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In this paper, we develop a novel method to solve problems involving quantum optical systems coupled
to coherent quantum feedback loops featuring time delays. Our method is based on exact mappings of such
non-Markovian problems to equivalent Markovian driven dissipative quantum many-body problems. In
this work, we show that the resulting Markovian quantum many-body problems can be solved (numeri-
cally) exactly and efficiently using tensor network methods for a series of paradigmatic examples,
consisting of driven quantum systems coupled to waveguides at several distant points. In particular, we
show that our method allows solving problems in so far inaccessible regimes, including problems with
arbitrary long time delays and arbitrary numbers of excitations in the delay lines. We obtain solutions for
the full real-time dynamics as well as the steady state in all these regimes. Finally, motivated by our results,
we develop a novel mean-field approach, which allows us to find the solution semianalytically, and we
identify parameter regimes where this approximation is in excellent agreement with our tensor network
results.
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I. INTRODUCTION

Feedback is a cornerstone concept in modern tech-
nology, serving as the backbone for optimization and
control in complex systems, where feedback loops take
data from systems, process it, and adjust system parameters
to achieve the desired outcome. Quantum feedback refers to
the situation when the system of interest is quantummecha-
nical in nature [1–10]. Here, one can distinguish between
two classes of feedback. In conventional, measurement-
based quantum feedback, data are taken by projective or
weak measurements, processed classically, and then used to
adjust classical controls of the quantum system [1,2]. In
contrast, coherent quantum feedback refers to the situation
where the sensors, processors, and actuators are all quan-
tum systems that interact coherently with the quantum
system to be controlled [11,12]. In this scenario, the
controller receives, processes, and feeds back quantum
information [see Fig. 1(a)]. An exciting scientific frontier in
this field is the exploration of phenomena that emerge in a
regime when the controller can store and process the
quantum state of multiple degrees of freedom.

In quantum optical systems, continuous coherent quan-
tum feedback can be introduced naturally by reflecting the
output radiation fields of a quantum emitter back onto
the emitting system [13], e.g., by means of atom-photon
interfaces in waveguide QED systems [14,15]. This kind of
coherent feedback loops can acquire a true quantum many-
body character when the associated time delay is large, i.e.,
when the time required for excitations to propagate through
the feedback loop is large compared to the time required to
emit an excitation, and the delay line can accommodate
several excitations at a time [16]. Remarkably, several
recent experiments across multiple platforms can now
access this regime of large time delays. For instance, both
in optical as well as in microwave settings, new milestones
were established in scaling-up distances in distributed
quantum networks [17–24]. Moreover, pioneering experi-
ments with on-chip networks with superconducting devices
also accessed this non-Markovian regime by employing
slow excitation interconnects realized with structured
waveguides [25,26] or by using propagating phononic
modes [27–29].
On the theoretical side, dealing with time-delayed

continuous coherent quantum feedback poses significant
challenges, and traditional quantum optical techniques fail:
Analytical treatments are limited to linear systems [30–32]
or small excitation numbers in the feedback loops [33–40],
while advanced, nonperturbative techniques [41–58] are
typically limited to either finite time delays, or short-time
dynamics. Among the latter, several approaches are based
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on extending the Markovian cut and including the degrees
of freedom of the feedback loop using tensor network
techniques [41,43–45,51]. However, the computational
cost associated with representing the feedback loop typi-
cally increases exponentially with the time delay [41]. A
similar problem arises in approaches based on tensor
network representation of the Feynman-Vernon influence
functional [53–58], which are also expected to suffer from
the growth of temporal entanglement with time delays. An
alternative approach is based on representing the system
dynamics in the form of a Markovian many-body system
[42,52,59]. However, applications of this approach suffered
from the exponential growth of the many-body Hilbert
space, limiting the solution to short-time transient dynam-
ics, preventing the access to steady-state quantities [60].
Predicting properties of systems subject to (continuous)
coherent quantum feedback with time delays in generic
parameter regimes, thus, remains an outstanding practical
as well as conceptual challenge.
In this work, we address this challenge and develop

methods for efficient and (numerically) exact solutions of
the full real-time dynamics as well as the steady-state
values of several important quantities of setups with

continuous coherent time-delayed quantum feedback.
Below, we first illustrate our method in detail on the
simplest relevant example, that is, the problem of a single
coherently driven two-level system coupled coherently to a
long delay line shown in Fig. 1(b). Despite its simplicity,
this problem already contains the essential challenges
associated with coherent time-delayed quantum feedback
and has, thus, served as a benchmark for numerical
methods [41,42]. Based on this example, we review an
exact relation between this non-Markovian problem and a
corresponding Markovian many-body problem, the one-
dimensional (1D) cascaded chain [42] [see Fig. 1(c)]. This
relationship is established in two steps: We first represent
the wave function of the quantum optical node and of the
delay line as a 2D tensor network [16] and then relate the
transfer operator of this tensor network to the propagator of
the 1D cascaded chain. Our central technical result is that
this propagator can be represented accurately and effi-
ciently in matrix product form, and its operator entangle-
ment entropy obeys an area law in the entire parameter
space. Specifically, we show that the maximum operator
entanglement entropy, which serves as a proxy for the
computational cost associated with this representation, does

(a) (b) (c)

(d)

(e)
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FIG. 1. Overview. (a) Schematic depiction of a generic coherent quantum feedback scheme, where a system interacts coherently with a
feedback loop consisting of sensor, processor, and actuator. In this general illustration, both systems and feedback loop contain multiple
degrees of freedom. (b) Simplest quantum optical setup that features continuous coherent quantum feedback, where photons
propagating from an atomic emitter to a mirror and back represent the feedback loop. If the time delay in this process is large, the
feedback loop can host multiple modes. The circuit representation of the dynamics (bottom) highlights the similarities with the generic
scheme in (a). Note that in this setting the coherent feedback consists of only a sensor and a (delayed) actuator, since the processor acts
trivially. (c) The problem in (b) can be exactly mapped to the Markovian problem of a 1D cascaded chain, where replicas of the atomic
system interact with their nearest neighbors via cascaded channels. (d) The method developed in this work solves this problem by
constructing a matrix product representation of the evolution operator of the 1D cascaded chain, together with a proper contraction
scheme. Each block in (d) represents a tensor and connected lines indicate tensor contractions. (e) We find that the corresponding
operator entanglement entropy obeys an area law; that is, the operator entanglement entropy of a subsystem does not increase with
subsystem size. As a consequence, the maximum operator entanglement (over all subsystems) does not increase with the total systems
size, as shown in (e). This underlies the efficiency of the method developed in this work.
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not increase with the chain length [see Fig. 1(d)].
Leveraging this insight allows us to solve for the real-time
dynamics and the steady state of the reduced state of the
system as well as for all low-order correlation functions of
the propagating fields. We also show that analogous results
hold for several additional, more complicated quantum
optical problems with time delays, including the paradig-
matic model of two driven, distant atoms coupled to a
common waveguide, as well as multiatom generalizations
thereof. Our work represents the first complete solutions of
all these problems in their entire parameter regime and
opens the door to study quantum optical phenomena in a so
far inaccessible regime.
Finally, we also develop a semianalytical approach for

the problems studied in this work. This is based on a mean-
field approximation of the propagator of the 1D cascaded
chain. This approach is motivated by our empirical obser-
vation that the effective bond dimension of the propagator
is small in large regions of the parameter space. We show
that our mean-field ansatz indeed reproduces the exact
results in the relevant regions of parameter space.

II. MODEL DESCRIPTION

A. Continuous coherent quantum feedback
with time delays

In this work, we develop a new approach to solving
problems involving continuous coherent time-delayed
quantum feedback. For the sake of clarity, we discuss this
approach on the simplest but paradigmatic quantum optical
model exhibiting time delays, consisting of a single driven
nonlinear quantum optical system whose output is fed back
to itself with a time delay. Physically, this is realized, e.g.,
by a driven atom coupled to a semi-infinite waveguide
with a distant, perfectly reflecting mirror on one side, as
shown in Fig. 2(a). The total Hamiltonian for this model
consists of three terms describing the system (e.g., the
atom), the bath (e.g., the waveguide), and their interaction,
respectively:

H ¼ Hsys þHB þHint: ð1Þ

For concreteness, below, we often use a two-level atom as
an example representing the system, where the system
Hamiltonian is given by

Hsys ¼ ℏωegjeihej − ℏ
2

�
Ωjgihejeiω0t þ H:c:

�
ð2Þ

Here, ω0 is a driving laser frequency, Ω is the Rabi
frequency, ωeg is the atomic transition frequency, and i
is a complex unitary. We denote the states of the atom by jgi
and jei and the associated Hilbert space by Hsys. This
model can be straightforwardly generalized to higher-
dimensional systems, and we denote the system Hilbert
space dimension by d ¼ dimðHsysÞ in the following.

The bath Hamiltonian describing, e.g., a 1D semi-infinite
waveguide is given by

HB ¼
Z

dωℏωb†ðωÞbðωÞ; ð3Þ

where bðωÞ ½b†ðωÞ� denotes a bosonic destruction (crea-
tion) operator of a bath excitation with frequency ω. For
convenience, we refer to these bath excitations as photons
in the following. To describe the interaction of the system
with the one-dimensional waveguide, we define system
operators cL and cR associated with the coupling to the left-
and right-propagating photons and corresponding decay
rates γL and γR. In general, these can be different for left-
and right-moving photons, but for the simple two-level
example we chose them to be the same; i.e., we use cL ¼
cR ≡ jgihej and γL ¼ γR ≡ Γ=2. The Hamiltonian repre-
senting the interaction between the system and the bath
(in rotating wave approximation) is given by

Hint ¼
iℏffiffiffiffiffiffi
2π

p
Z

dω
h
b†ðωÞ

�
cL

ffiffiffiffiffi
γL

p
e−iωx=v − cR

ffiffiffiffiffi
γR

p
eiωx=v

�

− H:c:
i
; ð4Þ

where x denotes the distance between the atom and the
mirror and v the photon group velocity in the waveguide
with linear dispersion relation. These are connected to the
two quantities characterizing the delay line formed by the

(a)

(b)

FIG. 2. Two schematic setups. (a) An atom in front of a mirror:
A driven two-level system is coupled to a one-dimensional
waveguide, terminated at one side by a mirror. (b) Two driven
distant atoms coupled to a one-dimensional waveguide. In both
setups, the systems are driven by a classical driving field, either
via the waveguide or via a separate channel (as depicted here).
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reflecting waveguide: The delay time τ ¼ 2x=v required by
a photon to propagate from the atom to the mirror and back
and the phase ϕ ¼ π − ω0τ that a photon with frequency ω0

accumulates during this round-trip. We note that couplings
of the system to other Markovian environments can be
included straightforwardly in this model.
We find it convenient to change from the frequency

representation to a time representation of the waveguide
radiation modes. For this, we introduce the so-called
quantum noise operators

bðtÞ ¼ −e−iω0τ=2
1ffiffiffiffiffiffi
2π

p
Z

dωbðωÞe−iðω−ω0Þðt−τ=2Þ; ð5Þ

which satisfy bosonic commutation relations ½bðtÞ; b†ðt0Þ� ¼
δðt − t0Þ. The operator b†ðtÞ creates a photon in the radiation
mode labeled by t. The definition (5) differs from the
conventional one [61] by a phase choice and a time shift,
which simplifies notation in the following [62].With this, the
Hamiltonian Eq. (1) can be rewritten in the frame rotating
with the laser frequencyω0 and in the interaction picturewith
respect to the bath Hamiltonian as

HR;IðtÞ ¼ HR;I
sys þHR;I

int ðtÞ: ð6Þ

In the example of the driven two-level system, we have
HR;I

sys ¼ −ℏΔjeihej − ℏ=2ðΩjgihej þ H:c:Þ, with detuning
Δ ¼ ω0 − ωeg. The interaction Hamiltonian takes the form

HR;I
int ðtÞ ¼ iℏ

�
½ ffiffiffiffiffi

γR
p

b†ðtþ τÞcR þ ffiffiffiffiffi
γL

p
b†ðtÞeiϕcL� − H:c:

�
:

ð7Þ

This formulation allows for a transparent interpretation of
the dynamics: At each time instant t, the system interacts
with twomodes of the environment, namely, the ones labeled
by tþ τ and t. Note that the modes labeled s, with
t < s < tþ τ, represent the field in the delay line at time
t, i.e., the radiation field between the atomand themirror. The
modes that are located (at time t) to the left of the atom and
propagate to the right are labeled with s, where s > tþ τ.
The modes that are located (at time t) to the left of the atom
and propagate to the left are labeled by s, with s < t [cf. Fig. 2
(a)]. As time progresses, the system thus interacts with each
modeof the environment exactly twice. The time separation τ
between these two events results in a memory of the
environment that underlies the non-Markovian nature of
this setup.Whilewederive themodel described byEq. (7) for
the specific setup of an atom coupled to a semi-infinite
waveguide,wenote that it also applies to other setups, such as
giant atoms [63] or collisional models [64].

B. General quantum optical network

This example straightforwardly generalizes to an arbitrary
network of n distant quantum optical nodes interconnected

by a set of w photonic channels, which is described by a
Hamiltonian of the form

HðtÞ ¼
Xn
i¼1

HðiÞ
sys þ

Xn
i¼1

Xwi

j¼1

Hði;jÞ
int ðtÞ; ð8Þ

where

Hx
intðtÞ ¼ iℏ

� ffiffiffiffiffi
γx

p
b†σðxÞðtþ τxÞcxeiϕx − H:c:

�
ð9Þ

and x ¼ ði; jÞ, a superindex. Here, a node i is described by a
systemHamiltonianHðiÞ

sys and coupled towi photon channels,
with jump operators ci;j (j∈ f1;…wig). The bjðtÞ are
quantum noise operators of the jth waveguides, satisfying
½bjðtÞ; b†j0 ðt0Þ� ¼ δj;j0δðt − t0Þ. The network structure is com-
pletely specified by a set of time delays τx and propagation
phases ϕx, as well as an index function σðxÞ∈ f1;…wg.
Here and in the following, we drop the superscript R, I
[cf. Eqs. (6)], since we always work in this frame from
now on.
We note that this model includes the important example

of two atoms coupled to a common 1D waveguide at two
distant points; see Fig. 2(b). In this case, w ¼ 2, corre-
sponding to the left- (σ ¼ 1) and the right- (σ ¼ 2) moving
modes in the waveguide. Moreover, we stress that the above
models also describe so-called giant atoms that can
potentially couple at multiple (distant) points to a wave-
guide [63]. Finally, we note that the above model can
accommodate standard Markovian channels describing,
e.g., the emission of photons into unguided modes. Such
a general network can be used as a continuous quantum
feedback setup, with some of the nodes playing the role of
the feedback processor, allowing for more precise control.

III. MAPPING TO 1D CASCADED CHAIN

In this section, we discuss how the physics of the non-
Markovian problem of time-delayed coherent quantum
feedback is related to the Markovian problem of the 1D
cascaded chain [65]. This relationship forms the basis of
our numerical algorithm described in Sec. IV. While
we illustrate this relationship on the example defined in
Sec. II A, the discussion directly generalizes to a subclass
of quantum optical networks introduced in Sec. II B.

A. Quantum state as 2D tensor network

1. Quantum state of system and waveguide

We now integrate the Schrödinger equation associated
with the Hamiltonian (6) for the total wave function of
system and waveguide and introduce a convenient repre-
sentation of this wave function using a tensor network.
To start, we formally write the quantum state of the system
and bath, i.e., the atom and radiation field, at time t as
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jΨðtÞi ¼ Uðt − t0ÞjΨðt0Þi, where the evolution operator is

Uðt − t0Þ ¼ T
�
exp

�
−

i
ℏ

Z
t

t0

Hðt0Þdt0
��

ð10Þ

with T denoting time ordering. We consider for simplicity
the initial state of the waveguide with all the modes in the
vacuum state, i.e., bðtÞjΨðt0Þi ¼ 0 for all t ≥ t0 [66]. A
generalization to other important initial states of the wave-
guide (such as thermal, coherent, and squeezed states) is
straightforward and discussed in Appendix B. To proceed,
we find it convenient to discretize the total time of
evolution in (infinitesimally) small steps Δt, such that ti ¼
t0 þ iΔt and τ ¼ kΔt with both i and k integer numbers.
We define Ito increment operators for each time bin as
ΔBi ¼

R tiþΔt
ti bðt0Þdt0. They satisfy the bosonic commuta-

tion relations ½ΔBi;ΔB
†
j � ¼ Δtδij, such that we can asso-

ciate a (bosonic) Hilbert space Hi with each time bin i and
denote its vacuum state by j0ii. Thus, we can Trotterize the
evolution operator as Uðtn − t0Þ ¼ Un−1…U1U0 with

Ui ¼ exp

�
−

i
ℏ
HsysΔtþϒL

i þϒR
i

�
; ð11Þ

where

ϒR
i ¼ ffiffiffiffiffi

γR
p

cRΔB
†
iþk − H:c:;

ϒL
i ¼ ffiffiffiffiffi

γL
p

eiϕcLΔB
†
i − H:c: ð12Þ

To simplify the following expressions, we introduce the
notation R ¼ ffiffiffiffiffi

γR
p

cR and L ¼ ffiffiffiffiffi
γL

p
eiϕcL. The unitary Ui

acts nontrivially only in the Hilbert space of the atom and
the Hilbert space of time bins i and iþ k (cf. Fig. 3). Since
the waveguide is initially in the vacuum state, it is useful to
form the isometry Vi∶ Hsys ⊗Hi → Hsys ⊗Hi ⊗Hiþk,
which is induced by an application of the unitary map to
the vacuum state of time bin iþ k, Vi ¼ Uij0iþki [67].
With this, we can write the state at time tn as

jΨðtnÞi ¼ Vn−1…V1V0jϕijvi; ð13Þ
where jϕi is the state of the system at time t0 and jvi ¼
⊗k−1

i¼0 j0ii is the initial state of the first k time bins, i.e., the
initial radiation field in the delay line. For the following
discussion, we find it useful to depict Eq. (13) in the form
of the tensor network shown in Fig. 3 (see Ref. [16] for a
detailed discussion). Each isometry Vi corresponds to a
tensor in a two-dimensional square lattice. The size of the
network along the first dimension (vertical direction in
Fig. 3) is set by k, i.e., by the round-trip time τ in units of
Δt, while the size along the second dimension (horizontal
direction in Fig. 3) is given by m ¼ ⌈n=k⌉, i.e., total
evolution time tn − t0 in units of the delay time τ rounded
up. The bond dimension along the vertical direction, χv, is
set by the dimension of the system Hilbert space, χv ¼ d,
while the bond dimension along the horizontal direction,

χh, is set by the effective dimension of the bosonic modes
associated to each time bin. For our workhorse example of
the two-level system in front of the mirror, we have
χv ¼ χh ¼ 2; that is, each time bin can host only zero or
one photon. The reason for this lies in the fact that the
probability to have more than one excitation ne in a single
time bin is proportional to ðΔtÞne (see also Ref. [61]) and
the error introduced by restricting the photon number
vanishes in the limit Δt → 0. An important peculiarity
of the network geometry is the shifted periodic boundary
conditions along the first dimension, as depicted in
Fig. 3(d). We note that this state belongs to the class of

Input

Input

Input

Input

Output

Output

Output

Output

System

System

(a)

(b)

(d)

(c)

FIG. 3. (a) Illustration of the time discretization. The time bins
represented by the white bubbles move as a conveyor belt in the
directions pointed by the arrows, such that the system simulta-
neously interacts with the time bins i and iþ k − 1. This
interaction imposes a unitary map Ui (b) acting on the atom
and the two time bins. It is depicted here as a tensor with three
input and three output legs (L and R stand for left- and right-
moving time bins, respectively). Right-moving time bins assume
to always have a vacuum input; therefore, we form an isometry Vi
(c). (d) Tensor network representing a total wave function of both
the system and the waveguide at time tn: The atom is initially in a
state ϕ, and the waveguide including the feedback loop is in a
vacuum state. This tensor network corresponds to Eq. (13).
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2D isometric tensor network states [68–72], with its
orthogonality center located in the lower left corner in
Fig. 3. The isometric property of the tensors follows here
directly from the sequential generation process.

2. Reduced state of the system

One of the central quantities of interest is the state of the
atom at time tn, described by the reduced density operator
ρsysðtnÞ ¼ trHB

fjΨðtnÞihΨðtnÞjg. Here, the partial trace is
performed over the Hilbert space of the radiation modes,
HB ¼ ⊗nþk−1

i¼0 Hi. For notational simplicity, we introduce a
superoperator Ti, defined via TiX ¼ trHi

fViXV
†
i g. This

allows us to write

ρsysðtnÞ ¼ trHDL
fTn−1…T1T0Φg; ð14Þ

whereHDL ¼ ⊗nþk−1
i¼n Hi is the Hilbert space of the bosonic

modes in the delay line (DL) and Φ denotes the projector
onto the initial state jϕijvi. In tensor network notation, this
expression takes on a simple form shown in Fig. 4: It
corresponds to a contraction of a network of tensors on a

square lattice with shifted periodic boundary conditions.
Each tensor in this network corresponds to a map Ti, and its
dimensions are given by χ2h and χ2v in the horizontal and
vertical direction, respectively. As illustrated in Fig. 4, the
tensor Ti can be obtained from the tensors Vi and V�

i by
contracting the leg corresponding to the output field of the
ith time bin.

B. Relation to cascaded chain

To gain insight into the 2D tensor network defined by
Eq. (14), it is useful to consider its transfer operator
E½m�ðΔtÞ, as defined in Fig. 4. This transfer operator is
a map from the m-fold replicated Hilbert space of
system operators onto itself, i.e., E½m�ðΔtÞ∶BðHsysÞ⊗m →
BðHsysÞ⊗m. Importantly, it can be shown that E½m�ðΔtÞ can
be exactly written as the (infinitesimal) propagator gen-
erated by a Lindblad superoperator L½m�, acting on these m
replica systems, that is,

E½m�ðΔtÞ ¼ exp
�
ΔtL½m�

�
: ð15Þ

(a)

(b)

(c)

(d)

FIG. 4. (a) To obtain the reduced density operator of the atom, we “sandwich” the network of the wave function jΨðtnÞi (Fig. 3) with
its counterpart hΨðtnÞj and contract all the open legs containing photonic degrees of freedom (light blue legs) to trace out the bath. The
transfer superoperator E½m�ðΔtÞ for the resulting tensor network is indicated by the light blue area, while the dark blue area encloses
E½m−1�ðΔtÞ. The superoperator E½m�ðΔtÞ acts on m replicas shown above the tensor network and consists of m connected tensors Ti

(b) acting on the corresponding replica ⌈i=k⌉. These tensors are decomposed as TiX ¼ TL
i T

R
i X, corresponding to the right output field

and the left input field. This decomposition is correct and symmetric up to higher-order Trotter terms: TiX ¼ TR
i T

L
i X [see Eq. (14)].

(c) The tensors acting on the adjacent replicas TR
i and TL

i , when connected, form a two-site superoperator Wj;jþ1 ¼ expLcasc
j;jþ1Δt with

Lcasc
j;jþ1 defined by Eq. (17). For simplicity, we schematically represent double legs as one thick leg of dimension d2. Tensors on the

borders TL
1 and TR

m do not have a connecting pair and result into one-site boundary local propagators Wb
1 ¼ expLb

1Δt and Wb
m ¼

expLb
mΔt with the boundary terms defined by Eq. (18). With this, we show that the transfer operator E½m�ðΔtÞ is an infinitesimal

propagator for a 1D cascaded chain (d) as defined in Eq. (15).
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Specifically, L½m� is the Lindblad superoperator describing
the dynamics of the 1D cascaded chain of the m replica
systems described by the system Hamiltonian, such as in
Eq. (2), i.e.,

L½m� ¼ Lb
1 þ

Xm−1

j¼1

Lcasc
j;jþ1 þ Lb

m: ð16Þ

Here, Lcasc
j;jþ1 is the Lindblad operator corresponding to a

cascaded coupling between replicas j and jþ 1. Such
cascaded coupling has been studied by Gardiner and
Carmichael [65,73] and, more recently, in the context of
chiral quantum optical systems [74]. Cascaded couplings
arise when an output field of a system (e.g., replica j) is
injected as input to another system (e.g., replica jþ 1) via a
unidirectional channel. In the 1D cascaded chain, nearest
neighbors are coupled in this unidirectional manner (see
Fig. 4 for an illustration). Mathematically, the Lindblad
operator describing the cascaded interaction between rep-
licas j and jþ 1 is given by (cf. Ref. [61])

Lcasc
j;jþ1X ¼ −

i
ℏ
½Hcasc

j;jþ1; X� þD½Rj þ Ljþ1�X; ð17Þ

where we define the cascaded Hamiltonian

Hcasc
j;jþ1 ¼

1

2

�
Hsys;j þHsys;jþ1 þ iðR†

jLjþ1 − L†
jþ1RjÞ

�

and introduce the shorthand notation D½C�X ¼ CXC† −
1
2
ðC†CX þ XC†CÞ. Here, Hsys;j, Lj, and Rj are simply the

system Hamiltonian [e.g., Eq. (2)] and jump operators,
acting on the jth replica system. Note that the total
Lindblad operator (16) also contains the boundary terms,
which are simply given by

LbdL
1 X ¼ −

i
2ℏ

½Hsys;1; X� þD½L1�X;

LbdR
m X ¼ −

i
2ℏ

½Hsys;m; X� þD½Rm�X; ð18Þ

and act independently only on the first and the last replica.
We refer the reader to Fig. 4 for a diagrammatic derivation
of this equivalence between the transfer operator E½m�ðΔtÞ
and the propagator of the 1D cascaded chain. A formal
derivation can be found in Appendix A. This correspon-
dence has an intuitive physical origin already pointed out in
Ref. [42]: The right-propagating output field emitted by the
system at a time s becomes the left-propagating input field
of the system at a later time sþ τ. In turn, the right-
propagating output field of the system at time sþ τ turns
into the left-propagating input field of the system at time
sþ 2τ, etc. The different replicas in the cascaded chain,
thus, assume a role analogous to the one of the system
at different points in time, separated by multiples of τ.

From this equivalence between the tensor network transfer
operator and the infinitesimal propagator of the 1D cas-
caded chain, it is straightforward to see that the reduced
state of the system, ρsysðtnÞ, can be obtained from the finite-
time propagators E½m�ðsÞ ¼ exp

	
sL½m�
. To be specific, we

define r via tn ¼ ðm − 1Þτ þ r, with 0 ≤ r ≤ τ. As shown
in Fig. 4(a), the reduced state of the system, ρsysðtnÞ, can be
obtained from contracting E½m�ðrÞ with E½m−1�ðτ − rÞ, with
shifted periodic boundary conditions, and applying the
resulting composite map to the initial state of the system,
ρsysðt0Þ. Denoting the contraction imposed by shifted
periodic boundary conditions applied to a tensor network
X by PðXÞ, we can write

ρsysðtnÞ ¼ P
�
E½m−1�ðτ − rÞE½m�ðrÞ

�
ρsysðt0Þ: ð19Þ

This contraction can be conveniently performed if E½m�ðsÞ
is given in matrix product form, as discussed in the next
section.

C. Multinode networks

The mapping of the delayed quantum feedback problem
to the 1D cascaded chain described above can be gener-
alized to more complicated networks with multiple nodes.
Below, we present, for simplicity, the results for certain
networks where all time delays between nodes are iden-
tical. In Appendix D 2, we generalize the results to the
situation of nonequal time delays and more complicated
networks. The reduced state of the multiple nodes is always
described by a 2D tensor network (with generalized shifted
periodic boundary conditions), whose transfer operator is
the propagator of a 1D unidirectional master equation on
several replicas of the nodes (with potentially long-range
interactions). An important example in this class is the
problem of two distant nodes, A and B, interacting with a
common, bidirectional waveguide, where the time delay
due to the photon propagation between the two nodes in
both directions is identical: For large time delays, the node
dynamics is non-Markovian, but again it maps to the
Markovian problem of a 1D cascaded chain with a two-
site unit cell where every odd site corresponds to a replica
of node A and every even site to a replica of node B. We
refer the reader to Appendix D 1 for a detailed derivation of
this correspondence.

IV. NUMERICAL METHODS

A. Matrix product form of the propagator

We are aiming now to efficiently represent the propa-
gator of the 1D cascaded chain, E½m�ðsÞ ¼ exp

	
sL½m�
 for

0 ≤ s ≤ τ, using matrix product state (MPS) techniques.
For this, we first recall that E½m�ðsÞ is a linear operator
which maps the Liouville space ofm-fold replicated system
operators, BðHsysÞ⊗m, onto itself. Following the literature
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(e.g., Ref. [61]), we refer to such maps as superoperators.
Note that such superoperators form a d4m-dimensional
vector space. Defining D ¼ d4, this vector space is the
tensor product space of m D-dimensional vector spaces,
each a local superoperator vector space C, whose elements
act only on one site of the 1D chain and map BðHsysÞ onto
itself. The tensor product space is, therefore, Cm ¼ C⊗m.
We choose a basis of C and denote its basis elements by Si,
with i ¼ 1;…; D, from which we can construct a product
basis of Cm. With this, we can write any superoperator
S ∈ Cm in a matrix product form:

S ¼
XD

j1;j2;…;jm¼1

C½1�
j1
C½2�
j2
� � �C½m�

jm
Sj1 ⊗ Sj2 ⊗ � � �⊗ Sjm;

ð20Þ

where Sji is a local basis superoperator on the site i and the
summation includes all such superoperators. The matrix

C½i�
ji

associated with the local basis superoperator Sji has
dimension χ × χ, with χ ≥ 1 being the bond dimension of S

(the boundary tensors C½1�
j1

and C½m�
jm

are simply vectors of
length χ). We refer to a superoperator in the above form as
matrix product superoperator (MPSO).

1. Evolution equation

To construct a representation of the finite-time propa-
gator E½m�ðsÞ in the matrix product form Eq. (20), we first
recall that it satisfies

d
ds

E½m�ðsÞ ¼ L½m�E½m�ðsÞ; ð21Þ

with the initial condition E½m�ð0Þ ¼ 1⊗m. Importantly,
E½m�ð0Þ is a product (super)operator.Moreover,L½m� contains
only nearest-neighbor terms. Therefore, we can use the
standard time-evolving block decimation (TEBD) algorithm
[75] to integrate Eq. (21). For this, we Trotterize the
propagation with the cascaded Lindbladian for an infinitesi-
mal time step into m − 1 nearest-neighbor propagators,
Wj;jþ1 ¼ exp ðΔtLcasc

j;jþ1Þ, and two local boundary terms
Wb

1 ¼ expðΔtLb
1Þ and Wb

m ¼ expðΔtLb
mÞ [see Figs. 4(d)

and 5(a)]. The computational cost of the associated updates
in the matrix product representation for each such two-site
update is Oðχ3d12Þ. Note that the time step Δt in this
Trotterization has to be chosen much smaller than the
timescale on which the system evolves, e.g., Δt ≪ 1=
jΩj; 1=jΔj; 1=Γ. In all our numerical results below, we check
convergence in the size of Δt.

(a)

(b)

(c)

FIG. 5. Tensor network illustration of the numerical method described in Sec. IV. (a) The propagator E½m�ðrÞ is obtained by the
Trotterized evolution ofm sites until time r [see Eq. (21)]. (b) The reduced density matrix of the atom ρsysðtnÞ is a result of contraction of
the propagators E½m�ðrÞ and E½m−1�ðτ − rÞ [see Eq. (19)]. (c) The two-times correlation function of the system operators hxðtÞyðt0Þi
requires a contraction of the three propagators with the system operators inserted between them at the corresponding times and sites as
indicated in Sec. IVA 3 [Eqs. (22) and (23)].
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2. System density operator

Once the propagators E½m�ðsÞ are obtained in matrix
product form, the reduced state of the system can be
calculated at all times t ≤ mτ via Eq. (19). For this, first
note that one can obtain E½m−1�ðsÞ directly from Eðm; sÞ:
Because of the unidirectional nature of a cascaded chain, one
can simply trace out themth replica to obtain the propagator
for a shorter chain, that is, E½m−1�ðtÞ ¼ ð1=dÞtrm

	
E½m�ðtÞ
.

The contraction (19) can then be performed efficiently, since
it can be cast in the form of a 1D tensor network contraction
as shown in Fig. 5(b). The computational cost of this
contraction is Oðmχ3d4Þ.

3. Multitime correlation functions

Beside the system density operator, we are also interested
in the properties of the radiation field. Importantly, arbitrary
field correlation functions can be related to multitime
correlation functions of system operators, using input-output
relations (see Ref. [61]). Multitime correlation functions
can be accessed by a straightforward generalization of the
above discussion. For instance, consider the two-times
correlation function hxðtÞyðt0Þi for two arbitrary system
operators x and y. We introduce the notation h� � �i ¼
hΨðt0Þj…jΨðt0Þi for quantum mechanical expectation val-
ues and denote the system operator x in the Heisenberg
picture at time t by xðtÞ ¼ U†ðt − t0ÞxUðt − t0Þ. Without
loss of generality, we consider t > t0. We define integers m
and m0 as well as remainders r and r0, via t ¼ ðm − 1Þτ þ r
and t0 ¼ ðm0 − 1Þτ þ r0. We then can write hxðtÞyðt0Þi ¼
trðPðMÞρð0ÞÞ with

M ¼ E½m−1�ðτ − rÞxmE½m�ðr − r0Þym0E½m�ðr0Þ ð22Þ
for r ≥ r0 and

M ¼ E½m−1�ðτ − r0Þym0E½m�ðr0 − rÞxmE½m�ðrÞ ð23Þ
for r < r0. Here, xm denotes the operator x, acting on themth
replica, and ym0 is defined analogously [see Fig. 5(c)]. Again,
this contraction canbeperformed efficientlywith a cost given
by Oðmχ4d4Þ. This can be straightforwardly generalized to
arbitraryp-times correlation functions of systemoperators. It
is easy to see that the corresponding contraction can be
performed at a cost Oðmχpþ2d4Þ, leading to an exponential
scaling with the order of the correlation function p.

B. Infinite cascaded chain

One of the most important quantities of interest is
the steady state of the system density operator, ρss ¼
limt→∞ ρðtÞ ¼ limm→∞ ρðmτÞ. If the steady state is unique,
it can be expressed in termsof the finite-timepropagator of an
infinite 1D cascaded chain [see Eq. (19)] as

ρss ¼ lim
m→∞

P
�
E½m�ðτÞ

� 1
d
: ð24Þ

Importantly, we can directly target the steady state of the
systembydirectly calculating infinite system size propagator
using infinite matrix product state techniques [76]. For this,
one assumes a translation invariant matrix product repre-
sentation of E½∞�ðsÞ, with C½k�ðsÞ ¼ CðsÞ (for all k) and
integrates Eq. (21) self-consistently from s ¼ 0 to s ¼ τ [77].
Besides accessing ρss, this enables the calculation of multi-
time system correlation functions in the steady state using
expressions analogous toEqs. (22) and (23) and, in turn, field
correlation functions via input-output relations. Moreover,
one can also directly access the relaxation time tss of the
system: This is determined by the correlation length ξ of
E½∞�ðτÞ, via tss ¼ ξτ. Since E½∞� is given in translational
invariant matrix product form, its correlation length can be
directly accessed from spectral decomposition of the tensor
C½k�ðτÞ. For details regarding the infinite chain algorithm, we
refer the reader to Appendix C.

C. Multinode networks

As discussed in Sec. III C, we consider n-node networks
where all time delays are identical. These can also be
mapped to 1D cascaded chains. Therefore, we can straight-
forwardly generalize the numerical methods introduced
above to such multinetwork setups. Figure 6 illustrates this
generalization for setups with two and three atoms. In each
case, the tensor network representing the reduced state
of the n nodes can be constructed from the propagator of a
1D cascaded chain with an n-site unit cell. Specifically, as
shown in Figs. 6(b) and 6(c), the state of the nodes is
obtained from a contraction of n such propagators with
n-fold shifted periodic boundary conditions. For each
1D cascaded chain, we construct this propagator using
standard TEBD procedure in the exact same way as for
the case of a single node. The computational cost of
constructing the propagator is independent of the number
of nodes n. However, the cost of contraction scales as
Oðmχ3þ2ðn−1Þd4þ2ðn−1ÞÞ, where n is the number of the
nodes in the model, and we assume that all nodes have the
same local Hilbert space dimension d.

V. RESULTS

A. Propagator bond dimension

We now proceed to discuss the computational cost of the
method outlined in the previous section, i.e., the cost of
constructing the propagator of the 1D cascaded chain. The
computational cost depends crucially on the bond dimen-
sion of E½m�ðτÞ: The problem of interest can be solved
efficiently if the matrix product representation of E½m�ðτÞ
obeys an area law for all τ, that is, if the bond dimension χ
required to represent the E½m�ðτÞ grows at most polyno-
mially with m. Important quantities in this context are the
singular values of the splitting of E½m�ðτÞ in two partitions
formed by the first l replicas and the last m − l replicas,
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respectively. We denote these singular values by σα (with
α ¼ 1;…; χ) and define normalized singular values as σ̄α ¼
σα=ð

P
β σ

2
βÞ1=2. We also introduce the entropy of the

normalized singular values associated with this splitting:

SðlÞ ¼ −
X
α

σ̄2α log2ðσ̄2αÞ; ð25Þ

as well as the maximum entropy among all cuts of the chain
S ¼ maxl SðlÞ, and use it as a proxy for the bipartite

correlations in the propagator and the effective bond
dimension χ ∼ 2S. One can distinguish two qualitatively
different behaviors of SðlÞ for large l: If SðlÞ grows
(linearly) with l, one calls this a volume law (since l is the
subsystem volume); if SðlÞ saturates to a constant value,
one calls this an area law (since the subsystem boundary in
1D is independent of the subsystem size). An area law of
the entanglement entropy implies that S also saturates to a
constant value as the chain length m grows, as SðlÞ
becomes independent of the subsystem size. The entropy

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Generalization of our approach to the multinode networks discussed in Sec. IV C. (a) The atom in front of the mirror is mapped
to 1D cascaded chain of identical replicas corresponding to the state of the atom at a different time. The chain is evolved using MPS
methods to obtain the total propagator, which is then contracted (b) with the shifted periodic boundary conditions and applied to the
initial density operator. (c) A problem of the setup with two atoms connected through a bidirectional waveguide is mapped to two
cascaded chains. (d) The propagators obtained after the evolution of these chains are then contracted together with the double-shifted
periodic boundary conditions. (e) A configuration with three atoms connected through a unidirectional waveguide is mapped to three
cascaded chains. (f) The resulting three propagators are contracted with the triple-shifted periodic boundary conditions.
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area law implies that the operator can be represented
efficiently as MPO for an arbitrary number of sites in
the chain, since the corresponding bond dimension is
independent of the system size χ ∼ 2S, where S is the
saturation entropy value.
In Fig. 7(a), we show S as a function of m for the 1D

cascaded chain corresponding to our example of a driven
two-level atom coupled to a delay line (see Sec. II A).
Importantly, this shows a clear area law for all values of τ;
that is, the entropy saturates to a finite value asm increases.
We calculate the saturation entropy value also for different
round-trip phases and driving strengths in Fig. 7(b), where
we plot the maximum value of the entropy in the nonzero
delay time range, Smax ¼ maxτ S. To give a more detailed
perspective on the (operator) entanglement properties, we
show in Fig. 7(c) the squared normalized singular values
in the steady state for different driving strengths. This
indicates once again the efficiency of the matrix product
representation of the propagator, since one can truncate
the bond dimension χ in a controlled way and reach
sufficiently small truncating errors even for bond dimen-
sions χ ≪ χmax ∼ dm. In Fig. 7(d), we show the entropy
saturation value, calculated for an infinite number of

replicas, and confirm that the saturation value is finite in
the entire parameter space. Perhaps counterintuitively, the
saturation value is the highest for zero driving, despite
the existence of an analytical solution in that case (for a
single excitation). This is resolved by noting that the
operator entropy is calculated for the propagator of the
cascaded chain and, therefore, contains information about
the dynamics of all possible initial states of the cascaded
chain, including those where multiple excitations are
present. More importantly, the entropy is remarkably small
if both τ and Ω are large, demonstrating the applicability of
our method even in previously inaccessible regimes, that
is, efficient calculation of a transient dynamics for an
unlimited number of round-trips in the case of both long
delay times and multiple excitations in the delay line. We
use this feature in Sec. VII and propose a semianalytical
approach to describe the system in this latter regime.
While our results in Fig. 7 demonstrate the area law
explicitly for the 1D cascaded chain of driven two-level
systems, we find analogous results also for other examples
(see Appendix D). In general, one expects an area law for
the propagator of a 1D Markovian master equation when-
ever it is rapidly mixing; i.e., its mixing time scales at most
logarithmic with m [78].
We note that the entanglement entropy area law and,

therefore, efficient classical calculation of the state of the
system do not contradict the results of Ref. [16], where it
was shown that universal resource states for measurement-
based quantum computing can be generated from a single
emitter with time-delayed feedback. In order to harness
the cluster state as a resource for quantum computation,
one needs to measure every (relevant) mode of the output
field. This is indeed equivalent to calculating a very high
order correlation function. In contrast, our method allows
us to efficiently access few-body observables, such as the
reduced state of the emitter(s), or few-body correlations
functions of the output field.

B. Single driven atom in front of a distant mirror

1. Atomic dynamics and steady state

In this subsection, we present results obtained from
solving for the dynamics and the steady state of the atom in
front of the mirror, using the methods developed in the
previous sections.
In Fig. 8(a), we plot the evolution of the atomic

excitation probability for a resonant driving field as a
function of time, ρeeðtÞ ¼ hejρðtÞjei, for up to 15 round-
trip times with long time delays Γτ ¼ 20 and a round-trip
phase of ϕ ¼ π. To interpret the results, it is useful to recall
that a two-level atom in its ground state acts like a mirror
for photons in a frequency band of width Γ around the two-
level transition frequency. With the choice of ϕ ¼ π, the
delay line and the atom, therefore, form a perfect cavity for
a (single) photon that is resonant with the atomic transition
frequency. This effect leads to a dynamical accumulation of

(a) (b)

(c) (d)

FIG. 7. Entropy area law demonstrated for the propagator of the
atom in front of the mirror. (a) Dependence of the bipartite
entropy S on the length of the chain m exhibiting an area law for
Γτ ¼ 2, 5, 12, 18 and Ω=Γ ¼ 0.5, χ ¼ 50, and Trotter step
ΓΔt ¼ 0.05. (b) The dependence of the maximum entropy during
the time evolution, Smax ¼ maxτ S, on the phase and the Rabi
frequency for m ¼ 20, χ ¼ 80, and ΓΔt ¼ 0.05. (c) Steady-state
normalized singular values squared corresponding to the maxi-
mum entropy bipartition for different driving strengths, Γτ ¼ 20,
ϕ ¼ 0, χ ¼ 250, and ΓΔt ¼ 0.1. (d) Steady-state entropy Sss for
different delay times Γτ and Rabi frequencies, ϕ ¼ π, χ ¼ 100,
and ΓΔt ¼ 0.001. For all plots, the detuning Δ=Γ ¼ 0.
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photons in the delay line, as long as the atomic excitation
probability is small. This dynamic proceeds until the field
in the delay line is strong enough to effectively saturate
the two-level atom, rendering it nonreflective and allowing
photons to leak out of the delay line. This interplay between
photon trapping and atom saturation determines the steady
state. If the coherent driving field is very weak, it takes
several round-trip times until this point is reached, while for
a stronger drive the atom saturates much quicker due to the
coherent drive.
If the coherent driving field is not resonant with the

two-level system transition frequency, i.e., if the detuning
Δ is nonzero, the reflectivity of the atom and, thus, the
trapping capabilities of the setup change. In fact, these
trapping capabilities are determined by a nontrivial inter-
play between the detuning and the round-trip phase. This is
displayed in Fig. 8(b), where we show the steady-state
excitation probability of the atom, which is related to the
photon number in the delay line via the input-output
relation. In Fig. 8(b), we show only half of the round-trip
phase range, since the excitation probability has a sym-
metry Δ → −Δ and ϕ → −ϕ. This symmetry already
appears in the case of an atom with (instantaneous)
coherent feedback [41]. Specifically, one can define the
effective detuning Δeff ¼ Δ − γ=2 sinðϕÞ with the last term
indicating the so-called phase-dependent Lamb shift. This
detuning is invariant under simultaneous sign change of Δ
and ϕ. To give further intuition into the qualitative features
in Fig. 8(b), we note that the structure of the plot can be
understood by analyzing the analytic solution for zero
driving field [79]. One can show that in the absence of a
driving field a nontrivial dark steady state exists if
jiΔ − γð1þ e−iϕÞj ¼ 0. Signatures of this dark state survive
also for finite driving so that the steady-state excitation
probability is enhanced around the dark state condition.
As noted, our method allows us also to directly access

the time it takes the system to relax to its steady state, tss.
Figure 9 shows tss for a resonant drive as a function of delay

time and driving strength as well as round-trip phase.
Because of the photon-trapping mechanism discussed ear-
lier, we observe long relaxation times in the regime of
weak driving and long delay times; for large enough Rabi
frequencies, tss oscillateswith a period proportional to 2π=Ω.
This can be understood by noting that the Rabi oscillations of
the atomaffect the probability of the photon to be reflected by
the atom.When the delay time becomes large enough for the
atom to reach an equilibrium state during a round-trip time,
these oscillations damp out. The round-trip phase also affects
the chances of a photon to be trapped, thus increasing the
steady-state time as seen in Fig. 9(b).

2. Output field properties

The infinite chain algorithm for the atom in front of the
mirror discussed earlier can be used to calculate the steady-
state properties of the output field, such as the spectrum and
the intensity correlation functions.

(a) (b)

FIG. 8. Excited state probability of the atom in front of the
mirror. (a) Probability dynamics for the various driving strengths
Ω ¼ 0.1; 0.2; 0.5Γ, delay time Γτ ¼ 20, ϕ ¼ π, χ ¼ 80, and
Δ=Γ ¼ 0. (b) Excited state probability in the steady state as a
function of the round-trip phase ϕ and the detuning Δ=Γ,
Ω=Γ ¼ 0.5, Γτ ¼ 20, and χ ¼ 50. The Trotter step is ΓΔt ¼
0.1 for both plots.

(a) (b)

(c) (d)

(e) (f)

FIG. 9. Steady-state time tss of the atom in front of the mirror.
(a),(b) The dependence on Rabi frequencies and delay times,
ϕ ¼ 0, and ϕ ¼ π. (c),(d) The steady-state time relative to the
delay time in the small driving limit for different values of Ω,
ϕ ¼ 0, and ϕ ¼ π. (e),(f) The steady-state time calculated for the
different phases and delay times, Ω ¼ 0.2Γ, and Ω ¼ 5Γ. For all
plots, the parameters are ΓΔt ¼ 0.1, χ ¼ 250, and Δ=Γ ¼ 0.
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The steady-state spectrum of the output field detected at
the open side of the waveguide is given by

SðνÞ ¼ 2Re

�Z
∞

0

dt0
�
b†outðtÞboutðt − t0Þ�e−iνt0

�
; ð26Þ

where the output field operator is obtained using the input-
output formalism as

boutðtÞ ¼ ffiffiffiffiffi
γL

p
cLðtÞ þ ffiffiffiffiffi

γR
p

e−iϕcRðt − τÞ þ e−iϕbðtÞ; ð27Þ

where we use the definition boutðtÞ ¼ eiω0τ=2 1ffiffiffiffi
2π

p ×R
dωbðω; t0 > tÞe−iðω−ω0Þðt−τ=2Þ with bðω; t0Þ being a

bosonic operator in the Heisenberg picture. Based on
the expression Eq. (27), the output spectrum can be
obtained from two-times system correlation functions
(see Appendix C for details). The incoherent part of the
spectrum in the case of the long delay time and for different
round-trip phases is shown in Fig. 10(a) and exhibits a
pattern of minima and maxima with a periodicity propor-
tional to 1=τ. This periodicity is a result of the correlations
between the photons emitted with the time difference τ.
Using the input-output formalism Eq. (27), one can also
calculate the normalized second-order correlation functions
of the output field:

g2ðt0Þ ¼
�
b†outðtÞb†outðt − t0Þboutðt − t0ÞboutðtÞ

�
�
b†outðtÞboutðtÞ

��
b†outðt − t0Þboutðt − t0Þ� : ð28Þ

The result is shown in Fig. 10(b) for different round-trip
phases and exhibits both bunching and antibunching
behavior depending on the round-trip phase. This behavior
occurs due to the fact that the output field consists of both
the field that is directly emitted by the atom into the output
port and the field that first passes through the delay line and
only then leaves through the output port. Generically, one
expects both these fields to be each independently anti-
bunched, since they are emitted by a two-level system.

Bunching can, however, occur, when a first photon is
emitted into the delay line and upon its return triggers a
stimulated emission of a second photon from the atom into
the output port, leading to two photons in the output. For
this effect to happen, several factors need to align. First, the
delay line needs to be long enough, such that the atom can
get reexcited before the first photon completes its round-
trip. Thus, this effect is exclusively present in the non-
Markovian limit. Second, the round-trip phase needs to be
chosen to avoid destructive interference for the stimulated
emission process, which explains the differences in the
plots for various round-trip phases.

C. Other networks

In this subsection, we present results from the applica-
tion of our method to other simple quantum optical net-
works, connecting two or three nodes. Figure 11(a) shows
the dynamics of a pair of two-level atoms coupled to a
bidirectional waveguide at two distant points. The time
delay is a result of the propagation time a photon needs to
travel between the two systems. For this case, we assume
γi;R ¼ γi;L ¼ γi and Γ ¼ 2γ1. Next, Fig. 11(b) shows the
dynamics of three nodes connected pairwise with unidi-
rectional waveguides, with equal time delay in each
interconnect. Here, again, γi;R ¼ γi;L ¼ γi and Γ ¼ 2γ1.
These results can be obtained through an adaptation of the
derivation given in Sec. III B and a corresponding, simple
modification of the algorithm given in Sec. IV. We discuss
these generalizations to more complicated networks in
detail in Appendix D.

VI. COMPARISON WITH EXISTING METHODS

In this section, we analyze the cost and limitations of the
method presented in this paper and compare it with existing

(a) (b)

FIG. 10. Steady-state output field properties for the setup with
the atom in front of the mirror. (a) The dependence of the
incoherent part of the spectrum SincðνÞ on the round-trip phase.
(b) The dependence of the second-order correlation function g2ðtÞ
on the delay time Γτ for the round-trip phases ϕ ¼ 0; π=2; π; for
both plots, Ω ¼ 2Γ;Γτ ¼ 20;Δ=Γ ¼ 0, χ ¼ 80, and ΓΔt ¼ 0.01.

(a) (b)

FIG. 11. Excited state probabilities dynamics for the multinode
setups. (a) ρAee and ρBee of the two atoms A and B connected
through the bidirectional waveguide as a function of Γt. Both
atoms are initially in the ground state, with parameters γ1 ¼ Γ=2,
γ2 ¼ Γ=10, Ω1 ¼ Γ=5, Ω2 ¼ 0, ϕ ¼ π, Γτ ¼ 20, and χ ¼ 50.
(b) The excited state probabilities ρAee, ρBee, and ρCee of the three
atoms A, B, and C connected through 1D unidirectional wave-
guides as a function of Γt; initially, the atoms are in the excited,
ground and ground states; γ1 ¼ γ2 ¼ γ3 ¼ Γ=2, Ω1 ¼ Γ=2,
Ω2 ¼ Ω3 ¼ Γ=10, ϕ ¼ π, Γτ ¼ 10, and χ ¼ 25. For both plots,
Δ=Γ ¼ 0 for all nodes and Δt ¼ 0.1.
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methods. Specifically, we compare it with two methods that
have been recently developed and which have been applied
to several problems.
The first is a method proposed in Ref. [41]. The central

idea underlying that approach is to represent the wave
function of the entire system containing node(s) as well
as waveguide(s) using a 1D MPS. The Hilbert space of
the bosonic modes in this approach is also decomposed
in time-bin modes, which are organized in a 1D array
according to their time label. This matrix product state is
then propagated using the Hamiltonian Eq. (7), e.g., using
the TEBD algorithm, which allows one to access real-time
evolution. In this 1D construction, time delays lead to long-
range interactions, which, in turn, result in long-range
entanglement and correspondingly require a large bond
dimension χ of the MPS, scaling typically exponentially
with the time delay. Accessing systems with very long time
delays is, thus, prohibitively expensive with that approach.
For instance, for the paradigmatic problem of a single atom
in front of a mirror, the regime γτ ≳ 10 is out of reach for
state-of-the-art implementations of this approach. In con-
trast, the method presented in this work does not encounter
this exponential barrier and allows one to access the long-
time-delay regime with polynomial costs [see Figs. 7, 8(a),
10, and 11(a) in Sec. V].
Another approach to solve problems with time-delayed

feedback was given in Ref. [42], which is based on solving
for the propagator of the cascaded chain using exact
numerics. This is an exact method that does not suffer from
long time delays. Instead, it is limited to finite evolution
times. More specifically, the exact dimension of the replica-
operator space grows exponentially with the number of
round-trip times as d4m, and exact diagonalization of the
cascaded propagator within this space scales exponentially
with the number of round-trips. Correspondingly, exact
numerics are accessible only for problems with very
small dimension of the node Hilbert space and for the
transient dynamics up to few round-trip times. This limit is
overcome by the method introduced in this paper, where
computational cost grows only polynomially with the
number of the round-trips and the steady state can be
targeted directly (see Figs. 7–10 in Sec. V).
In Table I, we list the costs of certain procedures of each

method mentioned above. In the first column, we compare
the cost of evolution, that is, the cost of evolving the total
wave function in the method proposed in Ref. [41] and the

cost of calculating the cascaded propagator performing
exact diagonalization in the method presented in Ref. [42]
as well as in the method presented in this paper. We recall
here that the delay time is given as τ ¼ kΔt, a total
evolution time tn ¼ nΔt, m ¼ ⌈n=k⌉, and d is a local
Hilbert space dimension of the system. The second column
indicates whether the method under consideration provides
access to the steady state of the system (atom). The third
column shows the computational cost of contraction
required to obtain the system density matrix after the
evolution is performed. For the method in Ref. [41], one
has to contract the total wave function in MPS form. The
algorithm presented in Ref. [42] requires a contraction of
d2m × d2m matrix of the cascaded propagator. As discussed
before, in this work, we contract the cascaded propagator in
MPS form, which leads to a favorable scaling. Last, we also
compare the cost of calculating the two-times correlation
functions. For the method in Ref. [41], this leads to a
contraction of the total MPS wave function with the
operators applied to the sites separated by at most k − 1
sites. The method from Ref. [42] requires one to perform
another propagator evolution at a cost Oðd6mÞ with the
operators inserted during the evolution followed by a
contraction, the cost of which is the same as for the density
matrix calculation. Our method offers two ways of com-
puting two-times correlation functions. That is, one can use
the results of the propagator evolution obtained before,
insert operators, and then contract with the cost of con-
traction being Oðmχ4d4Þ, or one can again perform the
evolution with the operators inserted on the way and then
contract MPSO at a cost Oðmχ3d4Þ.
In addition to this qualitative analysis of the scaling

behavior, we also perform a quantitative comparison of the
run-time of different algorithms on the same problem. The
results are presented in Appendix E.
As discussed above, the main advantage of our method

lies in the fact that it does not scale exponentially with time
delay or with evolution time. We note, though, that the
scaling with the dimension of the local Hilbert space d is
less favorable when compared to Ref. [41]; see Table I. This
limits the applicability in settings with large-node Hilbert
spaces. In particular, in setups where the nodes themselves
are composed of many-body systems, the cost of a direct
application of this (as well as other) method(s) becomes
prohibitively expensive. In such scenarios, one can attempt
to combine the tools developed here with efficient state

TABLE I. Comparison of computational cost for various numerical methods for the problem of a single node with time-delayed
coherent quantum feedback studied in this work (see the text for definitions).

Method Time evolution Steady-state access Density matrix Two-times correlation functions

Ref. [41] Oðnkχ3d3Þ, χ ∼ 2γτ Indirect, finite τ OðχdÞ Oðkχ3dÞ
Ref. [42] Oðd6mÞ No Oðd2ðmþ1ÞÞ Oðd2ðmþ1ÞÞ
This work Oðmkχ3d12Þ, χ ∼ const Direct Oðmχ3d4Þ Oðmχ4d4Þ or Oðmχ3d4Þ [80]
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representations of the node Hilbert space. A simple
example of such an extension is presented as part of the
following section.

VII. MEAN-FIELD APPROXIMATION

In this section, we use the insights of the numerical
results from Sec. V to propose a semianalytical solution
based on the mean-field approximation of the 1D cascaded
chain. As Fig. 7 indicates, the correlations in the propagator
E½m�ðsÞ are small when both the time delay and the Rabi
frequency are large [81]. This suggests that in this regime
the m-site propagator E½m�ðsÞ can be approximated as a
tensor (direct) product of local propagators:

E½m�ðsÞ ≈ ⊗
m

j¼1
Emf
j ðsÞ; ð29Þ

whereEmf
j ðsÞ is a mean-field propagator at site j. We use the

standard mean-field approach to determine these local
propagators, starting with the equation for the total propa-
gatorE½m�ðsÞ, Eq. (21): Assuming the above product form of
the propagator, one readily obtains the equation ofmotion for
the localmean-field propagatorEmf

i ðsÞ by tracing out all sites
except i in Eq. (21). This procedure gives

d
ds

Emf
i ðsÞ ¼ Lmf

i ðsÞEmf
i ðsÞ; ð30Þ

with initial condition Emf
i ð0Þ ¼ 1. Here, Lmf

i ðsÞ is a mean-
field Lindblad operator at site i, which is given via

Lmf
i ðsÞEmf

i ðsÞ ¼ tri�1

�
ðLcasc

i−1;i þ Lcasc
i;iþ1Þ ⊗

iþ1

j¼i−1
Emf
j ðsÞ

�
:

ð31Þ

Here, tri�1 denotes the partial trace over sites i − 1 and iþ 1.
Straightforward algebra allows one to bring the above
expression into a particular transparent form:

Lmf
i ðsÞEmf

i ðsÞ ¼ LM
i E

mf
i ðsÞ − i

ℏ
½hiðsÞ; Emf

i ðsÞ�: ð32Þ

Here, we introduce the notationLM
i X ¼ −ði=ℏÞ½Hsys;i; X� þ

D½Li�X þD½Ri�X as well as hiðsÞ ¼ iℏ½r�i−1ðsÞLi −
ri−1ðsÞL†

i �. In the last expression, we use the shorthand
notation for themaps ri−1ðsÞXi−1 ¼ tri−1fRi−1Emf

i−1ðsÞXi−1g
and r�i−1ðsÞXi−1 ¼ tri−1fEmf

i−1ðsÞXi−1R
†
i−1g, which map

operators in the Hilbert space of replica i − 1 (specifically,
density matrices) to a c-number. Note that Lmf

i is manifestly
of Lindblad form. The first term in Eq. (32), LM

i , is in fact
simply the generator of a Markovian master equation
describing the replica system i coupled to a bath without
time-delayed feedback, such as a waveguide that is open
on both ends. The second term captures the effect of the

time-delayed feedback on a mean-field level: It generates an
additional coherent evolution of the replica i, dependent on
replica i − 1. Specifically, one can interpret this second term
as an additional coherent field driving the replica system i.
The amplitude of this driving field is simply determined by
the expectation value of the output field of the neighboring
replica at site i − 1. It is this second term that renders the
mean-field equations nonlinear. Note that the mean-field
equations for Emf

i ðsÞ depend only on Emf
i−1ðsÞ but not on

Emf
iþ1ðsÞ. This is the direct consequence of the unidirectional

nature of the cascaded chain.
With the expression (32), we can solve the nonlinear,

coupled mean-field equations (30) to obtain the propagator
EmfðsÞ in mean-field approximation and, consequently,
calculate from it the mean-field approximation of all
quantities of interest as discussed in the previous sections.
Figures 12(a) and 12(b) show the fidelity between the
steady state in mean-field approximation and the exact
steady state calculated in the previous section. As expected,
the fidelity improves and approaches 1 when both the delay
time and the driving increase.
Remarkably, the mean-field approximation can also cap-

ture relevant two-time correlation functions successfully:
Figure 13 shows the incoherent part of the output field
spectrum calculated both by the exact algorithm and using
the mean-field approximation for different parameters.
Again, as the driving strength and the delay time increase,

(a) (b)

(c) (d)

FIG. 12. Comparison of the exact steady-state solution and the
mean-field approximation. (a),(b) The fidelity of the steady-state
mean-field solution with the exact solution for the atom in front

of the mirror [see Fig. 6(a)], F ¼
�
tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρss

p
ρmf
ss

ffiffiffiffiffiffi
ρss

pq �
2
[82],

dependence on the driving with the delay times Γτ ¼ 1, 2, 5, and
(a) ϕ ¼ 0 and (b) ϕ ¼ π. (c),(d) The fidelity of the steady-state
mean-field solution with the exact solution for two atoms
interacting with a common waveguide [Fig. 6(c)]. (c) ϕ ¼ 0
and (d) ϕ ¼ π; Ω1=Γ ¼ 1 for both plots.
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the mean-field approximation becomesmore accurate. In the
case of sufficiently large Rabi frequencies and delay times,
the mean-field picture allows for a simple interpretation of
the spectrum: It is given by the standardMollow triplet found
in the output of a strongly driven two-level system coupled to
aMarkovian bath [83], which is modulated with a frequency
1=τ as a result of constructive (destructive) interference
between the emitted photons and those returning to the atom
from the delay line (previous replica).
This mean-field approach can also be applied to more

complicated systems, e.g., multinode setups. In Figs. 12(c)
and 12(d), we show the results of such a mean-field
approximation applied to two distant, driven atoms coupled
to a bidirectional waveguide [see Fig. 6(c)]. Also, in this case
themean-field ansatz reproduces the exact solutionwith high
fidelity. This example highlights the fact that the mean-field
factorization can be particularly useful in setups with
multiple nodes. As mentioned above, the cost of the tensor
network method developed in this work increases rapidly
with the dimension of the system Hilbert space, which poses
limitation for systems with multiple nodes. Whenever the
mean-field approach developed in this section can be applied,
this unfavorable scaling can be eliminated.

VIII. CONCLUSION

In this work, we developed a novel approach for solving
problems with continuous coherent quantum feedback
involving time delays. Our method allows for numerically

accurate and efficient calculations of several quantities of
interest that are inaccessible with other state-of-the-art
methods. Specifically, this includes parameter regimes with
arbitrary time delays and direct access to steady-state
properties. It is important to note that our algorithm is
efficient for calculating few-body observables, such as the
reduced state of the emitter(s), or few-body correlation
functions of the output field (such as the spectrum or g2),
while the cost of accessing higher-order correlation func-
tions grows exponentially with n. This is indeed consistent
with the fact that it is not possible to classically simulate
universal quantum computation (Ref. [16]).
In this work, we mainly focused on the minimal, non-

trivial example of a system with coherent time-delayed
feedback, as a way to illustrate the key concepts underlying
our method and to facilitate benchmarks against other
approaches. But our method could also provide a path to
solve other open problems, e.g., understanding the fate of
superradiance, a phenomenon in which time delays inevi-
tably become relevant. We also envision that our methods
are particularly useful to theoretically model and describe
solid state quantum systems that employ inherently slow
excitation carriers in on-chip quantum devices, such as
surface acoustic wave phonons [28,29]. In addition, it
seems plausible that the key ideas of our work can be
generalized and integrated with other approaches that are
used to deal with systems coupled to various forms of non-
Markovian environments [53–58].
One of themost interesting challenges in going beyond the

models presented in this work is to understand if it is possible
to construct exampleswhere themethods developedhere fail.
For instance, this could happen if one finds examples of 1D
cascaded chains whose propagators are not rapidly mixing,
such that the corresponding operator entanglement does not
obey an area law. In this case, ourmethodwould no longer be
efficient, and the computational cost would grow with the
time delay. It is not clear if such dynamics exists, but recent
results from the theory of isometric tensor networks (Ref. [84])
suggest that this may be possible. Identifying such setups
wouldpotentially allowone to engineer quantumoptical setups
that canproducequalitativelymore complexoutput states, such
as stateswith algebraically decaying correlation functions.This
would have important implications for photonic quantum
simulation approaches [22,85–87].

The datasets generated during and/or analyzed during the
current study as well as the method code are available on
the public repository Zenodo [88].
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APPENDIX A: MAPPING TO 1D
CASCADED CHAIN

We now prove the direct correspondence between the
equation for the reduced density matrix of the atom in front
of the mirror and the 1D cascaded chain. This proof can be
naturally generalized to the case of multinode networks;
however, for illustrational purposes, we consider here the

simplest example. We start out with Eq. (14) and proceed
by decomposing the superoperator Ti in two superoperators
TR
i and TL

i , with the first one acting on both the system
and the time bin iþ k and the second one on the system and
the time bin i as in Fig. 4(b): TiX ¼ TR

i T
L
i X, where we

define TR
i X ¼ VR

i XV
R
i
† and TL

i X ¼ trHi
fVL

i XV
L
i
†g with

the unitary VL
i ¼ exp½−ði=ℏÞHsysðΔt=2Þ þϒL

i � and the
isometry VR

i ¼ exp½−ði=ℏÞHsysðΔt=2Þ þϒR
i �j0iiþk corre-

spondingly. This decomposition is correct up to Trotter
errors that vanish in the Δt → 0 limit. Note that (up to
higher-order Trotter terms) this decomposition is symmet-
ric: TiX ¼ TR

i T
L
i X ¼ TL

i T
R
i X.

We rewrite Eq. (14) using the unitaries and the isometries
introduced above as

ρsysðtnÞ ¼ trHB
fVR

n−1V
L
n−1…VR

i V
L
i …VR

0V
L
0 ρsysðt0Þ ⊗

k−1

i¼0
j0iih0ijVL†

0 VR†
0 …VL†

i VR†
i …VL†

n−1V
R†
n−1g: ðA1Þ

We now carefully work out the whole expression by taking the partial trace over the bath degrees of freedom of each time
bin. To do so, we introduce matrix elements of the operators VL

i and VR
i as VL

i;b;a ¼ hbjVL
i jai and VR

i;a;b ¼ hajVR
i jbi,

respectively, where jai and jbi are the basis states of the d-dimensional system Hilbert space. Note that these matrix
elements act on the photonic time bins. Specifically, VL

i;b;a is an operator that acts on time bin i, and VR
i;a;b is a state of the

time bin iþ k. We now can write the matrix elements of the system density matrix at time tn:

ρsysan;a0n
ðtnÞ ¼

X
a;b;a0;b0

trHB

n
VR
n−1;an;bn−1V

L
n−1;bn−1;an−1…VR

i;aiþ1;bi
VL
i;bi;ai

…VR
0;a1;b0

VL
0;b0;a0

ρa0;a00ðt0Þ ⊗
k−1

i¼0
j0iih0ijVL†

0;a0
0
;b0

0
VR†
0;b0

0
;a0

1
…VL†

i;a0i;b
0
i
VR†
i;b0i;a

0
iþ1
…VL†

n−1;a0n−1;b
0
n−1
VR†
n−1;b0n−1;a

0
n

o
; ðA2Þ

where the sum goes over the indexes a ¼ a0;…; an−1, b ¼ b0;…; bn−1, a0 ¼ a00;…; a0n−1, and b
0 ¼ b00;…; b0n−1 and where

we use ρa0;a00ðt0Þ ¼ ha0jρðt0Þja00i. To perform the partial trace over the time bins, we rearrange the terms in the above
expression, grouping together all the terms that involve the same time bin. Therefore, we group pairs VR

i−k;ai−kþ1;bi−k
and

VL
i;bi;ai

(and analogously VR†
i−k;b0i−k;a

0
i−kþ1

with VL†
i;a0i;b

0
i
), since these are the only terms involving the time bin i. This allows us to

trace out all time bins i that appear in the state (i.e., the time bins from i ¼ 0 to i ¼ nþ k − 1), sequentially, which gives rise
to three different types of terms. The first type of terms arises from the trace over the time bins i ¼ 0;…; k − 1, which gives
terms of the form

WðLÞ
bi;b0i;ai;a

0
i
¼ trHi

fVL
i;bi;ai

j0iih0ijVL†
i;a0i;b

0
i
g: ðA3Þ

The second type of terms arise from the trace over the time bins i ¼ k;…; n − 1, which gives terms of the form

WðLRÞ
bi;b0i;ai−kþ1;a0i−kþ1

;ai;a0i;bi−k;b
0
i−k

¼ trHi
fVL

i;bi;ai
VR
i−k;ai−kþ1;bi−k

VR†
i−k;b0i−k;a

0
i−kþ1

VL†
i;a0i;b

0
i
g: ðA4Þ

The third type of terms are obtained from the trace over the time bins i ¼ n;…; n − 1þ k, which gives terms of the form

WðRÞ
ai−kþ1;a0i−kþ1

;bi−k;b0i−k
¼ trHi

fVR
i−k;ai−kþ1;bi−k

VR†
i−k;b0i−k;a

0
i−kþ1

g: ðA5Þ

To proceed, we evaluate now all three of these terms. To do so, we use the definition of VL and VR and expand to the first
order in Δt (recalling that the Ito increment ΔBi gives contributions in the order of

ffiffiffiffiffiffi
Δt

p
):

VL
i;b;a ¼ δb;a −

i
2ℏ

Hsys
b;aΔtþ ðLb;aΔB

†
i − H:c:Þ þ 1

2

�
ðL2Þb;aΔB†2

i − ðLL†Þb;aΔB†
iΔBi − ðL†LÞb;aΔBiΔB

†
i þ ðL†2Þb;aΔB2

i

�

þ � � � ; ðA6Þ
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VR
i;a;b ¼

�
δa;b −

i
2ℏ

Hsys
a;bΔtþ Ra;bΔB

†
iþk − ðR†RÞa;bΔt

�
j0iþki þ

1

2
ðR2Þa;bΔB†2

iþkj0iþki þ � � � : ðA7Þ

With this, one can evaluate the above expressions [Eqs. (A3)–(A5)] using the commutation relation of the Ito increment
operator, ½ΔB†

i ;ΔBj� ¼ Δtδij. For the term (A3), we obtain to the first order in Δt

WðLÞ
b;b0;a;a0 ¼ δb;aδb0;a0 −

i
2ℏ

ðHsysÞb;aδa0;b0Δtþ
i
2ℏ

δb;aðHsysÞa0;b0Δtþ
1

2
½2Lb;aL

†
a0;b0 − ðL†LÞb;aδa0;b0 − δb;aðL†LÞa0;b0 �Δt: ðA8Þ

The right-hand side can be identified with the propagator generated by a Lindblad operator LbdL given in Eq. (18) of the
main text and written here explicitly in the basis of the system Hilbert space. To leading order in Δt, this can be rewritten as

WðLÞ
b;b0;a;a0 ¼ ðeΔtLbdLÞb;b0;a;a0 ; ðA9Þ

where we define the matrix element of a superoperator as ðeΔtLbdLÞb;b0;a;a0 ¼ trsysfjbihb0jðeΔtLbdLÞjaiha0jg. Analogously, we
find for the third term (A5)

WðRÞ
a;a0;b;b0 ¼ ðeΔtLbdRÞa;a0;b;b0 ; ðA10Þ

where LbdR is the term given in Eq. (18) in the main text. Finally, the term in Eq. (A4) can be evaluated in a similar way:

WðLRÞ
l;r;r0;l0 ¼ δl;l0δr;r0 þ δl;l0O

sys
r;r0 þOsys

l;l0 δr;r0 þ δl;l0OR
r;r0 þOL

l;l0δr;r0 þOLR
l;r;r0;l0 ; ðA11Þ

where we introduce superindexes r ¼ fai−kþ1; bi−kg, l ¼ fbi; aig and r0 ¼ fb0i−k; a0i−kþ1g, l0 ¼ fa0i; b0ig (see Fig. 14). The
total map is a result of different physical processes: The contributions due to the system Hamiltonian evolution are

FIG. 14. Mapping to 1D cascaded chain. Reduced density matrix of the system ρsysðtnÞ as a tensor network, the connection of the
isometry Vi to its neighbors is encircled and shown in detail to the right, where we separate VR

i and VL
i and explicitly write the indexes

associated with each leg. Traces over the bath degrees of freedom are indicated as the contracted blue legs. Contraction of VR
i−k and VL

i

creates local propagatorWðLRÞ, leading to a ladderlike structure made of these propagators for each horizontal layer in the original tensor
network. Note that in the main text we use the fact that Trotter decomposition is symmetric TiX ¼ TR

i T
L
i X ¼ TL

i T
R
i X and the resulting

chain of propagators has a different (zigzag) structure. In a light blue rectangle, we enclose the transfer operator E½m−1�
k−1 ðΔtÞ and denote

the indexes through which it connects to the lowest transfer operator E½m�
0 ðΔtÞ.
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Osys
r;r0 ¼ −

i
2ℏ

½ðHsysÞrδr0 − δrðHsysÞr0 �Δt;

Osys
l;l0 ¼ −

i
2ℏ

½ðHsysÞlδl0 − δlðHsysÞl0 �Δt;

the dissipation through the action of the jump operator R,

OR
r;r0 ¼

1

2
½2RrR

†
r0 − ðR†RÞrδr0 − δrðR†RÞr0 �Δt;

and the dissipation through the action of the jump operator L,

OL
l;l0 ¼

1

2
½2LlL

†
l0 − ðL†LÞlδl0 − δlðL†LÞl0 �Δt:

The last contribution is a cascaded interaction between two system states:

OLR
l;r;r0;l0 ¼ ½LlδrR

†
r0δl0 þ δlRrδr0L

†
l0 − L†

l Rrδr0δl0 − δlδrR
†
r0Ll0 �Δt:

We note that the total map is then a propagator generated by the cascaded Lindblad operator defined in Eq. (17) on twofold-
replicated system Hilbert space:

WðLRÞ
r;l;r0;l0 ¼ Wcasc

r;l;r0;l0 ¼ ½expðΔtLcascÞ�r;l;r0;l0 : ðA12Þ
Using the above derivations, one can trace out all the time bins in the expression (A2) and rewrite it using the three types of
propagators we identified earlier:

ρsysan;a0n
ðtnÞ ¼

X
a;b;a0;b0

WðRÞ
an;a0n;bn−1;b0n−1

Wcasc
bn−1;b0n−1;an−k;a

0
n−k;an−1;a

0
n−1;bn−1−k;b

0
n−1−k

WðRÞ
an−1;a0n−1;bn−2;b

0
n−2

…Wcasc
biþ1;b0iþ1

;ai−kþ2;a0i−kþ2
;aiþ1;a0iþ1

;biþ1−k;b0iþ1−k
Wcasc

bi;b0i;ai−kþ1;a0i−kþ1
;ai;a0i;bi−k;b

0
i−k

…WðLÞ
b1;b01;a1;a

0
1
Wcasc

bk;b0k;a1;a
0
1
;ak;a0k;b0;b

0
0
WðLÞ

b0;b00;a0;a
0
0
ρa0;a00ðt0Þ: ðA13Þ

This equation describes the tensor network in Fig. 14(a). This network consists of two types of transfer operators, E½m�ðΔtÞ
and E½m−1�ðΔtÞ, which we now explicitly define in terms of local propagators W as

½E½p�
i ðΔtÞ�apkþi;…;a0i

¼ WðRÞ
apkþi;a0pkþi;bpkþi−1;b0pkþi−1

Wcasc
bpkþi−1;b0pkþi−1;apkþi−k;a0ðp−1Þkþi

;apkþi−1;a0pkþi−1;bðp−1Þkþi−1;b0ðp−1Þkþi−1

…Wcasc
biþk;b0iþk;aiþ1;a0iþ1

;aiþk;a0iþk;bi;b
0
i
WðLÞ

bi;b0i;ai;a
0
i
; ðA14Þ

where p ¼ fm;m − 1g. Using this, we can write the expression in Eq. (A13) using tensor network transfer operators:

ρsysan;a0n
ðtnÞ ¼

X
a;b;a0;b0

½E½m−1�
k−1 ðΔtÞ�an;…;a0k−1

…½E½m−1�
irþ1 ðΔtÞ�amkþirþ1;…;a0irþ1

½E½m�
ir
ðΔtÞ�amkþir ;…;a0ir

…½E½m�
1 ðΔtÞ�amkþ1;…;a0

1
½E½m�

0 ðΔtÞ�amk;…;a0
0
ρa0;a00ðt0Þ; ðA15Þ

where ir ¼ r=Δt. Thus, a calculation of the density matrix
of the atom in front of the mirror results in performing the
evolution of 1D cascaded chain.
The presence of the shifted periodic boundary conditions

can be shown by considering the first and the last

infinitesimal propagators E½m−1�
k−1 ðΔtÞ and E½m�

0 ðΔtÞ in the
above expression. These propagators enter the sum with

the number of coinciding indexes. To see this, we can
compare the indexes of two arbitrary Wcasc found at the
same position in the definition (A14) of both propagators:
fbðnþ1Þk−2;b0ðnþ1Þk−2;ank−1;a

0
nk−1;aðnþ1Þk−2;a0ðnþ1Þk−2;bnk−2;

b0nk−2g and fbnk−1; b0nk−1; aðn−1Þk; a0ðn−1Þk; ank−1; a0nk−1;
bðn−1Þk−1; b0ðn−1Þk−1g with n∈N. Indexes ank−1 and a0nk−1
coincide, and performing summation over these indexes
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leads to the contraction of the propagators E½m−1�
k−1 ðΔtÞ and

E½m�
0 ðΔtÞ, resulting in the shifted periodic boundary con-

ditions (see also Fig. 14).

APPENDIX B: NONVACUUM INITIAL STATE
GENERALIZATION

In the main text, the method is illustrated for the vacuum
initial state of the waveguide. However, it is feasible to
incorporate any initial state provided it can be expressed
as a product state of the local time bin states. This
representation is possible, for example, for thermal, coher-
ent, and squeezed states, among others, even if their
corresponding parameters (temperature, coherent ampli-
tude, and squeezing) depend on time. We now illustrate
this generalization for the time-dependent squeezed
coherent state as an example and derive the connection
between the 1D cascaded chain and the atom in front
of the mirror. As for the vacuum initial state, the deri-
vations can be generalized to the case of multinode net-
works. We define the squeezed coherent state of the time
bin i as

jϖii ¼ jαðtiÞ; ξðtiÞi ¼ D½αðtiÞ�S½ξðtiÞ�j0ii; ðB1Þ

where we use displacement operatorD½αðtiÞ� ¼ exp½αðtiÞ×
ΔB†

i − α�ðtiÞΔBi� and squeezing operator S½ξðtiÞ� ¼
exp½1

2
ξ�ðtiÞΔB2

i − ξðtiÞðΔB†
i Þ2� with time-dependent com-

plex parameters αðtiÞ and ξðtiÞ ¼ rðtiÞeiθðtiÞ. We now
proceed by deriving an equation for the total wave function
of the atom and the waveguide as in the main text [see
Eq. (13)]. We form the isometry Vi∶ Hsys ⊗Hi →
Hsys ⊗Hi ⊗Hiþk, which is induced by an application
of the unitary map to the initial state of time bin
iþ k, Vi ¼ Uijϖiþki.
We write the total state of the atom and the waveguide at

time tn as

jΨðtnÞi ¼ Vn−1…V1V0jϕijvi; ðB2Þ

where jϕi is the state of the system at time t0, jvi ¼
⊗k−1

i¼0 jϖii is the initial state of the first k time bins and
Vi ¼ VR

i V
L
i with VL

i ¼ exp½−ði=ℏÞHsys
Δt
2
þϒL

i �, and the
isometry VR

i ¼ exp½−ði=ℏÞHsysðΔt=2Þ þϒR
i �j0iiþk.

The reduced density operator at time tn is given
by ρsysðtnÞ ¼ trHB

fjΨðtnÞihΨðtnÞjg.
As in Appendix A, we can write the matrix elements of

the system density matrix at time tn based on Eq. (B2):

ρsysan;a0n
ðtnÞ ¼

X
a;b;a0;b0

trHB

n
VR
n−1;an;bn−1V

L
n−1;bn−1;an−1…VR

i;aiþ1;bi
VL
i;bi;ai

…VR
0;a1;b0

VL
0;b0;a0

ρa0;a00ðt0Þ ⊗
k−1

i¼0
jϖiihϖijVL†

0;a0
0
;b0

0
VR†
0;b0

0
;a0

1
…VL†

i;a0i;b
0
i
VR†
i;b0i;a

0
iþ1
…VL†

n−1;a0n−1;b
0
n−1
VR†
n−1;b0n−1;a

0
n

o
; ðB3Þ

where the sum goes over the indexes a ¼ a0;…; an−1, b ¼ b0;…; bn−1, a0 ¼ a00;…; a0n−1, and b
0 ¼ b00;…; b0n−1 and where

we use ρa0;a00ðt0Þ ¼ ha0jρðt0Þja00i. Again, we rearrange the terms in the above expression, grouping together all the terms
that involve the same time bin, which gives rise to three different types of terms. The first type of terms arises from the trace
over the time bins i ¼ 0;…; k − 1, which gives terms of the form

WðLÞ
bi;b0i;ai;a

0
i
¼ trHi

fVL
i;bi;ai

jϖiihϖijVL†
i;a0i;b

0
i
g: ðB4Þ

The second type of terms arise from the trace over the time bins i ¼ k;…; n − 1, which gives terms of the form

WðLRÞ
bi;b0i;ai−kþ1;a0i−kþ1

;ai;a0i;bi−k;b
0
i−k

¼ trHi

n
VL
i;bi;ai

VR
i−k;ai−kþ1;bi−k

VR†
i−k;b0i−k;a

0
i−kþ1

VL†
i;a0i;b

0
i

o
: ðB5Þ

The third type of terms are obtained from the trace over the time bins i ¼ n;…; n − 1þ k, which gives terms of the form

WðRÞ
ai−kþ1;a0i−kþ1

;bi−k;b0i−k
¼ trHi

n
VR
i−k;ai−kþ1;bi−k

VR†
i−k;b0i−k;a

0
i−kþ1

o
: ðB6Þ

We first consider Eq. (B4) and insert the identity 1 ¼ D½αðtiÞ�S½ξðtiÞ�S†½ξðtiÞ�D†½αðtiÞ�:

WðLÞ
bi;b0i;ai;a

0
i
¼ trHi

fD½αðtiÞ�S½ξðtiÞ�ṼL
i;bi;ai

j0iih0ijṼL†
i;bi;ai

S†½ξðtiÞ�D†½αðtiÞ�g; ðB7Þ

where we define ṼL
i ¼ S†½ξðtiÞ�D†½αðtiÞ�VL

i D½αðtiÞ�S½ξðtiÞ�. After using the permutation property of the trace, we arrive at
the expression analogous to Eq. (A3):

WðLÞ
bi;b0i;ai;a

0
i
¼ trHi

fṼL
i;bi;ai

j0iih0ijṼL†
i;bi;ai

g: ðB8Þ
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We now use the fact that S†½ξðtiÞ�D†½αðtiÞ�ΔBiD½αðtiÞ�S½ξðtiÞ� ¼ ΔBi cosh rðtiÞ − eiθðtiÞΔB†
i sinh rðtiÞ þ αðtiÞΔt to

expand ṼL
i :

ṼL
i ¼ S†½ξðtiÞ�D†½αðtiÞ� exp

�
− i
ℏ
Hsys

Δt
2
þϒL

i

�
D½αðtiÞ�S½ξðtiÞ�

¼ exp

�
− i
ℏ
Hsys

Δt
2
þ
h
LS†½ξðtiÞ�D†½αðtiÞ�ΔB†

i D½αðtiÞ�S½ξðtiÞ� − H:c:
i�

¼ exp

�
− i
ℏ
Hsys

Δt
2
þ
h
L½ΔBi cosh rðtiÞ − eiθðtiÞΔB†

i sinh rðtiÞ þ αðtiÞΔt� − H:c:
i�

¼ exp

�
− i
ℏ
Hsys

Δt
2
þ
h
αðtiÞLΔtþ ½cosh rðtiÞL − eiθðtiÞ sinh rðtiÞL†�ΔBi − H:c:

i�

¼ exp

�
− i
ℏ
H̃sysðtiÞ

Δt
2
þ
h
L̃ðtiÞΔBi − H:c:

i�
¼ 1 − i

2ℏ
H̃sysðtiÞΔtþ ½L̃ðtiÞΔB†

i − H:c:�

þ 1

2

�
½L̃ðtiÞ2�ΔB†2

i − ½L̃ðtiÞL̃†ðtiÞ�ΔB†
iΔBi − ½L̃†ðtiÞL̃ðtiÞ�ΔBiΔB

†
i þ ½L̃†2ðtiÞ�ΔB2

i

�
þ � � � ; ðB9Þ

where we define H̃sysðtiÞ ¼ Hsys þ 2iℏ½αðtiÞL − α�ðtiÞL� as well as L̃ðtiÞ ¼ cosh rðtiÞL − e−iθðtiÞ sinh rðtiÞL† and expand
the exponent to the first order inΔt. The operator L̃ is a redefined system operator that now depends on time. The expression
in Eq. (B9) is analogous to the one in Eq. (A6), and, therefore,WðLÞ is again a propagator generated by a Lindblad operator
in the form of LbdL given in Eq. (18) with a redefined expression for system Hamiltonian and system operators:

WðLÞ
bi;b0i;ai;a

0
i
¼ δbi;aiδb0i;a0i −

i
2ℏ

½H̃sysðtiÞ�bi;aiδa0i;b0iΔtþ
i
2ℏ

δbi;ai ½H̃sysðtiÞ�a0i;b0iΔt

þ 1

2
f2L̃ðtiÞbi;ai L̃ðtiÞ†a0i;b0i − ½L̃ðtiÞ†L̃ðtiÞ�bi;aiδa0i;b0i − δbi;ai ½L̃ðtiÞ†L̃ðtiÞ�a0i;b0igΔt

¼ δbi;aiδb0i;a0i −
i
2ℏ

ðHsysÞbi;aiδa0i;b0iΔtþ
i
2ℏ

δbi;aiðHsysÞa0i;b0iΔtþ αðtiÞLb;aδa0;b0Δt − δb;aα
�ðtiÞL†

a0;b0Δt

þ ð1þN iÞ
2

½2Lbi;aiL
†
a0i;b

0
i
− ðL†LÞbi;aiδa0i;b0i − δbi;aiðL†LÞa0i;b0i �Δt

þN i

2
½2L†

bi;ai
La0i;b

0
i
− ðLL†Þbi;aiδa0i;b0i − δbi;aiðLL†Þa0i;b0i �Δt

−Mi

2
½2L†

bi;ai
La0i;b

0
i
L†
a0i;b

0
i
− ðL†Þ2bi;aiδa0i;b0i − δbi;aiðL†Þ2a0i;b0i �Δt −

M�
i

2
½2Lbi;aiLa0i;b

0
i
− L2

bi;ai
δa0i;b0i − δbi;aiL

2
a0i;b

0
i
�Δt;
ðB10Þ

where we introduce the number of quanta N i in time bin i and the corresponding squeezing measureMi in each time bin,
respectively, as

N i ¼ sinh2rðtiÞ;
Mi ¼ −eiθðtiÞ sinh rðtiÞ cosh rðtiÞ: ðB11Þ

We proceed with the expression in Eq. (B5) and perform the steps analogous to those used in derivation of Eq. (B10).
After inserting identities 1 ¼ D½αðtiÞ�S½ξðtiÞ�S†½ξðtiÞ�D†½αðtiÞ� and using the permutation property of the trace, we obtain

WðLRÞ
bi;b0i;ai−kþ1;a0i−kþ1

;ai;a0i;bi−k;b
0
i−k

¼ trHi
fṼL

i;bi;ai
ṼR
i−k;ai−kþ1;bi−k

ṼR†
i−k;b0i−k;a

0
i−kþ1

ṼL†
i;a0i;b

0
i
g: ðB12Þ

The operator ṼL is given in Eq. (B9), and analogously we define ṼR
i−k ¼ S†½ξðtiÞ�D†½αðtiÞ�VR

i−k. The latter can be
expanded as
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ṼR
i−k ¼ S†½ξðtiÞ�D†½αðtiÞ� exp

�
−

i
ℏ
Hsys

Δt
2
þϒR

i−k

�
D½αðtiÞ�S½ξðtiÞ�j0ii

¼
�
1 −

i
2ℏ

H̃sysðtiÞΔtþ R̃ðtiÞΔB†
i − ½R̃ðtiÞ†R̃ðtiÞ�Δt

�
j0ii þ

1

2
½R̃ðtiÞ2�ΔB†2

i j0ii þ � � � ðB13Þ

with the redefined system operator R̃ðtiÞ ¼ cosh rðtiÞR − e−iθðtiÞ sinh rðtiÞR†. Thus, the expression in Eq. (B12) is a
propagator generated by the cascaded Lindblad operator in the form defined in Eq. (17) on twofold-replicated system
Hilbert space with the redefined system Hamiltonian and system operators:

WðLRÞ
l;r;r0;l0 ¼ δl;l0δr;r0 þ δl;l0Õ

sys
r;r0 þ Õsys

l;l0 δr;r0 þ δl;l0Õ
R
r;r0 þ ÕL

l;l0δr;r0 þ ÕLR
l;r;r0;l0 ; ðB14Þ

where we introduce superindexes r ¼ fai−kþ1; bi−kg, l ¼ fbi; aig and r0 ¼ fb0i−k; a0i−kþ1g, l0 ¼ fa0i; b0ig. The above
expression is a sum of different operators. The contributions due to the system Hamiltonian evolution for both replicas are

Õsys
r;r0 ¼ −

i
2ℏ

½ðHsysÞrδr0 − δrðHsysÞr0 �Δtþ αðtiÞRb;aδa0;b0Δt − δb;aα
�ðtiÞR†

a0;b0Δt;

Õsys
l;l0 ¼ −

i
2ℏ

½ðHsysÞlδl0 − δlðHsysÞl0 �Δtþ αðtiÞLb;aδa0;b0Δt − δb;aα
�ðtiÞL†

a0;b0Δt:

The interaction of the first replica with the right-moving modes is given by

ÕR
r;r0 ¼

ð1þN iÞ
2

½2RrR
†
r0 − ðR†RÞrδr0 − δrðR†RÞr0 �Δtþ

N i

2
½2R†

rRr0 − ðRR†Þrδr0 − δrðRR†Þr0 �Δt

−
Mi

2
½2R†

rR
†
r0 − ðR†Þ2rδr0 − δrðR†Þ2r0 �Δt −

M�
i

2
½2RrRr0 − R2

rδr0 − δrR2
r0 �Δt:

The interaction of the second replica with the left-moving modes is given by

ÕL
l;l0 ¼

ð1þN iÞ
2

½2LlL
†
l0 − ðL†LÞlδl0 − δlðL†LÞl0 �Δtþ

N i

2
½2L†

l Ll0 − ðLL†Þlδl0 − δlðLL†Þl0 �Δt

−
Mi

2
½2L†

l L
†
l0 − ðL†Þ2l δl0 − δlðL†Þ2l0 �Δt −

M�
i

2
½2LlLl0 − L2

l δl0 − δlL2
l0 �Δt:

The cascaded interaction between the two replicas is

ÕLR
l;r;r0;l0 ¼ ð1þN iÞ½LlδrR

†
r0δl0 þ δlRrδr0L

†
l0 − L†

l Rrδr0δl0 − δlδrR
†
r0Ll0 �ΔtþN i½L†

l δrRr0δl0 þ δlR
†
rδr0Ll0 − LlR

†
rδr0δl0

− δlδrRr0L
†
l0 �Δt −Mi½L†

l δrR
†
r0δl0 þ δlR

†
rδr0L

†
l0 − L†

l R
†
rδr0δl0 − δlδrR

†
r0L

†
l0 �Δt −M�

i ½LlδrRr0δl0 þ δlRrδr0Ll0

− LlRrδr0δl0 − δlδrRr0Ll0 �Δt:

It is easy to show that the term WðRÞ given in Eq. (B6)
is also a propagator generated by a Lindblad operator
in the form of LbdR given in Eq. (18) with the
redefined expression for the system Hamiltonian and
system operators. The three types of propagators
described above combined together describe the evo-
lution of 1D cascaded chain and the density matrix
given in Eq. (B3) can be obtained using the methods
described in Sec. IV.

APPENDIX C: INFINITE CHAIN ALGORITHM

As discussed in the main text in Sec. IV B, the steady
state of the atom in front of the mirror can be accessed by
calculating the propagator of the infinite 1D cascaded chain.
To do so, we make a translational invariant ansatz where all

tensors are identical independently of the site they are
associated with, C½k�ðsÞ ¼ CðsÞ. We solve Eq. (21) for this
transitionally invariant infinite system size propagator using
the infinite time-evolving block decimation algorithm
(iTEBD) [76]. This is done using a two-site unit cell, with
tensors denoted by AðsÞ and BðsÞ for even and odd sites,
respectively. The integration of Eq. (21) is achieved in a
Trotterized fashion, where at each integration step we
first apply Wcasc to A and B, then exchange the tensors,
and applyWcasc toB and A. Note that this construction leads
to tensors that are identical up to the Trotter errors:
AðτÞ ¼ BðτÞ ¼ CðτÞ.
Once the infinite system size propagator is obtained, the

density matrix of the atom in front of the mirror in the
steady state, ρss, is obtained by a contraction with shifted
periodic boundary conditions; see Eq. (24). To perform
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this contraction, we first reshape the tensor CðτÞ such that
it forms a square matrix of dimension χd2 × χd2 and
subsequently calculate its eigenvalues λα as well as the
matrices containing left and right eigenvectors, QL and QR
[cf. Figs. 15(c) and 15(d)], i.e., CðsÞ ¼ P

αðQLÞαλαðQRÞα.
Introducing the diagonal matrix Λα;β ¼ δα;βλα, the
steady state is given by ρss ¼ trvirtflimm→∞ Cmg ¼
trvirtflimm→∞QLΛmQRg1=d, where we introduce
trvirtf� � �g representing the trace over the virtual degrees
of freedom [see Fig. 15(e)]. Since CðτÞ is a completely
positive trace-preserving map, its largest eigenvalue is
of magnitude one, i.e., jλ1j ¼ 1. If the steady state is
unique, all other eigenvalues are smaller, i.e., jλkj < 1
(for k ¼ 2; 3;…). Therefore, we can easily perform the
total contraction in the infinite limit, obtaining ρss ¼
trvirtflimm→∞QLDmQRg ¼ Q1

LQ
1
R1=d, where Q1

L and
Q1

R are the left and the right eigenvector, respectively,
associated with the eigenvalue jλ1j ¼ 1.
Another useful feature of the above procedure is that

we can compute the time required to achieve the steady
state tss. Specifically, we can bound this time via the
second-largest eigenvalue of the transfer tensor CðτÞ,
jλ2j⌈tss=τ⌉ ¼ expð−t=tssÞ, which describes how fast the
information about the initial state fades with time (the
number of sites in the chain). Thus, we obtain the steady-
state time as

tss ¼ −2
τ

log2 jλ2j
: ðC1Þ

Arbitrary system correlation functions as well as field
correlation functions (using input-output formalism) can
be calculated in the infinite limit in a similar way as
in the case of the transient dynamics. Let us consider
the example of two-times system correlation function
limt→∞hxðtÞyðt − t0Þi. This expression depends only on
the time difference t0 ¼ m̄τ þ r̄. Again, we can write
limt→∞hxðtÞyðt − t0Þi ¼ trfPðM½∞�Þð1=dÞg with M½∞�
defined as

(a)

(b)

(c)

FIG. 16. Steady-state two-times correlation function algorithm.
(a) To calculate the system correlation function, we first apply the
system operators to two semi-infinite propagators with propa-
gating times τ̄ ¼ τ − r̄ and r̄ and then contract the whole structure
with the shifted periodic boundary conditions. (b) The contrac-
tion is performed using the spectral decomposition of a combined
transfer operator C̃ comprising Cðr̄Þ and Cðτ̄Þ contracted over the
physical leg. C̃ is again a completely positive trace-preserving
map with jλ̃1j ¼ 1. (c) We then contract an infinite number of C̃
with ρ ¼ ð1=dÞ and the rest tensor structure on the right and then
trace over the virtual degrees of freedom. When taking the trace
over the system degrees of freedom of the resulting structure, we
obtain the correlation function limt→∞hxðtÞyðt − t0Þi.

(a)
(b)

(c)

(d)

(e)

FIG. 15. The infinite 1D chain algorithm. (a) Two tensors Að0Þ
and Bð0Þ are evolved until time τ using iTEBD by applying two-
site superoperators WA;B and WB;A; (b) acquired after this
evolution, identical tensors CðτÞ are contracted together. To
achieve that, we first rearrange the legs of the tensor CðτÞ (c)
and then apply spectral decomposition (d), where QL and QR are
matrices consisting of the left and right eigenvectors, respectively.
To calculate ρss, we contract an infinite number of the decom-
posed tensors; therefore, only vectors Q1

L and Q1
R associated with

the eigenvalue jλ1j ¼ 1 are left to be contracted (e).
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M½∞� ¼ x1E½∞�ðr̄Þym̄E½∞�ðτ − r̄Þ; ðC2Þ
where we use propagator E½∞�ðt0Þ defined as a propagator
of 1D semi-infinite cascaded chain with infinitely many
sites on the left. In contrast to the finite chain algorithm,
here we count sites from the right (finite) side of the
chain; thus, x1 denotes the operator x acting on the
rightmost replica in the chain and ym̄ acts on the replica
located m̄ sites away from the right as illustrated in
Fig. 16. We perform the contraction of the infinite side of
the chain again by means of the spectral decomposition.
As for the transient case, the computational cost of
calculating the steady-state p-times correlation function
scales exponentially with p.

APPENDIX D: MULTINODE SETUPS

1. Multinode setups connected unidirectionally

We now provide details on the generalization of the
analysis described in the main text for the case of the
multiple-node networks discussed in the main text. First,
we consider the case of two nodes coupled to a bidirec-
tional waveguide. Note that this setup can be equivalently
interpreted as a network of two nodes (denoted A and B)
coupled to two unidirectional waveguides, where these
waveguides represent the left- and the right-moving pho-
tons of the bidirectional waveguide, respectively. We also
generalize our algorithm to the case of n nodes interacting
with n unidirectional waveguides in setups of the form
given in Fig. 6 for n ¼ 3. In each of these cases, time delays
lead to an essential non-Markovianity due to the possibility
of information to propagating in loops with time delays.
Surprisingly, any multinode problem with commensurate
round-trip times between the nodes mediated by the
unidirectional channel can be mapped to a set of
Markovian 1D cascaded chains; e.g., the two-node problem
maps to the evolution of two 1D cascaded chains, and,
consequently, the three-node setup corresponds to the three
1D cascaded chains.
To start, let us consider the case of the two connected

nodes shown in Fig. 2(b). For this configuration, one can
again build a tensor network representing the total wave
function jΨðtÞi of both nodes and the state of the wave-
guide. Similar to the single-node case, one can obtain
the tensor network for the reduced density matrix of both
nodes by tracing out the bath degrees of freedom
ρsysðtÞ ¼ trHB

fjΨðtÞihΨðtÞjg. The size of this network
along the first dimension is set by 2k, i.e., by the round-
trip time 2τ in units of Δt, while the size along the second
dimension is given by m ¼ ⌈n=k⌉, i.e., total evolution time
tn − t0 in units of the time τ, rounded up. Again, we identify
the transfer operator of the total network. For this network,

we find that there are two relevant transfer operators:
These operators are the propagators describing the evolu-
tion of two 1D cascaded chains. The first chain consists of
replicas of node A on odd sites and replicas of node B on
even sites (ABABAB…), and the second chain has opposite
order (BABABA…). We therefore call the first chain AB
chain and the second chain BA chain. Each chain has m
replicas, where m is defined again through tn ¼ mτ þ r,
with 0 ≤ r ≤ τ [see Fig. 6(c)]. The corresponding propa-
gators for these chains satisfy the following equations
[analogous to Eq. (21)]:

d
ds

E½m�
fABgðsÞ ¼ L½m�

fABgE
½m�
fABgðsÞ; ðD1Þ

d
ds

E½m�
fBAgðsÞ ¼ L½m�

fBAgE
½m�
fBAgðsÞ; ðD2Þ

with the Lindblad superoperators defined as

L½m�
fABg ¼

X
j∈ odd

Lcasc
A;B þ

X
j∈ even

Lcasc
B;A þ Lboundary

fABg ; ðD3Þ

L½m�
fBAg ¼

X
j∈ odd

Lcasc
B;A þ

X
j∈ even

Lcasc
A;B þ Lboundary

fBAg ; ðD4Þ

where the summation goes over odd (even) j from 1 to
m − 1 and Lcasc

A;B (Lcasc
B;A ) describes a cascaded coupling from

replica A to replica B (from B to A):

Lcasc
A;BX ¼ −

i
ℏ
½Hcasc

A;B ; X� þD½RA þ LB�X; ðD5Þ

with the cascaded Hamiltonian

Hcasc
A;B ¼ 1

2
ðHsys;A þHsys;B þ iðR†

ALB − L†
BRAÞÞ

and analogously

Lcasc
B;AX ¼ −

i
ℏ
½Hcasc

B;A ; X� þD½RB þ LA�X; ðD6Þ

with the cascaded Hamiltonian

Hcasc
B;A ¼ 1

2

�
Hsys;B þHsys;A þ iðR†

BLA − L†
ARBÞ

�
:

The expression Eq. (D3) also contains boundary terms
Lboundary
fABg and Lboundary

fBAg acting on the first and the last replica

of each chain, analogous to Eq. (18).
To calculate the reduced density matrix of the nodes A

and B at time tn, we calculate the total propagators for the
two chains, contract them with each other and with double-
shifted periodic boundary conditions, and then apply the
result to the initial density matrix [see Fig. 6(d)]:

ρABsysðtnÞ ¼ P2

h
E½m−1�
fABg ðτ − rÞE½m�

fABgðrÞE½m−1�
fBAg ðτ − rÞE½m�

fBAgðrÞ
i
ρABsysðt0Þ; ðD7Þ
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where we use P2ðXÞ to denote an application of the
double-shifted periodic boundary conditions to the tensor
network X. The cost of the total contraction in Eq. (D7)
is Oðmχ5d6Þ.
Note that one could also calculate one total propagator of

one chain of length mþ 1 (ABABAB…) by first applying
the cascaded Lindblad propagators to the sites 2;…; m until
time r, then propagating only sites 2;…; m − 1 until time τ,
followed by the evolution of sites 1;…; m − 1 for time r,
and finally evolving the sites 1;…; m − 2 for time τ − r
[cf. Fig. 6(d)]. The resulting propagator is again contracted
with the double-shifted periodic boundary conditions and
the initial density matrix at a computational cost of
Oðmχ2d6Þ. Even though this approach is more efficient
for calculating the density matrix at a fixed time tn, it
requires iterating the entire calculation for each different
time of interest. In contrast, the method described above
allows one to compute the propagators for a fixed τ in

parallel and then construct tensor networks for the various
times of interest, tracing out the last replicas if needed
during the process. This discussion applies to the calcu-
lation of the correlation functions described in the main
text: One can evolve the cascaded chain and insert
operators x and y at the right places during the evolution.
The algorithm in the end must be chosen based on the
specific task.
In the case of three nodes A, B, and C connected in a

loop via unidirectional waveguides [see Fig. 6(e)], the
total tensor network for the reduced density matrix has three
types of transfer operators. These operators are pro-
pagators for three cascaded chains consisting of replicas
of the nodes: (ABCABCABC…), (CABCABCAB…), and
(BCABCABCA…), as illustrated in Fig. 6(e). The three
resulting total propagators are contracted with the triple-
shifted periodic boundary conditions andapplied to the initial
system density matrix ρABCðt0Þ as depicted in Fig. 6(f):

ρABCsys ðtnÞ ¼ P3½E½m−1�
fABCgðτ − rÞE½m�

fABCgðrÞE½m−1�
fCABgðτ − rÞE½m�

fCABgðrÞE½m−1�
fBCAgðτ − rÞE½m�

fBCAgðrÞ�ρABCsys ðt0Þ;

where we denote an application of the triple-shifted
periodic boundary conditions to the tensor network X as
P3ðXÞ. The contraction cost is Oðmχ7d8Þ.
The generalization to larger number of the nodes n

ðA1; A2;…; AnÞ in the setup, thus, requires the following
steps. First, one needs to construct n 1D cascaded chains.
The unit cell of each chain is obtained using the cyclic
permutation of the node order ðA1; A2;…; AnÞ. The second
step requires calculating the total propagators for each

chain with two-site superoperators, which are different for
each chain as long as the nodes in the setup are not
identical. This is followed by the contraction of the
resulting n propagators with the periodic boundary con-
ditions shifted by n sites and applying the whole structure
to the initial density matrix of the nodes. One can write a
generalized expression for the system density matrix of n
nodes at time tn as

ρfA1;A2;…;Ang
sys ðtnÞ ¼ Pn½E½m�

fA1;A2;…;Angðτ − r; rÞE½m�
fAn;A1;…;An−1gðτ − r; rÞ…E½m�

fA2;A3;…;A1gðτ − r; rÞ�ρfA1;A2;…;Ang
sys ðt0Þ;

where we use the shorthand notation E½m�ðτ − r; rÞ≡ E½m−1�ðτ − rÞE½m�ðrÞ. While the chain evolution can be performed in
parallel, the cost of the propagators’ contraction scales exponentially with the number of nodes Oðmχ3þ2ðn−1Þd4þ2ðn−1ÞÞ.

2. General multinode setups

In this appendix, we provide a recipe on how our method can be used for generalized setups with coherent feedback
loops. Specifically, multinode setups with nodes coupled to a bidirectional waveguide with unequal distances between the
nodes and, therefore, unequal delay times of the excitation propagation. Below, we discuss two examples that illustrate the
important points of the method generalization: (i) a setup with two atoms and a mirror and (ii) three atoms coupled to a
bidirectional waveguide.
Let us demonstrate how to apply the algorithm to a setup with two driven atoms A and B connected to a bidirectional

waveguide terminated by a mirror. The delay time between nodes A and B and between node B and the mirror is τ ¼ 2x=v,
and the characteristic round-trip phase is ϕ ¼ −ω0τ [see Fig. 17(a)]. The interaction Hamiltonian in the frame rotating with
the laser frequency ω0 and in the interaction picture with respect to the bath Hamiltonian for this setup reads

HintðtÞ ¼ iℏ

 ffiffiffiffiffi
γBR

q
b†ðtþ 2τÞeiϕcBR þ

ffiffiffiffiffi
γBL

q
b†ðtþ τÞeið2ϕþπÞcBL þ

ffiffiffiffiffi
γAR

q
b†ðtþ 3τÞcAR þ

ffiffiffiffiffi
γAL

q
b†ðtÞeið3ϕþπÞcAL − H:c:

�
.

ðD8Þ
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We note here that this setup can be considered as a setup
with atom A connected to feedback loop with a proces-
sing node (atom B) inside (cf. Fig. 1). We build a tensor
network representing the total wave function jΨðtÞi of
both nodes and the state of the waveguide and then
obtain the tensor network for the reduced density matrix
ρsysðtÞ ¼ trHB

fjΨðtÞihΨðtÞjg. The size of this network is
k × 2m, where k is a round-trip time τ in units of Δt and
m ¼ ⌈n=k⌉, i.e., total evolution time tn − t0 in units of the
time τ, rounded up. The transfer operator for this network is
the propagator describing the evolution of a generalized 1D
cascaded chain. The chain consists of replicas of nodes A
and B (ABABAB…) at times f0; τ; 2τ; 3τ;…g resulting
in a total number of sites being 2m [see Fig. 17(a)]. The
corresponding propagator for this chain satisfies the fol-
lowing equations:

d
ds

E½2m�ðsÞ ¼ L½2m�E½2m�ðsÞ; ðD9Þ

with the Lindblad superoperators defined as

L½2m� ¼
X
j∈ odd

Lcasc
j;ð4Þ þ Lboundary; ðD10Þ

where the summation goes over odd j from 1 to 2m − 7 and
Lcasc
j;ð4Þ describes a four-node cascaded interaction [indicated

by the subscript (4)] from replica A at position j through
replicas B at positions jþ 3 and jþ 5 to replica A at
position jþ 6:

Lcasc
j;ð4ÞX ¼ −i½Hcasc

j;ð4Þ; X� þ
X
p>k

D½Rp þ Lk�X; ðD11Þ

with the cascaded Hamiltonian

Hcasc
j;ð4Þ ¼

1

2

�X
k

Hsys;k þ
X
p>k

iðR†
kLp − L†

pRkÞ
�
;

where the summation p, k goes over the set S ¼ fj; jþ 3;
jþ 5; jþ 6g. Boundary terms now include three-node

cascaded interactions A → B → B and B → B → A and
two-node cascaded interactions A → B and B → A:

LbdLX ¼ LbdL
1 X þD½L1�X þ LcascL

2;ð3Þ X þ LcascL
2;ð2Þ X;

LbdRX ¼ LbdR
2m X þD½R2m�X þ LcascR

2m−5;ð3ÞX þ LcascR
2m−3;ð2ÞX;

ðD12Þ
where operators LbdL

1 and LbdR
2m are analogous to Eq. (18).

Cascaded Lindblad operators LcascL
i;ð3Þ and LcascL

i;ð2Þ are analo-

gous to Eq. (D10) with the summation going over sets
fi; iþ 2; iþ 3g and fi; iþ 2g correspondingly and for
LcascR
i;ð3Þ and LcascR

i;ð2Þ with sets fi; iþ 3; iþ 5g and fi; iþ 3g
correspondingly. To calculate the reduced density matrix of
the nodes A and B at time tn, we calculate the total
propagator for the chain, contract it with double-shifted
periodic boundary conditions, and then apply the result to
the initial density matrix [see Figs. 17(b) and 17(c)]:

ρABsysðtnÞ ¼ P2½E½2m−2�ðτ − rÞE½2m�ðrÞ�ρABsysðt0Þ; ðD13Þ
where we use P2ðXÞ to denote an application of the
double-shifted periodic boundary conditions to the tensor
network X. The cost of the total contraction in Eq. (D13)
is Oð2mχ3d6Þ.
The results of the numerical representation of the above

procedure are presented in Fig. 18. Specifically, Fig. 18(a)
shows an area law of entanglement entropy with the
number of round-trip times corresponding to the number
of A or B nodes in the chain m. The dynamics of the nodes
is shown in Fig. 18(b), where we plot the excitation
probability of both atoms as a function time.
We now generalize our method for a setup with three

nodes (A, B, and C) coupled to a waveguide with delay
times τAB ¼ ατ and τBC ¼ βτ, where τ ¼ x=v is a charac-
teristic delay time, and phases ϕAB ¼ −ω0τAB and ϕBC ¼
−ω0τBC acquired by the photons after propagating between
the corresponding nodes [see Fig. 17(d)]. The interaction
Hamiltonian in the frame rotating with the laser frequency
ω0 and in the interaction picture with respect to the bath
Hamiltonian for this setup reads

HintðtÞ ¼ iℏ

 ffiffiffiffiffi
γCR

q
b†ðtþ ½αþ β�τÞeiðϕABþϕBCÞcCR þ

ffiffiffiffiffi
γCL

q
b†ðtÞcCL þ

ffiffiffiffiffi
γBR

q
b†ðtþ ατÞeiϕABCB

R

þ
ffiffiffiffiffi
γBL

q
b†ðtþ βτÞeiϕBCcBL þ

ffiffiffiffiffi
γAR

q
b†ðtÞcAR þ

ffiffiffiffiffi
γAL

q
b†ðtþ ½αþ β�τÞeiðϕABþϕBCÞcAL − H:c.

�
: ðD14Þ

We note here that the characteristic delay time τ can be as
small asΔt, allowing one to work with setups with arbitrary
delay times between the nodes. The tensor network of the
reduced density matrix of the nodes has a transfer operator
equivalent to a propagator of a generalized cascaded chain
shown in Fig. 17(d). This chain consists of 3m replicas of

nodes A, B, and C, wherem ¼ ⌈ðtn − t0Þ=τ⌉. There are two
types of cascaded interactions: between the nodes A →
B → C at positions fi; iþ 3αþ 1; iþ ðαþ βÞ þ 2g with
i ¼ 3ni þ 1; ni ∈ f0; 1; 2; 3;…g and between the nodes
C → B → A at positions fiþ 2; iþ 3β þ 1; iþ 3ðαþ
βÞg [cf. Fig. 17(d)]. As before, we obtain the total
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(a)

(b)

(c)

(f)

(g)

(d)

(e)

FIG. 17. General multinode setups. (a) Two atoms in front of the mirror Eq. (D8) are mapped to a generalized 1D cascaded chain of
systems’ replicas A and B at different times. This cascaded chain has one type of cascaded interaction indicated by the light blue line
going through the replicas fA; B; B; Ag. The interaction occurs between each replicas fA; B; B; Ag in the right order as indicated in the
text [see Eq. (D10)]. (b) The evolution operators WA;B;B;A, WA;B;B, WA;B;B, etc., generated by the Lindblad operators Eqs. (D11) and
(D12) are applied to the initial identity operator of the chain using the TEBDmethod. (c) The propagators obtained through the evolution
are then contracted with the double-shifted periodic boundary conditions and applied to the initial density operator as in Eq. (D13).
(d) Setup with three atoms connected to a bidirectional waveguide with unequal delay times Eq. (D14) is mapped to a generalized 1D
cascaded chain consisting of replicas A, B, and C at different times with two types of cascaded interactions between A, B, C and C, B, A
indicated by blue lines. (e) The propagator is obtained after the MPS evolution of this chain with the evolution operatorsWA;B;C,WC;B;A,
etc., generated by the corresponding cascaded Lindblad operators. (f) To apply a multisite evolution operator, we break it down in
multiple two-site operators and apply them one after another. (g) The propagators in MPS form are then contracted with the triple-shifted
periodic boundary conditions, where we for simplicity depict three tensors corresponding to A, B, and C at the same time period as a
single larger block.
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propagator of the chain for time τ by applying the evolution
operators of the Lindblad master equation, WA;B;C and
WC;B;A as well as boundary terms, to the identity operator
as shown in Fig. 17(e). To obtain the density matrix of the
nodes, we contract the resulting matrix product operator
using triple-shifted periodic boundary conditions and apply
it to the initial density matrix as demonstrated in Figs. 17(g)–
17(k). The cost of this contraction is Oð3mχ3d8Þ.
As discussed above, we consider a setup with α ¼ 2

and β ¼ 3 and calculate the entropy of the total propagator
and the resulting density matrix of three nodes. The results
are presented in Fig. 19.We again observe an area law for the
entanglement entropy as can be seen from Fig. 19(a).
The excitation probability dependence on time is shown
in Fig. 19(b).
During the evolution of the matrix product operator for

both types of setups discussed above, we separate for
simplicity the multisite evolution operator into a number of
two-site operators as shown in Fig. 17(f). Then we apply

SWAP operators to move the two sites of interest close to
each other and perform a step of TEBD algorithm by
applying the two-site operator. After that, another series of
SWAP operators is applied to return to the original order of
the chain. These additional steps in comparison to the
algorithms presented in the main text, of course, increase
the cost of propagator evolution. Specifically, the cost
grows linearly with the number of nodes participating in
cascaded interaction and with the value kmax ¼ τmax=τ,
that is, the maximum delay time in the setup in units of
characteristic time τ.
We note here that the effective dimension of the bosonic

modes associated to each time bin of left- (right-) propa-
gating modes for the multinode setups is dimðHiÞ ¼ 2 as
for the case of the atom in front of the mirror. Again, the
probability to have more than one excitation ne in a single
time bin is proportional to ðΔtÞne . As mentioned before, all
our results are converged in Δt; that is, we choose such Δt
that computational errors of the order of Δt2 and higher are
negligible.

APPENDIX E: RUN-TIME BENCHMARKING

In this appendix, we present a quantitative comparison of
the runtime of the algorithm presented in this paper and the
algorithm proposed in Ref. [41] on the same problem.
Specifically, we compare the computational time required
to reach the state of the driven atom in front of themirror with
a fidelity F ≥ 0.9999 for both methods. This is done by first
calculating the (numerically) the exact solution using the
new method with a large bond dimension (and a rigorous
convergence check); then, for each data point, we calculate
the state of the atom for both methods for some fixed, finite
bond dimension and check the fidelity with the exact
solution. If the fidelity is below the required precision, the
bond dimension is increased until the precision limit is met.
The computational time is measured only for the value of
bond dimension that corresponds to the required fidelity. The
results presented in Fig. 20 show the dependence of these
computational times on the delay time for two different Rabi
frequencies. For the parameters chosen in this figure, one
finds a decrease of the run-time for our new method in
comparison with the method in Ref. [41] of up to 3 orders of
magnitude. In addition, the favorable scalingwith time delay
is clearly visible. Furthermore, we show the dynamics
calculated with the method in Ref. [41] and the method
proposed in our manuscript with the fixed bond dimension
χ ¼ 15 for bothmethods in Fig. 20(c) and compare itwith the
exact solution. One can see that, while the new method
reproduces exact dynamics well even with this small bond
dimension, the method in Ref. [41] struggles to converge.
Moreover, as indicated in the right side of the plot, the
new method requires 2 orders of magnitude less time to
calculate the dynamics presented in the plot than the method
in Ref. [41]. We also note here that, while the method in
Ref. [41] allows one to reach the steady state of the atom for

(a) (b)

FIG. 18. Setup with two driven atoms in front of a mirror
[Fig. 17(a)]. (a) Dependence of the bipartite entropy S on the
length of the chain m exhibiting an area law. Note that for each
sitemwe indeed have two atoms A and B at timemΔτ (b) ρAee and
ρBee of the two atoms A and B as a function of t=τ. Atom A is
initially in the ground state and atom B in the excited. For both
plots, the parameters are γAL ¼ γAR ¼ γBL ¼ γBR ¼ Γ=2, ΩA ¼ 5Γ,
ΩB ¼ 4Γ, ϕ ¼ 0, Γτ ¼ 0.2, and χ ¼ 120.

(a) (b)

FIG. 19. Setup with three driven atoms coupled to a bidirec-
tional waveguide [Fig. 17(d)]. (a) Dependence of the bipartite
entropy S on the length of the chain m exhibiting an area law.
Note that for each site mwe have three atoms A, B, and C at time
mΔτ (b) ρAee, ρBee, and ρCee as a function of t=τ. Atom A is initially
in the excited state, atom C in the ground state, and atom B in a
symmetric superposition. For both plots, the parameters are
γA ¼ γB ¼ γC ¼ Γ=2, ΩA ¼ 5Γ, ΩB ¼ 6Γ, ΩB ¼ 4Γ, ϕAB ¼
ϕBC ¼ 0, Γτ ¼ 0.1, ΓτAB ¼ 0.2, ΓτBC ¼ 0.3, and χ ¼ 120.
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some finite τ, it can be done only indirectly through a long-
time evolution (see also Table I). Contrary to that, the new
method can target the steady state directly and for any delay
time, which to our knowledge was not possible before.

1. Approach based on Laplace transform

Finally, we consider an analytical approach based on the
Laplace transform that is often used in Markovian systems
to study the steady state and discuss the issues that arise
when this is applied to the current problems. First, we
discuss this method in the absence of a driving field, where
it works, and then highlight the difference and difficulties
that are encountered when the driving field is included. For
this, we first explicitly write down the dynamical equation
for the system operator cðtÞ, whose evolution is governed
by the Hamiltonian in Eq. (6) with zero driving:

ċðtÞ ¼ iΔcðtÞ − γcðtÞ þ γe−iϕcðt − τÞ þ ffiffiffi
γ

p
σzðtÞbðtþ τÞ

þ ffiffiffi
γ

p
e−iϕσzðtÞbðtÞ; ðE1Þ

where, for simplicity, we set cRðtÞ ¼ cLðtÞ ¼ cðtÞ and
γR ¼ γL ¼ γ. After performing Laplace transform of the
equation above and applying it to the initial state of the
setup at time t ¼ 0, we obtain

c̃ðsÞjΨð0Þi ¼ −
γe−iϕ−τsc̃ðsÞjΨð0Þi

sþ γ − iΔ
þ cð0−ÞjΨð0Þi: ðE2Þ

This equation can be integrated analytically, giving us

cðtÞjΨð0Þi ¼ cð0ÞjΨð0Þie−ðγ−iΔÞt

×
Xbt=τc
p¼0

1

p!

h
−γe−iϕþðγ−iΔÞτðt − pτÞ

i
p
: ðE3Þ

Equation (E2) is easy to analyze using the final-value
theorem to find the steady state, that is,

lim
s→0

sc̃ðsÞjΨð0Þi ¼ lim
s→0

scð0ÞjΨð0Þi
s − iΔþ γð1þ e−iϕ−τsÞ ;

lim
s→0

sc̃ðsÞjΨð0Þi →
� cð0ÞjΨð0Þi

1þγτ ; if iΔ − γð1þ e−iϕÞ ¼ 0;

0; otherwise:

ðE4Þ

When the driving is switched on, Eq. (E1) has to be
generalized as

ċðtÞ ¼ iΔcðtÞ þ iΩ
2
σzðtÞ − γcðtÞ þ γe−iϕσzðtÞcðt − τÞ

þ ffiffiffi
γ

p
σzðtÞbðtþ τÞ þ ffiffiffi

γ
p

e−iϕσzðtÞbðtÞ: ðE5Þ

In the same fashion, one obtains

σ̇zðtÞ ¼ iΩ½c†ðtÞ− cðtÞ�− 4γc†ðtÞcðtÞ
− 2

ffiffiffi
γ

p
c†ðtÞ½ ffiffiffi

γ
p

e−iϕcðt− τÞþbðtþ τÞþ e−iϕbðtÞ�
− 2½γeiϕc†ðt− τÞþ ffiffiffi

γ
p

b†ðtþ τÞþ ffiffiffi
γ

p
eiϕb†ðtÞ�cðtÞ:

ðE6Þ

This is a nonlinear system of equations for the system
operators. After applying the first equation above to the
initial wave function at time t ¼ 0 and performing Laplace
transform, we arrive at

½c̃ðsÞ − cð0−Þ�jΨð0Þi ¼ 1

sþ γ − iΔ


i
Ω
2
σ̃zðsÞjΨð0Þi þ

γe−iϕ
2πi

lim
T→∞

Z
aþiT

a−iT
σ̃zðs0Þc̃ðs − s0ÞjΨð0Þie−τðs−s0Þds0

�
; ðE7Þ

(a) (b) (c)

FIG. 20. Computational time dependence on delay time for the method in Ref. [41] (old) and the method of our manuscript (new).
Driving strengths are (a) Ω ¼ 0.2Γ, (b) Ω ¼ Γ, for both plots ϕ ¼ π, Δ=Γ ¼ 0, and the Trotter step is ΓΔt ¼ 0.005. (c) Excited state
probability dynamics calculated using the method in Ref. [41] (old) and our method (new) with the computational time indicated on the
right side. The bond dimension χ ¼ 15 for both methods.
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where the integral is taken along the line ReðsÞ ¼ a chosen
in such way that it lies within the region of convergence
of c̃ðsÞ. In its general form, this equation is nonlinear and
has an integral that requires a knowledge of σ̃zðs0Þc̃ðs −
s0ÞjΨð0Þi for various s0. To calculate the steady-state
excitation probability, one could again use the final-value
theorem and consider the limit s → 0. Unfortunately, even
in this limit the aforementioned integral is not simplified,
and to the best of our knowledge the steady state can, thus,
not be obtained from this expression.
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