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We report errors in the derivation in the paper. Although the main result, the detailed Josephson-Anderson relation in
Eq. (3.50), remains correct, the derivation contains, in fact, two significant errors which exactly compensate each other.
Both errors in the published derivation involve erroneous neglect of pressure forces at infinity. In addition to correcting the
flawed derivations, we also take the opportunity in this Erratum to point out briefly the close connections of the Josephson-
Anderson relation to prior results in the literature on classical incompressible fluids, which we discovered only subsequent
to publication of the paper.
The main result of the paper and of this Erratum is a formula for the power injected into a viscous incompressible fluid at

rest and filling all of space by a body moving through it at a prescribed velocity −VðtÞ or, equivalently, in the body frame,
the power that is injected by a body at rest into a fluid moving past it with velocity VðtÞ at infinity. The paper considered for
simplicity the case of constant velocity VðtÞ ¼ V, except for a brief comment in Ref. [91] of the paper, so that the power
injected was due solely to the drag force Fω arising from rotational fluid motions. In this Erratum, we consider the more
general case, since it permits us to discuss more clearly the relations with prior results. Note that, in the case of general
translation motion, the theorem of d’Alembert [1,2] does not apply and there is also an instantaneous force Fϕ exerted by the
body even on the potential flow with velocity field uϕ ¼ ∇ϕ. For example, see Ref. [3], Sec. VIII. 3, where it is shown that
this latter force is given as the time derivative Fϕ ¼ dIϕ=dt of an impulse

Iϕ ¼ −
Z
∂B
ϕn̂dA ðE1Þ

with n̂ the unit normal vector on the body surface ∂B pointing into the fluid domain Ω. In that case, the total instantaneous
force exerted by the body on the fluid is given exactly by F ¼ Fω þ Fϕ, corresponding to the exact decomposition
u ¼ uϕ þ uω and the separate momentum balances for each [3,4]. However, because IϕðtÞ remains bounded in time for a
bounded velocity VðtÞ, the time-averaged force from potential flow vanishes, hFϕi ¼ 0, and only the rotational fluid
motions provide a long-time effective source of drag.
The first erroneous result in the paper was Eq. (3.44), which claimed that

Fω ¼ dPω

dt
; ðE2Þ

where Pω ¼ ρ
R
Ω uωdV is the total momentum in the rotational fluid motions with velocity uω. This result was derived

from Eq. (3.16) in the paper, or

∂tuω ¼ u × ω − ν∇ × ω − ∇hω; ðE3Þ

where hω ¼ pω þ 1
2
juωj2 þ uω · uϕ is the total pressure of the rotational motions. [Note that the original Eq. (3.16) in the

paper also had a typo þ∇hω for −∇hω, although this did not affect the final result.] The result (3.44) in the paper was
obtained by integrating Eq. (E3) over space to obtain

dPω

dt
¼ Fω − ρ lim

R→∞

Z
SR

x̂hωdA; ðE4Þ
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where SR is the sphere of radius R centered at the body and x̂ ¼ x=r is the radially outward unit vector. It was then argued in
the paper from the Poisson equation for hω that hω ¼ Oðr−3Þ because the source term isOðr−5Þ. This argument is, however,
incorrect. A simple counterexample is the potential flow uϕ, whose total pressure obtained from the Bernoulli relation scales
as hϕ ∼ −İϕðtÞ · x̂=4πρr2 for r → ∞, even though the source term in its Poisson equation is Oðr−6Þ. The correct result for
rotational flow is similarly obtained from the Bernoulli relation hω ¼ −ϕ̇ω þ cðtÞ with

ϕω ∼ −
IωðtÞ · x̂
4πρr2

ðE5Þ

since the vorticity decays rapidly at infinity, ω ¼ Oðr−4Þ, so that the asymptotic rotational flow is itself potential,
uω ¼ ∇ϕω. See Ref. [5], Eq. (19). Note that Iω is the impulse of rotational motions defined by Eq. (3.29) in the paper but
now multiplied by mass density ρ so that it has units of momentum. Using these results for hω in Eq. (E4) gives

dPω

dt
¼ Fω −

1

3

dIω
dt

: ðE6Þ

However, it was shown in Appendix B of the paper that Pω ¼ 2
3
Iω and the same result was obtained in Ref. [5], Eq. (27),

using an identical argument. Substituting this result into Eq. (E6) yields

Fω ¼ dIω
dt

ðE7Þ

rather than the erroneous result (E2) in Eq. (3.44) of the paper. Of course, Eq. (E7) is nothing other than the well-known
relationship between force and fluid impulse [3,5].
The second erroneous result in the paper was Eq. (3.47), which claimed that

dEint

dt
¼ þρ

Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV; ðE8Þ

where Eint ¼ ρ
R
Ω uϕ · uωdV is the interaction energy between potential and rotational flow. This result was derived

from Eq. (3.8) in the paper, or

∂tðuϕ · uωÞ þ ∇ · ðhωuϕ þ hϕuωÞ ¼ uϕ · ðu × ω − ν∇ × ωÞ þAðtÞ · uω; ðE9Þ

where we have now included the term from the accelerationAðtÞ ¼ V̇ðtÞ, which vanished for the constant-velocity problem
discussed in the paper. Integrating Eq. (E8) over Ω and multiplying by ρ then yields

dEint

dt
¼ þρ

Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV þAðtÞ · PωðtÞ − ρVðtÞ · lim

R→∞

Z
SR

x̂hωdA; ðE10Þ

where the last term used uϕ ∼ VðtÞ þOðr−3Þ. Exploiting again the Bernoulli relation for hω and the asymptotic
formula (E5) yields finally

dEint

dt
¼ þρ

Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV þAðtÞ · PωðtÞ −

1

3
İωðtÞ · VðtÞ: ðE11Þ

This result differs from Eq. (3.47) in the paper because of the term proportional to AðtÞ but most essentially because of the
term proportional to İωðtÞ. The latter contribution arises from the rotational pressure force at infinity, which was
erroneously assumed to vanish in the paper. The correction in Eq. (E11) invalidates also a statement made after Eq. (3.19) in
the paper, that the sum of EintðtÞ and EωðtÞ ¼ 1

2
ρ
R
Ω juωj2dV “is conserved in the limit ν → 0, as long as solutions stay

smooth in the limit.” This statement is very generally untrue.
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However, despite these two errors in the derivation of the paper, the main result in its Eq. (3.50) remains valid,
by essentially the original argument. The derivation in the paper used a basic result, Eq. (3.42) or EintðtÞ ¼ PωðtÞ · VðtÞ,
which by time differentiation yields

dEint

dt
¼ PωðtÞ ·AðtÞ þ ṖωðtÞ · VðtÞ: ðE12Þ

Substituting Eq. (E12) for dEintðtÞ=dt into Eq. (E11) and using Eq. (E6) for dPωðtÞ=dt then gives

AðtÞ · PωðtÞ þ
�
Fω −

1

3
İω

�
· VðtÞ ¼ ρ

Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV þAðtÞ · PωðtÞ −

1

3
İωðtÞ · VðtÞ: ðE13Þ

None of the terms proportional to AðtÞ or to İωðtÞ were present in the paper, but, most crucially, they all cancel. Thus, the
final result

−Fω · VðtÞ ¼ −ρ
Z
Ω
uϕ · ðu × ω − ν∇ × ωÞdV ðE14Þ

is identical to Eq. (3.50), for the case with VðtÞ ¼ V and Fω ¼ F discussed in the paper.
Since the original publication, we have become aware of a substantial body of closely related work. An especially

valuable review is Ref. [6], which discusses prior work of Burgers, Lighthill, Kambe, Howe, Wu, Quartapelle, Napolitano,
and others. We can thus refer the reader to Ref. [6] for a nearly exhaustive discussion of this prior literature. We note one
paper of Chang [7], which was apparently overlooked in Ref. [6], whose Eq. (E11) gives a formula for the pressure force
only. However, this formula is of mixed type, with fluid velocity u in the body frame of reference and with pressure P and
potential ϕ in the fluid rest frame. If this formula is transformed consistently to the body frame, it yields readily our detailed
Josephson-Anderson relation, Eq. (3.50). Perhaps the most comprehensive results are those of Howe in Ref. [8], who
considers a rigid body in arbitrary translational and rotational motion and who derives formulas for full vector forces
and moments, generalizing ours for the drag force along the direction of motion. It is worth quoting the main force
formula (2.11) derived in Ref. [8], which represents Fi, the ith component of the force on a body moving rigidly with
velocity Ū ¼ Uþ Ω × ðx − x0Þ, as

Fi ¼
∂

∂t

�
ρ

Z
∂BðtÞ

ϕiðn̂ · ŪÞdA
�
þ ρ

Z
∂BðtÞ

�
∂Xi

∂t
þ u · ∇Xi

�
ðn̂ · ŪÞdA − ρ

Z
ΩðtÞ

∇Xi · ðu × ω − ν∇ × ωÞdV: ðE15Þ

Unlike our result in the body frame, Howe’s expression is written in the fluid rest frame, so that the integration regions ∂BðtÞ
andΩðtÞ are explicitly time dependent. However, quoting from Ref. [8], one may regard Xi ¼ xi − x0i − ϕi “as the velocity
potential of irrotational flow past the body (imagined to be temporarily at rest at x0) which has unit speed in the i direction at
large distances from the body.” Thus, ViXi is the velocity potential considered in our paper, and from this fact one may
readily derive our Eq. (3.50) as a special case of Howe’s more general result. It should be emphasized, however, that
our proof is considerably simpler and yields also Howe’s more general formulas. In fact, our key intermediate result
EintðtÞ ¼ PωðtÞ · VðtÞ can be generalized to Howe’s setting as

Pi ¼ ρ

Z
ΩðtÞ

∇Xi · udV þ ρ

Z
∂BðtÞ

Xiðn̂ · ŪÞdA; ðE16Þ

where now Pi ¼ ρ
R
ΩðtÞ uidV is the i component of the total fluid momentum in the reference frame with the fluid at rest at

infinity. In that case, time differentiation of Eq. (E16) readily yields Howe’s general result (E15) with the observation that, in
the fluid frame of reference, the impulse I in the far-field formula for h analogous to Eq. (E5) must be replaced by
J ¼ Iþ ρjBjVðtÞ, where jBj is the volume of the body [3,5]. In a following work, we shall present this derivation in detail
and discuss more fully the connections of the Josephson-Anderson relation with prior work on classical fluids.
It is curious that all of the work on classical fluids cited in Ref. [6] made no reference to the corresponding work on

quantum superfluids discussed in our paper, and vice versa. The two literatures seem to have developed entirely in parallel,
until their close relations were pointed out in our work. In particular, the detailed Josephson-Anderson relation derived by
Huggins [9] for internal flows seems to have been overlooked in the classical fluids literature, despite being a close analog
of the results reviewed in Ref. [6] for external flows. Huggins’ relation for internal flows has recently been generalized to
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streamwise periodic geometries convenient for numerical simulations [10] and will be investigated in future computational
studies. Likewise, our paper seems to have been the first to point out that validity of the Josephson-Anderson relation
persists in the infinite Reynolds limit and, thus, is connected with Onsager’s ideal turbulence theory. This infinite Reynolds
number limit has now been established in Ref. [11] with mathematical rigor.
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