to the limit with no
tunneling between graphene layers in the AA-stacked
regions in TBG, is reproduced when a⋆ ¼ 0 [24,68].
The central bands become exactly flat at the chiral limit
magic angles [97], corresponding to M ¼ 0 in the SB
model [24,68].

III. INTERACTIONS

An appeal of the SB picture is that it offers the possibility
of a simplified model for the interactions between the
highly localized f electrons. Song and Bernevig have
provided a detailed calculation of the projection of the
Coulomb interaction, screened by the back gate, onto the
Fock space of f and c electrons, which reveals a hierarchy
of interactions.
In a conventional metal, electron charges are compen-

sated by the static charge of the background ions, but, in
MATBG, departures from neutrality are compensated by
screening charges in the back gate [24,68]. In MATBG,
Gauss’s law enforces a strict linear relationship between the
electron filling of the flat bands and the gate voltage. For a
filling ν, the excess charge on the TBG is q ¼ eNMν, where
NM is the number of moiré cells. Gauss’s law enforces
q ¼ CVg, where C is the capacitance of the back-gate-
dielectric-MATBG stack and Vg the gate voltage. Thus, it
follows that the filling factor

ν ¼ q
eNM

¼ CVg

eNM
¼ Vg

ΔVg
ð11Þ

is a strict linear function of the gate voltage. In essence
then, the gate voltage is the filling factor, enforcing a
canonical ensemble of definite filling factor ν on the
flat bands.
The projected Coulomb interaction, screened by the

back gate, contains two major on-site interactions, an f-f
Coulomb interaction Uscreen and an f-c Coulomb repul-
sion W. The scale of the instantaneous Coulomb inter-
actions is determined by the Coulomb integral for an
electron in one of the moiré Wannier states,

Uscreen ¼
Z
x;x0

ρðxÞVðx − x0Þρðx0Þ; ð12Þ

where

ρðxÞ ¼ e−x
2=λ2

πλ2
ð13Þ

is normalized electron density in the Wannier state, while

Vðx − x0Þ ¼ e2

4πϵϵ0

X
n

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx − x0j2 þ ð2dnÞ2

p ð14Þ

is the Coulomb interaction between electrons, modified by
the image charges. Here, d is the distance to the back gate.
The summation is

P
n¼0;1 for a single back gate with a

single image charge per electron and
P∞

n¼−∞ for a double
back gate, where there are the multiply reflected image
charges of alternating sign behind the back gates.
An evaluation of the Coulomb integral (Appendix A)

gives

Uscreen ¼ U0F

�
d
λ

�
; ð15Þ

where F½x� is a screening function for the appropriate back
gate (see Appendix A) and

U0 ¼
ffiffiffi
π

2

r
e2

4πϵϵ0λ
∼ 103 meV ð16Þ

is the unscreened Coulomb energy, estimated, following
SB with ϵ ¼ 6.0 as in-plane dielectric constant for a boron-
nitride substrate with λ ¼ 2.9 nm [99]. Figure 3 shows the
dependence of the Coulomb integral on the distance d to
the back gate, showing how the thinner the back-gate layer,
the more screened the Coulomb interaction. Song and
Bernevig assume a distance ξ ¼ 2d ≈ 10 nm to the image
charges in the back gate. With these values, Eq. (15)
predicts Uscreen ∼ 70 meV, comparable with the value
USB ∼ 58 meV obtained in SB. This on-site interaction
substantially exceeds the bandwidth of the flat band,
leading to a situation in which the electrons are on the
brink of localization into states with integer occupations.
There is, however, an important discrepancy between the

ab initio Coulomb interaction values calculated by Song
and Bernevig and that observed experimentally. The STM
experiments which reveal localized states at the AA moiré
sites [50] indicate a Coulomb interaction U ≈ 30 meV
(read off from the upper and lower Hubbard band position
from the AA data in Ref. [50] and rounded up from
23� 5 meV). In fact, the discrepancy with theory is even
more substantial when we take into account that the devices
on which these measurements were made involve a dis-
tance of about d ¼ 320 nm (combined thickness of around
40 nm for the h-BN and 285 nm for the SiO2 [100])
between the semiconductor back gate and the MATBG, for
which we would expect the much larger value U ∼U0.
There is, thus, a factor of 4 discrepancy between the
theoretical value of U and that observed in the STM
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cascade experiments. Indeed, the DMFT study [74] uses
interaction scales [24,68] calculated from back-gate dis-
tances which are more than an order of magnitude smaller
than in the STM cascade experiments [50].
DMFT studies have dealt with this discrepancy either by

taking small back-gate distances [74] or by introducing a
large, phenomenological dielectric constant ϵ ¼ 10–12
[23,47] for the substrate. This important discrepancy
between the measured and ab initio Coulomb interactions
hints at renormalization effects that lie beyond a static
Coulomb interaction.
We note that previous DMFT works [47,74] predict a

Hubbard gap smaller than the Hubbard U parameter.
However, we believe that the renormalization factor
between the gap and U in these references (at best a factor
of 2) is insufficient to reconcile the discrepancy between
the experimentally measured gap with interaction scale
U ¼ 23� 5 meV [50] and the much larger interaction
scale Uscreen ∼ 103 meV (15) expected from the SB model
using the experimental gate distance (d ¼ 320 nm) from
the Cascades study [50].
One possibility of renormalization effects beyond a static

Coulomb interaction is dynamic screening by the lattice, a
point we return to in the discussion. Here, though, we
assume that these effects can be taken account by a
renormalized Anderson model, in which the scale of the
interactions is set by experiment.

A. Phenomenological interaction model

Rather than pursuing a comprehensive microscopic
approach, we adopt a phenomenological strategy to capture
the dependence of the interactions on filling factor. We
focus solely on the residual on-site interactions U between
the f electrons responsible for the observed Coulomb
blockade physics. A second element of our treatment is
the introduction of an emergent heavy-fermion potential
−Uκν on the AA sites (Fig. 4), which linearly deepens with

back-gate voltage ν ∝ Vg The renormalized Anderson
model that we work with is the following:

H ¼ H0 þ
U
2

X
R

ðn̂fR − 4Þ2 −Uκν
X
R

n̂fR

≡H0 þ
U
2

X
R

ðν̂fR − κνÞ2: ð17Þ

The parameter κ controls the emergent heavy-fermion
potential on the AA sites, and we show in the following
subsection that a finite κ is needed to understand the
observed reset in the chemical potential μ that occurs as a
function of filling factor.

B. Coulomb blockade physics

We begin by considering the unhybridized moiré atomic
limit of the renormalized Anderson model (17), given
simply by

HAðRÞ ¼ U
2
ðn̂fR − 4 − κνÞ2 − μn̂fR: ð18Þ

The physics here is similar to a quantum dot. The stability
of the quantum dot with nf ¼ Q f electrons requires that
the ionization energies (Appendix B)

ΔEQ
� ¼ EQ�1 − EQ ¼ U

2
� ½Uð1 − κÞν − μ� ð19Þ

are both positive. Here, we set ν ¼ Q − 4. The energies
�ΔEQ

� describe the offset location for the upper and lower
Hubbard peaks in the f-spectral function (Fig. 8). At zero
temperature, the local moment with Q f electrons is stable
provided that the chemical potential satisfies

FIG. 3. Showing the dependence of the Coulomb integral as a
function of back-gate distance for single and double back-gate
devices.

FIG. 4. Emergent heavy-fermion potential on the AA sites with
a depth proportional to the filling ν. The well becomes pro-
gressively deeper with filling, offsetting the Coulomb repulsion
between f electrons.
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U=2 > jUð1 − κÞν − μ½ν�j: ð20Þ
To increase the filling factor by one, the chemical potential
μ must jump by U at each integer ν. When continuing to
fill the moiré atomic model (18) from integer filling
ν → νþ 1, the extra on-site Coulombic cost U is partially
offset by the emergent heavy-fermion potential
ΔEf ¼ −Uκ. Consequently, the chemical potential must
shift Δμ ¼ Uð1 − κÞ to fully compensate the Coulombic
cost (details in Appendix B).
At a finite temperature, the local moment with Q f

electrons is stable provided

kBT < U=2 − jUð1 − κÞν − μ½ν�j; ð21Þ
which defines the sawtooth phase diagram shown in Fig. 5.
In Fig. 6, we illustrate the chemical potential μ and

inverse compressibility dμ=dν as functions of the filling
factor ν, depicted in blue, for the moiré atomic limit of the
renormalized Anderson model (18) at zero temperature
with a finite value of κ.

The presence of a finite hybridization causes the f valence
to fluctuate through the virtual emission or absorption
of electrons, fQ ⇌ fQ−1 þ e− and e− þ fQ ⇌ fQþ1. At
energy scales below U=2, the physics of the low-energy
region are then described by a voltage-tuned “Kondo
lattice” [101,102].
The presence of a finite negative gradient in the chemical

potential μ½ν� in between integer filling factors coupled with
evidence of negative inverse compressibility dμ=dν empir-
ically suggests a finite value of κ. From Refs. [50–52,60],
we extract phenomenological values of U ≈ 30 meV and
κ ≈ 0.8. We find that the bare Song-Bernevig hybridization
γ0 results in a significant smoothing of the sharp features in
the chemical potential μ½ν� as a function of filling found in
the moiré atomic limit. To preserve the partial resetting
behavior, it is crucial to maintain the established hierarchy
of energy scales within the heavy-fermion analogy.
Specifically, the hybridization between the f electrons
and c electrons must undergo renormalization to ensure
that the reduced hybridization strength γ0 ≪ U. We defer
the discussion of the possible mechanisms underlying these
phenomenological parameters and renormalizations to
Sec. VII.

IV. QUALITATIVE CONSIDERATIONS

A. Adiabatic considerations: The heavy Fermi liquid

The noninteracting SB model describes a narrow band of
f electrons, with a linear Dirac dispersion of fixed chirality
centered the KM points with a Dirac velocity vD (see
Appendix C):

vD≈3

�
γK
D

�
2M
D

�
2ð1þa2⋆K

2
θÞþ λ̃2ð1−a2⋆K

2
θÞ
�
v⋆; ð22Þ

where D ¼ v�Kθ and γK ¼ γ0e−λ̃
2=2 is the strength of

the hybridization at the KM point, where λ̃ ¼ Kθλ.

FIG. 5. Sawtooth phase diagram for the moiré atomic limit of
MATBG, as a function of filling ν. White regions denote a stable
local moment with Q f electrons, bounded by the ionization
energies ΔE� for adding or removing one electron.

FIG. 6. Sketch in blue of (a) the chemical potential μ and (b) the inverse compressibility dμ=dν as functions of filling factor ν for the
moiré atomic limit of the renormalized Anderson model for MATBG at zero temperature for nonzero 0 < κ < 1.
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The approximate bandwidth of this flat band is given by
W ¼ vDKθ or

W ≈ 3

�
γK
D

�
2

M

�
2ð1þ a2⋆K

2
θÞ þ λ̃2ð1 − a2⋆K

2
θÞ
�
: ð23Þ

In the third chiral limit (flat limit) [24,68], where M ¼ 0,
the flat bandwidth identically vanishes. Even in the
noninteracting model, there are, in fact, two important
energy or temperature scales, a high-temperature scale
Tð1Þ ∼ γ0 ∼ 25 meV, below which the excitations are con-
fined within the low-energy flat band, and a much lower
scale

Tð2Þ ∼
�
γ0
D

�
2
�
2ð1þ a2⋆K

2
θÞ þ λ̃2ð1 − a2⋆K

2
θÞ
�
M

∼ 1.0 meV; ð24Þ

corresponding to the Fermi temperature of the flat band.
This large separation of scales is a key feature of the SB
model that we expect to continue when interaction effects
are taken into account.
Provided M > 0, a Fermi liquid forms, and on doping

away from neutrality the Dirac points sink into the Fermi
sea, producing two approximately circular Fermi surfaces
of predominantly f character (Fig. 7), with fourfold valley
spin symmetry, centered at eachKM and K̄M points, each of
area AFS ∼ πk2F area which satisfies Luttinger’s sum rule,
which we can write as

8
AFS

AM
¼ ν; ð25Þ

where AM is the area of the moiré Brillouin zone. The
noninteracting f electrons, thus, form a Dirac sea of
relativistic chiral fermions with a bandwidth of approx-
imately vDkF, occupying a fraction ν=8 of the Brillouin
zone. The SB model also predicts that, at the ΓM point, the
energy eigenvalues are ϵΓ ¼ f�M − μ;�γ0 − μg, where
those with energy �M are entirely of conduction character,
whereas those with energy �γ0 − μ are an equal admixture
of f and topological conduction electrons.
Let us consider what happens when interactions are

adiabatically introduced at constant filling factor ν to
produce a Landau Fermi liquid: This requires that
jMj > 0. Now the f states renormalize with a quasiparticle
weight Zf characterizing the KM points of the Brillouin
zone. So long as the ground state remains a Fermi liquid,
the Fermi surface area remains an adiabatic invariant,
which causes the f states to remain pinned close to the
Fermi energy, with energies ϵk ¼ λ� v�Djk −KMj, where
v� ¼ ZfvD is a renormalized Fermi velocity while in λ ∼
W� ¼ ZfW is of the order of the renormalized bandwidth.
The principle energy scales of the SB Anderson lattice

can be obtained by considering a corresponding impurity
Anderson model, formed from a single moiré f state
embedded in a relativistic electron gas. The relativistic
character of the conduction sea gives rise to a density of
states per moiré per valley per spin, that is linear in energy
at high energies. The density of states per spin per valley
per orbital in the Γ3 channel that hybridizes with the f
states is

ρcðEÞ ¼
A
D2

×

	 jEj; Ej > Mj
1
2
ðjEj þMÞ; jEj < M;

ð26Þ

where A ¼ 2π=ð3 ffiffiffi
3

p Þ ≈ 1.2 (see Appendix D). In the
presence of a chemical potential, this density of states
shifts downward in energy by an amount μ, and now
ρcðE; μÞ ¼ ρcðEþ μÞ.
If we ignore the effects of interaction, the hybridization

width (half width at half maximum) of an isolated non-
interacting Anderson impurity using the bare SB hybridi-
zation γ0 ¼ 25 meV [24,68] is given by

Δ0½μ� ¼ πγ20ðkÞρcðμÞ; ð27Þ

where γ20ðkÞ ≈ 2γ20 is the momentum integrated average of
the hybridization squared over a circle of radius Kθ (see
Appendix E). From Eq. (26), we obtain the noninteracting
hybridization width of a single Anderson impurity at
neutrality to be

FIG. 7. Schematic contrasting the noninteracting band structure
of the SB model at fixed filling for (a) zero and (b) finite
hybridization, with zero interaction. The Dirac points sink into
the Fermi sea, producing two approximately circular Fermi
surfaces of predominantly f character, with fourfold valley spin
symmetry, centered at each KM and K̄M points.
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Δ0ðμ ¼ 0Þ ¼ πA
2

γ20ðkÞ
D2

M ≈ 0.1M; ð28Þ

while, for the full lattice, the bandwidth of the SB model is
W ¼ vDKθ. From Eq. (22), we obtain

W ¼ vDKθ ≈ 0.4M: ð29Þ

The two quantities Δ0ðμ ¼ 0Þ and W are of comparable
magnitude at neutrality.
When the interactions are turned on, the f-spectral

function splits into an upper and lower Hubbard peak at
locations EQ

þ and −EQ
− , with a Kondo resonance in the

center as shown in Fig. 8. The upper and lower resonances
have a half width of the order of ð2Nf −QÞΔ0 and QΔ0,
respectively, where 2Nf ¼ 8 for TBG.

B. Withoff-Fradkin scaling and non-Fermi
liquid physics

Once the temperature drops below the characteristic
energies for valence fluctuations T ≪ minðΔEQ

�Þ ∼ U,
we can integrate out the charge fluctuations to produce
a low-energy Kondo lattice description. The resulting
low-energy effective Hamiltonian, obtained by performing
a Schrieffer-Wolff transformation [102] on Eq. (1),

HK ¼
X

v⋆jkj<D
c†kHðkÞck þ Jeff

X
RBB0

c†RBcRB0SBB0 ðRÞ ð30Þ

is a topological Kondo lattice model. Here, B≡ ðαησÞ2 ≡
1; 2…8 is the SU(8) index written in binary and

SBB0 ðRÞ ¼ f†RBfRB0 −
Q
2Nf

δBB0 ð31Þ

is the SU (8) spin operator. The operator c†RB ≡ c†RðαησÞ
defined in Eq. (8) creates a spatially extended Γ3 con-
duction electron state, centered (rather than localized) at R
with quantum numbers B. In the Kondo limit μ ≪ U, the
strength of the effective Kondo interaction

Jeff ¼
X
�

ðγ0Þ2
ΔEQ→Q�1

¼ 4ðγ0Þ2
U

F½δν�; ð32Þ

where δν ¼ ν − ν0 is the difference between the actual
filling ν and the integer moiré atomic filling ν0 and F½δν� ¼
1=½1 − ð2δνÞ2�.
To get an idea of the underlying physics of the MATBG

Kondo lattice, it is instructive to consider the properties of a
corresponding single-impurity model: i.e., consider a
thought experiment in which only one moiré AA site is
occupied with f electrons. It is particularly instructive to
consider the symmetric neutral case where ν ¼ 0 and
M ¼ 0 [the third chiral limit (flat limit) of MATBG
[24,68]]. In this case, ρcðωÞ ∝ jωj. The Kondo coupling
JðΛÞ is governed by the leading-order scaling equation

∂J
∂ lnΛ

¼ −2NfJðΛÞ2ρcðΛÞ þOðJ3Þ; ð33Þ

where Nf ¼ 4 is the valley-spin degeneracy. Rewriting
Eq. (33) as a dimensionless coupling constant gðΛÞ≡
JðΛÞρcðΛÞ, we find that the Kondo coupling constant
renormalizes according to the “Withoff-Fradkin” scaling
equation [89]:

∂g
∂ lnΛ

¼ gðΛÞ − 2NfgðΛÞ2 þOðg3Þ; ð34Þ

where the first term derives from the derivative of the
density of states. The competition between the linear and
the quadratic terms in this scaling equation gives rise to the
unstable Withoff-Fradkin fixed point (Fig. 9), located in
this case at gc ¼ 1=ð2NfÞ ¼ 1=8. Provided g > gc, a
Kondo effect does take place, characterized by a single

Kondo temperature Tð1Þ
K . However, although g now scales

to strong coupling, the fully screened state that develops in
a Dirac sea is not a Fermi liquid, forming a Kondo
resonance with a singular density of states and a finite
residual entanglement entropy [88].
Now, suppose we reintroduce a small finite M (or,

alternatively, a departure from neutrality): This will now
guarantee a Kondo effect for any value of coupling g. From
a scaling perspective,M has the dimensions of energy with
leading scaling behavior is ð∂M=∂ lnΛÞ ¼ M, so that M is
a relevant perturbation to the Withoff-Fradkin fixed point,
and at scales lower than M, forcing conventional Kondo
scaling is reestablished, scaling away to a conventional
Fermi liquid strong-coupling fixed point. The schematic
scaling phase diagram is shown in Fig. 10.

FIG. 8. (a) Energy-level diagram showing the position f-level
excitation energies for the case of Q ¼ 3 f electrons, i.e.,
ν0 ¼ −1. (b) Spectral function for the f state in an impurity
model, showing upper and lower Hubbard resonances and the
central Kondo resonance against the background of the linear
density of states of the conduction sea.
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In reality, M is finite and we are never precisely at
particle-hole symmetry in MATBG; nevertheless, we shall
argue that for realistic parameters g≳ gc, so that, over a
large temperature range, the physics is dominated by the
Kondo effect in a Dirac sea. In particular, for g > gc and
small M, the Kondo scaling trajectories are initially
dominated by the non-Fermi liquid fixed point, correspond-

ing to a high Kondo temperature Tð1Þ
K . At a much lower

temperature Tð2Þ
K , the effect of finite M develops, causing

the system to lose its residual entanglement entropy at a

second, lower-temperature Kondo scale Tð2Þ
K .

We can estimate Tð1Þ
K by integrating the scaling equa-

tion (34)

Z
1

g0

dg
g − 2Nfg2

¼
Z

2πTð1Þ
K

U=2
d lnΛ; ð35Þ

where Λ0 ∼U=2 is the upper cutoff and 2πTð1Þ
K is the lower

cutoff determined by the Kondo temperature. This then
gives

Tð1Þ
K ¼ U

8πð1 − g0Þ
�
1 −

gc
g0

�
; ð36Þ

where gc ¼ 1=2Nf and g0 ¼ ½4γðkÞ2=U�ρcðΛ0Þ. For
M ¼ 0, the third chiral limit (flat limit) [24,68] of
MATBG, we expect that

Tð1Þ
K ∼ γ; ð37Þ

where γ is the renormalized hybridization gap. We will see
that this is confirmed by mean-field theory.
We can also estimate Tð2Þ

K by identifying with the

renormalized resonant level width Tð2Þ
K ∼ Δ where the

renormalized hybridization Δ ¼ 2πðγ=DÞ2M (23), with

γ0 → γ ∼ Tð1Þ
K , which gives

Tð2Þ
K ∼ Δ ∝ π

�
Tð1Þ
K

D

�2

M ≪ Tð1Þ
K ð38Þ

for the Fermi liquid temperature. As in the noninteracting
case, there is a very large ratio between the two temperature

scales Tð1;2Þ
K , and, in the limit M → 0, non-Fermi liquid

behavior continues to zero temperature. The scale Tð2Þ
K

corresponds to the renormalized Dirac bandwidth of the flat
bands. The characteristic size of the screening cloud

ξK ¼ vD

Tð2Þ
K

→ ∞ ð39Þ

diverges in the limit M → 0, reflecting the finite entangle-
ment entropy and the critical nature of the Kondo effect at
the Withoff-Fradkin fixed point.
Normally, we would expect that a non-Fermi liquid fixed

point of a Kondo impurity would not survive in the lattice.
However, the crystal symmetries of MATBG guarantee the
existence of Dirac cones at the KM points which become
flat when M ¼ 0, and, as in the impurity, this fixed point
will dominate the physics over a large energy range,
guaranteeing the persistence of a two-scale lattice Kondo
effect in MATBG, allowing us to use the impurity estimates
as an order-of-magnitude guide to the corresponding scales
in the lattice. We note that the presence of a finite
occupancy of the flat bands will then require the Fermi
level to be pinned near the Dirac-like dispersion at the
moiré K points. (We now show this is the case using a
mean-field theory.) In conclusion, we expect that a similar

ratio between Tð1Þ
K and Tð2Þ

K will persist in the Kondo lattice
of MATBG, where for M ¼ 0, the renormalized band

FIG. 9. M ¼ 0 scaling diagram for the dimensionless Kondo
coupling g, showing the unstable Withoff-Fradkin (WF) fixed
point gc. Flow to weak coupling occurs below WF (g < gc);
above WF (g > gc), flow to strong coupling yields a non-Fermi
liquid (NFL) fixed point with residual entropy.

FIG. 10. Schematic scaling trajectories for the (single-ion)
Kondo effect within the SB model. Finite M ensures the Kondo
effect for all g. For g > gc and small M, scaling trajectories are
initially dominated by the NFL fixed point, corresponding to a

high temperature Tð1Þ
K . There is then a rapid crossover at Tð2Þ

K ,
when the effect of finiteM develops, to a heavy Fermi liquid (FL)
fixed point with fully quenched local moments.
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structure will contain perfectly flat f bands and non-Fermi
liquid behavior.

V. MEAN-FIELD APPROACH

We follow the method of Florens and Georges [75,76]
using an auxiliary-rotor description to develop a mean-field
theory. The advantage of this approach is that it reproduces
the correct strong- and weak-coupling limits and is not
limited to a particular range of filling factors, enabling us to
capture the valence fluctuations and Kondo effect in
MATBG at all filling factors.
The auxiliary-rotor approach follows the strategy of

earlier auxiliary boson methods separating the physical
f-electron field into a product of a spin fermion and an
ancillary charge boson, which in this case is represented as
a rotor. The physical Hilbert space of n ¼ νþ 4 f electrons
is represented as the product of a spinon and rotor state as
follows:

jfνþ4i ¼ jf̃νþ4ijνi ðν∈ ½−4; 4�Þ; ð40Þ

where jνi is an angular momentum eigenstate of a rotor
with Lz ¼ ν, i.e., L̂zjνi ¼ νjνi. We can rewrite jνi in the
angular basis, hθjνi ¼ eiνθ, where

jθi ¼
X
ν

jνihνjθi ¼
X
ν

jνie−iνθ: ð41Þ

In this representation, the physical f-electron field is
separated into a product of a spin fermion and an ancillary
raising operator Lþ ¼ P

ν jνþ 1ihνj:

f†αησ ≡ f̃†αησLþ; ð42Þ

so that, each time an f fermion is added, the rotor angular
momentum increases by one, conserving the gauge charge

Q̂ ¼ ν̂f − Lz; ½f†αησ; Q̂� ¼ 0; ð43Þ

where ν̂f ¼ n̂f − 4 is the filling factor. The physical Hilbert
space corresponds to the gauge “neutral” slice of Fock
space where Q̂ ¼ 0, or νf ¼ Lz. Importantly, the constraint
is a perfect constant of motion, so that the fluctuations in
the rotor angular momentum perfectly track the fluctuations
in the physical charge. For this reason, merely by imposing
the constraint hQ̂i ¼ 0, one obtains a good approximation
to the underlying Coulomb blockade physics.
In the angular basis,

Lþjθi ¼
X
ν

jνþ 1ie−iνθ ¼
X
ν

jνie−iðν−1Þθ ¼ eiθjθi; ð44Þ

so that Lþ ¼ eiθ is simply a phase factor, and we can
rewrite physical creation operator (42) as a product of spin
and charge degrees of freedom:

f†αησ → f̃†αησeiθ: ð45Þ

In this way, the phase of the rotor θ is conjugate to the
physical charge nf ¼ −ið∂=∂θÞ of the f state.
With these considerations, the moiré atomic interaction

(18) becomes

HA ¼ U
2

X
R

ðLz
R − κνÞ2; ð46Þ

while the hybridization (47) becomes

Hfc ¼ γ0
X
Rαησ

�
f̃†RαησcRαησL

þ
R þ H:c:

�
: ð47Þ

The mean-field theory is obtained by imposing hQi ¼ 0
with a Lagrange multiplier, treating the rotor and fermionic
degrees of freedom as separate degrees of freedom subject
to this constraint. With this approximation, the hybridiza-
tion is renormalized:

γ0 → γ ¼ γ0hLþ
Ri ¼ γ0heiθi → γ0hcos θi; ð48Þ

where, for convenience, one chooses a phase where
hsin θi ¼ 0. The coupling between the fermions and the
rotor defined by Hfc produces a transverse Weiss field on
the rotor, giving rise to a mean-field rotor Hamiltonian of
the following form:

Hrot ¼
U
2
ðLz − κνÞ2 − K cos θ ð49Þ

subject to the constraint

K ¼ −2γ0hf̃†RαησcRαησi: ð50Þ

We now reformulate the mean-field theory as a varia-
tional Hamiltonian, rewriting the lattice Hamiltonian (1) as

H ¼ Hrot þHF þ Ns

�
γK
γ0

þ μν

�
; ð51Þ

Hrot ¼ Ns

�
U
2
L2
z − ðξþUκνÞLz − K cos θ

�
; ð52Þ

HF ¼
X
kησ

h
Ψ†

kησHFðkÞΨkησ

i
þ μhNciν¼0 − Nsðξ − μÞNf;

ð53Þ

where γ, K, and ξ are determined by the stationary points of
the mean-field free energy. Note that the cross term
NsðγK=γ0Þ in H results from a Hubbard-Stratonovich
decoupling of the hybridization (47), permitting us to vary
γ and K independently, using stationarity to impose the
constraints (48) and (50). The matrix
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HFðkÞ ¼

0
BBBBB@

ðξ − μÞσ0 γϕðηÞðkÞ � � � γϕðηÞðkþGnÞ
γϕðηÞðkÞ† HðηÞðkÞ − μ1 0 0

..

.
0 . .

.
0

γϕðηÞðkþGnÞ† 0 � � � HðηÞðkþGnÞ − μ1

1
CCCCCA ð54Þ

determines the quasiparticle dispersion with renormalized
hybridization strength γ, where the conduction electron
dispersion matrix HηðkÞ is defined in Eq. (6) and the
hybridization matrices ϕðηÞðkÞ defined in Eq. (9). hNciν¼0

is the number of c electrons at half filling, andNf ¼ 4 is the
valley spin degeneracy. Lz is the angular momentum
operator. We rewrite the rotor Hamiltonian as

Hrot ¼
U
2
L2
z − ðξþ UκνÞLz −

K
2
ðLþ þ L−Þ: ð55Þ

ξ is the Lagrange multiplier that constrains the allowed
values of the angular momentum component Lz ¼
ml ∈ ½−Nf;Nf�.

Ψkησ ¼ ðf̃k1ησ; f̃k2ησ; ck1ησ; ck2ησ; ck3ησ; ck4ησ;
ckþG11ησ;…; ckþGn3ησ; ckþGn4ησÞT ð56Þ

is a spinor combining the four conduction fields at each
reciprocal lattice vector and the two f-electron operators at

each valley η ¼ �1 and spin σ ¼ �1. (For convenience,
henceforth we drop the tilde on the f fields.) Notice that
whileHMFðkÞ commutes with the spin and valley quantum
numbers, at general momentum it breaks the twofold Γ3

degeneracy down to a Nf ¼ 4-fold valley-spin degeneracy.
The mean-field Free energy per unit cell obtained by

integrating out the fermions for a static configuration of the
fields ðγ; ξ; KÞ is then

F ¼ F þΦrot þ
�
γK
γ0

þ μν

�
; ð57Þ

F ¼ −
Nf

Ns
T
X
k

Tr lnð1þ e−βHFðkÞÞ þ μhNciν¼0

− ðξ − μÞNf; ð58Þ

Φrot ¼ −T ln Tr½e−βHrot �: ð59Þ

Writing

−TNf

X
k

Tr½1þ e−βHFðkÞ� ¼ −TNf

X
k

Tr½2 coshðβHFðkÞ=2Þ� þ
Nf

2

X
k

TrHFðkÞ

¼ −TNf

X
k

Tr½2 coshðβHFðkÞ=2Þ� þ NsNf½ðξ − μÞ − μ2NG�

¼ −TNf

X
k

Tr½2 coshðβHFðkÞ=2Þ� þ Nsðξ − μÞNf − μhNciν¼0; ð60Þ

where NG (NG ¼ 7 in our calculations) is the number of
reciprocal lattice vectors G⃗, including the origin included
in HF, we can rewrite the mean-field free energy per unit
cell as

F ¼ −
Nf

Ns
T
X
k

Tr lnf2 cosh½βHFðkÞ=2�g

þΦrot þ
�
γK
γ0

þ μν

�
: ð61Þ

The saddle-point requirement that F be stationary with
respect to variations inK, γ, and ξ imposes the coupled self-
consistency conditions

hcos θiθ ¼
γ

γ0
; ð62Þ

K ¼ −2
γ0
Ns

X
R;B

hc†RBf̃RBi; ð63Þ

and

hLzi ¼
1

Ns

X
R;B

hf̃†RBf̃RBi − Nf ¼ νf: ð64Þ

Stationarity of the free energy with respect to the chemical
potential μ fixes the total number of electrons Ne in the
system:
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−
∂F
∂μ

¼ νc þ νf − ν ¼ 0; ð65Þ

where ν ¼ ðNe − hNeiν¼0Þ=Ns is the filling factor and we
denote νc ¼ ðhN̂ci − hN̂ciν¼0Þ=Ns.
The key scales of the mean-field mixed valent moiré

lattice model for TBG are set by the impurity physics before
coherence is reached. Hence, the doping-temperature phase
diagram for the mixed valent moiré lattice model would
greatly resemble aDoniach phase diagrambased on a single-
impurity model for the f states in MATBG.
The mean-field hybridization width for the mixed valent

moiré lattice is

Δ½μ� ¼ πρcðμÞγ2ðkÞ; ð66Þ

where γ2ðkÞ ¼ ½γ2=ðγ0Þ2�γ20ðkÞ is the momentum integrated
average of the mean-field hybridization squared. We
anticipate the approximate mean-field bandwidth of the
flat band to be

W̃MF ¼ vMF
D Kθ ¼

γ2

ðγ0Þ2
W ∼ Δ; ð67Þ

where vMF
D is the Dirac velocity at the KM points for the

mean-field theory and W is the bare noninteracting band-
width (68).

VI. MEAN-FIELD RESULTS

In our calculations, we adopt the phenomenological
values U ¼ 30 meV, κ ¼ 0.8, and γ0 ¼ 6.5 meV. The
choice of γ0 is a delicate balance: If γ0 is too large, then
no local moment behavior survives and the chemical
potential has no reset behavior; if γ0 is too small, then
the band gap between the flat bands and remote bands at
ΓM never fully opens and the flat bands never become
topological. Our choice of γ0 preserves the resetting
behavior of the chemical potential μ½ν� as a function of
filling, at the cost of the gap to the remote bands from
opening [103].
With these reduced bare parameters, the noninteracting

bandwidth (29) is reduced to

W ≈ 0.02M ∼ 1.0 K: ð68Þ

We then numerically solve the self-consistent equa-
tions (63)–(65) as a function of the filling factor. The
particle-hole symmetric results are displayed for positive
doping. With the choice of parameters above, our mean-
field theory reproduces the moiré atomic limit (Sec. III B).
The chemical potential μ undergoes a partial reset as a
periodic function of filling (Fig. 11) and the inverse
compressibility has peaks at integer fillings (Fig. 12), a
consequence of the Coulomb blockade physics and the
emergent f-electron potential. The scales from the analytic

unhybridized moiré atomic limit [Fig. 6(a)] are renormal-
ized in our mean-field results by both the finite hybridi-
zation and finite temperature effects.

A. Unquenched f states

We observe development of nonzero hybridization

hcos θiθ ¼ γ=γ0 ≠ 0 at a characteristic temperature Tð1Þ
K ≈

9 meV (Fig. 13), formally indicating the onset of the
Kondo effect. This would typically signal the fractionali-
zation of the local moments into heavy f states and the

formation of a heavy Fermi liquid state below Tð1Þ
K in

conventional heavy-fermion systems.

FIG. 11. Chemical potential μ variation with total filling factor
ν for T ¼ 0.1 meV with phenomenological parameters U ¼
30 meV and κ ¼ 0.8 within the mean-field theory. Like the
moiré atomic limit, the chemical potential jumps at the integer
filling factors and partially resets between successive integer
fillings. The analytic chemical potential of the jump by U and the
partial reset byUκ within the moiré atomic limit are renormalized
by both finite hybridization and finite temperature effects.

FIG. 12. Inverse compressibility dμ=dν variation with total
filling factor ν for T ¼ 0.1 meV with phenomenological param-
eters U ¼ 30 meV and κ ¼ 0.8 within the mean-field theory.
Like the moiré atomic limit, we get small negative values around
half-integer fillings. The scales from the moiré atomic limit are
renormalized by both finite hybridization and finite temperature
effects.
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However, the relevant energy scale for Fermi liquid
formation is the much smaller f-band width W̃MF (67),
which gives rise to a much lower coherence temperature

Tð2Þ
K ∼ W̃MF ≪ Tð1Þ

K . This disparity leads to the persistence
of thermally active, unquenched f states in the wide

intermediate temperature range between Tð1Þ
K and Tð2Þ

K .
The signatures of these unquenched f states include a

Curie-Weiss magnetic susceptibility down to Tð2Þ
K , local

moments with an unquenched entropy that persists below

Tð1Þ
K , and ultimately quenching below Tð2Þ

K , giving rise to a

specific heat feature around Tð2Þ
K .

We calculate the magnetic susceptibility χ ¼ −∂2F=∂B2,
evaluated at B ¼ 0 from the bubble diagram of the f
spinors, which is is equivalent to calculating −∂2F=∂μ2jξ at
a fixed constraint field ξ. At high temperatures larger than
the Kondo temperature, we expect the magnetic suscep-
tibility to assume a Curie-Weiss form:

χðTÞ ∝ m2

T þ θ
; ð69Þ

wherem is the magnetic moment of each free local moment
and θ is the Curie-Weiss temperature, a phenomenological
scale taking care of interactions between moments.
Typically, in heavy-fermion systems, the onset of Kondo

order (Fig. 13) at Tð1Þ
K coincides with the end of Curie-

Weiss magnetic susceptibility due to Kondo screening.
Intriguingly, and distinct from conventional heavy-fermion
phenomenology, our mean-field theory for MATBG finds
that the Curie-Weiss behavior, characterized by the linear
temperature dependence of the inverse magnetic suscep-
tibility χ−1, persists below the Kondo ordering temperature

Tð1Þ
K down to a much smaller Kondo coherence scale Tð2Þ

K
(Fig. 14 inset).

At the mean-field condensation temperature Tð1Þ
K , we

observe a transition between two different Curie-Weiss
behavior in the inverse magnetic susceptibility χ−1ðTÞ,
exhibiting an increased gradient below the mean-field

ordering temperature Tð1Þ
K (Fig. 14). The gradient of the

inverse magnetic susceptibility is inversely proportional to
the square of the magnetic moment of the free local
moments (69). Hence, the gradient increase indicates a

partial quenching of the SU(8) local moments at Tð1Þ
K .

To verify the partial screening of the SU(8) local
moments at the mean-field transition temperature Tð1Þ

K
and their thermal nature until the f states are fully quenched

at the Kondo coherence temperature Tð2Þ
K , we calculate the

entropy of the f state:

S ¼ −
X
n

ðjhnj1fij2 þ jhnj2fij2Þ

× ðfn ln fn þ ð1 − fnÞ ln ð1 − fnÞÞ ð70Þ

byprojecting the analytic entropy for the eigenstate jniof the
fermionic mean-field Hamiltonian HF (54), onto j1fi, and
j2fi, the two orbital eigenstates of the f state in the moiré
atomic limit with zero hybridization to the c electrons. In
Eq. (70), fn ¼ fðEn; TÞ is the Fermi-Dirac distribution.
We confirm the incoherent thermal nature of the f states

in the intermediate temperature regime Tð2Þ
K < T < Tð1Þ

K by
comparing the f-state entropy with the high-temperature
fermionic entropy of a thermal state for ν ¼ 2, where p ¼
6=8 of the eight f states are filled:

FIG. 13. Mean-field order parameter γðTÞ plotted against
temperature for fillings ν ¼ 0 (orange), 0.5 (red), 1 (green),
1.5 (purple), and 2 (blue). We find the Kondo order transition

Tð1Þ
K ∼ 9 meV. Bare hybridization used: γ0 ¼ 6.5 meV.

FIG. 14. Inverse spin and valley susceptibility χ−1 as a function
of temperature T for integer filling ν ¼ þ2 plotted in blue. There
is a subtle crossover between two Curie-Weiss behaviors around

the temperature Tð1Þ
K ≈ 9 meV where Kondo order turns on. Inset:

inverse spin and valley susceptibility for fillings ν ¼ 0 (orange),
0.5 (red), 1 (green), 1.5 (purple), and 2 (blue), offset by different
constants for clarity. Curie-Weiss behavior persists well below the

Kondo ordering temperature Tð1Þ
K , and magnetic SU(8) local

moments in MATBG are fully screened only at around

Tð2Þ
K ∼ 0.01 meV, where Curie-Weiss behavior ends.
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Stherm ¼ −8kBðp lnpþ ð1 − pÞ ln ð1 − pÞÞ
≈ 4.5kB: ð71Þ

Our numerical results (Fig. 15) also show a good
agreement with the thermal fermionic entropy (71) between

Tð1Þ
K and Tð2Þ

K for the other filling factors, providing strong
evidence that the f states remain thermalized and incoher-

ent below the mean-field transition Tð1Þ
K , all the way down

to the Kondo coherence temperature Tð2Þ
K .

We further calculate the f-state specific heat to temper-
ature ratio by taking the temperature derivative of the
f-state entropy S:

CV

T
¼ dS

dT
: ð72Þ

At low temperatures, CV=T is proportional to the effective
mass of the quasiparticle carriers; in our numerical results,
CV=T peaks at a finite large value around the Kondo

coherence temperature Tð2Þ
K (Fig. 16), indicating that the

coherent quasiparticle carriers are heavy.

B. Valence fluctuations

To show that our mean-field theory captures the valence
fluctuations in the model, we calculate the distribution of
valences as a function of filling. We do this by calculating
the overlap between the ground state j0roti of the rotor
Hamiltonian (55) using the mean-field parameters γ, λ, and
K solved for self-consistently at T ¼ 0.1 meV:

PðQÞ ¼ jhQj0rotij2; ð73Þ

where jQi is the angular momentum eigenstate correspond-
ing to valence Q and the probabilities are normalized such
that

P
Q PðQÞ ¼ 1. In the Kondo limit, PðQ ¼ 4þ νÞ ¼ 1,

with no mixed valency.
As shown in Fig. 17, we observe a sharply peaked

valence distribution at integer filling factors. In contrast,
away from the integer filling factors, the probability of
populating neighboring valence states (e.g., Q ¼ 3, 5 for
ν ¼ 0) becomes comparable to the probability of the central
valence hnfRi ¼ 4þ ν. This finding indicates the presence
of strong valence fluctuations around half-integer filling

FIG. 15. Entropy S of the f states as a function of temperature T
for fillings ν ¼ 0 (orange), 0.5 (red), 1 (green), 1.5 (purple), and 2

(blue). The entropy between Tð1Þ
K ≈ 9 meV and Tð2Þ

K ∼ 0.01 meV
has good agreement with the high-temperature entropy Stherm ≈
4.5kB for a thermal state with six out of eight f states filled. Inset:

enlarged view around the mean-field transition temperature Tð1Þ
K ;

dotted lines show a gradient decrease in the f-state entropy just

below Tð1Þ
K .

FIG. 16. Specific heat capacity divided by temperature CV=T as
a function of temperature T for fillings ν ¼ 0 (orange), 0.5 (red),
1 (green), 1.5 (purple), and 2 (blue). The discontinuous jump at

Tð1Þ
K ≈ 9 meV is a signature of the mean-field second-order phase

transition for the Kondo phase. At the Kondo coherence temper-

ature Tð2Þ
K ∼ 0.01 meV, CV=T peaks at a large finite value, a

signature of the large effective mass of the quasiparticle carriers
when coherence has formed.

FIG. 17. Valence Q distribution of the f electrons as a function
of filling ν; the color bar represents the probability of finding
valence state Q at filling ν. Parameters used: U ¼ 30 meV,
κ ¼ 0.8 with γ0 ¼ 6.5 meV at T ¼ 0.1 meV.

TOPOLOGICAL MIXED VALENCE MODEL FOR TWISTED … PHYS. REV. X 15, 021028 (2025)

021028-15



factors, despite the established of Kondo order at temper-

atures below Tð1Þ
K .

This mixed valence behavior departs from the proto-
typical Kondo limit, where a single well-defined valence
state would dominate.

C. Quasiparticle band structures

We conclude the mean-field results section by showcas-
ing the quasiparticle band structures (Figs. 18–22) for
filling factors ν ¼ f0;þ0.5;þ1;þ1.5;þ2; g at temperature

T ¼ 0.004 meV ≪ Tð2Þ
K below the Kondo coherence

temperature.
The bandwidth of the mean-field quasiparticle disper-

sions (Figs. 18–22) at ΓM remains at 2M but the bandwidth
at KM is renormalized down, causing the bands to be
incredibly flat away from the ΓM point. Using the

FIG. 18. Many-body mean-field band structure for a half filled
flat band ν ¼ 0. Parameters used: chemical potential μ ¼ 0 meV,
ξ ¼ 0 meV, U ¼ 30 meV, κ ¼ 0.8, with γ0 ¼ 6.5 meV, and γ ¼
3.96 meV at T ¼ 0.004 meV. The inset shows the Brillouin zone
with no electron or hole pockets for half filling.

FIG. 19. Many-body mean-field band-structure for ν ¼ þ0.5.
Parameters used: chemical potential μ ¼ 2.46 meV, ξ ¼
2.47 meV, U ¼ 30 meV, κ ¼ 0.8, with γ0 ¼ 6.5 meV, and γ ¼
4.45 meV at T ¼ 0.004 meV. The inset shows the Brillouin zone
with electron pocket relative to half filling, shaded in blue.

FIG. 20. Many-body mean-field band structure for ν ¼ þ1.
Parameters used: chemical potential μ ¼ 3.99 meV, ξ ¼
4.01 meV, U ¼ 30 meV, κ ¼ 0.8, with γ0 ¼ 6.5 meV, and γ ¼
4.01 meV at T ¼ 0.004 meV. The inset shows the Brillouin zone
with electron pocket relative to half filling, shaded in blue.

FIG. 22. Many-body mean-field band structure for ν ¼ þ2.
Parameters used: chemical potential μ ¼ 8.13 meV, ξ ¼
8.18 meV, U ¼ 30 meV, κ ¼ 0.8, with γ0 ¼ 6.5 meV and γ ¼
4.16 meV at T ¼ 0.004 meV. The inset shows the Brillouin zone
with electron pocket relative to half filling, shaded in blue.

FIG. 21. Many-body mean-field band structure for ν ¼ þ1.5.
Parameters used: chemical potential μ ¼ 6.77 meV, ξ ¼
6.82 meV, U ¼ 30 meV, κ ¼ 0.8, with γ0 ¼ 6.5 meV and γ ¼
4.46 meV at T ¼ 0.004 meV. The inset shows the Brillouin zone
with electron pocket relative to half filling, shaded in blue.
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renormalized mean-field hybridization γ ≈ 4 meV at low
temperatures (Fig. 13), we estimate the renormalized
bandwidth at KM (67) to be

W̃MF ¼ vMF
D Kθ ∼ 0.01M ≈ 0.03 meV ≈ 0.4 K: ð74Þ

We find that the renormalized bandwidth W̃MF is approx-
imately a tenth of the bare bandwidth (29) and a good

match to the Kondo coherence temperature Tð2Þ
K ∼

0.01 meV (Fig. 14) in our mean-field theory numerics.

VII. DISCUSSION

In this paper, we have investigated the Song-Bernevig
model of twisted bilayer graphene, taking advantage of the
close analogy with heavy-fermion and quantum dot phys-
ics. We have developed an auxiliary-rotor approach to
describe the normal state across a full range of doping.
Within the auxiliary-rotor approach, we are able to capture
both the Kondo physics near integer filling factors and the
strong mixed valency near half-integer filling factors. One
of the key points to arise from our study are discrepancies
between the ab initio values of the hybridization and on-site
Coulomb interaction in the Song-Bernevig model and the
corresponding values obtained from experiment. These
discrepancies suggest renormalization processes, such as
the effects of phonons, that may lie beyond the current
model. Another key aspect of the physics is the presence of
two scales in the problem—a nominal Kondo temperature
which establishes the topological band structure and a
much lower scale at which the flat bands lose their thermal
entropy.
Further experiments may help to test the foundation of

the SB description. In conventional heavy-fermion systems,
the presence of local moment behavior is immediately
evident from the Curie-Weiss behavior of the magnetic
susceptibility

χðTÞ ∝ 1

T þ θ
: ð75Þ

To what extent can such Curie-Weiss behavior be detected
from aMaxwell analysis of field-dependent compressibility
measurements? It would be useful to use field-dependent
compressibility measurements to back out the spin and
valley susceptibility and directly measure the size of the
moment. It would also be intriguing, in future work, both
theoretical and experimental, to observe and quantify the
charge redistribution between the conduction and f elec-
trons as a function of gate voltage.
Magnetic susceptibility measurements would be a key

indicator of the predicted two Kondo temperatures (Tð1Þ
K

and Tð2Þ
K ). A key issue is whether MATBG exhibits a

Pauli paramagnetic region (indicating a heavy Fermi liquid)
or whether Curie paramagnetism persists down to

superconductivity or correlated insulator transition temper-
atures, as in the heavy-fermion superconductors NpPd5Al2
and CeCoIn5 [104].
The heavy-fermion physics in MATBG raises an inter-

esting possibility of parallels between STM tunneling in
MATBG and traditional heavy-fermion systems. The spe-
cific manifestation of Kondo behavior will depend on the
position-dependent tunneling amplitudes into the conduc-
tion states (dominating at the AB points) and the f states
(dominating at the AA points): The AB regions are expected
to provide a broad feature characteristic of the Gamma-
point light fermions, whereas the AA regions should image
the very narrowV-shaped density of states of the coherent f
states. Generically, as in conventional heavy fermions, we
expect a Fano feature corresponding to the interference
between conduction and f-state tunneling amplitudes [105].
The detailed form of Fano features and their dependence on

the incoherent scattering that will persist between Tð1Þ
K and

Tð2Þ
K are key issues for future investigation.
We note that our work does not yet include the effects of

strain, particularly, “heterostrain,” in which one layer is
uniaxially strained relative to the other. Heterostrain is
known to preserve the Dirac points, while breaking the
degeneracy between the renormalized Dirac cones in the
same valley [91,94]. Our two-temperature Kondo descrip-
tion is expected to remain valid in this situation, because
each Dirac cone will be associated with its own renormal-
ized Dirac bandwidth, and the chemical potential will lie
close to the KM or KM Dirac cone, depending on whether
the system is electron or hole doped. This increased Dirac
bandwidth produced by heterostrain could, however, raise

the lower Kondo temperature Tð2Þ
K to the point where Fermi

liquid behavior becomes apparent. Furthermore, the reduc-
tion of nonlocal interactions relative to on-site terms by
heterostrain [94] would provide additional support for the
use of a simplified treatment of local interactions model.
Although the work of Song and Bernevig emphasizes an

ab initio description of the relevant interactions in MATBG,
giving rise to an on-site Coulomb interaction in the range
60–100 meV, the measured U ∼ 30 meV [50] is signifi-
cantly smaller, suggesting that there are important renorm-
alization effects at work in the low-energy physics of
MATBG. A similar discrepancy is implicit in DMFT
approaches to MATBG [23,47], which have encoded the
discrepancy in terms of a dielectric constant ϵ ∼ 10, a factor
of 2 or 3 larger than the accepted value for this system.
A promising candidate for these renormalization effects

are the interactions of phonons with the valence fluctua-
tions, an effect which we now briefly discuss. Recent
μ-ARPES experiments [87] have demonstrated a coupling
of the flat f bands with an intervalley optic phonon
(Fig. 23) that gives rise to multiple satellites in the density
of states, separated by the optic K-phonon frequency of
about ω0 ∼ 150 meV. These phonons modify the moiré
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atomic Hamiltonian of the flat-band electrons in MATBG,
giving rise to a Holstein model of the form

H ¼ ω0b†bþ gðbþ b†Þf†τxf; ð76Þ

where τx denotes the valley spin operator and we have
modeled the optic phonon as a single Einstein mode. From
this Hamiltonian, we see that the valley spin of the f
electrons acts as a force term on the optic phonons. Each
time an f electron is added to the system, the phonons will
valley polarize. Moreover, since the frequency of the
Einstein mode is far greater than the characteristic time-
scales of valence fluctuations, this polarization will have
time to fully establish itself each time the valence fluc-
tuates. Such polaronic effects are usually negligible in
heavy-fermion systems, where the valence fluctuations are
far faster than the phonons [85,86], and have recently been
observed to develop in conjunction with the slow charge
fluctuations associated with strange-metal behavior in the
heavy-fermion compound YbAlB4 [106]. Suppose we add
an f electron into a coherent superposition of valleys,
forming a state jf1; τx ¼ 1i; then, the resulting bosonic
ground state is a Glauber state given by

jbi ¼ e−jzj2=2e−zb† j0i; ð77Þ

where z ¼ ðg=ω0Þτx. In fact, we can replace z →
ffiffiffiffiffi
nb

p
,

where nb is the number of bosons that condense in response
to the valence fluctuation. From this simple argument, we
see that the f-quasiparticle operator for this system must
also include the coherent state term of the bosons, i.e.,

f†qp ¼ e−nb=2e−
ffiffiffiffi
nb

p ðf†τxfÞb†f†; ð78Þ

where we have dropped the valley spin indices. The overlap
between an unrenormalized f state and the quasiparticle is
then

ffiffiffiffi
Z

p ¼ hfqpjf†j0i ¼ e−nb=2. This immediately implies

that both the hybridization and the repulsive U will be
renormalized as follows:

γ0 → γ�0 ¼
ffiffiffiffi
Z

p
γ0; U → U� ¼ Z2U: ð79Þ

Experiment indicates that U�=U ∼ 1=4, implying that
Z ∼ 1=2 corresponding to nb ¼ ln 2 ∼ 0.7 valley phonons
associated with each additional f electron.
Our auxiliary-rotor mean-field approach necessitated a

reduction of the bare hybridization from γ0 ¼ 25 meV to
γ0 ¼ 6.5 meV—exceeding the expected polaron renorm-
alization [Eq. (79)]—to preserve the resetting behavior of
the chemical potential μ½ν� as a function of filling. We
attribute this to the method’s overestimation of the physical
problem’s relevant cutoff, yielding D ¼ 133 meV instead
of U=2 ¼ 15 meV. We leave this to be addressed in future
studies.
We note following previous authors [107–111] that, in

addition to the renormalization of the Coulomb interaction,
the valley phonon will introduce an attractive Valley-Hunds
interaction of the form Hph ¼ −ðg2=ω0Þðf†τxfÞ2. In fact,
when we normal order this interaction, we obtain

Hph ¼ −
g2

ω0

½nf þ ∶ðf†τxfÞ2∶ �: ð80Þ

The first term in this expression is a local binding potential
which provides a natural contribution to the heavy-fermion
binding potential we have introduced in this paper, on
purely phenomenological grounds, allowing us to tenta-
tively identify

κU ¼ g2

ω0

: ð81Þ

Based on the model fitting the μ-ARPES data [87], we
obtain κ ∼ 0.6, which is in the right ballpark for our mean-
field theory. However, estimating κ through electron-
phonon coupling strengths from the literature poses a
challenge for two reasons. First, the relevant coupling is
between optical phonons and localized electron states at the
AA sites, whereas ab initio results typically address Bloch
states and acoustic phonons. Second, reported coupling
strengths vary widely in the literature.
The coupling strength required to obtain κ ¼ 0.8, g ≈

60 meV lies between literature extremes: an order of magni-
tude above some electron-phonon couplings [112]—which
consider only phonon frequencies in an energy window
smaller than the 150 meV optical K phonon, yet an order
of magnitude below Bloch electron-optical K-phonon
couplings [109].A recent study of opticalK phonons coupled
to AA-localized states suggests lower coupling values but
acknowledges significant parameter sensitivity [110]. It
would be interesting in future studies to use the μ-ARPES
satellite data [87] to fit g and predict κ. Several authors have

FIG. 23. Schematic representation of the K-phonon process,
whereby an f electron in the valley KM is scattered to the other
valley K0

M through the absorption or emission of a K phonon.
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commented on the possibility for the second term of Eq. (80)
to play an important role in the superconductivity ofMATBG.
The full implications of this line of reasoningwill be explored
in our future work.
A second key aspect of our study is the presence of two

Kondo scales for the MATBG Kondo lattice—a large
separation between the Kondo temperature Tð1Þ

K associated
with the Withoff-Fradkin fixed point, which establishes the
topology in the flat bands, and a considerably lower

coherence temperature Tð2Þ
K , at which the flat bands

entangle with the conduction sea and lose their thermal
entropy, forming a heavy Fermi liquid (see Fig. 10). This
finding is consistent with an extensive temperature regime
hosting a two-fluid system [113] comprising coherent
hybridized electrons at the Γ point and thermal flat f
states around the KM points. Our mean-field theory
provides the following estimates for the two scales [see
Eqs. (37) and (38)]:

Tð1Þ
K ∼ γ; Tð2Þ

K ∼ B

�
Tð1Þ
K

Kθv⋆

�2

M; ð82Þ

where B ¼ 2ð1þ a2⋆K
2
θÞ þ λ̃2ð1 − a2⋆K

2
θÞ ∼ 10 is a dimen-

sionless factor and our estimate of the lower Kondo

temperature Tð2Þ
K is the renormalized Dirac bandwidth

around the moiré K points (67).
Although we can only crudely estimate Tð1Þ

K ∼ γ ∼
50–100 K, i.e., Tð1Þ

K =ðv⋆KθÞ ∼ 1=100, so that Tð2Þ
K ∼

M=100 ∼ 0.5 K, the important point is that the high-
temperature Kondo crossover will dominate most of the
measured temperature range. Indeed, it is likely that true
Fermi liquid behavior is interrupted by superconductivity
or insulating behavior—i.e., the Kondo I fixed point
dominates most of the interesting temperature range—
and that the Fermi liquid limit is never actually attained.
We now discuss some of the implications of our of our

model for electron transport properties. Below Tð1Þ
K , we

expect that, as the temperature decreases due to the
hybridization between the local moments and the c
electrons develops, the gap from the flat-band edge to
remote bands will open and widen. In a conventional Fermi
liquid, the inelastic electron scattering rate is governed by
the phase space for three-quasiparticle excitations, which
grows as the square of the energy ω2:

τFLðωÞ ∝
Z

∞

0

dϵ1dϵ2dϵ3δðω − ϵ1 − ϵ2 − ϵ3Þ ∝ ω2; ð83Þ

which at finite temperature leads to a T2 scattering rate.
However, our theory indicates that, in MATBG, at temper-

atures that lie between the two widely separated scales Tð1Þ
K

and Tð2Þ
K , the flat-band electrons are thermalized. For

these electrons, the main dissipation process will
involve scattering into an intermediate state containing a

particle-hole pair of electrons near the Γ point. The phase
space for this process involves one intermediate f state at
ϵ3 ¼ 0 and two rapidly dispersing electrons near the Γ point
at energies ϵ1 and ϵ2, with a corresponding phase space

τNFLðωÞ ∝
Z

∞

0

dϵ1dϵ2dϵ3δðω − ϵ1 − ϵ2 − ϵ3Þδðϵ3Þ

∝ ω; ð84Þ
that is now linear in energy. When thermal factors are
included, this leads to a scattering rate that is linear in
temperature and energy: a marginal Fermi liquid [114].
This observation raises an intriguing prospect that the
strong-coupling fixed point created by Withoff-Fradkin scal-
ing,with thermal flat-bandf states,might provide the essential
phase space for the strange-metalT-linear resistivity observed
inMATBG.This is an interesting topic for future study.Oneof
the other curious features of our model is that the decay of a
flat-band fermion into three light fermions will exhibit a T2

scattering rate, which may explain the curious observation of
at T2 Hall angle [13]—a feature that is absent in an electron-
phonon model [115] for the strange-metal behavior.
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APPENDIX A: COULOMB ENERGY
WITH SCREENING

Here, we evaluate the Coulomb integral (15)

U ¼
Z
x;x0

ρðxÞVðx − x0Þρðx0Þ; ðA1Þ

where

ρðxÞ ¼ e−x
2=λ2

πλ2
ðA2Þ

is normalized electron density in the Wannier state and

Vðx − x0Þ ¼ e2

4πϵϵ0

X
n

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx − x0j2 þ ð2dnÞ2

p ðA3Þ

is the screened Coulomb interaction between electrons,
where d is the distance to the back gate(s). The summationP

n¼0;1 for a single back gate with a single image charge
per electron and

P∞
n¼−∞ for a double back gate, where

there are the multiply reflected image charges of alternat-
ing sign.
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The result of the integral (A4) is

U ¼ U0F

�
d
λ

�
; ðA4Þ

where

U0 ¼
ffiffiffi
π

2

r
e2

4πϵ0ϵλ
ðA5Þ

is the unscreened Coulomb interaction and

F½x� ¼
X
n

ð−1Þne2xn2Erfc½
ffiffiffiffiffi
2x

p
n� ðA6Þ

describes the dependence of the screening on the distance
to the back gate. For a single back gate

P
n ¼

P
n¼0;1,

while for a double back gate, the sum is over all integers
so that

F½x� ¼
	
1 − e2x

2

Erfc½ ffiffiffi
2

p
x�; single back gate;

1þ 2
P∞

n¼1ð−1Þne2x
2n2Erfc½ ffiffiffi

2
p

xn�; double back gate:
ðA7Þ

To obtain Eq. (A4), we first substitute Eqs. (A2) and (A3) into Eq. (A1) to obtain

U ¼ e2

4πϵ0ϵ

Z
d2xd2x0

1

ðπλ2Þ2 e
−ðx2þx02Þ=λ2X

n

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx − x0j2 þ ð2dnÞ2

p : ðA8Þ

Changing variables to R ¼ ðxþ x0Þ=2 and r ¼ x − x0, so that d2xd2x0 ¼ d2rd2R, we have

U ¼ e2

4πϵ0ϵ

Z
d2rd2R

1

ðπλ2Þ2 e
−ð4R2þr2Þ=2λ2X

n

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð2dnÞ2

p : ðA9Þ

Replacing d2r → 2πrdr and d2R → 2πRdR, carrying out the first integral, we obtain

U ¼ e2

4πϵ0ϵ

Z
∞

0

2πRdR
πλ2

e−2R
2=λ2

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{1=2 Z
∞

0

2πrdr
πλ2

e−r
2=2λ2

X
n

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð2dnÞ2

p
¼ e2

4πϵ0ϵ

Z
∞

0

rdr
λ2

e−r
2=2λ2

X
n

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ð2dnÞ2

p
¼ e2

4πϵ0ϵ

Z
∞

0

due−u
X
n

ð−1Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ2uþ ð2dnÞ2

p ¼ 1ffiffiffi
2

p e2

4πϵ0ϵλ

X
n

ð−1Þn
Z

∞

0

du
e−uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ an2
p ; ðA10Þ

where we substitute u ¼ r2=2λ2 and set a ¼ 2ðd2=λ2Þ.
Carrying out the final integral,Z

∞

0

du
e−uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uþ an2
p ¼ ffiffiffi

π
p

ean
2

Erfc½ ffiffiffi
a

p
n�; ðA11Þ

we obtain the results in Eqs. (A4)–(A6).

APPENDIX B: RENORMALIZED ANDERSON
MODEL: COULOMB BLOCKADE PHYSICS

AND CHEMICAL POTENTIAL

Here, we present the detailed analysis of the variation in
chemical potential with filling factor as described in
Sec. III B. Let us consider the variation of the chemical
potential μ as a function of filling factor ν in an atomic
model:

HAðRÞ ¼ U
2
ðn̂R − 4Þ2 − Uκνn̂R − μn̂R; ðB1Þ

where −Uκν is a phenomenological heavy-fermion poten-
tial proportional to the back-gate voltage. We rewrite the
atomic Hamiltonian (B1) as the following:

HAðRÞ ¼ U
2
ðn̂R − 4 − κνÞ2 − μn̂R ðB2Þ

and ignoring constant offsets to the Hamiltonian. The
physics here is similar to a quantum dot. The stability of
the quantum dot with n ¼ Q electrons requires the ioniza-
tion energies
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ΔEQ
� ¼ EQ�1 − EQ

¼ U
2
ðQ� 1 − 4 − κνÞ2 − μðQ� 1Þ

−
U
2
ðQ − 4 − κνÞ2 þ μQ

¼ U
2
� ðUðQ − 4Þ −Uκν − μÞ

¼ U
2
� ðUð1 − κÞν − μÞ; ðB3Þ

to be positive, where in the last line we use that the filling
factor is defined as ν ¼ Q − 4. The ionization energies are
positive provided that the chemical potential satisfies

U
2
> jUð1 − κÞν − μj: ðB4Þ

At integer filling factor ν, the chemical potential jumps from
−U=2þ Uð1 − κÞν to U=2þ Uð1 − κÞν to compensate for
the extra Coulombic cost. As the filling factor ν is tuned
continuously from ν → νþ 1, the emergent heavy-fermion
potential compensates for Uκ of the Coulombic cost; hence,
the chemical potential drops by the same amount Uκ to
maintain the filling of the localized state. We now consider
two extreme cases: the capacitive (κ ¼ 0) and traditional
heavy fermion (κ ¼ 1). For the capacitive scenario (Fig. 24),
there is no emergent heavy-fermion potential on theAA sites;
therefore, the chemical potential has to bear the full
Coulombic costΔμ ¼ U when the filling factor is increased
by one Δν ¼ 1. For a traditional heavy-fermion system
(κ ¼ 1, Fig. 25), neutrality shifts due to the perfect compen-
sation of the Coulombic costs by the heavy-fermion poten-
tial, provided by protons in the nucleus. Consequently, there
is no shift in the chemical potential Δμ ¼ 0 when the filling
factor is increased by one Δν ¼ 1.

FIG. 24. Sketch in blue of (a) the chemical potential μ and (b) the inverse compressibility dμ=dν as functions of filling factor ν for the
atomic limit of the renormalized Anderson model at zero temperature with κ ¼ 0. There is no effective heavy-fermion potential, and
the chemical potential jumps byU at each integer filling factor to compensate for the Coulombic cost of filling an extra atomic state. The
inverse compressibility remains positive in this model.

FIG. 25. Sketch in blue of (a) the chemical potential μ and (b) the inverse compressibility dμ=dν as functions of filling factor ν for the
atomic limit of the renormalized Anderson model at zero temperature with κ ¼ 1. The effective heavy-fermion potential perfectly
compensates for the Coulombic cost for filling an extra atomic state; hence, the chemical potential completely resets at each integer
filling factor. The inverse compressibility can take negative values of the order of −U in this model.
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APPENDIX C: DERIVATION OF THE
FLAT-BAND DIRAC VELOCITY IN
THE SONG-BERNEVIG MODEL

Here, we derive the approximate expression (22) for the
Dirac velocity

vD≈3

�
γK
D

�
2M
D

�
2ð1þa2⋆K

2
θÞþ λ̃2ð1−a2⋆K

2
θÞ
�
v⋆ ðC1Þ

at the KM points of the Song and Bernevig model,

H0¼
X

k0∈MBZ
G

�X
aa0ησ

HðηÞ
a;a0 ðk0−GÞc†k−G;aησck0−G;a0ησ

þ γ0ffiffiffiffiffiffi
Ns

p
X
αaησ

ð½ϕðηÞðk0−G;γ0Þ�αaf†k0αησck0−G;aησþH:c:Þ
�
;

ðC2Þ
where the conduction electrons can take momenta outside
the moiré Brillouin zone and G are reciprocal lattice
vectors. Here,

HðηÞðkÞ ¼
�

v⋆ðηkxα0 þ ikyαzÞ
v⋆ðηkxα0 − ikyαzÞ Mαx

�
:

ðC3Þ
The matrix form factor is

ϕðηÞðkÞ≡ϕðηÞðk;γ0Þ
¼ e−k

2λ2=2
�
α0þa⋆ðηkxαxþkyαyÞ; 02×2

�
; ðC4Þ

where γ0 and a⋆ set the magnitude and length scale of the
hybridization and λ is a damping factor proportional to the
real-space spread of the localized f-Wannier states. We also
define the bandwidth D ¼ v⋆Kθ, λ̃ ¼ λKθ which will be
useful later.
We focus on the physics at the KM or K̄M points and,

since ϕðηÞ
αa ðkÞ decays exponentially, we keep only the three

MBZs surrounding the moiré K point, preserving the C3z
symmetry about that point (Fig. 26).
Letting the eigenstates of the reduced model near the KM

point be

jΨðδkÞi ¼
�X

α

ψ ðfÞ
α ðδkÞf†kα;ησ

þ
X
a

fψ ð0cÞ
a ðδkÞc†ka;ησ þ ψ ð1cÞ

a ðδkÞc†k−G1;a;ησ

þ ψ ð2cÞ
a ðδkÞc†k−G2;a;ησ

g
�����

k¼KMþδk
j0i;

we can rewrite the Schrödinger equation Ĥ0jΨðδkÞi ¼
EðδkÞjΨðδkÞi in the first-quantized formalism as

HðηÞðδkÞΨðδkÞ ¼ EðδkÞΨðδkÞ; ðC5Þ

with the Hamiltonian matrix

HðηÞ
0 ðKMþδkÞ¼

0
BBB@

0 ϕðηÞðKMþδkÞ ϕðηÞðKM−bM2þbM1þδkÞ ϕðηÞðKM−bM2þδkÞ
ϕ†ðηÞðKMþδkÞ HðηÞðKMþδkÞ 0 0

ϕ†ðηÞðKM−bM2þbM1þδkÞ 0 HðηÞðKM−bM2þbM1þδkÞ 0

ϕ†ðηÞðKM−bM2þδkÞ 0 0 HðηÞðKM−bM2þδkÞ

1
CCCA

ðC6Þ

acting on the 14-dimensional spinor

ΨðδkÞ ¼
�
ψ ðfÞðδkÞ;ψ ð0cÞðδkÞ;ψ ð1cÞðδkÞ;ψ ð2cÞðδkÞ

�
:

ðC7Þ

Defining G0 ¼ 0, G1 ¼ bM2 − bM1, and G2 ¼ bM2, the
component form of the first-quantized formalism is

X
i¼0;1;2

ϕðηÞðKM −Gi þ δkÞψ ðicÞ ¼ Eψ ðfÞ; ðC8Þ

FIG. 26. Sketch of the three moiré Brillouin zones around the
KM point and the reciprocal lattice vectors.
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ϕ†ðηÞðKM −Gi þ δkÞψ ðfÞ þHðηÞðKM −Gi þ δkÞψ ðicÞ ¼ Eψ ðicÞ; i ¼ 0; 1; 2: ðC9Þ

Rearranging the second equation, we get ψ ðicÞ ¼ ðE −HðηÞðKM −Gi þ δkÞÞ−1ϕ†ðηÞðKM −Gi þ δkÞψ ðfÞ and inserting the
expression into the first equation:

Eψ ðfÞ ¼
X

i¼0;1;2

ϕðηÞðKM −Gi þ δkÞ
�
E −HðηÞðKM −Gi þ δkÞ

�
−1
ϕ†ðηÞðKM −Gi þ δkÞψ ðfÞ: ðC10Þ

The determinant of ðE −HðηÞðkÞÞ is

E4 − E2ðM2 þ 2v2⋆k
2Þ þ v4⋆k

4: ðC11Þ

We neglect OðE2Þ at KM and K̄M and, using the identity η2 ¼ þ1,�
E−HðηÞðkÞ

�
−1
≈

1

v4⋆jkj4
�ð−M2−v2⋆jkj2ÞEσ0−Mv2⋆ððk2y−k2xÞσxþ2kxkyησyÞ −v3⋆jkj2ðηkxσ0þ ikyσzÞþMv⋆Eðηkxσx−kyσyÞ

−v3⋆jkj2ðηkxσ0− ikyσzÞþMv⋆Eðηkxσx−kyσyÞ −v2⋆jkj2Eσ0

�
: ðC12Þ

Using Eq. (C12) in Eq. (C10) and expanding to first order in δk, where we also neglect the product of δk and E, Eq. (C10)
reduces to

Eψ ðfÞ ¼−
3γ2KðM2þD2ÞðK2

θa
2
⋆þ1Þ

D4
Eψ ðfÞ−

3Mγ2Kð2ð1þa2⋆K
2
θÞþ λ̃2ð1−Kθa⋆ÞðKθa⋆þ1ÞÞ

KθD2
ðσxδky−σyδkxÞψ ðfÞ

≈−
�
3γ2KðK2

θa
2
⋆þ1Þ

D2
Eþ

�
3M
D

��
γK
D

�
2

ð2ð1þa2⋆K
2
θÞþ λ̃2ð1−Kθa⋆ÞðKθa⋆þ1ÞÞv⋆ðσxδky−σyδkxÞ

�
ψ ðfÞ; ðC13Þ

where the last line is obtained because D ≫ M and
γK ¼ γ0e−λ̃

2=2. We can identify a velocity ṽD and the Z
factor from a self-energy treatment of the f electrons,
where the Dirac velocity at the KM points is

vD ¼ ZṽD: ðC14Þ

The velocity

ṽD ¼ 3

�
M
D

��
γK
D

�
2

ð2ð1þ a2⋆K
2
θÞ

þ λ̃2ð1 − Kθa⋆ÞðKθa⋆ þ 1ÞÞv⋆; ðC15Þ

and the Z factor is

Z ¼
�
1þ 3

�
γK
D

�
2

ðK2
θa

2
⋆ þ 1Þ

�
−1

≈ 1 ðC16Þ

because ðγK=DÞ ≪ 1. Rearranging yields the final result

Eψ ðfÞ ¼ −vDðσxδky − σyδkxÞψ ðfÞ; ðC17Þ

linearized near the KM point and

vD ¼ 3

�
M
D

��
γK
D

�
2

ð2ð1þ a2⋆K
2
θÞ þ λ̃2ð1 − a2⋆K

2
θÞÞv⋆;

ðC18Þ

corresponding to Eq. (22). Taking the a⋆ ¼ 0 limit gives

vDja⋆¼0 ¼ 3

�
M
D

��
γK
D

�
2

ð2þ λ̃2Þv⋆: ðC19Þ

Repeating the calculation for the K̄M point in the η ¼ þ1

valley results in vDðσxδky − σyδkxÞψ ðfÞ ¼ Eψ ðfÞ, which
has the same chirality as the Dirac cone at KM in the same
valley. The Dirac cone structure of the topological heavy-
fermion model for the K0

M and K̄0
M points in the η ¼ −1

valley is −vDðσxδky þ σyδkxÞ and vDðσxδky þ σyδkxÞ.
Note that the chirality of the Dirac cones in the η ¼ −1
valley is opposite to the Dirac cones in the η ¼ þ1 valley.
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APPENDIX D: DERIVATION OF THE
CONDUCTION DENSITY OF STATES

IN THE Γ3 CHANNEL

Here, we derive the conduction electron density of
states (26) in the Γ3 channel which hybridizes with the
localized f states. The conduction electron Hamiltonian has
the form

HðηÞðkÞ ¼ v⋆ðηkxτ1 ⊗ α0 − kyτ2 ⊗ αzÞ þ
1

2
Mð1− τzÞ⊗ αx

¼
�

v⋆αxðk⃗η · α⃗Þ
v⋆ðk⃗η · α⃗Þαx Mαx

�
: ðD1Þ

Here, the upper left two-by-two block is the Γ3 irreducible
representation that hybridizes with the localized f states,
and the lower two-by-two block is the Γ1;2 irreducible

representation that does not hybridize. The Pauli matrices
αμ ≡ ðα0; α⃗Þ (μ ¼ 0, 3) act on the two-dimensional
blocks, while the isospin matrices ð1; τ⃗Þ act on the two-
dimensional blocks that define the space of representa-
tions, so that PΓ3

¼ 1
2
ð1þ τzÞ projects into the Γ3 channel.

Here, we have adopted the notation k⃗η ¼ ðηkx; kyÞ, so that

k⃗η · α⃗ ¼ ηkxαx þ kyαy. The conduction sea is particle-hole
symmetricwith energy eigenvalues given by�E�ðkÞ, where

E�ðkÞ ¼ �M
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M
2

�
2

þ ðv⋆kÞ2
s

ðD2Þ

and k≡ jkj. The particle-hole symmetry allows us to
write the total conduction density of states as ρTOTðωÞ ¼
ρþðωÞ þ ρ−ðωÞ, where

ρ�ðωÞ ¼
X
k

δðω − jE�ðkÞjÞ ¼
ð2πÞ2
AK

Z
2πkdk
ð2πÞ2 δðω − jE�ðkÞjÞ

¼ π

Ak

Z
dk2

dE�ðkÞ
dE�δðω − jE�ðkÞjÞ ¼

π

Ak

�
dk2

dE�
jE�¼jωjθðjωj ∓ MÞ

�
; ðD3Þ

where Ak ¼ 3
ffiffiffi
3

p
=2K2

θ is the area of the hexagonal moiré Brillouin zone and θ is the Heaviside step function. By noting
dk2=dE� ¼ ð2E�ðkÞ ∓ MÞ=v2⋆, we get

ρ�ðωÞ ¼
2π

3
ffiffiffi
3

p ð2jωj ∓ MÞ
v2⋆K

2
θ

θðjωj ∓ MÞ ðD4Þ

as the c-electron density of states per spin per valley. Next, we project the conduction electron propagator into the Γ3

channel by integrating out the Γ1;2 electrons:

GΓ3
c ðk;ωÞ ¼ PΓ3

1

½ω −HðηÞðkÞ�PΓ3
¼

�
ω − v2⋆αxðk⃗η · α⃗Þ

1

ω −Mαx
ðk⃗η · α⃗Þαx

�
−1
: ðD5Þ

Simplifying, we obtain

GΓ3
c ðk;ωÞ ¼ ðω2 −M2Þω½ω

2 −M2 − ðv⋆kÞ2� þMv2⋆½ðk2x − k2yÞαx − ð2ηkxkyÞαy�
½ωðω2 −M2 − ðv⋆kÞ2Þ�2 − ðMv2⋆k

2Þ2

¼ ðω2 −M2Þω½ω
2 −M2 − ðv⋆kÞ2� þMv2⋆½ðk2x − k2yÞαx − ð2ηkxkyÞαy�

ðω2 −M2Þðω2 − EþðkÞ2Þðω2 − E−ðkÞ2Þ
: ðD6Þ

The trace of Eq. (D6) resolved along its poles gives

TrGΓ3
c ðk;ωÞ ¼ 2

ω½ω2 −M2 − ðv⋆kÞ2�
ðω2 − E2þðkÞÞðω2 − E2

−ðkÞÞ

¼
	
E−ðkÞ þM
2E−ðkÞ þM

�
1

ω − E−ðkÞ
þ 1

ωþ E−ðkÞ
�
þ EþðkÞ −M
2EþðkÞ −M

�
1

ω − EþðkÞ
þ 1

ωþ EþðkÞ
��

: ðD7Þ

The conduction c-electron density of states, per spin per valley and per orbital in the Γ3 channel that hybridizes with the
localized f states, is defined as the following:
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ρΓ3
c ðωÞ ¼ 1

2π

X
k

ImTrGΓ3
c ðk;ω − iδÞ ¼ 1

2

X
k

	
E−ðkÞ þM
2E−ðkÞ þM

δ½ω − jE−ðkÞj� þ
EþðkÞ −M
2EþðkÞ −M

δ½jωj − jEþðkÞj�
�

¼ 1

2

	 jωj þM
2jωj þM

ρ−ðωÞ þ
jωj −M
2jωj −M

ρþðωÞ
�
; ðD8Þ

where the factor of a half is to account for the valley degeneracy. Recalling ρ�ðωÞ from Eq. (D4), our final expression for the
conduction c-electron density of states per spin per valley and per orbital in the Γ3 channel is

ρΓ3
c ðωÞ ¼ A

D2

�
1

2
ðjωj þMÞθðM − jωjÞ þ 1

2
jωjθðjωj −MÞ

�
¼ A

D2
×
	 jEj; jEj > M;

1
2
ðjEj þMÞ; jEj < M;

ðD9Þ

where A ¼ 2π=ð3 ffiffiffi
3

p Þ and D ¼ v⋆Kθ. In the main body of
the text (26), we drop the Γ3 superscript for clarity.

APPENDIX E: VARIANCE OF THE
HYBRIDIZATION

Here, we evaluate the variance or mean square of the
hybridization referred to in Eq. (27). We recall the
hybridization matrix (9):

ϕðηÞðkÞ≡ϕðηÞðk;γ0Þ
¼ e−jkj2λ2=2

�
α0þa⋆ðηkxαxþkyαyÞ; 02×2

�
: ðE1Þ

The square of the hybridization matrix (9) is then

γ20ϕ
ðηÞðkÞϕ†ðηÞðkÞ ¼ γ20e

−jkj2λ2ð1þ a2⋆ðk2x þ k2yÞα0
− 2a⋆ðηkxαx þ kyαyÞÞ; ðE2Þ

where the Pauli matrices αμ ≡ ðα0; α⃗Þ (μ ¼ 0, 3) act on the
two-dimensional blocks. The off-diagonal terms of
Eq. (E2) average to zero when we take a momentum
integrated average over a circle of radius Kθ because they
are odd in kx and ky. Averaging only the diagonal part of
Eq. (E2) over a circle of radius Kθ yields

γ20ϕ
ðηÞðkÞϕ†ðηÞðkÞ

¼ γ20
πK2

θ

Z
2π

0

Z
Kθ

0

e−k
2λ2ð1þ a2⋆k

2Þα0dkdθ

¼ γ20

�
a2⋆ þ λ2 − e−λ̃

2ðλ2 þ a2⋆ð1þ λ̃2ÞÞ
λ2λ̃2

�
α0

≡ γ20ðkÞα0: ðE3Þ

Using the approximate scales for the parameters in the SB
model [24,68] γ0¼25meV, M¼3.7meV, v⋆¼−4.3 eVÅ,
Kθ ¼ 0.031 Å−1, a⋆ ¼ 65 Å, and λ ¼ 0.225aM ¼ 29 Å
for the size of the Wannier states, which gives

λ̃ ¼ λKθ ¼ 0.90, we calculate the momentum integrated
average of the hybridization over a circle of radius Kθ to be

γ20ðkÞ ¼ 1.891γ20 ≈ 2γ20 ¼ 1250 ðmeVÞ2; ðE4Þ

where the last equality follows from taking the bare
hybridization γ0 ¼ 25 meV.
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