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Open system quantum dynamics can generate a variety of long-range entangled mixed states, yet it has
been unclear in what sense they constitute phases of matter. To establish that two mixed states are in the
same phase, as defined by their two-way connectivity via local quantum channels, we use the
renormalization group (RG) and decoders of quantum error correcting codes. We introduce a real-space
RG scheme for mixed states based on local channels which ideally preserve correlations with the
complementary system, and we prove this is equivalent to the reversibility of the channel’s action. As an
application, we demonstrate an exact RG flow of finite temperature toric code in two dimensions to infinite
temperature, thus proving it is in the trivial phase. In contrast, for toric code subject to local dephasing, we
establish a mixed-state toric code phase using local channels obtained by truncating an RG-type decoder
and the minimum weight perfect matching decoder. We also discover a precise relation between mixed-
state phase and decodability, by proving that local noise acting on toric code cannot destroy logical
information without bringing the state out of the toric code phase.
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I. INTRODUCTION

Understanding quantum phases of matter is a central task
of quantum many-body physics. The traditional focus is on
pure states, which are typically ground states of local
Hamiltonians. However, in many physical contexts ranging
from finite temperature systems to open system dynamics
[1,2], one is required to deal with mixed states. Recently, in
the context of nonequilibrium quantum simulators and
computers, there has been significant progress in construct-
ing many different examples of nontrivial mixed states from
the effect of local decoherence on symmetry-protected
topological (SPT) and long-range entangled pure states
[3–11] or from protocols involving measurement and feed-
back [12–15].
Given the increasing wealth of examples, it is thus

desirable to have a general framework of mixed-state
phases and, in particular, a notion of renormalization for
distilling universal long-range properties of a phase.
Furthermore, in the class of mixed states obtained by
decohering an error-correcting code, there are remarkable

instances [5] in which mixed-state entanglement measures
undergo a transition at the same point at which encoded
information is lost. This motivates us to understand the
precise connection between mixed-state phase transitions
and error correction thresholds. In this work we will
address these questions.
One way of defining pure-state phases is via local

unitary (LU) circuits [16]: Two states are in the same
phase if there is a short-depth LU circuit that connects
them. This is based on the physical intuition that phases
should be defined by long-range properties and represent-
atives only differ in their local properties. For mixed states,
an analogous definition was proposed by Coser and Pérez-
García [17]: Two mixed states ρ1 and ρ2 are in the same
phase if there exists a pair of short-time evolution with local
Lindbladians from ρ1 to ρ2 and from ρ2 to ρ1. The major
difference with the LU definition of pure-state phases is that
two-way connections are needed since channels are not in
general reversible. Another difference is that unlike pure
states of interest, there is often no notion of Hamiltonian,
gap, or adiabatic path to furnish the local transformations
required to connect two mixed states (see, however,
Ref. [18] for recent developments). These make establish-
ing the existence of a mixed-state phase much more
challenging.
We draw inspiration from the real-space renormalization

group (RG), which has played a major role in statistical
mechanics and quantum many-body physics. The idea
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dates back to Wilson [19] and Kadanoff [20] who proposed
that under block spin transformations, statistical mechani-
cal systems flow to fixed points whose properties are easier
to characterize. In the context of quantum many-body
systems, real-space RG has led to the development of
powerful numerical algorithms, including density matrix
renormalization group (DMRG) [21], multiscale entangle-
ment renormalization ansatz [22], as well as theoretical
tools, including matrix product states [23], projected
entangled pair states [24], etc. However, thus far, real-
space RG has predominantly been applied to coarse grain
pure quantum states.
In this work, we define a real-space RG scheme for mixed

states involving local channel (LC) transformations to
establish the existence of mixed-state phases. We define
an “ideal” RG to consist of local channels acting on blocks
which preserve correlations between different blocks, andwe
prove that the actions of such correlation-preserving chan-
nels can be reversed by another channel, thus establishing the
phase equivalence of the fine-grained and coarse-grained
states. As an example, we construct an ideal RG for the two-
dimensional toric code at finite temperature and show that the
temperature monotonically increases under coarse graining
and thus the state does not possess topological order.
We also consider mixed states obtained by applying local

decoherence to quantum error correction codes. There is a
notion that the logical information in topological codes is
protected by long-range entanglement. With a definition of
mixed-state phases, we can make its relation to error
correction precise. We prove that short-range correlated
noise (represented by a local quantum channel) cannot
destroy logical information without also transitioning
out of the mixed-state topologically ordered phase. We
illustrate these connections in the example of toric code
subject to local dephasing noise, for which we demon-
strate the existence of a toric code mixed-state phase by
constructing (1) a real-space RG scheme based on the
Harrington decoder [25] and (2) (quasi)local channels
based on truncating the minimum weight perfect matching
(MWPM) algorithm. Our local version of MWPM can
potentially be used for efficiently detecting the toric code
mixed-state phase in experiments [26,27].
We mention that several prior related works [28,29]

developed a mixed-state RG scheme based on purification
of the mixed state, which is generally different from our
scheme but in some cases can furnish the local channels
required in our scheme. References [30,31] defined an RG
fixed-point condition for one-dimensional matrix product
density operators and related them to boundaries of two-
dimensional topological order. References [32,33] demon-
strated how quantum convolutional neural networks [34] can
furnish RG schemes for detecting nontrivial pure-state
phases.
This paper is structured as follows. In Sec. II we define

LC transformations and mixed-state phase equivalence.

In Sec. III we formulate the real-space RG for mixed states
and discuss its implications. In Secs. IV–VII we analyze
several examples, including the dephased Greenberger-
Horne-Zeilinger (GHZ) state, thermal toric code, and
dephased toric code. In Sec. VII A we prove a relation
between decodability and mixed-state phases. See Fig. 1 for
a graphical summary of our main results.

II. LOCAL CHANNEL TRANSFORMATIONS AND
DEFINITION OF MIXED-STATE PHASES

A. Local channel transformations

We define local channel transformations following the
proposal in Ref. [35].
Definition 1 (Local channel transformation).—On a

given lattice of linear dimension L, a range-r LC trans-
formation is a quantum channel composed of the follow-
ing steps:
(1) adding qubits to each lattice site, all initialized in the

j0i state,
(2) applying a range-r unitary circuit U on the lattice,
(3) tracing out some qubits on each lattice site.
The range of a circuit is defined as the maximal range of

each unitary gate times the depth of the circuit. Henceforth,
if r is not specified for an LC transformation, it is assumed
that r=L → 0 in the thermodynamic limit.
The major difference between local channel transforma-

tions and local unitary transformations [16] is step (3). In
local unitary transformations, a qubit can be discarded only
when it is disentangled from the rest of the system. In that
context, steps (1) and (3) are inverse operations, and hence
LU transformations are invertible. In contrast, LC trans-
formations allow discarding a qubit that is still entangled
with the rest of the system, i.e., ρi;ī ≠ ρi ⊗ ρī, with i being
the qubit to be discarded and ī being the rest of the
system. As a result, LC transformations are generically
noninvertible.
LC transformations constitute a broad class of operations

including any circuit composed of local channel gates, i.e.,
channels that act only on local domains of sites. To show
this, one needs the Stinespring dilation theorem: Any
quantum channel EX→Y can be rewritten as

Eð·Þ ¼ trA0 ðUðð·Þ ⊗ j0ih0jAÞU†Þ; ð1Þ

where U is a unitary map from X ∪ A to Y ∪ A0. In other
words, any quantum channel can be implemented by
adding some degrees of freedom, applying a unitary on
the joint system, and discarding some degrees of freedom.
Applying the theorem to a circuit of channel gates, one can
first replace each channel gate with its Stinesping dilation
form. Then one can move forward all the ancillas addition
to the beginning of the circuit and postpone all the tracing
out to the end of the circuit. We graphically illustrate this in
Fig. 2. Furthermore, any finite-time local Lindbladian
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evolution can also be approximated by LC transformations
by Trotterizing the continuous dynamics.

B. Definition of mixed-state phase equivalence

When studying (pure) ground states of gapped local
Hamiltonians, two many-body states are defined to be in
the same phase if one can be turned into the other through
an LU transformation [16]. The definition reflects the idea
that phases of matter should be characterized by long-range
properties of the state, and should remain unchanged under
reversible local modifications.

LC transformations, albeit local, are generally not revers-
ible and can destroy long-range correlations. As an example,
if one starts from an arbitrary state jψi and applies the
amplitude damping channel Edampingð·Þ ≔ trð·Þj0ih0j to each
qubit in the system, the resulting state would be a product
state j0i⊗Lwithout any nontrivial long-range correlation. On
the other hand, an LC transformation’s ability to create
correlations is no stronger than LU transformations. This
follows from the fact that an LC transformation is some LU
followed by discarding some degrees of freedom.
Thus the connectivity under LC transformations induces

a partial order relation among mixed states. States are
ordered according to the amount of long-range correlation
they possess: If ρ2 ¼ Cðρ1Þ for some LC transformation C,
then ρ1 has at least as much long-range correlation as ρ2.
This naturally leads to the following definition of mixed-
state phase equivalence [36].
Definition 2 (Mixed-state phase equivalence).—On a

given lattice, two many-body mixed states ρ1 and ρ2 are in
the same phase if there exists a pair of LC transformations
C1 and C2 such that C1ðρ1Þ ≈ ρ2 and C2ðρ2Þ ≈ ρ1.

FIG. 1. (a) Definition of mixed-state phase equivalence adopted in this work. Two many-body mixed states ρ1 and ρ2 are in the same
phase if there is a pair of low-depth spatially local quantum channels C1 and C2 such that ρ2 ≈ C1ðρ1Þ and ρ1 ≈ C2ðρ2Þ. (b) Illustration of
the correlation-preserving criterion in Definition 3. For a given bipartite mixed state ρAB, a quantum channel E acting on one party is
correlation preserving if it leaves the mutual information between two parties invariant. Theorem 2 shows that E is correlation preserving
if and only if its action can be reversed by another channel D. (c) Mixed-state RG consists of local channels (Es) which coarse grain
degrees of freedom within a block. After iterating, all short-range correlations of the input state are discarded and only long-range ones
remain. If all coarse-graining channels satisfy the correlation-preserving criterion, then the whole RG process can be reversed, by
running from top to bottom and replacing each E with its recovery map D. (d) Phase diagrams and RG flows of four exemplary mixed
states studied in Sec. IV. All four states come from perturbing a long-range entangled pure state in an incoherent way: In examples (i)
and (ii) the pure state is the GHZ state, and in (iii) and (iv) it is the toric code state. In examples (i), (ii), and (iv) the incoherent
perturbation is a dephasing noise with strength p acted upon the state, while in (iii) the perturbation is a nonzero temperature. The
mixed-state phase corresponding to the GHZ state and the toric code state are denoted by [GHZ] and [TC], respectively.

FIG. 2. A circuit of local channel gates represented as an LC
transformation.
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Several clarifications regarding the definition are as
follow.

(i) Mixed states of interest: Though the definition above
does not assume any restrictions on states ρ1;2, we are
interested in physically relevant mixed states such as
local Hamiltonian Gibbs states at finite temperature,
gapped ground states subject to decoherence, and
steady states of local Lindbladians.

(ii) The precise meaning of “≈”: This requires some
distance measure of mixed states. For instance, we
could define two mixed states ρ ≈ σ if and only if
Fðσ; ρÞ > 1 − ϵ for some small ϵ > 0, where
Fðσ; ρÞ ≔ k ffiffiffi

σ
p ffiffiffi

ρ
p k1 is the (Uhlmann) fidelity.

(iii) Ranges of LC transformations C1;2: In general we
only require the range to be much smaller than the
linear size of the lattice ρ1;2 is defined on. But as we
will see later, it will be sufficient to have a range
r ¼ O½polylogðL=ϵÞ� when ρ1;2 have finite correla-
tion length.

The definition is a natural generalization of pure-state
phase equivalence defined through LU transformations.
When restricting to pure many-body states, one can show
that two states jψ1i and jψ2i are of the same mixed-state
phase if and only if jψ1i and jψ2i ⊗ jϕi are of the same
pure-state phase for some invertible state jϕi. We provide a
proof in Appendix A 1.
Product states, e.g., j0i⊗L, are states without any long-

range correlations. This is also reflected by the partial order
relation under LC circuits: Any state can be turned into the
product state by an LC transformation which consists
only of the amplitude damping channel. Thus we identify
the trivial phase as the set of states that can be LC
transformed from the product state. In other words, a
mixed state is in the trivial phase if it can be written as
ρtrivial ¼ C½j0i⊗Lh0j⊗L� for some LC transformation C. This
is equivalent to requiring that the state can be locally
purified into a short-range entangled pure state.
We comment that the above definition treats quantum and

classical correlations on the same footing.As an example, the
state ρ¼ 1

2
ðj0⊗Lih0⊗Ljþ j1⊗Lih1⊗LjÞ is a classical ensem-

ble of L spins which is nontrivial under the above definition,
because it has classical long-range correlation. To single out
states that contain long-range classical correlation only, we
can define a state to be in a classical phase if it can bewritten
as ρclassical ¼ CðρPrðsÞÞ for some LC transformation C. Here
ρPrðsÞ ≔

P
sPrðsÞjsihsj is a classical distribution PrðsÞ of

product states fjsi∶s∈f0;1gLg represented as a density
matrix.

III. REAL-SPACE RG OF QUANTUM
MIXED STATES

To answer whether two given states ρ1 and ρ2 are in the
same phase, we need to either construct a pair of local
channel transformations or prove their nonexistence.

Recall that when studying pure-state phases of ground
states, adiabatic paths between Hamiltonians provide a
convenient way of obtaining phase equivalence. Let jψ1i
and jψ2i be ground states of local HamiltoniansH1 andH2.
If there is a path from H1 to H2 in the space of local
Hamiltonians such that the energy gap remains Oð1Þ
throughout the path, there is a standard way to construct
an LU transformation connecting jψ1i to jψ2i which
establishes the phase equivalence [37]. For mixed states,
there is generally no counterpart to adiabatic paths.
In this section, we introduce the mixed-state real-space

RG as an alternative way to find LC connections and
identify mixed-state phases.

A. From pure-state RG to mixed-state RG

Conceptually, RG transformation in classical and quan-
tum statistical mechanics is an iterative coarse-graining
process that discards short-range degrees of freedom while
preserving long-range degrees of freedom. The idea of
using real-space renormalization to study zero-temperature
physics of lattice quantum systems (“numerical RG”)
was pioneered by Wilson when considering impurity
problems [19], and was later generalized and developed
into a series of powerful RG-based numerical methods
including DMRG [21], entanglement RG [22], etc. We
refer to all of them as pure-state RGs, in contrast to the
mixed-state RG we introduce in this work [38].
For the sake of presentation, we restrict our attention to

one-dimensional systems and focus only on treelike RG
circuits (see Fig. 3). All the main ideas can be easily
generalized to more sophisticated RG circuit structures,
e.g., entanglement RG circuits [22], as well as higher
dimensional systems.
Pure-state RG, in its simplest form, involves partitioning

the lattice into consecutive blocks each with size b and
applying a coarse-graining map w†

B to each block B of a
pure state jψi. More specifically, coarse graining involves
truncating the Hilbert space, and wB is an isometry

FIG. 3. Real-space RG transformation of pure states. Circuit
representation of two iterations of pure-state RG transformation.
At the lth iteration, the coarse-graining isometry wðlÞ is deter-
mined by the level’s input state jψ ðlÞi using Eq. (2). By applying
the circuit from bottom to top (red arrows), all the short-range
features of the initial UV state are gradually discarded, and only
long-range ones are kept in the IR state ρðl→∞Þ. By applying the
circuit from top to bottom (blue arrows), the circuit generates the
UV state jψ ð1Þi.
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satisfying w†
BwB ¼ I. As proposed [21] for the DMRG

algorithm, the optimal choice of wB that preserves all
correlations between B and its complement is given by

suppwBw
†
B ¼ suppρB; ð2Þ

where ρB ≔ trB̄ðjψihψ jÞ is the reduced density matrix of
the block B. suppK of a positive semidefinite matrix K
means the subspace spanned by K’s eigenstates with
positive eigenvalues. If the original state jψi has area
law entanglement SB ≡ −tr½ρB log ρB� ¼ Oð1Þ, then each
block is efficiently coarse grained into a constant dimen-
sional Hilbert space independent of the original block
size [39].
Now we turn to 1D mixed states. In contrast to the pure-

state case, physical mixed states (e.g., ones mentioned
below Definition 2) typically have volume-law scaling of
SB, leading to inefficient compression using the wB selected
according to Eq. (2). This is because SB results from not
only correlations between B and the complementary system
B̄ but also between B and a purifying environment E of the
mixed state. The latter is the nonuniversal information that
should be discarded. We thus need a new criterion for
finding the coarse-graining map.
To motivate the criterion we introduce, we observe that

Eq. (2) can be interpreted as the solution to the optimization
problem:

argminwB
dimoutðw†

BÞ
s:t: IB∶B̄ðw†

BjψiÞ ¼ IB∶B̄ðjψiÞ; ð3Þ

where dimoutðw†
BÞ is the output dimension of w†

B and
IX∶Y ≔ SX þ SY − SXY is the quantum mutual information,
a measure of correlations between two parties X and Y.
The constraint has clear physical meaning in the context of
RG: By preserving IB∶B̄, it preserves all the long-distance
correlation within jψi. We thus use “IB∶B̄ preserving”
condition as a guideline to generalize Eq. (2) to mixed
states.

B. Correlation-preserving map

We make the argument above more precise.
Definition 3 (Correlation-preserving maps).—For a

given bipartite quantum state ρ ¼ ρAB, a quantum channel
EA→A0 acting on A is correlation preserving with respect to
ρAB if it satisfies

IA0∶ B(EA→A0 ðρÞ) ¼ IA∶BðρÞ:

It is worth noting that a channel being correlation
preserving or not depends on both the input state and
the bipartition: The same map E that is correlation
preserving with respect to one ðρ; BÞ pair may not be so
with respect to another pair.

Recalling that the motivation for defining an RG scheme
is to establish equivalence between two mixed states by
finding a local channel transformation and its inverse,
ideally we would like E’s action on ρ to be reversible.
Conveniently, the two desired properties (correlation pre-
serving and reversibility) are equivalent, as we prove in the
following theorem.
Theorem 1.—For a given bipartite quantum state

ρ ¼ ρAB, the map EA→A0 is correlation preserving if and
only if there exists another quantum channel DA0→A,
such that

ρ ¼ DA0→A ∘ EA→A0 ðρÞ:

Proof (reversibility ⇒ correlation preserving).—Accor-
ding to the quantum data processing inequality, a channel
acting only on A cannot increase correlations between A
and B:

IA∶BðρÞ ≥ IA0∶ B(EðρÞ) ≥ IA∶B(D ∘ EðρÞ) ¼ IA∶BðρÞ: ð4Þ

Thus IA∶BðρÞ ¼ IA0∶ B(EðρÞ).
(correlation-preserving ⇒ reversibility).—Let W be an

isometry from A to A0 ∪ E that dilates the channel EA→A0 :

EA→A0 ð·Þ ≔ trE½Wð·ÞW†�; ð5Þ

where E is an ancillary system, and let σA0EB ¼ WρW†.
Then we have the following relation:

IA∶BðρÞ ¼ IA0E∶BðσA0EBÞ ¼ IA0∶ BðσA0EBÞ: ð6Þ

The second equality, due to the correlation-preserving
property, implies that IB∶EjA0 ðσA0EBÞ ¼ 0 and B − A0 − E
forms a quantum Markov chain. Thus there is a channel
T A0→A0E that reconstructs σA0EB from EA→A0 ðρÞ ¼ σA0B ¼
trEσA0EB alone:

T A0→A0EðσA0BÞ ¼ σA0EB: ð7Þ

The map T A0→A0E is the Petz recovery map [41]:

T A0→A0Eð·Þ ≔ σ1=2A0E

�
σ−1=2A0 ð·Þσ−1=2A0 ⊗ IE

�
σ1=2A0E: ð8Þ

We can then choose the inverse channel D to be

DA0→Að·Þ ¼ trR
�
U†

WT A0→A0Eð·ÞUW

�
; ð9Þ

where UW∶ A ∪ R → A0 ∪ E is a unitary operator that
“completes” the isometry W∶A → A0 ∪ E, namely,

Wð·ÞW† ¼ UWðð·Þ ⊗ j0iRh0jÞU†
W: ð10Þ

▪
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We remark that the relation between correlation pre-
serving and reversibility is robust in one direction. More
precisely, if the channel EA→A0 almost preserves correlation,

IA∶BðρÞ − IA0∶ BðEA→A0 ðρÞÞ ¼ ϵ; ð11Þ

then there exists an almost perfect recovery channel DA0→A
such that

Fðρ;D ∘ EðρÞÞ ≥ 2−ϵ=2: ð12Þ

A proof, based on approximate quantum Markov chains
[42] can be found in Appendix A 2. The robustness
property is desirable especially when we would like to
numerically search for the correlation-preserving chan-
nel E.
When using E for the purpose of coarse graining, the

target space of the channel should be as small as possible.
This corresponds to solving the following optimization
problem:

argminEA→A0 dimHA0

s:t: IA∶ĀðρÞ − IA0∶ ĀðEðρÞÞ ≤ ϵ; ð13Þ

with ϵ taken to be a small number or zero. The problem is
analogous to Eq. (3) for pure states, which has Eq. (2) as an
explicit solution. The current problem, in contrast, has no
known explicit solution. In fact, the problem is closely
related to the mixed-state quantum data compression
problem, which is under active exploration in quantum
information theory. See Refs. [43–46] for recent discus-
sions on the problem.
To search for a good coarse-graining map for a given

state, one can either numerically solve the optimization
problem Eq. (13) (in this case the robustness property is
crucial for the purpose of estimating error) or try to
construct the channel analytically by exploiting the special
structure of the given state, as we do later when studying
examples in Sec. IV.
We point out that two familiar coarse-graining schemes

in 1D, one for quantum ground states and one for classical
statistical mechanics models, are in fact correlation-
preserving maps. The first one is the Hilbert space
truncation reviewed in Sec. III A using the rule Eq. (2).
Since this scheme preserves the entropy of a block, it
satisfies the correlation-preserving condition (for a pure
state jψABi, SA ¼ 1

2
IA∶B). The other example is Kadanoff’s

block spin decimation of classical spin chains. Consider the
Gibbs state of a classical spin chain with nearest-neighbor
interaction, but written as a quantum mixed state:

ρβ ∝
X

s¼s0…sL

exp

�
−β
X
i

hiðsi; siþ1Þ
�
jsihsj: ð14Þ

The state is classical because it is diagonal in the computa-
tional basis jsi ¼ js1…sLi. For each blockB ¼ fi1;…; ibg,
the block spin decimation corresponds to a quantum channel
that traces out all spins in B other than i1. This operation is
correlation preserving with respect to B0 ≔ B ∪ fibþ1g,
because

IB0∶ B0 ðρÞ ¼ Ifi1;ibþ1g∶B0 ðρÞ; ð15Þ

which is a consequence of the Markov property of the Gibbs
distribution.

C. Ideal mixed-state RG

In this section, we formulate an ideal real-space RG
scheme built from local correlation-preserving channels.
Assume ρ is a many-body mixed state on a lattice

with linear size L. We further assume that we have
constructed, either numerically or analytically, a series of
coarse-graining transformations fCð0Þ; Cð1Þ;…; CðlÞ;…g
acting on ρ sequentially. In 1D, each CðlÞ may have one
of the structures shown in Fig. 3, or any other structure as
long as it is composed of at most Oð1Þ layer of local
channels. This leads to an “RG flow” of mixed states:

ρ ¼ ρð0Þ ⟶
Cð0Þ

ρð1Þ ⟶
Cð1Þ � � � ⟶C

ðl−1Þ
ρðlÞ ⟶

CðlÞ � � � ð16Þ

along which the level of coarse graining increases
gradually.
Each state ρðlÞ is supported on a coarse-grained lattice

LðlÞ with an LðlÞ ≔ L=bl linear size. The chain has a
length at most ∼ logb L, after which the state is supported
on Oð1Þ number of sites.
We call this RG process ideal if every channel gate E

within each CðlÞ is correlation preserving with respect to its
input and the prescribed bipartition.
As a direct consequence of Theorem 1, ideal RG is

reversible. More specifically, there exists a series of local
“fine-graining” transformations fF ð0Þ;F ð1Þ;…;F ðlÞ;…g
that recovers the original mixed state from its coarse-
grained version by gradually adding local details:

ρð0Þ ⟵
F ð0Þ

ρð1Þ ⟵
F ð1Þ

� � � ⟵
F ðl−1Þ

ρðlÞ ⟵
F ðlÞ

� � � ; ð17Þ

where each F ðlÞ is the “reversed” channel of CðlÞ, obtained
by replacing each channel E within F ðlÞ by its corres-
ponding recovery map D (see Theorem 1). In graphical
notation, if

ð18Þ

then
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ð19Þ

In both plots, the state (ρðlÞ for CðlÞ and ρðlþ1Þ for F ðlÞ) is
inserted from the bottom.
Coarse-graining and fine-graining maps also establish

relations between operators at different coarse-graining
levels. Let OðlÞ be any operator (not necessarily local)
defined on the lattice LðlÞ. Then the following relation
holds:

tr
�
ρðlÞOðlÞ

�
¼ tr

�
F ðlÞ ∘ CðlÞðρðlÞÞOðlÞ

�
¼ tr

�
ρðlþ1ÞF †ðlÞðOðlÞÞ

�
; ð20Þ

where F † is F ’s dual map, defined through the relation
trðA · F ðBÞÞ≡ trðF †ðAÞ · BÞ. Thus we can define the
coarse-grained operator of OðlÞ through

Oðlþ1Þ ≔ F †ðlÞðOðlÞÞ; ð21Þ

so that

hOðlÞiðlÞ ¼ hOðlþ1Þiðlþ1Þ; ð22Þ

where h·iðlÞ ≔ trðρðlÞð·ÞÞ.
It is worth noting that F † ¼ F ðlÞ† does not preserve

operator multiplication: IfOðlÞ ¼ oðlÞ1 oðlÞ2 , then it is possible

that F †ðOðlÞÞ¼Oðlþ1Þ≠oðlþ1Þ
1 oðlþ1Þ

2 ¼F †ðoðlÞ1 ÞF †ðoðlÞ2 Þ.
However, if two operators o1 and o2 are spatially well
separated, then the multiplication is preserved:

F †ðoðlÞ1 oðlÞ2 Þ ¼ F †ðoðlÞ1 ÞF †ðoðlÞ2 Þ: ð23Þ

Here “well separated” means that the light cones for o1
and o2, as determined by the circuit structure of CðlÞ (or
equivalently that ofF ðlÞ†), are nonoverlapping.We illustrate
the definition of the light cone and a proof of the above
equation inAppendixA 3.This guarantees that long-distance
behavior of all the k-point functions are preserved along an
ideal RG:D
oðlÞ1 oðlÞ2 � � � oðlÞk

EðlÞ ¼ Doðlþ1Þ
1 oðlþ1Þ

2 � � � oðlþ1Þ
k

Eðlþ1Þ
;

ð24Þ

where foig are mutually well-separated local operators.

D. From mixed-state RG to mixed-state
quantum phases

In this section, we discuss how to use RGs, both
ideal and nonideal ones, to furnish the two-way LC

transformations required to establish the phase equivalence
of two mixed states (Definition 2).
Assume that for the state of interest ρ, we have

found a (not necessarily ideal) real-space RG process
fCð1Þ; Cð2Þ;…; CðlÞ;…g. We further assume that the RG
has a well-defined fixed-point state ρð∞Þ, whose mixed-
state phase of matter is presumably easy to identify.
Intuitively, this RG can be treated as an LC trans-

formation connecting ρ to ρð∞Þ [47]. To rigorously show
this according to Definitions 1 and 2, one needs to show
that the sequence fρðlÞg converges toward ρð∞Þ fast
enough. More concretely, we need to show that there
exists l� such that the following hold.
(1) The channel Cðl�Þ ∘ � � � ∘ Cð2Þ ∘ Cð1Þ is an LC trans-

formation. Noticing that CðlÞ entails bl range of
nonlocality while an LC transformation can have at
most oðLÞ range, the condition is equivalent to
requiring l� ≲ logLα, for some α < 1.

(2) The state after l� iterations is close enough to ρð∞Þ,
namely, Fðρðl�Þ; ρð∞ÞÞ > 1 − ϵ for a small ϵ.

We find that such an l� does exist in many cases when
the fixed-point state ρð∞Þ has a finite correlation length.
More specifically, in such cases, the fidelity function
satisfies the form

FðρðlÞ; ρð∞ÞÞ ≃ expð−αθðlÞLðlÞÞ ð25Þ

for some α ¼ Oð1Þ and a positive coefficient θðlÞ. Further,
θðlÞ displays a power-law iteration relation under each
coarse-graining step:

θðlþ1Þ ≲ ðθðlÞÞγ; when θðlÞ → 0þ ð26Þ

for some coefficient γ > 1.
As detailed in Appendix B, Eqs. (25) and (26) guarantee

that choosing

l� ∼ log logðL=ϵÞ ð27Þ

is sufficient to have FðρðlÞ; ρð∞ÞÞ > 1 − ϵ. We remark
that one can let ϵ be as small as ðpolyLÞ−1 but still
guarantee that l� steps of RG is a ðpolylogLÞ-range LC
transformation.
In Appendix B we show that conditions Eqs. (25) and

(26) hold for
(i) 1D pure-state RG of a matrix product state
(ii) Gibbs state of a classical statistical mechanics model

flowing toward a noncritical fixed point
(iii) All examples we study in Sec. IV
So far in this section, we have shown that RG can be

viewed as an LC transformation connecting ρ to ρð∞Þ.
Recalling that the phase equivalence is defined through
two-way LC connections, we have to find another LC

MIXED-STATE QUANTUM PHASES: RENORMALIZATION AND … PHYS. REV. X 14, 031044 (2024)

031044-7



channel connecting ρð∞Þ to ρ to conclude that the two states
are in the same phase.
If the RG is ideal one, it is composed of correlation-

preserving channels and thus reversible. In this case, the
other direction comes from the “reversed” RG process
RG−1 ¼ fF ð1Þ;F ð2Þ;…;F ðlÞ;…g which we discussed in
Sec. III C. Similar to the forward RG, there is the issue of
convergence concerning whether RG−1 can be treated as an
LC transformation. But the discussion is completely
parallel to the one for the forward RG. Thus in this case,
the LC biconnection is established as

ρ⟶
RG

ρð∞Þ ⟶
RG−1

ρ; ð28Þ
and we can conclude ρ and ρð∞Þ are in the same phase.
Next we discuss what we can learn from a nonideal RG.

One class of mixed states of significant interest is a long-
range entangled pure state jψi subject to local decoherence
represented by an LC transformation, and an important
question is whether or not the decohered state is in the same
phase as jψi. In this setting, one direction of the connection
is already given by the decoherence. Therefore, if the RG
(ideal or not) has jψi as the fixed point,

jψi ⟶
decohere

ρ⟶
RG

ρð∞Þ ¼ jψihψ j; ð29Þ
then an LC biconnection is established and ρ and jψi are in
the same phase. But, on the other hand, if the fixed point is
not in the same phase as jψi, then we cannot determine ρ’s
phase because no biconnection is identified.

IV. OVERVIEW OF EXAMPLES

In the remaining sections we use our formalism to
understand the quantum phases of several many-body
mixed states of recent interest.
In all the examples, the mixed state is obtained by

“perturbing” a long-range entangled pure state, either
through incoherent noise or finite temperature. The ques-
tion we address is whether the states before and after the
perturbation are in the same phase.
The long-range entangled pure state is chosen to be

either the Greenberger-Horne-Zeilinger state or Kitaev’s
toric code state. In most examples, the LC circuits for
identifying phases take the form of RG. The coarse-
graining maps therein are either constructed according to
the correlation-preserving criterion (Definition 3) or
inspired by decoders of quantum error-correcting codes.
In Appendix C we include an example of a mixed SPT

state and its associated mixed-state RG.

V. NOISY GHZ STATES

The many-body GHZ state, defined as

jGHZLi ≔
1ffiffiffi
2

p ðj0⊗Li þ j1⊗LiÞ; ð30Þ

has long-range entanglement; i.e., it cannot be generated
from a product state using any one-dimensional LU (or LC)
transformation from a product state. In this section, we
study the effect of dephasing noise on this state.
For convenience of analysis, we let L ¼ blmax for

some integer lmax and an odd integer b. The state can
be rewritten as

jGHZLi ¼ w⊗blmax−1

b · w⊗blmax−2

b � � �w⊗b1
b jþi; ð31Þ

where wb ¼ j0⊗bih0j þ j1⊗bih1j is an isometry and jþi ¼
ð1= ffiffiffi

2
p Þðj0i þ j1iÞ. This provides a tree tensor network

representation of the state (see Fig. 4), as well as a way of
blocking sites when performing RG.
We consider a setting in which each qubit experiences

the same noise, as modeled by a single qubit channel N ,
resulting in the mixed state

ρL ≔ N⊗LðjGHZLihGHZLjÞ: ð32Þ

We remark that the GHZ state is closely related to the
quantum repetition code, whose code space is spanned by
j0⊗Li and j1⊗Li. It is known that quantum information
stored in a quantum repetition code is robust against bit-
flip noise (X-dephasing noise) but not phase-flip noise
(Z-dephasing noise). As we will see in this section, the
robustness of the GHZ state’s long-range entanglement has
a parallel behavior when it is subjected to these two types of
noise. We postpone a detailed discussion of the relation
between mixed-state phases and quantum coding properties
to Sec. VII.

A. Bit-flip noise

We first consider dephasing each qubit in the X direction:

N ð·Þ ¼ N X
pð·Þ ≔ ð1 − pÞð·Þ þ pXð·ÞX; ð33Þ

in which each qubit is flipped with probability p.

FIG. 4. Tree tensor network of a GHZ state with L ¼ bl ¼ 9,
b ¼ 3, l ¼ 2. Each triangle represents an isometry w [Eq. (31)].
By replacing the state at the top with a generic single qubit state
jψi, the same tensor network encodes jψi into a code word state
of the quantum repetition code.
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The resulting state is

ρXp;L¼
1

2

X
s

pjsjð1−pÞL−jsjðjsihsjþ jsihs̄jþ js̄ihsjþ js̄ihs̄jÞ;

ð34Þ

where jsj ≔Pi si is the number of 1 in the bit string s, and
s̄ is the bitwise complement of s. Since ρXp ¼ ρX1−p, we
consider only p∈ ð0; 0.5�.
Inspired by decoders for the quantum repetition code,

we use the b-qubit majority-vote channel as the coarse-
graining map. To define it, we first introduce the unitary
operator that reparametrizes the bit string:

Ujsi ≔ jmajðsÞi ⊗ jdiffðsÞi; ð35Þ

where majðsÞ takes the majority vote of the bits within s:

majðsÞ ≔
�
0 if jsj < b=2

1 if jsj ≥ b=2;
ð36Þ

and diffðsÞ is a length (b − 1) bit string that records
pairwise difference of s:

diffðsÞi ≔ ðsiþ1 − siÞ mod 2; i ¼ 1; 2;…; b − 1: ð37Þ

Then the majority vote channel can be written as

Ebð·Þ ≔ tr2ðUð·ÞU†Þ; ð38Þ

where tr2 denotes tracing out the pairwise difference
information, regarded as unimportant short-distance
degrees of freedom in the current example.
We inspect the state’s RG flow under Eb, the coarse-

graining map:

E⊗L=b
b ðρXp;LÞ ¼ E⊗L=b

b ∘ ðN X
pÞ⊗LðjGHZLihGHZLjÞ

¼ ðEb ∘ ðN X
pÞ⊗b ∘Uwb

Þ⊗L=b

× ðjGHZL=bihGHZL=bjÞ; ð39Þ

where Uwb
ð·Þ ≔ wbð·Þw†

b and we applied the relation

jGHZLi ¼ w⊗L=b
b jGHZL=bi. Thus after one iteration of

coarse graining, the resulting state is a GHZ state
with 1=b of the original size subject to a “renormalized”
noise channel, which is still X dephasing (see Appendix A 4
for a derivation):

Eb ∘ ðN X
pÞ⊗b ∘Uwb

¼ N X
p0 ; ð40Þ

butwith a renormalized noise strengthp0 ¼Pb
k¼ðbþ1Þ=2ðbkÞ×

pkð1−pÞb−k.

Thus we obtain an exact description of the state’s RG
flow:

ρðlÞ ¼ ðN X
pðlÞ Þ⊗LðlÞ ðjGHZLðlÞ ihGHZLðlÞ jÞ; ð41Þ

where LðlÞ ¼ Lb−l is the renormalized system size at
the lth iteration, and pðlþ1Þ ¼Pb

k¼ðbþ1Þ=2ðbkÞðpðlÞÞk ×
ð1 − pðlÞÞb−k. It is straightforward to check that p ¼ 0
and p ¼ 1=2 are the two fixed points of the RG
transformation.
Around p ¼ 1=2, the iteration relation has the asymp-

totic behavior:

ðp0 − 1=2Þ ≃ gðbÞðp − 1=2Þ; ð42Þ

where gðbÞ ≔P
b
k¼ðbþ1Þ=2 4kðbkÞ > 1. Thus this is an unsta-

ble fixed point. Exactly at p ¼ 1=2, the fixed-point state is

ρX1=2;L ¼ 1

2L

X
s∈ f0;1gL

ðjsihsj þ jsihs̄jÞ: ð43Þ

The state is better understood in the eigenbasis of
Pauli X operators, i.e., fj0Xi ¼ ð1= ffiffiffi

2
p Þðj0i þ j1iÞ, j1Xi ¼

ð1= ffiffiffi
2

p Þðj0i − j1iÞg:

ρX1=2;L ¼ 1

2L−1

X
s∈ f0;1gL

jsXihsXjδðjsj ¼ 0 mod 2Þ: ð44Þ

In this basis, the state is a uniform distribution of bit strings
with even parity. Since it is diagonal in this basis, the state
is a classical state (recall the definition in Sec. II) and is not
in the same phase as the GHZ state [48].
On the other hand, p ¼ 0 is a stable fixed-point attract-

ing p∈ ½0; 0.5Þ. Starting from any state in the interval, the
RG process gradually removes entropy within the state and
brings it back to the noiseless state at p ¼ 0, i.e., jGHZi.
We thus obtain the following LC transformation bicon-
nection:

jGHZi⟶N X
ρXp ⟶

RG jGHZi; p∈ ½0; 0.5Þ: ð45Þ

Thus we can conclude ρXp and jGHZi are in the same phase.
The analysis shows that the X-dephasing noise acts as an
irrelevant perturbation with respect to the jGHZi state and
its long-range entanglement.
Besides establishing the phase equivalence, the bicon-

nection in Eq. (45) also yields information on the entan-
glement structure of the dephased state ρXp . Consider two
sufficiently large subregions of the system, referred to as A
and B, for which one can always choose the RG blocking
scheme such that coarse-graining channels never act jointly
on A and B. Let EA∶Bð·Þ be any quantum or classical
correlation measure between A and B that satisfies the data
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processing inequality. Then due to the biconnection we
have

EA∶BðjGHZiÞ ≥ EA∶BðρXpÞ ≥ EA∶BðjGHZiÞ
⇒ EA∶BðρXpÞ ¼ EA∶BðjGHZiÞ: ð46Þ

Some examples of correlation measures are quantum
mutual information, entanglement negativity, and entangle-
ment of formation and distillation. All quantities are easy to
compute analytically for the GHZ state but are difficult to
obtain for the mixed-state ρXp by other means.
We point out that all conclusions in this section hold also

for the dephasing noise along other directions in the X-Y
plane. This can be most easily seen by noticing that the
expression Eq. (40) holds for any dephasing direction in the
X-Y plane. As we will see in the next subsection, the Z
dephasing acts very differently.

B. Phase-flip noise

Next we consider the GHZ state under another type of
noise, namely, the phase flip or Z dephasing:

N Z
pð·Þ ≔ ð1 − pÞð·Þ þ pZð·ÞZ; ð47Þ

which leads to the density matrix:

ρZp;L ¼ 1

2
½j0⊗Lih0⊗Lj þ j1⊗Lih1⊗Lj

þ ð1 − 2pÞLðj0⊗Lih1⊗Lj þ j1⊗Lih0⊗LjÞ�: ð48Þ

In the thermodynamic limit, the off-diagonal term vanishes
for any p ∉ f0; 1g and the state converges to a classical
state 1

2
ðj0⊗Lih0⊗Lj þ j1⊗Lih1⊗LjÞ. This already indicates

that the state is in a different phase from the GHZ state.
To construct the RG for this mixed state, we still use the

majority-vote channel Eb [Eq. (38)] as the coarse-graining
map. An important difference of this case compared to
the bit-flip case is that the majority-vote channel is now
correlation preserving with respect to ρZp;L. To see this, we
first verify the following relations:

Eb ∘Uwb
¼ I ;

ðN Z
pÞ⊗b ∘Uwb

¼ Uwb
∘N Z

p0 ; ð49Þ

where I is the identity channel and p0 is given later in
Eq. (52). These equations imply that

Uwb
∘ EbðρZp;LÞ ¼ ρZp;L; ð50Þ

where Uwb
∘ Eb is applied to any block of b sites. Thus Eb

is reversible and correlation preserving with respect
to ρZp;L.

Following a similar calculation as in the bit-flip noise
case, we obtain that the state after one step of RG maintains
the same form:

E⊗L=b
b ðρZp;LÞ ¼ ρZp0;L=b; ð51Þ

but with a renormalized noise strength,

p0 ¼ 1

2
½1 − ð1 − 2pÞb�: ð52Þ

The iteration relation has p ¼ 0 as an unstable fixed
point, around which p0 ≃ bp, and also p ¼ 1=2 as a stable
fixed point, around which ðp0 − 1=2Þ ¼ ðp − 1=2Þb.
Since the RG is ideal, it leads to the following LC

biconnection:

ρZ1=2 ⟶
RG−1

ρZp ⟶
RG

ρZ1=2; p∈ ½0; 0.5Þ; ð53Þ

and the analysis shows the noisy state is of the same
phase as the classical state 1

2
ðj0⊗Lih0⊗Lj þ j1⊗Lih1⊗LjÞ.

Therefore, for the GHZ state the phase-flip noise is relevant
and destroys the long-range entanglement therein with an
arbitrarily small strength.

VI. THERMAL TORIC CODE STATE

In this section and the next, we discuss two mixed states
related to Z2 topological order. In Sec. VI Awe review key
properties of the toric code model and define the notations.
In Sec. VI B we construct an ideal RG to explicitly show
that any finite temperature Gibbs state of the toric code is in
the trivial phase.

A. Review of the toric code model

We consider a square lattice with periodic boundary
conditions and qubits on the links. Kitaev’s toric code
model has the Hamiltonian

H ¼ −
X
□∈P

A□ −
X
þ∈V

Bþ; ð54Þ

where A□ ¼Qi∈□
Xi and Bþ ¼Qi∈þ Zi. P; V represent

plaquettes and vertices, respectively.
Since all terms in the Hamiltonian commute with each

other, their common eigenstates can be used to label the
Hilbert space. But in order to construct a complete basis, we
need two more operators X̃1;2 ¼

Q
i∈ S1;2 Xi, where S1, S2

are the two homotopically inequivalent noncontractible
loops on the torus. Each X̃i commutes with A□’s and
Bþ’s, thus all of them together define a basis for the
Hilbert space:

jm ¼ m1…mjPj; e ¼ e1…ejVj; l ¼ l1l2i;
mi; ei; li ∈ f0; 1g; ð55Þ
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satisfying

A□i
jm; e; li ¼ ð−1Þmi jm; e; li;

Bþi
jm; e; li ¼ ð−1Þei jm; e; li;

X̃ijm; e; li ¼ ð−1Þli jm; e; li: ð56Þ

We call this the anyon number basis in contrast to
the computational basis. If mi ¼ 1, there is a plaquette
anyon (or m anyon) at the corresponding plaquette;
while if ei ¼ 1, there is a vertex anyon (or e anyon)
at the corresponding vertex. The operator identitiesQ

□
A□ ¼ 1 and

Q
þ Bþ ¼ 1 enforce that the total number

of either type of anyon must be even:

πðmÞ ¼ 0; πðeÞ ¼ 0; ð57Þ
where the function πð·Þ evaluates the total parity of a bit
string, i.e., πðsÞ ≔ ðPi si mod 2Þ.
The Hamiltonian’s four-dimensional ground state sub-

space V is spanned by anyon-free states:

V ≔ spanfjm ¼ 0; e ¼ 0; li∶l∈ f00; 01; 10; 11gg: ð58Þ

States within this subspace are locally indistinguishable;
i.e., ρA ¼ trĀðjψihψ jÞ is independent of jψi∈V whenever
A is a topologically trivial region.
We define a mixed state ρ to be in the toric code phase if

it is LC biconnected to states within V, namely,

ρa ⟶
C1

ρ⟶
C2

ρb; ð59Þ

for some states ρa, ρb within V, and some LC trans-
formations C1, C2.

B. RG of the thermal toric code state

We consider the Gibbs state of the toric code model
Eq. (54) ρβ ∝ expð−βHÞ at inverse temperature β.
Reference [35] showed that this state for finite β is not
long-range entangled, and here we reproduce the conclu-
sion by constructing an ideal mixed-state RG under which
the state flows to a state in a trivial phase.
We notice that the density matrix ρβ is diagonal in the

anyon number basis [Eq. (55)]:

ρβjm; e; li ∝ jm; e; li; ð60Þ

and is thus a classical mixture of different anyon configu-
rations, with probabilities

Prðm; e; lÞ ≔ hm; e; ljρβjm; e; li
¼ PrmðmÞ PreðeÞ PrlðlÞ; ð61Þ

in which the three types of degrees of freedom are
independent:

PrmðmÞ ¼ CβδðπðmÞ ¼ 0Þ
Y
i

pmi
β ð1 − pβÞ1−mi ;

PreðeÞ ¼ CβδðπðeÞ ¼ 0Þ
Y
i

pei
β ð1 − pβÞ1−ei ;

PrlðlÞ ¼ 1=4; ð62Þ

with pβ ¼ ðe−β=eβ þ e−βÞ and Cβ a normalization
constant.
The key property is thatm anyons on each plaquette (and

e anyons on vertices) are independently excited with
probability pβ, up to a global constraint that the total
number of each anyon type is even. This allows us to find
an ideal RG, as we need only preserve the local anyon
parity πðmBÞ; πðeBÞ of a block B to maintain correlations
between the block and its complement.
We now describe how to coarse grain to preserve this

parity information. Consider the following quantum chan-
nel acting on 12 qubits in a 2 × 2 block of plaquettes:

EXð·Þ ≔
X

m∈ f0;1g⊗4

UmPmð·ÞPmU
†
m; ð63Þ

where Pm is the projector to the subspace with anyon
configuration m, and the unitary operator Um is a product
of Pauli Z matrices that brings jm ¼ m1m2m3m4i to
jπðmÞ000i. For instance, if we assume plaquettes are
labeled as 1

3
2
4
and m ¼ 0110, then Um can be Z12Z13,

where Z12ð13Þ is the Pauli-Z matrix acting on the qubit
separating 1 and 2 (1 and 3). We remark that Um only acts
on the inner four qubits.
In other words, EX first measures the anyon configura-

tion within the block and then applies a unitary gate
depending on the measurement outcome that pushes all
anyons to the top left plaquette. Since m anyon is its own
antiparticle, the top left plaquette ends up with πðmÞ
anyons while the other three end up with 0. Importantly,
neither step disturbs the distribution of e anyons.
EX is a correlation-preserving map with respect to the

state ρβ, and one can explicitly check that its action on ρβ
can be reversed by the following channel:

DXð·Þ ≔
X
m

PrðmjπðmÞÞU†
mP1

πðmÞð·ÞP1
πðmÞUm; ð64Þ

where P1
x is the projector to the subspace with m1 ¼ x. The

action of DX can be intuitively understood as follows: It
first measures the anyon occupancy of the site 1, which we
recall is the only site that may host an anyon after the action
of EX. Then based on the measurement outcome (referred to
as x), it randomly generates an anyon configuration on the
block according to the distribution PrðmjπðmÞ ¼ xÞ.
Analogously, there is a channel for each 2 × 2 block of

vertices (i.e., a block of plaquettes of the dual lattice) that
coarse grains e anyons:
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EZð·Þ ≔
X

e∈ f0;1g⊗4

UePeð·ÞPeU
†
e; ð65Þ

where Pe are projector for e-anyon configurations andUe a
product of X operators that brings je ¼ e1e2e3e4i to
jπðeÞ000i. EZ moves only e anyons and commutes with EX.
After applying EXðZÞ to each block of plaquettes (ver-

tices), the resulting state has only anyons on plaquettes and
vertices corresponding to a sublattice (see Fig. 5, middle
panel). To complete one iteration of the RG, we need to
discard some degrees of freedom and put the state on a
coarse-grained lattice. This step can be achieved by a series
of local unitary operators called elementary moves intro-
duced in Refs. [49,50].
This step is most easily described graphically:

ð66Þ

At each step, multiple controlled-NOT gates are applied,
represented with arrows from the control qubit to target
qubit. These gates decouple qubits into a product state
which can then be removed, and the remaining qubits form
a toric code state with anyons on a coarser lattice.
Operations shown in each panel are applied in parallel
to all the 2 × 2 blocks on the lattice.

In summary, one iteration of the RG consists of

C ¼ U ∘
�

⊗
B∈B0

EZ
B

�
∘
�

⊗
B∈B

EX
B

�
; ð67Þ

where B contains 2 × 2 blocks of plaquettes and B0
contains 2 × 2 blocks of vertices. U stands for the disen-
tangling operations in Eq. (66).
After one step of RG, a plaquette (vertex) contains an

anyon if and only the four plaquettes (vertices) it was
coarse grained from contain an odd number of anyons. The
renormalized state is still a thermal toric code state, but with
a renormalized probability (or renormalized temperature):

p0
β0 ¼ 4pβð1 − pβÞ3 þ 4p3

βð1 − pβÞ
⇔ tanh β0 ¼ tanh4β: ð68Þ

We thus conclude that any finite temperature state ρβ<∞
flows to the infinite temperature state ρβ¼0 under the RG.
Furthermore, since all channels in the RG are correlation

preserving with respect to their inputs, the RG is ideal and
can be reversed. Thus there is the following biconnection:

ρβ¼0 ⟶
RG−1

ρβ ⟶
RG

ρβ¼0; β < ∞: ð69Þ

Since the infinite temperature state ρβ¼0 ∝ I is in the trivial
phase, we conclude that ρβ is also in the trivial phase.

VII. NOISY TORIC CODE STATE

Now we consider the mixed state obtained by applying
noise to a pure toric code state. All notations in this section
follow those introduced in Sec. VI A.
The toric code model is naturally a quantummemory that

stores quantum information in its ground state subspace V.
In Sec. VII A, we discuss the relation between the pres-
ervation of logical information and the preservation of the
phase of matter. We prove that if an LC transformation C
does not bring a pure toric code state out of its phase, then C
must preserve any quantum information stored in V.
In Secs. VII B and VII C, we describe two ways to show

that the dephased toric code state is in the toric code phase
when dephasing strength is small. More specifically, we
show that there exist LC transformations that bring the
dephased state back to a pure toric code state. In Sec. VII B,
the LC transformation is motivated by the Harrington
decoder of the toric code and takes the form of an RG
transformation. In Sec. VII C, the LC transformation is
obtained by spatially truncating the minimum weight
perfect matching decoder.

A. Logical information and long-range entanglement

The toric code model, as its name suggests, is naturally a
quantum error-correcting code whose code space is the

FIG. 5. RG scheme for the thermal toric code state. In all
panels, a plaquette (vertex) is shaded (dotted) if it has a nonzero
probability of holding an m (e) anyon, and physical qubits are
associated with edges of the lattice and drawn as circles. Left to
middle: EX and EZ [see Eqs. (63) and (65)] act on each 2 × 2
block of plaquettes and vertices, respectively. The resulting state
has anyons on one of its sublattices’ plaquettes and vertices.
Middle to right: after disentangling with the unitary U depicted in
Eq. (66) and discarding the decoupled qubits, the new state is still
a toric code Gibbs state, but with renormalized temperature p0
[Eq. (68)] supported on a coarse-grained lattice.
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ground state subspace V [Eq. (58)]. In this context, an
important question is whether a noise channel N destroys
logical information stored in a quantum memory.
Mathematically, this is equivalent to asking whether there
exists a recovery channel R such that

R ∘N ðjψihψ jÞ ¼ jψihψ j ∀ jψi∈V: ð70Þ

In quantum error correction, R is often realized by a
decoder, which maps any input state into an output
supported within V [51]. If such R exists, we say the
logical information is preserved by N . Otherwise, we say
the logical information is destroyed.
To relate the phase of the mixed state, as defined by two-

way LC connection, to preservation of logical information,
we will need to first prove the following theorem.
Theorem 2.—Let V be the code subspace of a toric code

defined on a torus. Suppose C is a local channel trans-
formation satisfying suppCðjψihψ jÞ ⊆ V ∀ jψi∈V, then
C’s action when restricted to V is a unitary channel.
To gain some intuition for why locality of the

channel is essential in the theorem, consider the following
channel:

N ðρÞ ≔ 1

2
ρþ 1

2
X̃1ρX̃1; ð71Þ

where X̃1 ¼ Πi∈ S1Xi is the logical X operator of the first
encoded qubit (see Sec. VI A). N is not an LC trans-
formation:
N ðj0i⊗Lh0j⊗LÞ ¼ 1

2
ðj0i⊗Lh0j⊗L þ j1i⊗Lh1j⊗LÞ, a nontri-

vial mixed state with long-range correlations. Furthermore,
N preserves V, but its action within V is dephasing the first
logical qubit, which is not a unitary action.
We now prove Theorem 2.
Proof.—C can be dilated into an LU circuit U that acts

jointly on the physical qubits (referred to as P) and the
ancilla qubits (referred to as A). Consider U’s action on a
code word state:

jψ ; 0i ≔ jψiPj0iA ⟶
U jϕiPA; ð72Þ

where jψi is any code word state in V. For later conven-
ience we define the expanded code space V0, which is the
subspace of HPA spanned by fjψiPj0iAgjψi∈V. We use V0

to refer to both the subspace and the code defined by it. V0

is still a stabilizer code, whose stabilizers are those of V
combined with fZi∶ i∈Ag.
Let L1 and L2 be two Pauli logical operators of the toric

code that act in the same way in the code subspace V (see
Fig. 6). Thus L1L2 is a stabilizer of the toric code. Since C
preserves the code subspace, we have

hϕjL1L2jϕi ¼ trðCðjψihψ jÞL1L2Þ ¼ 1: ð73Þ

This leads to

hψ ; 0jLU
1 L

U
2 jψ ; 0i ¼ 1; ð74Þ

where LU
i ≔ U†LiU has support on both P and A, and is

not necessarily a Pauli operator. Recalling that LU
1 L

U
2 is a

unitary operator and the above expression holds for any
jψ ; 0i, we conclude that LU

1 L
U
2 acts as logical identity in the

extended code space V0.
To proceed, we assume the spatial separation between L1

and L2 to be much larger than the range of U, so that LU
1

and LU
2 are also well separated.

We claim that both LU
1 and LU

2 are logical operators of
V0. Otherwise, there needs to be a code word state jai∈V0

such that LU
1 jai ∉ V0. This implies at least one stabilizer S

of V0 is violated by the state: hajðLU
1 Þ†SLU

1 jai ≠ 1, and S
must have spatial overlap with LU

1 . Further, since L
U
2 is far

from both LU
1 and S,

hajðLU
1 L

U
2 Þ†SLU

1 L
U
2 jai ≠ 1: ð75Þ

But this cannot be true because LU
1 L

U
2 jai ¼ jai and S is a

stabilizer.
The same reasoning applies to any Pauli logical operator,

referred to as K, whose spatial support is perpendicular to
L ¼ L1 (see Fig. 6). By varying K and L, their product
R ¼ K · L can represent all of the 15 inequivalent Pauli
logical operators of the toric code. We fix such a set:
P ¼ fR1; R2;…; R15g. The image of P under R → RU is a
set of 15 logical operators of V0, as we just proved.
Furthermore, since the map R → RU preserves all the
multiplication and commutation relations, we know PU

must act as a set of 15 inequivalent Pauli logical operators
on V0, up to a basis rotation.
We consider the part of RU

i (or Ri) when restricted to the
code space V0 (or V):

ΠV0
RU
i ¼ R̃U

i ⊗ j0ih0j;
ΠVRi ¼ R̃i; ð76Þ

where R̃U
i and R̃i are operators acting within V only. ΠV is

the projector to the subspace V andΠV0
¼ ΠV ⊗ j0ih0j. As

explained, both f eRig and fR̃U
i g realize the algebra of Pauli

operators in the logical space.

FIG. 6. Geometry of operators L1, L2, and K.
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We have

CðR̃U
i Þ ¼ trAðUðR̃U

i ⊗ j0ih0jÞU†Þ
¼ trAðUðRU

i ΠV0
ÞU†Þ

¼ trAðRiUΠV0
U†Þ

¼ RiCðΠVÞ
¼ R̃iCðΠVÞ: ð77Þ

The second to last equality holds because Ri is supported
on P only, while the last one holds because suppCðΠVÞ ⊆ V
by assumption.
On the rhs of the second equality above RU

i and ΠV0

commute. Thus if we change their order, then the same
derivation gives

CðR̃U
i Þ ¼ CðΠVÞR̃i: ð78Þ

Since the relation holds for any i∈ f1;…; 15g and
suppCðΠVÞ ⊆ V, we know CðΠVÞ ∝ ΠV. Further, since C
is trace preserving, we have CðΠVÞ ¼ ΠV . Thus,

CðR̃U
i Þ ¼ R̃i: ð79Þ

This implies that when restricted to V, Cð·Þ is a �
isomorphism and must be a unitary channel. ▪
We use the theorem to explore the relation between the

phase of the noisy toric code state and the preservation of
quantum information stored.
Consider a toric code’s code word state jψi∈V. Suppose

N ψ is an LC transformation that preserves the toric code
phase. By definition, there exists another LC transforma-
tion Dψ such that suppDψ ∘N ψ ðjψiÞ ⊆ V [52]. We first
point out that the pair ðN ψ ;DψÞ satisfies

Dψ ∘N ψðjψ 0ihψ 0jÞ ⊆ V ∀ jψ 0i∈V; ð80Þ

which we prove in Appendix A 5. Since the choice of
ðN ψ ;DψÞ does not depend on the code word state jψi, we
drop the ψ subscript henceforth.
The channel D ∘N thus satisfies the condition in

Theorem 2, according to which we have

D ∘N ðjψihψ jÞ ¼ Ujψihψ jU† ∀ jψi∈V ð81Þ

for some logical unitary operator U.
We thus conclude that if the noise N preserves the

toric code phase, then it also preserves the logical infor-
mation stored. In particular, the recovery map can be
chosen as Rð·Þ ¼ U†Dð·ÞU.
We consider a more detailed scenario where the channel

N ¼ N p has a strength parameter p. When the noise is
very strong, both the toric code phase and the logical
information stored should be destroyed. Thus one can

define two critical noise strengths: pTC, beyond which the
noisy state is no longer in the toric code phase, and pcoding,
beyond which the stored logical information is no longer
recoverable. The previous analysis shows that

pTC ≤ pcoding: ð82Þ

Namely, the loss of logical information must occur after
transitioning out of the toric code phase.
If there is a gap between pTC and pcoding, then the noisy

state N pðjψihψ jÞ for p∈ ðpTC; pcodingÞ is not in the toric
code phase but still contains logical information. In this
case, the corresponding recovery map R that recovers
logical information must be non-LC.

B. RG of the dephased toric code state

We illustrate these general results in a specific example,
for which we construct explicit RG channels. We consider a
toric code ground state jTCi∈V subject to phase-flip noise
with strength p [Eq. (33)]:

ρp ≔ ðN Z
pÞ⊗LðjTCihTCjÞ: ð83Þ

We ask whether the state is in the same phase as jTCi when
p is small.
It is convenient to work in the anyon number basis

Eq. (55), and since all states in this example are in the
e-anyon-free subspace, we omit the e labeling henceforth.
A Z operator acting on a qubit on an edge will create a
pair of anyons in the two plaquettes adjacent to the edge.
But if two anyons meet in the same plaquette, they
annihilate. Thus, if we fix the set of edges acted on by
Z, then anyons appear on faces adjacent to an odd number
of Z’s (see Fig. 7).
The noisy state is a classical mixture of anyon configu-

rations which differ significantly from those of the Gibbs
state. When p is sufficiently small, the typical size of an
error cluster is much smaller than the typical distance
between clusters. The errors create anyons at the boundary
of each cluster.
This picture suggests that by locally identifying clus-

ters and pairing up anyons therein, one can remove all
errors if p is sufficiently small. This intuition underlies
the design of several decoding algorithms for the toric
code [25,53–55], which aim to pair up anyons such that
the quantum information stored in the code remains
intact. As we show now, these decoders can be modified
into RG schemes to reveal mixed-state phases of the
noisy toric code states.
We construct a simplified version of the Harrington

decoder for the toric code [25,55] to demonstrate that ρp
and jTCi are in the same phase when p is small. We first
partition the lattice into even blocks Beven and odd blocks
Bodd (see Fig. 8). Odd blocks are obtained by translating
even blocks by one lattice spacing in both spatial
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directions. The two types of blocks will play different
roles: Coarse graining will occur on even blocks and
anyons will be paired up within odd blocks, regarded as
boundary regions of even blocks.
Each step of the RG is composed of three layers of local

channels:

C ¼ U ∘
�

⊗
B∈Beven

EX
B

�
∘
�

⊗
B∈Bodd

GB

�
; ð84Þ

where the final step U is the disentangling operation
depicted in Eq. (66), and EX is the coarse-graining channel
defined in Eq. (63).
The main difference between this RG scheme and the

one for the thermal toric code state (see Sec. VI B) is the
introduction of Gs. GB annihilates all anyons within B only
if there are an even number of them; otherwise it leaves
anyons within B unmodified:

GB ≔
X

m∈ f0;1g⊗4

ŨmPmð·ÞPmŨ
†
m; ð85Þ

where Ũm equals Um [Eq. (63)] if πðmÞ ¼ 0, and is I when
πðmÞ ¼ 1. The heuristic reason for introducing GB is to
pair up anyon clusters across the boundaries of the even
blocks before the coarse-graining step. If such anyons

were not paired, the coarse graining on even blocks
potentially prolongs them into clusters with a larger size,
thus hindering effective anyon removal.
After each RG step C, the new state is still an ensemble

of different anyon configurations, albeit one that is not
analytically tractable. Thus, we numerically compute how
the RG steps affect the anyon density:

qðlÞp ¼ 1

jPðlÞj
X

□∈PðlÞ
tr

�
ρðlÞp

1 − A□

2

�
; ð86Þ

where PðlÞ is the set of plaquettes on the renormalized

lattice and ρðlÞp is the renormalized state after l iterations.
q ¼ 0 implies the state is in the ground state subspace V of
the toric code Hamiltonian Eq. (54).

We use Monte Carlo method to study the flow of qðlÞp

under RG. The simulation [Fig. 8(b)] shows that there is a

sharp transition of qðlÞp at pc ≈ 0.041:

lim
l→∞

qðlÞp ¼
�
0 p < pc

Oð1Þ p > pc:
ð87Þ

When p < pc the RG successfully annihilates all anyons
and the fixed-point state is in the ground state subspace
of V; while when p > pc, the fixed-point state has finite
anyon density.
Furthermore, when the anyon density qðlÞ approaches 0,

it transforms under each RG step as [see Fig. 8(c)]

qðlþ1Þ ≃ ðqðlÞÞγ; ð88Þ

for γ > 1. This behavior guarantees that a small number of
iterations is sufficient for the convergence to the toric code
ground state subspace (see Appendix B 4 for details).

FIG. 7. A sample anyon configuration for noisy toric code. A
dashed line on an edge denotes the corresponding qubit’s phase is
flipped by a Z operator. Anyons are created in plaquettes (shaded)
where an odd number of dashed lines meet.

(b)(a) (c)

FIG. 8. RG of the dephased toric code state. (a) In each RG iteration, G is applied in parallel to all the odd blocks (blue), then EX is
applied to all the even blocks (green). Finally, disentangling unitaries [see Eq. (66), not drawn in the figure] are applied to reduce the

lattice size by half. (b) RG flow of the anyon density qðlÞp . (c) Iteration relation of qðlÞp when approaching 0, for various choices of p.
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We thus obtain the LC biconnection:

jTCi⟶noise ρp ⟶RG jTC0i; p < pc; ð89Þ

where jTC0i is another toric code state. This shows that
ρp is in the same phase as the pure toric code state, when
p < pc and therefore X-dephasing noise is an irrelevant
perturbation to the topologically ordered phase.
We emphasize that this analysis does not show that ρp

with p > pc is in a different phase, because no biconnec-
tion has been identified with this decoder. In fact, in the
next section, we will construct another local channel that
establishes that the phase boundary of the toric code phase
extends to a much higher pc.

C. Truncated minimal weight perfect
matching channel

The seminal work [49] showed that the dephased toric
code state [Eq. (83)] retains its logical information up to a
critical point pcoding ≈ 0.108, by relating the coding phase
transition to the ferromagnetic-paramagnetic transition in
the random bond Ising model. A recovery channel called
the maximal likelihood decoder [49,56] decodes the logical
information for any p < pcoding, but the channel is not an
LC transformation.
The minimal weight perfect matching decoder is

another decoder introduced in Ref. [49]. It has a decod-
ing threshold pMWPM ≈ 0.103 very close to pcoding [57].
The MWPM decoder, as a quantum channel, is also not
an LC transformation. In the rest of this section, we show
that it is possible to approximate the MPWM decoder’s
action arbitrarily well with an LC transformation when-
ever p < pMWPM. Consequently, we show that any
dephased toric code state with p < pMWPM is in the
toric code phase.
The core component of the MWPM decoder (henceforth

referred to as CMWPM) is a classical algorithm that solves the
MWPM problem, namely looking for an anyons pairing
scheme that minimizes the total length of the strings
connecting pairs. Afterward, the decoder annihilates each
anyon pair by acting with the string of X operators
connecting the pair.
We now devise a way to truncate the CMWPM into an

LC transformation. We first partition plaquettes into
disjoint blocks, each with a size b × b. For each block
B, we apply a local channel EB;a which acts jointly on B
and a buffer region F of width a surrounding B (see
Fig. 9). The local channel first solves the MWPM of
anyons within the truncated region B ∪ F, with the
additional requirement that each anyon can pair either
with another anyon or with the outer boundary of F (the
dashed line in Fig. 9). Then given the pairing scheme
suggested by the MWPM solution, the channel accepts
only a subset of it, namely, pairs with at least one anyon

within B. The truncated MWPM (tMWPM) channel
applies the above channel to every block:

CtMWPM
a ≔

Y
B∈B

EB;a: ð90Þ

Note that different EB;a can have overlapping domains.
But since each EB;a acts only on a patch of ðbþ 2aÞ2
qubits, we can always rearrange fEB;ag into an
Oððbþ 2aÞ2Þ-layer circuit so that each layer is composed
of channels with nonoverlapping domains. After the
rearrangement, it is apparent that EtMWPM

a is a range-
Oððbþ 2aÞ4Þ LC transformation [because both the depth
and the range of gate is Oððbþ 2aÞ2Þ].
The assumption behind the design of the tMWPM

channel is the existence of a correlation length ξðpÞ, such
that when a ≫ ξðpÞ, solving MWPM on B ∪ F only and
solving MWPM on the whole system produce the same
pairing for anyons in B. If the assumption holds for every
block B, then the CtMWPM

a pairs all anyons in the same way
as CMWPM:

CtMWPM
a ðρpÞ ≈ CMWPMðρpÞ ¼ jTCi; a ≫ ξðpÞ: ð91Þ

We provide a rough estimate of how large a needs to be
for the approximation above to hold (agreement between
local and global MWPM with probability 1 − ϵ). Given the
correlation length assumption, the probability that for a
single block B the global and the truncated MWPM agrees
should be ð1 − e−a=ξðpÞÞ. Assuming these probabilities for
different blocks are independent (which should hold for far
apart blocks), then we need

ð1 − e−a=ξðpÞÞL2=b2 > 1 − ϵ; ð92Þ

which occurs when

(b)(a)

FIG. 9. Truncated minimum weight perfect matching channel.
(a) For a given block B, the corresponding channel EB;a acts on
both B and a buffer region F of a width a. (b) μða; pÞ is the
probability that the truncated and global MWPM algorithms
produce the same anyon pairings. It is plotted against p for
various choices of a.
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a ¼ ξðpÞO
�
log

L2

ϵ

�
: ð93Þ

a diverges whenever ξðpÞ does, and this is expected to
happen when p → pMWPM.
To numerically support the assumption that there exists a

correlation length for MWPM, we sample anyon configu-
rations in the X-dephased toric code state and solve the
MWPM first for all the anyons, and then only for anyons
within B ∪ F [Fig. 9(a)]. Then we compute the probability
μða; pÞ that the two solutions are identical on B. We let
both the system size L and the diameter of B be propor-
tional to a, the width of the buffer F, so that the system has
only one length scale a.
The simulation result is shown in Fig. 9(b) and suggests

there is a critical point ptMWPM in the interval (0.10, 0.11),
presumably consistent with pMWPM in the thermodynamic
limit. Below ptMWPM, we observe that lima→∞ μða; pÞ ¼ 1.
This indicates that the MWPM solution within B is
independent of anyons that are more than OðξÞ away from
B, for some correlation length ξ which diverges at ptMWPM.
tMWPM thus serves as a local channel which, along with
the noise channel, establishes the two-way connection
demonstrating the toric code phase up to ptMWPM ≈ 0.1.
Above ptMWPM, lima→∞ μða; pÞ ¼ 0, implying nonlocality
in the MPWM solution.
We point out that the simulation method above provides

a way to detect the toric code phase using the anyon
distribution data. One can fix a region B, implement
MWPM on B ∪ F, and gradually increase the buffer width
a. If the MWPM solution when restricted to B becomes
stationary after a is larger than some a� ¼ Oð1Þ with high
probability, then the original mixed state is in the toric code
phase because the tMWPM channel with a≳ a� logL can
transform it into a pure toric code state. The method can
potentially be used to detect mixed-state topological order
in experiments.

VIII. DISCUSSION AND OUTLOOK

Our work provides two routes (RG and local versions of
decoders) for constructing local channels connecting two
mixed states to prove they are in the same phase. We
formulated a real-space RG scheme for mixed states and
proposed the correlation-preserving property as a guiding
criterion for finding coarse-graining maps; this property is
necessary and sufficient for the map’s action to be revers-
ible (Theorem 1). We applied this formalism to identify the
phases of several classes of mixed states obtained by
perturbing a long-range entangled pure state with noise
or finite temperature, and in particular we constructed an
exact RG flow of the finite temperature 2D toric code state
to infinite temperature.
For toric code subject to decoherence, we also estab-

lished a relation between the mixed-state phase of the toric
code and the integrity of logical information. In Theorem 2,

we proved that if local noise preserves the long-range
entanglement of the toric code (and the resulting mixed
state remains within the same phase as toric code), it must
also preserve logical information encoded in the initial pure
state. We conjecture that the converse statement is also true;
namely, if local noise destroys the long-range entanglement
of toric code, it must also destroy any encoded logical
information. Even though the theorem and subsequent
discussion focused on the toric code state, the main proof
idea generalizes to many other topological codes and their
corresponding phases.

(i) After formalizing the definition of mixed-state
phase, one natural question to ask is whether there
is a nontrivial phase that has no pure state nor
classical state in this phase. A promising candidate is
the ZX-dephased toric code state recently studied in
Ref. [10]. Since the state (when noise is strong) loses
logical information [10], it is provably not in the
toric code phase according to our Theorem 2. Thus if
the state is not in the trivial phase, it is an example of
intrinsic mixed-state topological order. Another
class of potential examples are decohered critical
ground states [7,8], because such states naturally sit
between a long-range entangled pure state and a
long-range correlated classical state.

(ii) One related question is whether one can find a
computable quantity to detect nontrivial mixed-state
phases. Topological entanglement negativity has
been successfully used as a probe of mixed-state
topological order [5,58], but its robustness under LC
transformations needs to be studied further.

(iii) The decoherence-induced toric code transition can
also be understood as a separability transition of the
mixed state [11], and it would be valuable to relate
this perspective with the mixed-state phase and local
channel perspective.

(iv) Pure-state RG methods like DMRG serve as power-
ful computational methods for analyzing many-body
systems. It is thus important to develop a numerical
implementation of our mixed-state RG scheme.
To facilitate simulations, one needs to first find an
efficient representation of the mixed state (e.g., using
tensor networks), then update it iteratively using exact
or approximately correlation-preserving maps, ob-
tained by solving the optimization problem Eq. (13).
We leave this problem for future exploration.

(v) Steady states of dissipative dynamics form an
important class of mixed states, for which there
are several recent proposals of defining stable phase
of matter [18,59]. When dealing with such problems,
usually the dynamics (e.g., Lindbladian superoper-
ator) is known while a description of its steady state
is unknown; therefore, techniques developed in the
current work do not immediately apply. It is desir-
able to develop RG schemes that can operate on
Lindbladians directly.
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(vi) As presented in Sec. VII C, tMWPM also serves
as a practical probe of the mixed-state toric code phase
using anyon measurements. However, in experiments
imperfect measurements lead to a finite density of
“fake” anyons as well as unprobed anyons. To address
this, one needs to consider a specific model of
measurement errors and perform more than one round
of measurements. Another potential direction is gen-
eralizing tMWPM to other topologically ordered
mixed-state phases in two or higher dimensions.
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APPENDIX A: VARIOUS SHORT PROOFS

1. Relation between pure- and mixed-state
phase equivalence

We sketch a proof of the following statement: On a
given lattice, two pure states jψ1i and jψ2i are of the same
mixed-state phase if and only if there exists an invertible state
jai on the same lattice such that jψ1i and jψ2i ⊗ jai are of
the same pure-state phase. A many-body ground state jai is
called an invertible state if there exists another state jãi such
that jai ⊗ jãi can be LU transformed into a product state.
Since an LU transformation is also an LC transforma-

tion, pure-state phase equivalence trivially implies mixed-
state phase equivalence.
Now we show the other direction. Assume that there

exists a pair of LC transformations C1;2 such that C1ðρ1Þ ≈
ρ2 and C2ðρ2Þ ≈ ρ1. We use U1, U2 to denote the unitary
circuit within the definition of C1 and C2.
We observe that, since C1ðρ1Þ ≈ ρ2 and ρ2 is a pure

state, the state right before the tracing-out operation must
factorize as

Uðjψ1i ⊗ j0iÞ ≈ jψ2i ⊗ ja1i; ðA1Þ

where ja1i is the state that supports on qubits to be traced
out and is defined on the same lattice. Recalling the
definition of pure-state phases, we conclude the (pure-
state) phase equivalence: jψ1i ∼

pure
jψ2i ⊗ ja1i. Following a

similar argument, we can also obtain jψ2i ∼
pure

jψ1i ⊗ ja2i.
We thus have

jψ1i ∼
pure

jψ2i ⊗ ja1i ∼
pure

jψ1i ⊗ ja2i ⊗ ja1i: ðA2Þ

As a result, the state ja1i ⊗ ja2i is in the trivial phase, and
ja1i is either in the trivial phase or an invertible state. Note
that the proof assumes there is no “catalyst” effect in phase
equivalence relation: If jψ1i and jψ2i cannot be LU
connected to each other, then neither does the pair jψ1i ⊗
jai and jψ2i ⊗ jai, for any state jai.

2. Derivation of Eq. (12)

Let us assume EA→A0 approximately preserves the corre-
lation of a bipartite state ρAB:

IA∶BðρÞ − IA0∶ BðEA→A0 ðρÞÞ ¼ ϵ: ðA3Þ
After definingW and σA0EB the same way as in the proof of
Theorem 1, the condition above is equivalent to

IB∶EjA0 ðσA0EBÞ ¼ ϵ: ðA4Þ
Using the result in Ref. [42], there exists a reconstruction
map T A0→A0E to approximately reconstruct σA0EB from σA0B,
with the approximation error bounded as

ϵ ≥ −2 log2 FðσA0EB; T A0→A0EðσA0BÞÞ: ðA5Þ

We still define the recovery map DA0→A using Eq. (9).
We have

FðρAB;D ∘ EðρABÞÞ
¼ F

�
trRðU†

WUWððρABÞ ⊗ j0iRh0jÞU†
WUW

�
;

trR
�
U†

WT ðσA0BÞUWÞ
�

≥ F
�
UWððρABÞ ⊗ j0iRh0jÞU†

W; T ðσA0BÞ
�

¼ FðσA0EB; T ðσA0BÞÞ; ðA6Þ
where the inequality is due to the monotonicity of F under
quantum channels. Combining the two expressions above,
we arrive at the approximate recoverability we want:

ϵ ≥ − log2 FðρAB;D ∘ EðρABÞÞ: ðA7Þ

3. Derivation of Eq. (23)

We assume that the two operators oðlÞ1 ¼ o1 and oðlÞ2 ¼
o2 have nonoverlapping light cones Lðo1Þ and Lðo2Þ in

SANG, ZOU, and HSIEH PHYS. REV. X 14, 031044 (2024)

031044-18



the circuit representation of F †, as illustrated below:

To prove Eq. (23), we decompose F † into Oð1Þ number of
layers (as is drawn in the figure above). Each individual
layer is of the form E†

1 ⊗ E†
2 ⊗ � � � ⊗ E†

K , where each E†
I is

a dual channel that acts on a block of sites referred to as BI
such that BI ∩ BJ ¼ ∅ whenever I ≠ J. We inspect o1o2’s
transformation under a single layer. Assuming o1, o2 are
supported on BI and BJ, respectively, we have

E†
1 ⊗ E†

2 ⊗ � � � ⊗ E†
Kðo1o2Þ ¼ E†

I ðo1ÞE†
Jðo2Þ ðA8Þ

because dual channels are unital. By doing induction over
all the layers in F †, we arrive at our conclusion Eq. (23).

4. Derivation of Eq. (40)

We prove the channel equality by checking its action on
j0ih0j, j0ih1j, and j1ih1j, which form a basis of linear
operators for a single qubit.
We first act on the isometry and the noise channel:

ðN X
pÞ⊗b ∘Uwb

ðj0ih0jÞ ¼
X

s∈f0;1gb
pjsjð1−pÞb−jsjjsihsj ¼ σ00;

ðN X
pÞ⊗b ∘Uwb

ðj0ih1jÞ ¼
X

s∈f0;1gb
pjsjð1−pÞb−jsjjsihs̄j ¼ σ01;

ðN X
pÞ⊗b ∘Uwb

ðj1ih1jÞ ¼
X

s∈f0;1gb
pjsjð1−pÞb−jsjjs̄ihs̄j ¼ σ11:

ðA9Þ
Then we act the majority-vote channel. Its action on σ00 is

Eðσ00Þ ¼
X
s

pjsjð1 − pÞb−jsjjmajðsÞihmajðsÞj

⊗ trðjdiffðsÞihdiffðsÞjÞ

¼
 X

s∶jsj<b=2
pjsjð1 − pÞb−jsj

!
j0ih0j

þ
 X

s∶jsj>b=2
pjsjð1 − pÞb−jsj

!
j1ih1j

¼ ð1 − p0Þj0ih0j þ p0j1ih1j
¼ N X

p0 ðj0ih0jÞ; ðA10Þ

where

p0 ¼
X

s∶jsj>b=2

pjsjð1 − pÞb−jsj ¼
Xb

k¼ðbþ1Þ=2

�
b
k

�
pkð1 − pÞb−k:

ðA11Þ

Following a very similar calculation, we have

Eðσ01Þ ¼ ð1 − p0Þj0ih1j þ p0j1ih0j ¼ N X
p0 ðj0ih1jÞ;

Eðσ11Þ ¼ ð1 − p0Þj1ih1j þ p0j0ih0j ¼ N X
p0 ðj1ih1jÞ: ðA12Þ

Then we obtain Eq. (40).

5. Derivation of Eq. (80)

The statement is equivalent to stating that Dψ ∘N ψðjϕiÞ
is anyon-free, namely,

trðDψ ∘N ψðjϕiÞOÞ ¼ 1 ∀ O∈ fA□; Bþg; jϕi∈V;

ðA13Þ

which is further equivalent to

trðjϕihϕjN †
ψ ∘D†

ψðOÞÞ ¼ 1: ðA14Þ

We use A to denote the spatial support ofN †
ψ ∘D†

ψ ðOÞ. A is
a topologically trivial region because bothN andD are LC
transformations. Thus the reduced density matrix of jψi
and jϕi over the region A must be the same, and we can
conclude the above equation holds for arbitrary jϕi∈V.

APPENDIX B: CONVERGENCE OF
REAL-SPACE RGs

In Sec. III D it is stated that if a mixed state’s RG flow
fρð0Þ; ρð1Þ;…g satisfies the following conditions for large
enough l,

Eq: ð25Þ∶ FðρðlÞ; ρð∞ÞÞ ≃ expð−αθðlÞLðlÞÞ;
Eq: ð26Þ∶ θðlþ1Þ ≲ ðθðlÞÞγ; when θðlÞ → 0þ;

then choosing

l� ¼ Oðlog logðL=ϵÞÞ ðB1Þ

guarantees Fðρðl�Þ; ρð∞ÞÞ > 1 − ϵ for a small ϵ. LðlÞ ¼
L=bl is the renormalized system size.
In this appendix we first prove the statement, then show

the validness of conditions Eqs. (25) and (26) in several
scenarios, including all examples we studied in the
main text.
Suppose l0 ¼ Oð1Þ simultaneously satisfies the follow-

ing two conditions: Equation (26) holds when l > l0 and

MIXED-STATE QUANTUM PHASES: RENORMALIZATION AND … PHYS. REV. X 14, 031044 (2024)

031044-19



that θðl0Þ ≔ θ0 < 1. Iterating the condition ðl − l0Þ times,
we get

θðlÞ < ðθ0Þγl−l0 : ðB2Þ

We need to find how large l needs to be, in order to satisfy

expð−αθðlÞLðlÞÞ > 1 − ϵ; ðB3Þ

which is implied by (note that LðlÞ < L)

θðlÞ < ϵ=L; ðB4Þ

which is further implied by

l > l0 þ logγ logθ−1
0
ðL=ϵÞ ¼ Oðlog logðL=ϵÞÞ: ðB5Þ

This completes the proof.
In the rest of this appendix, we show several scenarios

where the condition Eqs. (25) and (26) is satisfied. For the
case of matrix product state with a tree tensor network RG,
the analysis was done thoroughly in a recent work [60].

1. Classical statistical mechanics models

Let us consider a classical statistical mechanics model
with the Hamiltonian:

Hg ¼ H0 − gH0: ðB6Þ

We assume that under some given RG process, H0 is the
RG fixed point while H0 is an irrelevant perturbation with
respect to H0. Further, we assume both H0 and H0 are
summations of spatially local terms each involving Oð1Þ
number of sites. Further, each spin only appears Oð1Þ
number of terms, and terms are uniformly bounded.
Let ρg ∝ expð−HgÞ be the Gibbs state of Hg. We are

interested in how fast it approaches the fixed point ρ0. We
use the fidelity as a measure of closeness between the two
states:

Fðρg; ρ0Þ ¼ j ffiffiffiffiffiρgp ffiffiffiffiffi
ρ0

p j1 ¼ trðe−Hg=2e−H0=2Þ= ffiffiffiffiffiffiffiffiffiffi
ZgZ0

p
¼ Zg=2=

ffiffiffiffiffiffiffiffiffiffi
ZgZ0

p
; ðB7Þ

where Zg ≔ trðρgÞ is the partition function. We note that
since ρg is a classical state, the fidelity function F coincides
with the Bhattacharyya coefficient, a measure of similarity
for classical distributions.
We have

Zg ¼ tr

�
e−H0

X
n

gn

n!
ðH0Þn

�
¼ Z0

X
n

gn

n!
hðH0Þni0: ðB8Þ

Without loss of generality, we assume each term in H0 is
positive, so that 0 ≤ hðH0Þni0 ≤ jH0jn. Thus we have

Z0 ≤ Zg ≤ Z0egjH
0j: ðB9Þ

Combining with Eq. (B7), we get

Fðρg; ρ0Þ ≥ e−gjH0j: ðB10Þ

Since jH0j is a summation of spatially local terms whose
norms are uniformly bounded, jH0j must be upper bounded
by αL for some α ¼ Oð1Þ and large L. This leads to

Fðρg; ρ0Þ ≥ e−gαL: ðB11Þ

Thus Eq. (25) is satisfied. Equation (26) is satisfied because
g is an irrelevant coupling for a noncritical fixed point.

2. Noisy GHZ state in Sec. V

(a) Bit-flip noise.—The fidelity function is

FðρXp;L; ρX0;LÞ ¼ hGHZjρXp;LjGHZi

¼ 1

2

X
s∈ f0;1gL

pjsjð1 − pÞL−jsjhGHZjðjsihsj

þ js̄ihsj þ jsihs̄j þ js̄ihs̄jÞjGHZi
¼ ð1 − pÞL þ pL

≈ e−pL: ðB12Þ

The approximation follows from p ≪ 1. The iteration
relation of p satisfies

p0 ¼
Xb

k¼ðbþ1Þ=2

�
b
k

�
pkð1−pÞb−k≤2b−1pðbþ1Þ=2≤pb=2:

ðB13Þ

The last inequality holds if p < 2−2bþ2, which can
always be achieved after an Oð1Þ number of RG
iterations starting from any p∈ ð0; 0.5Þ.

(b) Phase-flip noise.—The fidelity function is

FðρZp;L; ρZ1=2;LÞ ¼ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρZ1=2;L

q
ρZp;L

ffiffiffiffiffiffiffiffiffiffiffi
ρZ1=2;L

qr
¼ 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1 − 2pÞ2L

q
: ðB14Þ

We notice that the fidelity function actually goes to 1
when L → ∞. This can be treated as a special case of
the condition Eq. (25) for α ¼ 0.

The iteration relation for p around the stable fixed point
p ¼ 0.5 is

ðp0 − 1=2Þ ¼ ðp − 1=2Þb: ðB15Þ
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3. Thermal toric code state in Sec. VI B

We consider the fidelity between the finite temperature
state and the infinite temperature one. Note that the latter is
proportional to identity. Thus,

Fðρβ; ρ0Þ ¼ 2−L
2=2tr

ffiffiffiffiffi
ρβ

p

¼ 2−L
2=2
X
m;e;l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PrmðmÞPreðeÞPrlðlÞ

p
¼ 2−L

2=2þ1
�X

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PrmðmÞ

p �
2

≥ 2−L
2=2þ1

×
�X

m∶πðmÞ¼0
pjmj=2
β ð1 − pβÞðL2=2−jmjÞ=2

�
2

¼ 2−L
2=2þ1ð1 − pβÞL2=2

�X
m∶πðmÞ¼0

e−βjmj
�
2

≥ 2−L
2=2þ12−L

2=2ð2L=2−1e−βL2=2Þ2

¼ 2−βL
2−1: ðB16Þ

The iteration relation of the inverse temperature β is
given by

β0 ¼ tanh−1 tanh4 β ≈ β4 ðB17Þ

at small β, which satisfies the condition.

4. Noisy toric code state in Sec. VII

The renormalized state’s overlap with the ground state
subspace V is

FðlÞ ≔ tr
�
ρðlÞΠV

�
; ðB18Þ

where ΠV is the projection to V.
Since ρ is always diagonal in the anyon number basis

throughout the RG process, the quantity is the probability
of having zero anyon after l steps of RG. The quantity is

bounded by the anyon density qðlÞp :

qðlÞp ¼
XL2

a¼1

Prðjmj ¼ aÞ a
L2

≥
1

L2

XL2

a¼1

Prðjmj ¼ aÞ

¼ 1

L2
ð1 − FðlÞÞ; ðB19Þ

leading to

FðlÞ ≥ 1 − L2qðlÞp ≃ e−L
2qðlÞp : ðB20Þ

The last approximate equal sign holds only when L2qðlÞp

is small.
Furthermore, according to the numerical results

Fig. 8(c), the decay of anyon density follows

qðlþ1Þ
p < ðqðlÞp Þγ; ðB21Þ

for some γ > 1.

APPENDIX C: RG OF A MIXED Z2 × Z2
SPT STATE

In this appendix, we consider the RG of a mixed
symmetry protected topological state. The problem was
first considered in Ref. [3], where the authors use the string
order parameter as a definition for the mixed-state SPT.
They show that, when a pure SPT state is subject to noise,
the string order parameter (i.e., the SPT phase) is preserved
if and only if the noise is strongly symmetric, meaning
that all its Kraus operators commute with the symmetry
operator.
The above definition (via string order parameters) of

mixed-state SPTactually agrees with the LC transformation
based definition. To show this, we put forward a symmetric
RG transformation that brings the noisy state back to a
clean one. The RG is the same as the one proposed in
Ref. [32]. Although in Ref. [32] the circuit is designed for
recognizing pure-state phases, we point out that it can be
readily applied on a mixed-state SPT states.
Here we demonstrate the principle with a simple

ð1þ 1ÞD SPT state, namely the Z2 × Z2 SPT. Consider
a 1D lattice spin chain where in the bulk each site contains
two qubits, labeled as A and B. The pure SPTwave function
can be written as

jψi ¼ ⨂
þ∞

i¼−∞
jEPRiB;ðiþ1ÞAi; ðC1Þ

where each jEPRi;ji ≔ ð1= ffiffiffi
2

p Þðj0i0ji þ j1i1jiÞ. Note that
the above way of defining the Z2 × Z2 SPT is related to the
cluster state by rotating the two spins within a unit cell with
a CNOT gate. It is straightforward to verify that the state has
a Z2 × Z2 symmetry generated by two generators:

UX ¼
Y
i

XiAXiB ; UZ ¼
Y
i

ZiAZiB : ðC2Þ

Two generators define two string order parameters:

SXij¼XiB

� Yj−1
k¼iþ1

XkAXkB

�
XjA; SZij¼ZiB

� Yj−1
k¼iþ1

ZkAZkB

�
ZjA:

ðC3Þ

One signature of the SPT order in jψi is that expectation
value of string order parameters does not decay with ji − jj.
We consider the XX-dephasing channel:

N XX
p ð·Þ ¼ ð1 − pÞð·Þ þ pXAXBð·ÞXAXB; ðC4Þ
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whose action can be realized by the pair of spins within
each site being flipped simultaneously with probability p.
The channel is strongly symmetric under UX and UZ,
because its Kraus operators commute with symmetry
operators.
The noisy SPT state of our interest is obtained by

applying N p uniformly upon ψ :

σp;L ¼ N⊗L
p ðjψihψ jÞ: ðC5Þ

It will be useful to unravel σp into a classical mixture of
pure SPT states decorated by domain walls:

σp ¼ E½jψ sihψ sj� ¼
X

s∈ f0;1gL
PðsÞjψ sihψ sj;

PðsÞ ≔ pjsjð1 − pÞjsj;
jψ si ≔ ⨂

i
Xsi
iA
Xsiþ1

ðiþ1ÞB jEPRiB;ðiþ1ÞAi: ðC6Þ

Now we focus on a block of b sites within the state and
devise the channel that coarse grains the block. The part of
the jψ si within the block can be drawn as (for b ¼ 3):

where each hollowed circle is either an identity gate if
s ¼ 0 or an X gate if s ¼ 1. Each si is an independent
Bernoulli random variable with chance p.
The renormalized site is formed by qubits f1A; bBg,

while the (b − 2) entangled pairs supporting on the remain-
ing qubits f1B; 2A; 2B;…; bAg can help us infer and correct
errors s1 and sb before they get traced out. More concretely,
the coarse-graining channel E’s action is the following.
(1) Measure each Bell pair within the block in the ZZ

basis, whose outcome records the domain walls
between si, i.e., ft1 ¼ s1 − s2; t2 ¼ s3 − s2;…;
tb−1 ¼ sb−1 − sbg. The outcomes decide all the si
up to a global flip; i.e., once we assume a value for
the first error s1 ¼ ŝ1, the remaining s are also
uniquely determined by ŝk ¼ ðPk−1

j¼1 tjÞ − ŝ1.
(2) Assume

ŝ1 ¼ argmaxs1 ∈ f0;1g Prðs1jt1;…; tb−1Þ ðC7Þ

to be the actual error, and correct all sites within the
block. Namely, applying XiAXiB if ŝi ¼ 1. After this
step, all Bell pairs within the block are noiseless and
decoupled from f1B; bAg.

(3) Trace out f1B; 2A; 2B;…; bAg. Then we obtain the
renormalized site with f1B; bAg,

It is clear that channel E is strongly symmetric under
Z2 × Z2 since each individual step is. The renormalized site
gets an XX error if and only if ŝ1 ≠ s1, whose probability
we denote as p0. Thus we find that the normalized state is
still a symmetrically dephased SPT state, but with a
normalized noise strength p0:

E⊗L=bðσSPTp;L Þ ¼ σSPTp0;L=b: ðC8Þ
The explicit form of p0 is

p0 ¼
Xb

k¼ðbþ1Þ=2

�
b
k

�
pkð1 − pÞb−k: ðC9Þ

Thus we obtain a similar RG flow as in the X-dephased
GHZ state studied in Sec. V: Symmetrically decohered SPT
state flows back to a pure SPT state when 0 ≤ p < 0.5.
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