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In solution,DNA, the “most importantmolecule of life,” is a highly chargedmacromolecule that bears a unit
of negative charge on each phosphate of its sugar-phosphate backbone. Although partially compensated by
counterions (cations of the solution) adsorbed at or condensed near it, DNA still produces a substantial electric
field in its vicinity, which is screened by buffer electrolytes at longer distances from the DNA. This electric
field is experienced by any charged or dipolar species approaching and interacting with theDNA. So far, such
a field has been explored predominantly within the scope of a primitive model of the electrolytic solution,
not considering more complicated structural effects of the water solvent. In this paper, we investigate the
distribution of electric field around DNA using linear response nonlocal electrostatic theory, applied here for
helix-specific charge distributions, and compare the predictions of such a theory with specially performed,
fully atomistic, large-scale, molecular dynamics simulations. Both approaches are applied to unravel the role
of the structure ofwater at close distances to andwithin the grooves of a DNAmolecule in the formation of the
electric field. As predicted by the theory and reported by the simulations, the main finding of this study is that
oscillations in the electrostatic potential distribution are present around DNA, caused by the overscreening
effect of structuredwater. Surprisingly, electrolyte ions at physiological concentrations do not strongly disrupt
these oscillations and are rather distributed according to these oscillating patterns, indicating that water
structural effects dominate the short-range electrostatics.We also show that (i) structuredwater adsorbed in the
grooves of DNA leads to a positive electrostatic potential core relative to the bulk, (ii) the Debye length some
10 Å away from the DNA surface is reduced, effectively renormalized by the helical pitch of the DNA
molecule, and (iii) Lorentzian contributions to the nonlocal dielectric function of water, effectively reducing
the dielectric constant close to the DNA surface, enhance the overall electric field. The impressive agreement
between the atomistic simulations and the developed theory substantiates the use of nonlocal electrostatics
when considering solvent effects in molecular processes in biology.

DOI: 10.1103/PhysRevX.14.031042 Subject Areas: Biological Physics, Chemical Physics,
Soft Matter

I. INTRODUCTION

A multitude of species interacting with DNA in solution
experience its electric field. Indeed, this so-called “most
important molecule” is an “electrostatic bomb.” Not
actually an “acid” but usually a salt, DNA dissociates in
aqueous solution, releasing its cations to the solution and
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retaining a unit of negative elementary charge on each
phosphate of its sugar-phosphate backbone, resulting in
two charges per 3.4 Å vertical rise (or per base pair) of the
double helix. The double helices of these negative charges
are screened by (i) the Debye cloud of buffer electrolyte,
(ii) the DNA’s own, released counterions (which are in
the minority in an electrolyte solution of physiological
concentration around 0.154 M), and (iii) where applicable,
by counterions (cations) of an added salt that specifically
adsorb onto the DNA (see Fig. 1) or those that are con-
densed just in the narrow layer around DNA [1,2]. In such
an environment, the “bomb” is neutralized, but the electric
field, although exponentially decaying into the solution

bulk, is still substantial in the vicinity of DNA within the
range of a few nanometers. This field will act on any
charged or polar species, and it thus plays an important role
in DNA packing, interaction with proteins, and many other
aspects of the vast genetic machinery.
Studies of the electric field of DNA have a long history,

starting shortly after the discovery of DNA structure and
function. The first popular model was the so-called poly-
electrolyte model of DNA (for a review, see Refs. [1,2]). In
this model, DNAwas considered as a charged cylinder with
characteristic DNA radius (approximately 1 nm) and mean
surface charge density from the two phosphate strands
(σ̄ ≈ 16.3 μC cm−2), with the response of the surrounding
ions to the presence of such a cylinder considered within
approximations of various levels of complexity [3]. Such
models helped to elucidate some basic effects in DNA
biophysics [4] but were insufficient to unravel effects
directly related to the helical structure and symmetry
of DNA.
An attempt to understand the effects of the double-helical

structure on the electric field of a DNA molecule was first
made in 1978 [5], but systematic studies of such effects began
in the late 1990s. This structure was initially studied in the
context of DNA-DNA interactions [6], DNA in dense
aggregates [7] and liquid crystals [8], DNA fibers (with
reconsideration of structural information that can be
extracted from the classical x-ray fiber diffraction patterns)
[9], DNA supercoiling [10], and recognition of homologous
genes [11] (for a detailed review, see Ref. [12]). Theseworks
have put weight on effects predominantly determined by the
helical symmetry of DNA [13] (or violations and distortions
of that symmetry [14]). Still, to a point, theseworks all rest on
the implicit description of the solvent, describing its dielec-
tric response by a macroscopic dielectric constant ε, as well
as considering the ionic response in a simplified way based
on the Debye-Bjerrum approximation [12]. A series of
publications were devoted to accounting for the nonlinear
response of the ionic subsystem, based on concepts of
Wigner-crystal formation [15] and strong ionic correlations
[3]; however, they did not consider the helicity of the DNA
charge distribution, and again, neither went beyond a macro-
scopic description of the dielectric response of the surround-
ing water.
However, it has been known for several decades that

macroscopic dielectric response is insufficient in the
description of electrostatics in water. For example, let us
consider a simple single ion: Submerging this ion in water
will create a solvation sphere of bound solvent molecules,
putatively resulting in an effective, reduced dielectric
screening close to the ion. As polarization fluctuations
in polar media are correlated in space (in the case of water,
by its hydrogen bond network), this effect will persist over
a certain characteristic length intrinsic to the solvent, and
the effective dielectric constant will return to its bulk value
only far away from the ion, at distances longer than this
characteristic length. Given that this dielectric constant is

FIG. 1. Comparison between theory and simulation models for
a DNA molecule. (a) Illustration of DNA surface charge pattern,
consisting of negatively charged helical lines of phosphates (solid
lines) and positively charged counterions adsorbed in the major
(dot-dashed lines) and minor (dashed lines) grooves. Such an
ideal helical surface charge pattern closely corresponds to poly-
AT DNA, which has helical pitch H ≈ 34 Å. On the right of
diagram (a), we show a cross section of the DNA molecule at
z ¼ 0, displaying the polar coordinate system ðR;ϕÞ we use in
this work. Phosphates (red circles) sit at a radius of aDNA ≈ 10 Å,
where ϕs is the azimuthal width of the minor groove. Specifically
adsorbed counterions (blue circles) sit within the DNA grooves at
a radius of aCC ≈ 5–7 Å. Not shown in the figure are the helical
lines of structured water (the “water spine”), which also sit in the
grooves at a radius of aW ≈ 4–5 Å. (b) Illustration of the
simulation system, consisting of a 42 base pair DNA (poly-AT)
submerged in solvent (semitransparent surface). Each strand of
the duplex is covalently linked to itself across the periodic
boundary, making the DNA effectively infinite. A cylindrical
volume of radius 3 nm, centered around the central base pair of
the duplex, is taken as a reference. The inset defines a coordinate
system perpendicular to the DNA’s helical axis.
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effectively distance dependent, it is natural to refer to the
language of nonlocal electrostatics, wherewater polarization
correlations are conveniently described by thewave-number-
dependent dielectric function εðkÞ; in the linear response
approximation, such an approach provides a framework
within which we can analyze the effect of thewater structure
and dielectric response to any charged object.
Simple models of the dielectric response of water inter-

polate smoothly between macroscopic (ε ≈ 80) and high-
frequency (ε� ≈ 3–5) dielectric constants, which leads to
additional exponentially decaying contributions associated
with the water structure in the electrostatic potential distri-
bution near a charged or polar species embedded in water. As
such, these structural contributions of water will appear in the
potential distribution near an electrode, in hydration forces
between charged or polarized surfaces, etc. Exponentially
varying “structural” contributions to the forces between
objects at the nanoscale have been measured in many
biologically relevant systems from lipid membranes to
DNA and proteins, as well as between surfaces relevant in
electrochemistry.
However, water is more complex than this. Detailed

analysis of its dielectric response shows so-called “over-
screening” effects in addition to these exponential correla-
tions. This effect means that, in the first molecular layer
around a charged species, the amount of bound countercharge
is larger than that on the species; that excess is overcompen-
sated by an opposite-sign charge in the next layer, and it
continues going until the macroscopic limit of screening is
reached.The effect of overscreeningmanifests as a peak in the
wave-number-dependent Fourier component of the response
function, χðkÞ ¼ ε−1� − εðkÞ−1, which implies that there
exists a region where the dielectric function εðkÞ can be
negative, thus leading to oscillations in the electrostatic
potential around the species or in hydration forces. Such
oscillations have been observed by Israelachvili and Pashley
in 1983 [16] in their force measurements with surface force
apparatus (SFA) between atomically flat mica surfaces. Such
oscillations have also been seen even in the earliest computer
simulations [17–21],whichbegs the followingquestion:Why
were these oscillations not seen previously in force experi-
ments between lipid membranes or even differently prepared
mica surfaces? In their paper, Israelachvili and Pashley
alluded to the roughness of the surfaces in question; structural
and thermal fluctuations can disrupt the water structure,
leading to oscillation dysphasia. Such reasoning is logical;
recently, this conjecture was substantiated by a systematic
theoretical analysis [22].
These oscillations are currently receiving significant

attention and are being measured more and more frequently
in a number of sophisticated frequency modulated atomic
force microscopy (FM-AFM) experiments where it is
possible to bypass the effect of roughness under the so-
called “solvent-tip approximation” [23,24]. However, the
exact consequence and relevance of such oscillating features
on phenomena such as ion adsorption and double-layer

structure is still under debate [25]. For the case of DNA, its
large relative size compared to the solvent molecules in
combination with its double-helical structure and thermal
fluctuations would lead one to naively believe that all these
oscillations would be smeared out. However, recent FM-
AFMexperimentsmeasuring the hydration structure ofDNA
have shown that we indeed see signatures of oscillations in
the force patterns [26]. Such an observation is consistentwith
the idea of a “DNAwater spine”: a stabilizing chiral super-
structure that has also been experimentallymeasured in x-ray
diffraction experiments [27]. Hence, when considering the
complex environment surrounding a single DNA molecule,
we should generally resort to amore sophisticatedmodel that
can incorporate these oscillating features.
More recently, the all-atom molecular dynamics (MD)

simulationmethod has become a ubiquitous tool for accurate
characterization of biomolecular systems [28]. The applica-
tion of this method to the study of DNA systems has been
challenging because the high charge of the DNA molecules
combined with physiological salt concentrations requires
larger systems and long simulation times to fully equilibrate
the ion atmosphere. Nevertheless, early work has shown that
a fully atomistic MD model can reproduce DNA electro-
statics inferred from continuum simulations andDNA super-
coilingmeasurements [29]. Soon after, however, the standard
parametrization of ion–DNA interactions was found to be
inadequate to reproduce experimentally measured DNA–
DNA forces [30]. The force field model was then refined by
introducing surgical corrections to cation–DNA phosphate
interactions, producing amolecular force fieldmodel capable
of quantitative reproduction of the DNA array data [31,32]
and competitive ion binding experiments [33,34]. Themodel
was then used to predict the effect of DNA methylation on
DNA–DNA forces [35], suggesting a physical mechanism
for guiding DNA condensation into microcompartments
according to the DNA sequence [36]. Nonetheless, simu-
lation studies of DNA interactions [37,38] and DNA assem-
blies [39,40] continue to be of interest.
With these computational advances in mind, the follow-

ing questions remain: How much will things change when
we abandon the previously established macroscopic models
of DNA electrostatics and try to account for the water
structure around DNA?What effect does the water structure
have on the distribution of ions around DNA, and what
does this mean for the “fine structure” of the electric field
created by a DNA molecule in solution? Is a theoretical
approach to this problem unrealistic, and are these results
accessible only through all-atom MD simulations?
This article is a first attempt to answer some of these

questions. We will incorporate a dielectric function inspired
by a field-theoretical account of the water structure into the
dielectric response of the electrolyte to the helical charge
distribution representingDNA.While the dielectric response
near a charge or charged surface can be represented as a
local electrostatic result with a distance-dependent dielectric
constant, this effective dielectric function strictly cannot be
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reused between different charge configurations, as has been
attempted in the past [41,42]. Thus, the nonlocal electrostatic
approach, which in the linear response formalism is more
general, is employed here [43]. Calculating the electrostatic
potential, electric field, and charge density, we will analyze
results both in electrolyte solution and in a hypothetical “pure
water” case to understand the nature of the electrostatics of
the system. After those tasks are achieved, we will perform
fully atomistic molecular dynamics simulations of DNA,
water, and electrolyte ions—an approach that, in principle,
has its own extensive history [44,45]—and compare the
results with those of the analytical theory.
We can conclude that the results of these two approaches

appear in harmony with each other, which is especially
important in the absence of direct experimental determi-
nation of the distribution of electric field around DNA.
Specifically, the theoretical approach to the description of
the dielectric response of the water solvent is based on (and
limited by) linear nonlocal electrostatics [43,46]; thus, the
importance of the verification of its predictions by fully
atomistic computer simulations is obvious.
The structure of this article is as follows.Before presenting

the analytical theory for the calculation of electric field about
DNA,we first provide an “elevator pitch” of the principles of
nonlocal electrostatics, illustrating and discussing its pre-
dictions for species much simpler than DNA. We then
proceed to the basics of the analytical theory of the electric
field of DNA in solution and present its results and
predictions. Next, we describe the setup and parameters of
the simulations performed in this study. Then, having
covered the foundations of both the theoretical and computa-
tional methods, we present the results of the simulations and
compare them to the predictions of the theory, discussing the
consequences and findings of this in-depth study into the
electrostatics of this most important molecule.

II. NONLOCAL ELECTROSTATICS:
A BIRD’S-EYE VIEW

In this work, we use the language of nonlocal electro-
statics to understand the effect of structured water sur-
rounding a charged object. To give the reader more context
as to the applicability and validity of this generalization of
classical electrostatics, we first provide a brief review of the
main concepts of the approach below, applying it to one of
the simplest models of an ion, the Born sphere. We use this
method to show the degree of complexity required when
more complicated features, such as oscillations in the water
structure, are considered. Note that Gaussian units are used
throughout the article in all mathematical formulas.

A. Basic equations of nonlocal electrostatics

When we consider spatially correlated media, the dis-
placement fieldD and polarization density field P at a point
r are not simply proportional to the electric field E as in

the constitutive relations of classical electrostatics, i.e.,
DðrÞ ¼ εEðrÞ and PðrÞ ¼ χEðrÞ, where ε and χ are,
respectively, the dielectric constant and dielectric suscep-
tibility of the medium. Generally, DðrÞ and PðrÞ must
depend on the electric field in the surrounding space of that
point because there are spatial correlations in the system;
in other words, the orientation of one dipole in an electric
field in space depends on how its surrounding dipoles are
oriented; i.e., it depends on the value of the electric field in
the volume around the point r extending to the range of
spatial correlation of polarization fluctuations. Hence, the
central idea of nonlocal electrostatics is the generalization
of these constitutive relations of classical electrostatics into
the nonlocal form:

DαðrÞ ¼
X
β

Z
dr0εαβðr − r0ÞEαβðr0Þ; ð1Þ

where the subscripts denoteCartesian components,α; β ¼ x,
y, z. The above-mentioned correlations manifest themselves
in the kernel of the relation, εαβðr − r0Þ, the so-called non-
local dielectric tensor. In the limit of macroscopic electro-
statics, εαβðr−r0Þ¼ εδαβδðr−r0Þ, where δαβ is theKronecker
delta, and δðr − r0Þ is the Dirac delta function (such a form
reduces this general nonlocal relation to the local expression).
In homogeneous and isotropic media, it is convenient to
instead consider the Fourier transform of this tensor, εαβðkÞ,
or, more precisely, its longitudinal component:

εjjðkÞ ¼
X
αβ

kαkβ
k2

εαβðkÞ; ð2Þ

where k ¼ jkj, which we will express as εðkÞ below for
brevity.
The potential of the field produced by an arbitrary charge

distribution in a uniform medium is determined by Gauss’
law, ∇ ·D ¼ 4πρextðrÞ. After the substitution of Eq. (1)
with EðrÞ ¼ −∇φðrÞ, one hasX

αβ

∂

∂rα

Z
dr0εαβðr − r0Þ ∂

∂rβ
φðr0Þ ¼ −4πρextðrÞ: ð3Þ

We can easily resolve this equation with respect to the
potential φ. With the following definitions of the forward
and inverse Fourier transforms of any function fðrÞ,

f̃ðkÞ ¼
Z

drfðrÞe−ik·r; fðrÞ ¼ 1

ð2πÞ3
Z

dkf̃ðkÞeik·r

ð4Þ
as well as Eq. (2), we obtain an expression for the potential
produced by a rigid distribution of external charges
immersed in a nonlocal solvent,

φ̃ðkÞ ¼ 4π

k2εðkÞ ρ̃extðkÞ: ð5Þ
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From this expression, the first step we need is to deter-
mine the form of εðkÞ for the solvent. In the past, the so
called “Lorentzian” form of the dielectric function that
interpolates between the limiting behavior at small and large
k was widely used. Such an expression for εðkÞ corresponds
to purely exponentially decaying correlations in the system,
allowing one to rationalize different experimental observa-
tions in a number of electrochemical systems [43,46].
However, this “Lorentzian model” fails to capture the full
complexity of the system; it does not describe the over-
screening mode in the dielectric response functions ubiqui-
tous to polar liquids, where εðkÞ < 0. We can write a general
expression for the dielectric function as follows:

εðkÞ ¼ 1
1
ε�
− ð 1ε� − 1

εÞF̃ðkÞ
; ð6Þ

where ε� ≈ 3–5 is the short-range dielectric constant. Within
the Lorentzian model, F̃ðkÞ ¼ 1=ð1þ Λ2k2Þ, whereΛ is the
correlation length of the polarization fluctuations in the
liquid. This model does not consider finer effects in the k
spectrum, leading to overscreening. Taking inspiration
from a dielectric function derived from an extended phe-
nomenological Landau-Ginzburg expansion in the polariza-
tion density of water (see Ref. [22] for details), we use the
following expression, first proposed in Ref. [47]:

F̃ðkÞ ¼ γ

1þ Λ2
1k

2

þ ð1 − γÞð1þ Λ2
2Q

2Þ2
(1þ ðkΛ2 −QΛ2Þ2)(1þ ðkΛ2 þQΛ2Þ2)

: ð7Þ

Such a form for the dielectric function accounts for a number
of fine-structure effects in water. This case is particularly
clear if we examine the poles of Eq. (7). There are six roots
of the denominators, two of which are imaginary, located
at k ¼ �i=Λ1, and the rest are complex, located at
k ¼ �Q� i=Λ2; here, Q, Λ1, and Λ2 are related to the
different correlation lengths in the system, and we take their
values from fits to a simulated bulk water dielectric response
function [22,48]. The two imaginary poles describe expo-
nential (also known as Lorentzian) correlations, with a
characteristic decay length Λ1≈3.67Å. The complex poles
describe decaying oscillating correlations, with a character-
istic decay length Λ2 ≈ 1.77 Å and oscillation period Λo ¼
2π=Q ≈ 2.13 Å. The partitioning coefficient γ determines
the relative strength of these contributions to the overall
dielectric response. Here, we have chosen parameters such
that εðkÞ reproduces the response function for TIP3P water,
the model used in the following DNA simulations (see
Sec. V). It is important to note this choice when comparing
the results of the theory against simulations performed with
such rigid bond models that neglect internal degrees of
freedom of the water molecule, such as electronic polar-
izability and bond vibrations. However, by accounting for

partially charged hydrogen and oxygen atoms in the water
molecule, an approximate value can be calculated for ε�. For
TIP3P water, it can be estimated that ε� ≈ 5.75. However,
when more detailed models of the solvent are used in
simulation, we must consider more carefully the value of
this ε�, as well as include the varying spatial dispersion of
these internal degrees of freedom.

B. Solvent response to the electric field of simple ions

Rather than diving headfirst into the more complicated
case of DNA, we will begin by studying a single ion. The
simplest model one can adopt for this purpose is the Born
sphere (BS) model, which has been widely used in many
electrostatic calculations in the past. Here, the charge of the
ion is localized on a sphere of radius a, such that

ρBSðrÞ ¼
Ze
4πa2

δðjrj − aÞ; ð8Þ

where Z is the valency of the ion, and e is the elementary
charge. Such a model is quite crude; simple arguments from
quantum mechanics tell us that a hard sphere of charge is a
fairly poor model of an ion. First, given the presence of
directional orbitals surrounding the ion, the charge distri-
bution is generally not spherically symmetric. Second,
electrons are not localized on an infinitely thin sphere
but rather can be thought of as “smeared” along the radial
direction. We therefore consider the smeared Born sphere
(SBS) model introduced in Ref. [48]. This model is one of
the simplest modifications of the Born model, neglecting
anisotropy in the charge distribution. The charge distribu-
tion of such a sphere is given by

ρSBSðrÞ ¼
ZeNSBS

4π
e−jjrj−aj=η: ð9Þ

Here, a is the position of maximum charge density
(effective ion radius), and η is the smearing parameter.
We determine the normalization factor NSBS from the
condition that

R
V ρðrÞdr ¼ q, yielding

NSBS ¼
1

2η(a2 þ η2ð2 − e−a=ηÞ) : ð10Þ

The classical Born model is a limiting case of this smeared
model, as the smearing parameter η → 0. The Fourier
transforms of these charge distribution models are given by

ρ̃BSðkÞ ¼ Ze
sinðkaÞ
ka

; ð11Þ

ρ̃SBSðkÞ¼2ZeNSBS

�
ηasinðkaÞ
kð1þη2k2Þþ

η3(2cosðkaÞ−e−a=η)
ð1þη2k2Þ2

�
;

ð12Þ

where we clearly see that Eq. (13) reduces to Eq. (12) in the
case where η → 0.
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1. Electrostatic potential

To calculate the electrostatic potential around a spheri-
cally symmetric ion, we can simply take the spherical 3D
inverse Fourier transform of Eq. (5), yielding the nonlocal
electrostatic formulation,

φðrÞ ¼ 2Ze
π

Z
∞

0

dk
εðkÞ

sinðkrÞ
kr

ρ̃extðkÞ: ð13Þ

From this formula, we can also define the screening
function SðrÞ ¼ εrφðrÞ=Ze, which yields the deviation
from Coulomb’s law for the electrostatic potential.
Limitations of this equation are as follows: (i) linear

response of the dielectric medium to the electric charge and
(ii) neglect of excluded volume of the charged object itself
(the so-called “embedded charge approximation”). These
limitations were both analyzed in Ref. [49], where it was
shown that, very close (within one molecular diameter) to

the ion, both effects lead to substantial differences in the
distribution of electrostatic potential. Hence, we must
acknowledge that the results we obtain through this non-
local formalism within the range of one molecular diameter
(here, about 2.5 Å for water) should be considered with
caution. As can be seen in Figs. 2(d) and 2(e), these
limitations manifest as a possible artefact, where we see
inversion in the sign of the potential and screening factor
very close to the ion surface.

2. Free enthalpy of solvation

The free enthalpy of solvation, which we term here the
hydration energy, is generally given as the difference
between the electrostatic energy in a vacuum and in the
solvent:

W ¼ 1

2

Z
V
dr½φ0ðrÞ − φðrÞ�ρextðrÞ: ð14Þ

(a)

(c) (e)

(b) (d)

FIG. 2. Nonlocal electrostatics results for a smeared Born sphere with a hybrid dielectric function parametrized to TIP3P and unit
elementary charge, i.e., Z ¼ 1. (a) Model charge distributions for a ¼ 1 Å and η ¼ 0.4 Å. The vertical dotted blue line represents the BS
model, and the solid black line represents the SBS model. (b) Hybrid model for the dielectric function of water, defined by Eqs. (6)
and (7), parametrized for TIP3P water, with Λ1 ¼ 3.67 Å, Λ2 ¼ 1.77 Å, Λo ¼ 2π=Q ¼ 2.13 Å, γ ¼ 0.05, and ε� ¼ 1. At k ¼ 0,
εðk ¼ 0Þ ¼ ε ¼ 94 for TIP3P water, as shown by the horizontal dotted line. The inset shows a comparison between the hybrid and
Lorentzian models in the small-k region. Panels (c)–(e) all show quantities calculated using the model of εðkÞ. (c) Theoretical
calculations against experimental measurements for hydration energy against ion radius. Experimental data for the hydration energy of
the presented ions were taken from Ref. [50], with their Gourary-Adrian radii [51,52]. We clearly see that the classical Born formula and
the hard BS model overestimate the hydration energy significantly. However, when smeared, the theoretical predictions match the
experiment almost exactly. (d),(e) Screening function and electrostatic potential distribution, respectively, and how they vary with the
smearing parameter η. The inset of panel (e) shows convergence with the classical Coulomb law at distances larger than around 20 Å,
where the effect of polarization correlations disappears.
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Using Eq. (13) above for the electrostatic potential, we
obtain [43]

WðaÞ ¼ 1

π

Z
∞

0

dkρ̃extðk; aÞ2
�
1 −

1

εðkÞ
�
: ð15Þ

It is important to note that such expressions for the hydration
energy assume that the solvent penetrates inside the charge
distribution (also known as the embedded charge distribution
approximation [43,48]); such an assumption works reason-
ably well as an interpolation: When the ion radius is small
and nonlocal effects are the largest, the amount of solvent
“within the ion” is negligible, whereas for larger ions, the
nonlocal effect diminishes and the assumption that the
solvent sits inside the ion bears no importance, as in
the classical Born formula. Note that, in the limit where
εðkÞ ¼ ε ¼ const and ρ̃ðk; aÞ → ρ̃BSðkÞ, Eq. (15) reduces to
the classical Born formula:

WðaÞ ¼ Z2e2

2a

�
1 −

1

ε

�
: ð16Þ

Plotting the hydration energy against ion size in Fig. 2(c), we
see that for large ions, the nonlocal expression for the Born
sphere approaches the classical expression asymptotically. It
is well known that the classical Born formula overestimates
the hydration energy for ions [Fig. 2(c)] because of the
approximation that εðkÞ≡ ε in all space, including in the
vicinity of the ion, not accounting for nonlocal effects.When
we calculate this hydration energy for a Born sphere in a
nonlocal medium within the Lorentzian approximation,
the value of the hydration energy successfully reduces to
experimental values [43]. However, whenwe try to usemore
sophisticated models that account for overscreening, the
overestimation worsens [Fig. 2(c)]. This result was shown to
be an artefact of theBSmodel [48]. Calculating the hydration
energy for the more realistic SBS model allows us to match
the experimental results much more closely by simply
smearing the charge slightly [48], where we have set
η ¼ 0.4 Å for all ions. Of course, each ion will have its
own characteristic η, so it is not accurate to simply apply a
constant value for all ionic radii. However, this example
just shows the absolute importance of introducing smearing
in the charge distribution when the dielectric function
accounts for overscreening oscillations.

C. Interpolation approximation for electrolytes

Recently, a phenomenological model for the dielectric
function of pure water was proposed [22]; however, the
approach to include electrolyte ions in that work was only
valid for small concentrations so as to not violate the
Dolgov-Kirzhnits-Maksimov (DKM) constraint [53] on the
full electrolyte dielectric function, εcðkÞ. This constraint
means that εcðkÞ cannot enter the regime of 0 < εcðkÞ ≤ 1
at any concentration of electrolytes. However, within the

following approximation first used in Ref. [47], we can
extend the dielectric function to account for both the
solvent molecules and the ions present without worry
about violating this DKM constraint.
Let us remind ourselves of the limiting behavior of the

dielectric function; in the long-wavelength limit (small k),
we recover macroscopic behavior, i.e., εðkÞ → ε, whereas
the short-wavelength limit (large k) probes the short-range
correlations. For example, when we consider pure water,
the wave numbers k ∼ 2π=d, where d is the diameter of the
water molecule, characterize the molecular packing effects
in the solvent. This is the origin of the oscillation period
Λoð¼ dÞ, obtained from the roots of εðkÞ. For much larger
k, εðkÞ will approach the short-range dielectric constant
due to the electronic or infrared polarizability of the
molecules, ε�.
The analysis of the linear Poisson-Boltzmann equation

for a binary monovalent solution yields the dielectric
response function of ionic solutions in the long-wavelength
limit (small k):

εcðkÞ ¼ ε

�
1þ κ2

k2

�
; ð17Þ

where κ−1 ¼ λD is the Debye screening length. The diver-
gence at small wave numbers corresponds to the screening of
the potential at distances larger than the Debye length. At
smaller distances, the screening effect is negligible, and the
dielectric response is only influenced by the water. This case
will remain true even if we consider a more complicated
expression for the water dielectric response, rather than ε.
Hence, we can write a simple interpolated formula for the
dielectric response by replacing ε with the full εðkÞ:

εcðkÞ ¼ εðkÞ
�
1þ κ2

k2

�
; ð18Þ

where εðkÞ is the pure water dielectric function that we can
approximate by, e.g., Eqs. (6) and (7). Checking the limiting
behavior of the expression, for long wavelengths, εðkÞ → ε,
and we recover Eq. (17). In the short-wavelength limit, the
ionic contribution is neglected, andwe recover the purewater
response. By design, this interpolated formula is expected to
work well if there is a separation of length scales: The Debye
length is larger than the characteristic correlation lengths in
the solvent and definitely much larger than the size of the
solvent molecules. In this paper, we use this interpolated
formula for the electrolyte dielectric function in the Poisson
equation to solve for the potential around a DNA molecule.
Of course, writing a general dielectric function coupling

the solvent to the ionic response is not an easy task. The
approach outlined above, in the simplest way, is equivalent
to replacing the inverse Debye length κ with some wave-
number-dependent κ̃ðkÞ, a sophistication that has received a
lot of attention recently in attempt to combine the dielectric
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response of the solvent with the electrolyte ions [54–57].
However, in these works, the method by which we obtain
κ̃ðkÞ is not straightforward, and it does not result in a simple
formula. Hence, we use Eq. (18) here as a first approxi-
mation, keeping in mind its limitations.
In view of a number of the approximations used, such as

the one inherent to Eq. (18), as well as the model for the
dielectric function of water (although fitted to independent
molecular dynamics simulations), we will systematically
compare the predictions of the theoretical results with
atomistic molecular dynamics simulations, which is the
cornerstone of this paper.

III. THEORY AND MODEL

A. Basic equations

Let us now consider one infinitely long, cylindrical
molecule with an arbitrary surface charge distribution.
Here, we assume that an aqueous solution fills all the
space, and the fixed charges are immersed in it. Given that
water is able to penetrate within the grooves of DNA, this is
not too crude an assumption to make. It should be noted,
however, that this water has structure, resulting in a net
polarization density, and therefore must be included in the
model for the surface charge distribution as a “bound
charge” contribution (see Sec. III B 3).
Using the approximation detailed above for the dielectric

function of electrolytes, the Fourier transform of the
electrostatic potential φðrÞ created by any embedded
charge distribution of volume charge density ρextðrÞ is
given by

φ̃ðkÞ ¼ 4π

ðk2 þ κ2ÞεðkÞ ρ̃extðkÞ; ð19Þ

where ρ̃extðkÞ is the Fourier transform of ρextðrÞ. As we are
dealing with the surface charge density on a cylindrical
surface, it is convenient for us to describe the external
charge density in the molecular frame in a cylindrical
coordinate system, ðz;ϕ; rÞ, associated with the molecular
axis [see Fig. 3(a)]. There are multiple contributions to the
external charge distribution (see the following subsections
below)—to keep our formalism as general as possible, we
can write the charge density of a given contribution ν as an
arbitrary surface charge distribution, placed at a given
radius aν, such that

ρνðz;ϕ; rÞ ¼ σνðz;ϕÞδðr − aνÞ: ð20Þ

It is then convenient for us to express it in the form

ρνðrÞ ¼
1

ð2πÞ2
X∞
n¼−∞

Z
∞

−∞
dq eiqzeinϕR ρ̃νðq; n; rÞ ð21Þ

so that

ρ̃νðkÞ ¼ aν
X∞
n¼−∞

inσ̃νðq; nÞJnðKaνÞe−inϕK ; ð22Þ

where σ̃νðq; nÞ is the Fourier transform of σνðz;ϕÞ,
defined as

σ̃ðq; nÞ ¼
Z

2π

0

dϕ
Z

∞

−∞
dz e−iqze−inϕσðz;ϕÞ; ð23Þ

and JnðxÞ is the nth-order Bessel function of the first kind.
Plugging Eq. (22) into Eq. (19) and performing the inverse
Fourier transform, we find the expression for the potential
in real space:

φνðrÞ ¼
aν
π

X∞
n¼−∞

Z
∞

−∞
dq

Z
∞

0

KdK

× einϕeiqz
JnðKRÞJnðKaνÞ

ε
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2 þ q2
p 


ðK2 þ q2 þ κ2Þ
σ̃νðq; nÞ;

ð24Þ

which will give us a result for a given σ̃νðq; nÞ and εðkÞ. In
previous approaches to this problem, this expression has
been extended to include the presence of low dielectric
cylindrical cores, such that the charge distribution sits at
the inner-core–water interface [58]. Considering that
water is found in both the major and minor grooves
and because we also consider spatial dispersion of the
solvent, we will neglect such effects since accounting for
them would have greatly complicated the theory. We will
therefore continue to use the picture of the charge
distribution immersed in a solution.

B. Surface charge distribution model

The expression for the potential in Eq. (24) is valid for
any charge distributed over concentric cylindrical surfaces
of radii aν. Previous formulations of the theory considered
simple examples of infinitely thin, continuous, homo-
geneously charged helical lines (one or several), and a
homogeneously smeared countercharge, both located at the
cylinder-water interface [58], as well as smeared lines [6] or
discrete charge arrays [13]. Given that we introduce a
dielectric function that includes the overresponding behav-
ior of water, these infinitesimally narrow lines of charge
will introduce very large spatial oscillations of electrostatic
potential into the system, as reasoned above when consid-
ering just single ions. We therefore need to take into
account more complex effects associated with the finite
size of the charged groups, on- and off-strand fluctuations
around their regular positions on the helical strands, and
inhomogeneous distributions of adsorbed countercharges,
which will smear out these resonant overscreening effects
and provide more realistic results.
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1. Backbone charge distribution

Here, we consider the DNA molecules to have ideal
helical symmetry, which would imply that the relation

σðz;ϕÞ ¼ σðzþ z0;ϕþ gz0Þ ð25Þ

must be satisfied for any z0, where g ¼ 2π=H, and H is the
helical pitch (for B-DNA, H ¼ 34 Å). We see that there is
an equivalency between z and ϕ: A change in z by z0 is
equivalent to rotating the molecule through an angle of gz0.
We therefore approximate the density of fixed surface

FIG. 3. Theoretical results for the DNA electrostatic potential in solution. (a) Depiction of system and coordinate axes over which the
results are plotted, also displaying the double-helical structure of the DNA molecule. For all plots, the parameters describing the bulk
dielectric response of TIP3P are ε ¼ 94, ε� ¼ 5.75, Λ1 ¼ 3.67 Å, Λ2 ¼ 1.77 Å,Λo ¼ 2.13 Å, and γ ¼ 0.05. The parameters describing
the DNA geometry and fluctuations are hr ¼ 3.4 Å, ϕs ¼ 2.2 rad, aDNA ¼ 10 Å, Δeff ¼ 0.25 Å, and δaDNA ¼ 0.5 Å. For the
condensed counterion lines, f1 ¼ 0.1, f2 ¼ 0.9, δzc1 ¼ δzc2 ¼ 0.75 Å, Θ ¼ 0.1, aCC ¼ 6 Å, and δaCC ¼ 0.75 Å. Bound charge
distribution parameters are given by P0 ¼ −8 μCcm−2, w1 ¼ 1, w2 ¼ 0.75, aW ¼ 5 Å, δzw1 ¼ 0.75 Å, δzw2 ¼ 0.75 Å, and
δaW ¼ 0.75 Å. (b) Electrostatic potential distribution of a DNA molecule in the xz plane, for physiological concentrations
(cb ¼ 0.154 M, κ ¼ 0.118 Å−1). Phosphate charges located at x ¼ 10 Å induce oscillatory behavior in the electrostatic potential
as a result of structured water, whereas condensed counterions and bound water in the grooves of DNA lead to a core of positive potential
relative to the bulk. (c) Averaged line plots of the electrostatic potential distribution as we rotate around the DNA molecule. Each line is
averaged over a 30-degree wedge (ϕ� 15°), starting at ϕ ¼ 15°. (d) Polar ðR;ϕÞ cross-sectional plots at z ¼ 0 of the electrostatic
potential distribution for cb ¼ 0.154 M and at cb ¼ 1 mM. (e),(f) Magnitude of electric field and bound charge density in pure water,
i.e., at κ → 0. Electric-field vector directions are drawn as white lines in diagram (e).
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charges, intrinsic to the helical molecules, by the following
general expression, valid for any helical molecule:

σDNAðz;ϕÞ ¼
2πσ̄

N

XN
j¼1

Z
2π

0

dϕ0
Z

∞

−∞
dz0 ψðz − z0;ϕ − ϕ0Þ

× δ(ϕ0 − ϕj − gðz0 − zjÞ); ð26Þ
where ϕj and zj describe the coordinates of the strands
relative to the defined coordinate system, and N is the total
number of helical strands (N ¼ 2 for B-DNA) on the
molecule, where each strand is labeled by the index j. For
DNA, if we define the coordinate system such that ðz ¼ 0;
ϕ ¼ 0Þ corresponds to the center of the minor groove, as in
Fig. 1, ðz1;ϕ1Þ ¼ ð0;−ϕs=2Þ and ðz2;ϕ2Þ ¼ ð0;ϕs=2Þ,
where ϕs ¼ 0.8π is the width of the minor groove. We
assume that the fixed charges are associated with surface
groups centered on helical strands. We account for the finite
size of charged groups by introducing the form factor
ψðz;ϕÞ, normalized as

R R
ψðz;ϕÞdϕdz ¼ 1, such that

ψðq ¼ 0; n ¼ 0Þ ¼ 1, where ψ̃ðq; nÞ is the cylindrical
Fourier transform of ψðz;ϕÞ. Taking the Fourier transform
of this expression, we find that, for B-DNA,

σ̃DNAðq; nÞ ¼ 4π2σ̄ ψ̃ðq; nÞδðqþ ngÞ cos
�
nϕs

2

�
: ð27Þ

In the case of thin line charges, ψðz;ϕÞ ¼ δðzÞδðϕÞ, and
hence ψ̃ðq; nÞ ¼ 1. For the simplest fluctuation case of
Gaussian disorder in both ϕ and z, we can write

ψðz;ϕÞ ¼ 1

2πδzδϕerf½ πffiffi
2

p
δϕ
� exp

�
−

z2

2δz2

�
exp

�
−

ϕ2

2δϕ2

�
;

ð28Þ
where δz and δϕ are the effective half-width of the
distributions, related to the atomic form factors of the
charged groups and the mean-square amplitude of their
fluctuations around the “helical lines.” Taking the Fourier
transform, in the limit where δϕ ≪ π, we obtain

ψ̃ðq; nÞ ¼ exp

�
−
1

2
q2δz2

�
exp

�
−
1

2
n2δϕ2

�
: ð29Þ

Considering that in Eq. (27) this expression enters in a
product with the Dirac delta function, δðqþ ngÞ, for
ψ̃ðq; nÞ we can use a simpler expression,

ψ̃ðq; nÞ ¼ exp
�
−
1

2
n2g2Δ2

eff

�
; ð30Þ

where

Δeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δz2 þ δϕ2

g2

s
ð31Þ

is an “effective” half-width of the distribution. Note that
Gaussian on- or off-strand fluctuations of the groups

around their regular positions on the strands, static or
dynamic, result in similar form factors. The incorporation
of these form factors into the theory may further cover the
effects due to the finite size of the groups, quenched
Gaussian disorder, and/or Debye-Waller factors. Below,
in Sec. III D, we will show how similar smearing effects in
the radial direction may be accounted for. Here, however,
we start first with the case of “on-the-surface” smeared
form factors, described by Eq. (30).

2. Condensed counterion distributions

Highly charged helical molecules, such as DNA, cause
adsorption (condensation) of counterions onto their surfa-
ces. The adsorbed counterions are typically more mobile
than the fixed surface charges described above, and they
may either surround the fixed charges or bind into grooves
between the strands formed by fixed charges. We therefore
approximate the surface density of adsorbed charges by the
inhomogeneously smeared charge density σcðz;ϕÞ, which
follows the same basic helical symmetry as the charged
strands. The most general expression we can write for the
charge density that satisfies this symmetry is

σcðz;ϕÞ ¼ 2πσ̄c

Z
∞

−∞
dz0 pðz − z0Þδðϕ − gz0Þ; ð32Þ

where we have defined the coordinate system in the same
way as above, with ðz ¼ 0;ϕ ¼ 0Þ corresponding to the
center of the minor groove. Here, the subscript c labels
parameters for counterions, and σ̄c is their average surface
charge density. We can relate this case to the average
surface charge density of the DNA σ̄ through σ̄c ¼ −Θσ̄,
where Θ is the degree of the overall charge compensation
by condensed counterions. Note that pðzÞ is the probability
density of counterion adsorption at the axial distance z from
the center of the minor groove, normalized such that its
Fourier transform at q ¼ 0 is p̃ðq ¼ 0Þ ¼ R

pðzÞdz ¼ 1.
For example, setting pðzÞ ¼ δðzÞ corresponds to the
counterions sitting exactly in the middle of the minor
groove. Taking the Fourier transform of Eq. (31), we find

σ̄cðq; nÞ ¼ 4π2σ̄cδðqþ ngÞp̃ðqÞ: ð33Þ
Here, we can analyze a specific four-state counterion
adsorption pattern, where the smeared probability density
is written as

pðzÞ ¼ f1ffiffiffiffiffiffi
2π

p
δzc1

e
− z2

2ðδzc1Þ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
in the minor groove

þ f2ffiffiffiffiffiffi
2π

p
δzc2

e
−ðz−H=2Þ2

2ðδzc2Þ2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
in the major groove

þ f3
2

ffiffiffiffiffiffi
2π

p
δzc3

�
e
−ðz−Hϕs=4πÞ2

2ðδzc3Þ2 þ e
−ðzþHϕs=4πÞ2

2ðδzc3Þ2
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
on the strands

þ 2π

L
f4|ffl{zffl}

smeared

;

ð34Þ
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where different fi denote fractions of counterions adsorbed
in different preferential locations, such that

P
i fi ¼ 1. As

labeled in Eq. (33), these locations are as follows: near the
center of the minor groove (f1), near the center of the major
groove (f2), near the charged strands (f3), and randomly
distributed along the cylinder surface (f4). Here, we
assume that the distribution of ions around each preferential
adsorption location is Gaussian, with half-width δzi.
Despite writing the expression for all possible sites in
Eq. (34), for simplicity, in the model below, we will only
consider ions condensed in the minor and major grooves.
Calculating the necessary Fourier transforms, we find that

σ̃cðq; nÞ ¼ 4π2σ̄cδðqþ ngÞ
× (f1e−

1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2): ð35Þ

3. Bound charge distribution

Having described the response of water molecules only
through the solvent’s nonlocal dielectric function εðkÞ,
we do not take into account water molecules specifically
adsorbed (bound) to DNA, particularly in the grooves.
As mentioned in the Introduction, there exists a chiral
“spine of hydration” that sits in the minor groove. The
water molecules that contribute to this spine form a helical
superstructure, with their hydrogens pointing towards
the central axis. This result leads to a line of nonzero
polarization density that we must take into account through
an additional contribution to σ̃ðq; nÞ.
Indeed, in terms of the volume charge densities, the total

charge density is ρ¼ ρf þ ρb, where ρfðrÞ ¼ σDNAðz;ϕÞ×
δðr − aDNAÞ þ σCðz;ϕÞδðr − aCCÞ is the free charge den-
sity associated with the fixed DNA and counterion charges,
and ρb is the bound charge associated with specifically
adsorbed dipoles. However, basic electrostatic identities

reveal a different relationship between the volume and
surface bound charge densities,

ρbðrÞ ¼ −σbðz;ϕÞδðr − awÞ; ð36Þ

where aw is the radius of the cylinder along which the
bound surface charge distribution sits. We can easily relate
this case to the polarization density distribution, given that
σb ¼ P · n̂ [59]. For a cylindrical surface, we see that
σbðz;ϕÞ≡ P⊥ðz;ϕÞ, where P⊥ðz;ϕÞ is the radial (normal)
component of the polarization density. Hence, as above, we
can write the bound charge distribution of the water spine in
the grooves as

σ̃bðq; nÞ ¼ 4π2P̄0δðqþ ngÞ
×
�
w1e−

1
2
n2g2δz2w1 þ ð−1Þnw2e−

1
2
n2g2δz2w2



; ð37Þ

wherew1 andw2 are the relative fractions of the mean radial
polarization density P̄0 associated with water adsorbed in
the minor and major grooves, respectively, and δzw1 and
δzw2 are the corresponding widths of their distributions
about the center lines of the grooves.
Considering this contribution, we also account for the

dielectric response of the first layer of water in the grooves
of the DNA molecule, which elsewhere is considered in the
linear response approximation.

C. Electrostatic potential distribution due to DNA

Substituting Eqs. (27), (35), and (37) into Eq. (24), we
obtain an expression for the electrostatic potential distri-
bution in cylindrical coordinates. Writing the potential as a
sum of contributions from the phosphates (DNA), the
specifically adsorbed (condensed) counterions (CC), and
the structured water (W), the full expression reads

φtot ¼ φDNA þ φCC þ φW; ð38Þ

φDNA ¼ 8πaDNAσ̄
X∞
n¼0

e−
1
2
n2g2Δ2

eff

δn;0 þ 1
cos½nðϕ − gzÞ� cos

�
nϕs

2

�
WnðR; aDNA; κÞ; ð39Þ

φCC ¼ −8πaCCσ̄Θ
X∞
n¼0

f1e−
1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2

δn;0 þ 1
cos½nðϕ − gzÞ�WnðR;aCC; κÞ; ð40Þ

φW ¼ −8πaWP̄0

X∞
n¼0

w1e−
1
2
n2g2δz2w1 þ w2ð−1Þne−1

2
n2g2δz2w2

δn;0 þ 1
cos½nðϕ − gzÞ�WnðR; aW; κÞ: ð41Þ

As mentioned, for simplicity, we have only considered
counterions condensed in the minor (f1) and major (f2)
grooves in Eq. (40). It is clear here that the n ¼ 0 term
corresponds to the potential around a homogeneously

charged cylinder; thus, the n ≥ 1 terms are usually referred
to as the “helical harmonics” [12]. The general formula
above can be applied for any case of specific counterion
condensation on the DNA molecule. The electrostatic
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propagator WnðR; ai; κÞ describes how the potential varies
in the radial direction, and for εðkÞ given by Eqs. (6)
and (7), it is calculated as

WnðR; a; κÞ ¼ g̃κKnðκ̃nRÞInðκ̃naÞ þ γg̃LKnðq̃nd1RÞInðq̃nd1aÞ
þ ð1 − γÞRefg̃oHð2Þ

n ½ðg̃Rn − ig̃InÞR�
× Jn½ðg̃Rn − ig̃InÞa�g ð42Þ

for R > a, where InðxÞ and KnðxÞ are the nth order
modified Bessel functions of the first and second kind,

respectively, and Hð2Þ
n ðxÞ is the nth order Hankel function

of the second kind. In the case of R < a, we simply swap
the positions of R and a in the Bessel functions. The
definitions of all the parameters are given in Appendix A.
In general, these parameters all depend on the roots of the
denominator in the integrand of this integral. In the
complex plane of K, one root is found at K ¼
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ n2g2

p
, and the rest are roots of εð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ n2g2

p
Þ;

in the case of the approximation we use in Eq. (7), the latter
are functions of the parameters Λ1, Λ2, and Q, which relate
to the characteristic correlation lengths in the system. For
this approximation, the result of the integral is split into
three terms, each involving certain characteristic lengths.
By simply inspecting which lengths are involved with each
term, we can gain a deeper understanding of the different
contributions to the electrostatics in the system.
The first term arises from ion correlations in the system.

Given the simple, linear, Debye-Hückel approximation
used in this derivation, we see it follows a simple quasi-
exponential decay law where the Debye length κ−1 is
coupled with the DNA helical pitch. The second term arises
from exponential water correlations (Lorentzian behavior)
in the system, which is clear given the presence of Λ1 in the
decay length, also coupled with the DNA helical pitch.
Finally, the oscillatory contributions are given by the third
term. Given the complex arguments of the Hankel and
Bessel functions, it is not possible to express these
contributions in terms of commonly known special func-
tions. However, we see that these contributions come from
the complex root of εðkÞ, so the oscillation and decay
lengths are related to Λ2 and Q, again coupled with the
DNA helical pitch. This finding is clear given the presence
of the parameters g̃Rn and g̃In in the arguments of the Hankel
and Bessel functions, and the fact that for n → 0, g̃Rn → Q
and g̃In → 1=Λ2 (see Appendix A for definitions).
In addition to the electrostatic potential, it is convenient

for us to also calculate other electrostatic quantities, such as
the electric field E and the total charge density in the
system, ϱ. Having obtained the result above for the total
electrostatic potential, it is trivial to calculate these quan-

tities as E ¼ −∇!φ and Δφ ¼ −4πϱ. Importantly, these
quantities do not diverge in pure, electrolyte-free water, i.e.,
κ → 0, which is not the case for the electrostatic potential;

if we consider the simpler case of a homogeneously charged
cylinder in a bulk dielectric, the electrostatic potential
distribution diverges logarithmically at long distances from
its axis. Hence, to study the electrostatics of a more
pedagogical pure water case, we must consider the electric
field and charge density. Of course, the electric field is also
of interest per se, as it, to a high degree, determines the force
with which DNA will interact with any charged objects.

D. Radial smearing

In addition to the fluctuations of surface charge distribu-
tions in the z and ϕ directions, we now consider fluctuations
in the radial direction. Looking again at our definition for the
charge distribution in Eq. (20), one of the main assumptions
is that the lines of charge sit on a cylinder at a fixed radius a.
Such simplification would be suitable had we not included
the overscreening effect in the solvent. However, we saw in
our brief study of the Born sphere above that accounting for
oscillations can lead to overemphasized resonance effects;
it is also important to consider similar smearing of the
DNA charge distribution in the radial direction, as it should
further suppress the resulting amplitudes of oscillations in
the electrostatic potential.
Allowing for smearing of the distribution in the radial

direction, we can generalize the expression for the volume
charge density of a given helical line ν as

ρνðz;ϕ; rÞ ¼ sνσνðz;ϕÞζðr − āν; δaνÞ; ð43Þ
where sν ¼ �1 indicates the sign of the contribution; for
free charge density (phosphates and adsorbed ions), sν ¼ 1,
and for bound charge density (adsorbed water), sν ¼ −1.
As above, we can consider the case of Gaussian fluctua-
tions, in which case, ζ takes the form of a truncated
Gaussian distribution, as r > 0:

ζðr − āν; δaνÞ ¼
ffiffiffi
2

p
ΘðrÞffiffiffi

π
p

δaν
�
1þ erf

h
āνffiffi
2

p
δaν

i
 e
−ðr−āνÞ2

2δa2ν ;

ð44Þ
where āν is the mean radius of the surface along which the
helical line runs, δaν is the half-width of the distribution,
and ΘðxÞ is the Heaviside step function. Following the
derivation presented above for the electrostatic potential
due to charge distributions on a cylindrical surface, we can
write an extension of this result for the case of a radially
smeared charge distribution,

φ̄ðrÞ¼
X
ν

ζ̂νsνφν ¼
X
ν

Z
∞

0

daνsνφνðr;aνÞζðaν− āν;δaνÞ;

ð45Þ

where we term ζ̂ the “smearing” operator, summation runs
over all helical charge motifs ν associated with DNA
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(phosphate charges, adsorbed counterion charges, and
adsorbed water bound charges), and φ̄ is the smeared
potential. By tuning the half-width of the distributions we
smeared over, we can more precisely account for effects of
thermal and structural fluctuations of the DNA molecule.

IV. THEORETICAL RESULTS AND PREDICTIONS

Plotting Eqs. (38)–(41) and applying radial smearing as
in Eq. (45), we obtain maps of the electrostatic potential
distribution around the DNA molecule in Fig. 3. We plot
the potential in three ways to showcase different behaviors
and observations; see Fig. 3(a) to see how they relate to the
structure of the double-helical molecule. First, in Fig. 3(b),
we plot a slice in the xz plane through the center of the
molecule. For the estimated parameters, we clearly see
oscillations in the potential propagating from the double-
helical phosphate lines running about the molecule. As
discussed when considering the much simpler Born sphere
case, the absolute value of the potential within one
molecular diameter of the field source must not be taken
literally, as we treat the DNA charge distribution within the
embedded charge approximation and do not consider the
nonlinear response of the medium to the excluded volume
of the phosphates. Such approximations in combination
with the overscreening dielectric response of the water
therefore lead to the positive and negative “hotspots” on the
phosphates and inside the groove, respectively.
However, while the presence of these oscillations is not a

feature to ignore (it will be discussed in further detail below),
what is particularly interesting here is the presence of a core
of positive potential inside the DNA. Such an observation
has previously been made in simulation studies of DNA as
early as 1989 [60], but its physical origin is still under
debate. Such an effect is also seen at the lipid bilayer-water
interface. Some arguments seem to indicate that any positive
potential inside nonaqueous systems (like inside the DNA
duplex or the lipid bilayer) arises from quadrupolar con-
tributions from water situated at the interface [61]. The
quadrupolar moment is not explicitly considered here in the
theory, and it is instead only partially accounted for by fitting
to the simulated dielectric response functions of pure water.
Thus, we do not expect quantitative accuracy of the theory
inside the DNA. However, we qualitatively show here that
such a positive potential can arise by accounting for
adsorbed water by imposing helical lines of polarization
density within the grooves of the DNA molecule.
When we consider the interactions of DNA in biology,

they often appear with macromolecules far larger than the
size of these oscillations, so they will often experience a
more averaged electric field. The question then becomes
whether these interacting molecules will even feel these
oscillations. In Fig. 3(c), we plot the potential distribution
averaged over 30-degree slices (ϕ� 15°) as we circle the
molecule. Even over such a large slice, these oscillations
are pronounced close to the minor groove and the

phosphate strands. However, these oscillations appear to
be weaker in magnitude in the vicinity of the major groove.
Such reduced potential in this region compared to the minor
groove side can perhaps lead to overall lower electrostatic
repulsion, potentially providing a stronger impetus for
proteins to approach and specifically bind in this region.
Indeed, most DNA-binding proteins will bind to the major
groove, where they have better access to the individual
nucleotide bases to be “read” by the protein [62].
Figure 3(d) showcases the electrostatic potential as a

polar ðR;ϕÞ map at both physiological concentration
(0.154 M) and low concentration (1 mM). One clear
difference when comparing the two is the absence of a
positive core at low concentration, which indicates that this
effect is not solely reliant on the behavior of water at the
interface. Rather, it is a coupled ion-water effect, where the
positive potential can arise from ions screening the phos-
phate charge from inside the double helix.
We also see that the oscillatory features remain unchanged

between the low and physiological concentration regimes.
While such an observation may be clear from examining
the form of Eq. (42), this result is not a trivial one, and the
significance of these oscillations is still under debate. A
recent work on this electrostatic double-layer problemwith a
field-theoretical approach indicates that for millimolar con-
centrations, these oscillations trap ions, resulting in ion
layering at the interface [22]. While the high concentration
limitwas not studied there, it is clear that ion correlationswill
take charge, affecting the oscillatory behavior in the electro-
static potential profile. Although these limits have been
well studied in varying degrees of complexity, the behavior
of the “intermediate” concentration regime is still unclear.
Do physiological concentrations sit within this intermediate
regime, and if so, how do the water-water and ion-ion
correlation effects interfere or couple with each other? Our
results seem to suggest that even at physiological concen-
trations, the electrostatics are still dominated by the solvent
response to the DNA.
To strengthen this argument, we must make a comparison

between physiological and pure water cases to directly
observe the effect of electrolyte concentration. However,
as we have already noted above, in purewater, i.e., as κ → 0,
it is clear that the potential diverges for the n ¼ 0 harmonic
(i.e., for a homogeneous cylinder). Hence, here we only
consider the electric field and charge density, expressions for
which are given inAppendixB, derived fromEqs. (38)–(42).
Plotting these electrostatic quantities in Figs. 3(e) and 3(f) for
pure water, we see that these spatial oscillations are purely a
consequence of the overscreening dielectric response of
water. Note that in calculating the charge density, the
contribution from the DNA surface charge distribution
was subtracted, leaving behindonly the bound charge density
oscillations associated with water.
Finally, it is of interest to understand the screening of

the electrostatic potential, as it determines the electrostatic
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forces experienced by other chargedmolecules further away
from the DNA. By examining the Debye-like tail of the
potential distribution, we can identify three regions as we
move away from the DNA molecule: (i) the oscillatory
“interfacial” region which is predominantly controlled by
correlations inwater, (ii) the steeper renormalizedDebye tail
with screening length 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ g2

p
(cf. Ref. [58]) which

couples the helical pitch of the DNA to the Debye screening
length, and (iii) the classical Debye tail with screening
length κ−1 (see Fig. 4). This finding is evident by fitting
exponential curves to these different regions and comparing
their gradients against the calculated potential curve. Indeed,
such an exponential form would be appropriate to fit the
potential, as the Bessel functions of the second kind in
Eq. (41) are exponentially decaying in their asymptotic,
large argument limit, such that KnðxÞ ∼ e−x=

ffiffiffi
x

p
. Over-

screening is not the only important contribution in region
(i). The overall field near the DNA is also enhanced by the
Lorentzian contribution to the dielectric response. The slope
around which oscillations take place in this region is
determined by q̃nd1, which is greater than κ̃n (see Eq. (42),
and Eqs. (A1) and (A2) in Appendix A).

We summarize the main findings of the theory developed
in the first part of this paper below:

(i) At long distances ðR > 40 ÅÞ, see the slowest
decaying tail of electrostatic potential related to
the uncompensated DNA charge. There, we ap-
proach the macroscopic limit, and the screening
length is simply equivalent to the Debye length, κ−1.

(ii) At intermediate distances ð25 Å < R < 40 ÅÞ, we
see the effect of the double-helical structure of DNA
coupled to the Debye length, leading to a renormal-
ized screening length of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ g2

p
, which is in

line with the previous theoretical results based on the
primitive model of electrolytes [58].

(iii) At short distances ðR < 25 ÅÞ, Lorentzian contri-
butions to the dielectric response of water and,
consequently, a reduced effective dielectric constant
close to the DNA surface lead to a dramatic enhance-
ment of the overall electric field.

(iv) In this “short-distance” regime, we see strong
spatial oscillations in the electrostatic potential.
These oscillations are a consequence of the over-
screening dielectric response of water to the phos-
phate charges. The amplitude of these oscillations
is reduced when the helical lines of phosphate and
adsorbed counterion charges are more smeared.

(v) Specifically adsorbed water molecules and counter-
ions in the grooves of DNA lead to a positive core of
electrostatic potential relative to the bulk.

Of course, these results strongly depend on the model of
dielectric response of the electrolyte medium used, so we
must either prove or disprove this linear response analysis
by comparison with all-atom simulations, the details of
which are described in the next section.

V. SIMULATION SYSTEMS AND METHODS

Summary of MD simulations—We conducted MD sim-
ulations of a 42-bp DNA molecule immersed in an electro-
lyte solution, varying the composition of the latter. A typical
system [Fig. 1(b)] consisted of about 1.2-million atoms and
measured 30 nm × 30 nm × 14.3 nm. The DNA molecule
was placed with its helical axis aligned along the z axis and
was made effectively infinite by extending the covalent
bonds of the DNA backbone over the periodic boundaries of
the unit cell. The DNA was built to have the structure of a
canonical double helix with a 34.28° twist per base pair,
which ensured that the ends of the 42-bp fragment perfectly
matched at the periodic image boundaries. All nonhydrogen
atoms of the DNA were restrained harmonically to their
initial coordinates with a spring constant kspring, whose value
was set to 10 kcalmol−1Å−2 (“strong” restraints).
In total, we simulated three systems, differing by the

electrolyte conditions. First, we considered the DNA sur-
rounded by a KCl electrolyte of physiological, 0.154-M
concentration, and this system was simulated under strong
restraints for 125 ns. In a second system, the solvent

FIG. 4. Analysis of the long-range Debye-like tail of the radial
electrostatic potential distribution of a DNA molecule. The
black curve is plotted for the same parameters as in Fig. 3, at
physiological concentrations along ðz;ϕÞ ¼ ð0; 1.1 radÞ. The
blue (dashed) and orange (dot-dashed) lines are exponential fits,
fðRÞ ¼ Ae−R=λ=

ffiffiffiffi
R

p
with decay (screening) lengths λ ¼ κ−1 and

λ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ g2

p
, respectively. Such fits allow us to identify three

screening regions of the DNA molecule: (i) the interfacial
“oscillatory” regime where water dominates, (ii) the renormalized
Debye-like regime, where the periodic helicity of the DNA
molecule couples with the Debye length, overall reducing the
screening length, and (iii) the Debye-like regime, where screen-
ing can be approximated by the Debye length of the electrolyte.
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contained a 0.0513-M solution of MgCl2, having the same
Debye length as the 0.154-M KCl system under the Debye-
Hückel approximation. This system was simulated for
about 500 ns under strong restraints. Finally, we considered
a fictitious system, whereby charged DNAwas considered
in pure water, to provide a reference for the realistic
systems with electrolytes. This simulation was run for
100 ns under strong restraints.
Preparation of the simulation systems—The 42 base-

pair DNA fragment of the poly(AT) sequence was built
using the Avogadro software [63]. The molecule was
solvated using the Solvate plugin of VMD [64]. Where
needed, ions were added using the Autoionize plugin of
VMD to first neutralize the system and then produce the
desired bulk ion concentration. The required number of
ions was determined from the mass ratio of water and ions,
i.e., the system’s molality.
Simulation protocols—All MD simulations were per-

formed using NAMD2.14 [65], the CHARMM36 parameter set
[66] for protein and DNA, the TIP3P water model [67], a
custom hexahydrate model for magnesium ions [30], and
the CUFIX corrections to ion-nucleic acid interactions [68].
Multiple time stepping was used [69]: Local interactions
were computed every 2 fs whereas long-range interactions
were computed every 4 fs. All short-range nonbonded
interactions were cut off starting at 1 nm and completely cut
off by 1.2 nm. Long-range electrostatic interactions were
evaluated using the particle-mesh Ewald method [70]
computed over a 0.11-nm spaced grid. SETTLE [71] and
RATTLE82 [72] algorithms were applied to constrain cova-
lent bonds to hydrogen in water and in nonwater molecules,
respectively. The temperature was maintained at 300 K
using a Langevin thermostat with a damping constant of
0.5 ps−1, unless specified otherwise. Constant pressure
simulations employed a Nose-Hoover Langevin piston with
a period anddecay of 200 and50 fs, respectively [73]. Energy
minimization was carried out using the conjugate gra-
dients method [74]. Atomic coordinates were recorded
every 9.6 picoseconds, unless specified otherwise. Visua-
lization and analysis were performed using VMD [64] and
MDAnalysis [75].
Protocols for averaging data over the DNA base pairs—

To improve the statistical accuracy of our analysis, we
averaged the data across frames of the MD trajectories
and over 40 base pairs, excluding one at each end of the
molecule to mitigate uncertainty arising from wrapping the
solvent’s coordinates. The analysis per base pair was
conducted by choosing cylindrical slabs with a radius of
30 Å, aligned along the z axis and partitioned into 40 bins.
Each bin had a span of 3.4 Å, and the base pairs were
positioned at the center of each cylindrical bin. This strictly
geometric definition was employed to prevent double
counting of atoms caused by their overlap in neighboring
bins, thereby ensuring the accuracy of the calculated
densities. Successive cylindrical bins were then rotated

about the z axis by 34.28°, the twist per base pair for
the DNA. Subsequently, the coordinates of the transformed
atoms were binned on a 900 × 900 2D lattice.
Calculation of the electrostatic potential—The electro-

static potential was computed using the PMEpot [76]
plugin of VMD. For each frame of the simulation trajectory,
every point charge was approximated by a spherical
Gaussian (with its inverse width referred to as the Ewald
factor), normalized to give the original charge upon
integration.
The instantaneous distribution of the electrostatic poten-

tial corresponding to the instantaneous charge configura-
tion of the frame was obtained by solving the Poisson
equation. The electrostatic potential maps were obtained by
averaging 20–30-ns fragments of the MD trajectories. The
instantaneous configurations were then averaged over the
MD trajectory, taking frames every 0.25 ns. An Ewald
factor of 1 Å−1 and 0.25 Å−1 was used for the fine and
coarse calculations of the potential maps, respectively. The
potential maps were stored as volumetric grid data with a
resolution of 0.2 Å in the xy plane and about 0.98 Å along
the z axis.
To obtain an average over the DNA base pairs, volu-

metric slices in z were rotated according to the DNA’s twist
per base pair and the resolution of the grid in z, around
10.2°. For this purpose, we used the NDIMAGE library in
SCIPY, with a spline interpolation of order 3.

VI. SIMULATION RESULTS

A. Complex electrostatic environment of DNA
caused by structured water

1. Cylindrically averaged electrostatics of DNA

As a baseline for further analysis, we computed the
cylindrically averaged electrostatic potential of a DNA
molecule (averaged over the z axis of the simulation box)
for several electrolyte conditions, similar in spirit to early
analytical calculations that assumed a charged cylinder
model for DNA [1,2]. Starting from a fully atomistic MD
trajectory, we computed the instantaneous distributions of
the electrostatic potential by solving the Poisson equation
for each configuration of the partial atomic charges. In
doing so, we represented each point charge of a 3D
Gaussian density of the mean located at the point charge’s
coordinates, the inverse width defined by the Ewald factor
(i.e., 0.258 Å−1 for coarse and 1 Å−1 for fine resolution
calculations), and the total integrated density equal to the
point charge value. The instantaneous distributions of
the electrostatic potential were averaged over the well-
equilibrated parts of the respective MD trajectories and
along the z axis (aligned in our coordinate system with the
helical axis of the DNA) for the middle 40-base pair section
of the helix. The resulting 2D densities are shown in
three panels of Fig. 5(a)—for the physiological electrolyte
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condition (0.154-M KCl), a divalent electrolyte of the same
screening length (0.0513-M MgCl2), and pure water.
The presence of ions in the solution produces the

expected screening of the electrostatic potential, with the
potential decaying away from the DNA much more rapidly
in the electrolyte systems in comparison to our fictitious
pure water case. The close-up views of the 2D map in the
vicinity of the DNA [the right column of Fig. 5(a)] reveal
concentric regions of positive and negative potential
common to all three systems. While the presence of such
patterns has been expected because the DNA helix itself
features a regular pattern of partial charges, the presence of
ions is found to profoundly modulate the magnitude and
sign of the potential. Thus, in a background of negative
potential due to negatively charged oxygen atoms, the 21
spots of positive potential, located approximately 10 Å
away from the helix center, correspond to the positively
charged phosphorous atoms of the DNA backbone, with the
number of such spots reflecting the 10.5 base-pair-per-turn
periodicity of the helix and the cylindrical averaging of the
potential.

A feature with which we can draw direct parallels with
the presented theory is that, in the presence of electrolyte
ions, the inner core of DNA is found to bear a positive
potential. In pure water, however, this positive core dis-
appears, despite the potential distribution displaying a
similar pattern. Guided by the theory, we can deduce that
this effect must arise from the coupling of structured water
dipole and ionic screening in the grooves of DNA, without
either of which this phenomenon will not be present.
Decomposing the electrostatic potential into its multipole
expansion, a preliminary analysis shows that such a strong
effect arises from the quadrupolar contribution to the
interfacial water structure, a finding that is in line with
previous suggestions [61]. However, given the computa-
tional bottlenecks of this analysis for a simulated system of
this size, a more detailed investigation of this effect is left to
future work.
Radial profiles of the electrostatic potential in the three

systems provide further insight into the effect of ions on
DNA electrostatics [Fig. 5(b)]. The potential at the core of
the DNA (about 5 Å away from the center) is slightly higher

FIG. 5. Cylindrically averaged electrostatic properties of DNA in solution: (a) Electrostatic potential maps obtained by averaging the
instantaneous distributions of the electrostatic potential over the corresponding MD trajectories and along the z axis. Data for 0.154-M
KCl (top) and pure water (bottom) systems were averaged over the last 100 ns of the corresponding trajectory, sampled every 2 ns. Data
for the 0.0513-M MgCl2 system (middle) were averaged over 450 ns and sampled every 4 ns. The electrostatic potential was calculated
using the VMD PMEPot plugin [76] with an Ewald factor of 1 Å−1. (b) Radially averaged profiles of the electrostatic potential for the
KCl (red line), MgCl2 (blue line), and pure water (black line) systems. The bottom plot shows the same data near the DNA, whose
location is indicated schematically in yellow. Solid and dashed lines correspond to the electrostatic analysis carried out using fine (Ewald
factor of 1 Å−1) and coarse (Ewald factor of 0.258 Å−1) resolution. (c) Difference of the radially averaged potentials obtained using the
fine and coarse electrostatic calculations. (d) Two-dimensional maps of the averaged radial electric field, calculated by locally taking the
radial component of the negative gradient of the electrostatic potential map, in cylindrical coordinates. (e) Average profiles of the radial
component of the electrostatic field for the three systems. The plots differ by the span of the radial distance. The region occupied
by DNA is shown schematically in yellow. Dashed lines (green) indicate the locations of select peaks. The inset (bottom) shows
the wave-number spectra of the averaged electric-field difference obtained through the fine and coarse electrostatic calculations. The
wave-number analysis was restricted to the region 30 Å away from the DNA (dashed black line).
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in the KCl electrolyte than in MgCl2, which we attribute to
the smaller hydration shells of Kþ ions facilitating deeper
partitioning of the Kþ ions into the grooves of the DNA.
As expected, the cations of the electrolyte effectively

screen the negative charge of the DNA backbone, such that
the average potential approaches zero already at a distance
of about 30 Å from the helix axis [Fig. 5(b), top], in
contrast to the pure water system, where the potential
decays down to the edge of the periodically repeated
simulation box (about 150 Å).
To determine if the effect of the water structure on the

DNA electrostatics can already be seen in the cylindrically
averaged data, we examined the behavior of the electro-
static potential for the two electrolyte systems in the
vicinity of the DNA, i.e., in the region between 9 and
25 Å from the helix axis [Fig. 5(b), bottom]. Gratifyingly,
both curves reveal oscillatory modulations of the decaying
potential, with the minima and maxima of the oscillations
occurring at similar distances away from the helix.
To further quantify the oscillating behavior, we repeated

the electrostatic calculations using a coarser Ewald factor
of 0.258 Å−1, ensuring that the width of the Gaussian
approximating each partial charge (about 3.9 Å) is larger
than the size of a water molecule and expecting such a
coarse approximation of the atomic charges to wash out the
effect of the water structure, akin to the smearing effect
described above in Sec. II and in Refs. [22,48]. Indeed, the
potential curves resulting from the low-resolution electro-
static calculations did not exhibit the oscillatory pattern
[Fig. 5(b), bottom]. Subtracting the low-resolution profiles
from the corresponding high-resolution data isolated the
effect of the water structure on the electrostatic potential
[Fig. 5(c)]. We found that the minima and the maxima of
the oscillations are indeed located the same distance away
from the helix in the KCl and MgCl2 electrolytes and that
the distance between the consecutive maxima are of the size
of a water molecule. Repeating the low-resolution calcu-
lations for the third system, DNA in pure water, and
subtracting the result from the high-resolution data, we
found the oscillations of the potential were also present in
the pure water system, indicating that they arise purely due
to the overscreening dielectric response of water to the
DNA charge [22,77,78].
Taking the negative gradient of the local electrostatic

potential yielded the time-averaged electric-field vector at
each voxel of each simulation system. The radial compo-
nent of the electric field was then averaged over the z axis to
generate the 2D maps of the electric field [Fig. 5(d)]. The
resulting maps of the electric field appeared to be similar in
all three systems.
The average profiles of the radial electric field elucidate

the effect of ions on the local electric field [Fig. 5(e)]. Much
like the electrostatic potential, the average radial compo-
nent of its gradient, the electric field, displays regular
alternations; however, as components of a vector quantity,

they converge to oscillate around zero [Fig. 5(e), top].
As a consequence of a slightly higher potential at the core
of the DNA (about 5 Å away from the center) in KCl than
in MgCl2, the radial component of the electric field is also
elevated in the KCl electrolyte, denoted by a dashed
(green) line about 6.5 Å from the center [Fig. 5(e),
middle], although the bulk concentrations of the systems
had the same Debye length under the Debye-Hückel
approximation.
Notably, at longer distances, the radial electric field still

exhibits some small amplitude but persistent oscillatory
patterns [Fig. 5(e), bottom]. To understand the origin of
these oscillations, we analyzed the spatial Fourier transform
spectra of the longer-range field (R > 30 Å). Similar to the
electrostatic potential [Fig. 5(c)], we first subtracted the
low-resolution profiles of the radial electric field from
the corresponding high-resolution data, thereby isolating
the effect of the water structure. The Fourier transforms
of the resulting radial profiles are shown in Fig. 5(e)
(bottom, inset). All three systems show dominant peaks in
the wave-number spectra around 0.35 Å−1. The corre-
sponding distance in real space, about 2.8 Å, is roughly
the diameter of a water molecule. It is well known that in
molecular simulations of water, the spatial correlation
functions exhibit decaying oscillations that disappear after
approximately 1–1.5 nm [79]. Thus, the coincidence of
the period of these long-range oscillations may well be
random, simply representing the noise, which can particu-
larly affect the decaying tail.
Bringing our attention back to the consistent large-

amplitude-overscreening oscillations in the short range,
the question then becomes how these oscillations influence
the interactions of theDNAwith charged entities, namely, the
electrolyte ions. Note that in Fig. 5(c), the oscillations of
the subtracted potential in the pure water system exactly
correlate with the oscillations in the electrolyte systems,
which may be explained by preferential localization of the
cations within the wells of the pure water potential. This
hypothesis can be tested simply by superimposing the ion
density profiles over the corresponding potential distribu-
tions (Fig. 6). Remarkably, in the system simulated with
Mg2þ, there is a clear peak in the ion distribution profile at
around 12 Å, corresponding to a well in the potential
distribution. This finding is not unexpected when consider-
ing the bulk ion concentration, as the ability for water to layer
ions according to its oscillating potential distribution is
largely expected in the low ion concentration regime [22],
particularly for the depth of the first well. In the high-
concentration regime, the ability for water to control the ion
distributions is diminished as inter-ion correlations begin to
dominate. Physiological concentration sits in some inter-
mediate range between these two regimes; hence, we
expected to still observe some signatures of the potential
oscillations in the ion distribution profiles in our simulations
with Kþ. Thus, as shown in Fig. 6, Kþ localization is less
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pronounced, but there is still some indication in the ion
distribution profile corresponding to this effect. In both
systems, at larger distances, we see that the ions do not
obey these oscillating potentials. The reason for this is clear:
The depths of the wells quickly become much smaller than
kBT=e, so they are not strong enough to fight the entropic
urge for ions to spread around.
Both the profiles of ion density and of the electrostatic

potential caused by DNA, in pure water and in electrolyte
solution, display some signatures of decaying oscillations.
Such patterns were previously studied near flat surfaces in
the context of electrochemical double layer [17–21], ITIES
[80], and near lipid membranes [81], as well as charged
mica surfaces [82], and all these effects were discussed in a
recent review [83]. Similar signatures in water near DNA
indicate the ubiquitous manifestation of the water structure
at the nanoscale. It should be stressed, again, how the ion-
specific interactions with the DNAwere considered. In the
molecular simulations, the force field specifies how ions
interact with water and nucleotides, effectively prescribing
the pattern of ion localization near the DNA [68]. In the
theory, such interactions are accounted for phenomeno-
logically, treating ions that specifically adsorb into the
DNA grooves as part of the overall DNA charge pattern.

2. DNA electrostatics in the reference frame
of a DNA base pair

Subsequently, we investigated the average electrostatic
properties surrounding the DNA base pair (Fig. 7). To

enhance statistical accuracy, individual slabs of the 3D
potential map were aligned with respect to the reference
base pair and then averaged (see Sec. V for details). With
added electrolytes, the potential profiles for Kþ and Mg2þ
systems decay faster, as expected,with the 2Dpotentialmaps
displaying striking similarities [Fig. 7(a), top and middle].
Notably, these characteristics are also somewhat evident

in the fictitious pure water system, albeit, as it should be,
with significantly reduced screening levels [Fig. 7(a),
bottom]. Corresponding line plots compare these systems
on a common scale [Fig. 7(b)]. Inside the DNA core,
0 < R < 10 Å, the electrostatic potential profiles follow
similar trends in all three systems, with a weaker, dielectric
screening in the case of pure water. In the region just
outside the DNA core but in close proximity, 10 < R <
20 Å, the oscillations are much less pronounced [Fig. 7(c)].
In Fig. 7(c), the patterns of oscillations of the electro-

static potential in the presence of Kþ (red) andMg2þ (blue),
respectively, are very similar, with subtle, minor differences
depending on the azimuthal direction. The solvent bound
charge density is plotted [Fig. 7(c), right axis] with the
potential, revealing a close correlation between them.
Minor distinctions between those patterns arise, possibly
as a consequence of the nonlinear dielectric response of the
electrolyte solution to the nearby phosphate groups.
Nonetheless, the overarching patterns exhibit notable
correlations.
The uniform characteristics noted in the potential maps

across all three systems, irrespective of the presence of
electrolytes, suggest that the preferential alignment of water
molecule dipoles may play a pivotal role, particularly so in
the absence of any electrolyte. We explicitly verify this
hypothesis by tracking the precise locations of water
molecules around the DNA. As shown in Fig. 7(d), it is
evident that water dipoles arrange themselves to minimize
the potential energy surface near the DNA molecule. The
introduction of cations compensates for the entropic cost
linked with the precise localization of water dipoles. A
comparison between results for the “pure water system”
(bottom) and the electrolytic solution (top and middle)
reveals higher-dipole-moment magnitudes, and the inter-
polated dipole vectors exhibiting a striking parallel align-
ment. As expected, the degree of ordering is lower in the
presence of Mg2þ ions than in Kþ. In Mg2þ, the ordering is
almost gone around 20 Å from the DNA axis.

3. Long-range screening

The relatively large size of our MD systems allows us to
investigate the long-range electrostatic behavior, namely,
the Debye decay tail. As mentioned in the theory section,
the long-range electrostatic behavior is important, as it
dictates the forces felt by other charged species in solution,
which are key to the vast majority of biological processes
and interactions [84]. It should be noted that examining the
long-range behavior may only be possible in very long

FIG. 6. Correlation between the cation concentration and the
potential difference profiles. Radial profiles of the cation den-
sities (solid lines), for the Mg2þ (top) and Kþ (bottom) systems,
respectively, are plotted on the left axis. Respective profiles of the
electrostatic potential difference induced by structured water are
plotted on the right axis, and similarly the one for pure water is
shown by the dashed line (gray). The potential difference profiles
are reproduced from Fig. 5(c). The dashed vertical gray lines
indicate the locations of select extremum points in the potential
difference profiles, at 11.5 Å and 13.5 Å, respectively. The region
occupied by DNA is schematically shown in yellow.
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simulations of large systems at high ion concentrations [85]
and may require numerical corrections [86]. As our
simulations were performed at physiological concentra-
tions, we did not expect to find an accurate recapitulation of
the theoretical results. Yet, we expected to see distinct
screening behaviors, enabling comparison with the pre-
dictions of the theory. Instead of analyzing the electrostatic
potential as done in the theory, the ion distribution can be
used here as a proxy, given that it shows much less
fluctuation in the long range [87]. Additionally, within
the linearized Poisson-Boltzmann approximation, there is a
linear relationship between the potential and ionic charge
density (relative to the bulk). This approximation is
expected to hold at larger distances (R > 20 Å) from the
charged DNA surface, so both should provide equivalent
information about the modes of screening. Indeed, we see
this linear relationship in the simulation results in Fig. 8
by plotting the concentration profiles of both Kþ and Mg2þ

on a logarithmic scale. Much closer to the DNA, for
10 < R < 20 Å, such a relationship between the ion
densities and the electrostatic potential may break down.
These concentration profiles shown in Fig. 8 reveal the
presence of two screening regimes, with a transition
between them occurring at some intermediate distance
from the DNA surface, in line with theoretical predictions.
As reasoned above, these ion concentration profiles are
still roughly proportional to the potential, so a simple fitting
function can be written to describe them, inspired by
Eqs. (38)–(42),

cfitðRÞ ¼ AK1ðκ̃1RÞ þ BK0ðκRÞ: ð46Þ

To restate, KnðxÞ is the nth order modified Bessel function
of the second kind, κ̃1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ g2

p
, and g ¼ 2π=H, where

H ≈ 34 Å is the helical pitch of the DNA molecule. The

(a) (b) (d)(c)

FIG. 7. Base-pair-reference averaged electrostatic properties of DNA in solution. (a) Projected 2D maps of the electrostatic potential
averaged upon alignment of individual base pairs to the reference, for 0.154-M KCl (top), 0.0513-MMgCl2 (middle), and the pure water
system (bottom). Excluding the base pair on both ends, the average is based on the last 100 ns for KCl and pure water, and the last 450 ns
for MgCl2. The trajectory coordinates were analyzed every 2 ns for the KCl and pure water systems or every 4 ns for the MgCl2 one.
(b) Radial profiles representing consecutive angular patches measured with respect to the x axis, illustrated by the schematic in the top of
panel (a). Potential profiles were generated by averaging over voxels within consecutive radial shells of the respective angular patches.
Line colors follow the same convention as in Fig. 5, with Kþ shown in red, Mg2þ in blue, and pure water in black. The angular range
corresponding to each subplot is indicated below the respective curve. (c) Zoomed-in view of the shaded (purple) patch in panel
(b) (10 < R < 20 Å). The right axis (dashed lines) is the total charge density averaged over the respective angular patches, for Kþ (red)
and Mg2þ (blue). The pure water lines are not visible at this scale. The dotted (black) line is a guide to the eye, marking zero for both left
and right axes. (d) Dipole moment originating from water molecules. Colors in the 2D map represent the local dipole moment density,
whereas the black lines depict the average direction interpolated over the nearby voxels. Any dipole moment arising from separation of
ions has been neglected in the analysis of the electrolyte systems.
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prefactors A and B are fitting parameters; within the theory,
the balance between these parameters will depend on a
complex relationship between the counterion adsorption
fractions fi and the overall counterion compensation Θ,
which in turn will depend on the specific electrolyte ions we
wish to examine. Fitting the data, we focus on the inter-
mediate region 20 < R < 40 Å. Remarkably, we indeed see
the presence of this renormalized Debye screening region in
both Kþ andMg2þ electrolyte simulations, where the Debye
length of the electrolyte κ−1 is renormalized by the helical
structure of the DNA to become λD ≈ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ g2

p
. For

simulations performed with Kþ, this screening regime
persists until R ∼ 38 Å, which agrees well with the param-
eters used for the plots in Figs. 3 and 4. However, this
transition occurs at closer distances of R ∼ 29–30 Å in the
Mg2þ case, as indicated by the dashed line in Fig. 8.
The quantitative difference in the behavior of the two

electrolytes is understandable when we consider the effect
of counterion condensation on the DNA molecule. The
location of the transition to renormalized screening length
depends on the balance of the fitting prefactors A and B,
which are functions of the counterion adsorption pattern
fractions and the overall charge compensation. Studies

examining the adsorption of Kþ and Mg2þ to DNA suggest
that the two ionic species have similar adsorption patterns,
both preferentially binding to the major groove [34], thus
leaving the charge compensation Θ to be the only strong
remaining factor in this analysis. Naturally, the divalency of
the Mg2þ ions will lead to much stronger charge compensa-
tion and hence nontrivial suppression of the different helical
harmonics, causing the shift in the cross-over point. Note that
this behavior may not be reflected in the fitting parameters
because of the inaccuracy associated with modeling the
longer-range screening behavior.
It is important to also note that, in principle, the present

linear electrostatic model of the system was not expected to
hold for Mg2þ at such bulk concentrations. It is well known
that the high charge density of the ions leads to strong
nonlinearity in their electrostatics. However, as a result of
our simulations, it seems that, also at these physiological
concentrations (and hence larger Debye lengths), linear
electrostatics can be a valid approximation for biological
systems, contrary to the previous arguments [3,15].

VII. DISCUSSION AND CONCLUSIONS

In this work, we have conducted an in-depth joint
theoretical and computational study of the electrostatics of
DNA. Taking into account all the complexities of the system,
namely, the double helicity of the DNAmolecule, finite size,
charge fluctuations through smearing effects, and, most
importantly for this paper, the nonlocal dielectric properties
of the solvent, we were able to construct a theoretical
framework in which these electrostatics can be analyzed.
These theoretical results and predictions have been

substantiated by extensive computational characterization
through all-atom molecular dynamics simulations, where
we have analyzed and observed, to high accuracy, this
complex interplay between the DNA and the solvent and
electrolyte ions. Given the number of plots shown in each
panel of Figs. 3–8, we presented the results of the theory
and simulations separately. Appendix D presents a direct
comparison, showing the differences in these results as line
plots on the same set of axes. We comment there on
discrepancies between the linear response theory and the
simulations, the latter of which may contain nonlinear,
dielectric saturation effects [49,88], which we also discuss
in Appendix D.
Key points—Through both theoretical and computa-

tional analyses we were able to understand the following:
(i) The electrostatic potential inside the DNA is pos-

itive, despite having such a strong negative charge
from the phosphate backbone. Such an effect results
from the coupled screening effects of structured
water in the grooves and ion localization.

(ii) There are strong electric-field oscillations in the near
vicinity of the DNA molecule. Analysis of the
polarization density of water shows that these oscil-
lations arise from structured water, both within the

FIG. 8. Long-range electrostatic screening in MD simulations.
Radially averaged profiles of Kþ and Mg2þ concentrations,
showing two screening regimes in the electrostatics of DNA.
The profiles are fitted using Eq. (46), and the resulting fits are
shown as dashed lines. The fit is remarkably accurate in the
intermediate range, where the screening behavior is characterized

by the “renormalized Debye length,” λD ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ g2

p
. As

reasoned in the text, the reproduction of longer-range Debye
screening would require unrealistically large simulation volume
and simulation times. The data that might be affected by the
finite-size effects (after the transitions between regimes denoted
by the vertical dotted lines) are shown in gray. The fitting
prefactors are calculated as follows: (i) for Kþ, A ¼ 7.068,
B ¼ 1.528; (ii) for Mg2þ, A ¼ 3.624 and B ¼ 0.389.
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grooves of DNA and on the DNA phosphate
backbones.

(iii) At physiological concentrations of KCl, the presence
of ions does not disrupt these oscillations, which is
evident from comparing both the polarization density
[Fig. 7(d)] and the electrostatic potential profiles
[Figs. 5(b) and 7(b)] in both pure water and physio-
logical electrolyte. Rather, the ions simply screen the
potential, shifting the profile in the positive direction,
and they only slightly affect the structuring of the
water dipoles. This result for the electrostatic potential
is also observed for MgCl2, although at the concen-
tration considered, the cations disrupt this water
structuring [Fig. 7(d), middle] more strongly.

(iv) The electric-field distribution across simulations
shows little to no difference in the presence or
absence of cations, a result that is mirrored by the
theoretical model. Such a consistent result across
simulations implies that, in the close range, water
dominates the electrostatics of a DNA molecule at
physiological concentrations, validating the results
of the theory.

(v) We can see that the first layer of ions in the double
layer prefers to be localized in the first potential well
created by the overscreening dielectric response of
water to the DNA charge. In other words, these ions
are physisorbed preferentially with their first hydra-
tion shell. Further away from the DNA, these trends
are less obvious due to the diminished depth of
the wells.

(vi) At intermediate distances, outside of the range of
water correlations, the Debye length is renormalized,
i.e., effectively decreased, by coupling to the double-
helical structure of the DNA molecule.

(vii) The Lorentzian contribution to the dielectric response
of water, which effectively reduces the dielectric con-
stant close to theDNA surface, dramatically enhances
the electrostatic potential and the electric field in that
range, becoming unimportant at long distances.

Points to consider–Despite the good agreement between
the simulations and theory, it is important to note the
approximations used within the theory. First, we do not
account for the excluded volume of the DNA itself, as per
the embedded charge approximation (see Sec. II B 1.).
Hence, the results obtained within one molecular diameter
of water, about 2.5 Å around each helical line, must be
taken with caution. This approximation together with the
overscreening dielectric response of water, gives rise to an
artefact: the sign of the potential is inverted at these charged
helical lines. Smearing of these lines diminishes this
artefact, but does not remove it completely. Second, the
approximation used for the dielectric function of the
electrolyte is the simplest “interpolation” form we can
use. Such a form allows analytical calculation of the
electrostatic potential, leading to reasonable results as
compared to MD simulations. Still, it must be

acknowledged that the quantitative results will depend
strongly on the model of dielectric response used.
The effect of undulations within the primitive model of

the solvent was studied earlier in Ref. [89]. It was found
to be substantial in the interaction between long DNA
molecules in dense DNA fibers. However, again, undu-
lations have wavelength of the order of bending persistence
length 500 Å, much larger than all the characteristic scales
of the structure of water. The same is true for the torsional
fluctuations [90,91]. In the theory, thermal fluctuations of
the individual charge groups were taken into account here
through introduction of Debye-Waller-like factors, and in
the simulations, they were controlled by bond-simulating
potentials in the force fields, plus an additional restraining
potential that ensured that the DNA axis was kept straight.
To understand the role of the latter, for comparison, we

also performed simulations with a much softer restraining
potential (kspring ¼ 0.5 kcalmol−1Å−2 applied on every
nonhydrogen atom). We see some quantitative effects,
which are discussed in Appendix C.
Note that in the theory, we modeled the DNA molecule

as an ideal double helix, with the intention to unravel the
interplay between the corresponding pattern of the DNA
charge distribution and the structure of water in the
formation of the electric field. Understanding this case is
a necessary and natural first approach to the problem. To be
consistent with this approach, simulations were performed
for a specific sequence in which the distortions of the
helical structure were minimal. This sequence consisted
of two single strands—one poly(AT) and one poly(TA)—
hybridized in a double-helical structure with minimal
variance of twist and rise.
Earlier theoretical approaches have investigated the

effect of sequence-dependent nonideal helicity leading to
accumulation of helical distortions over distances larger
than the so-called helical coherence length λc [12]. This
effect is important in the interaction of long DNA tracts,
longer than λc [12,92–94], estimated from experiments as
11 nm [95]. Thus, as the range of correlations of polari-
zation fluctuations in water (of the order of 1 nm) are much
shorter than λc, such distortions are not expected to affect
the distribution of the local electrostatic field around DNA.
However, this idea does not dismiss future, more-detailed
investigations of this issue, although we do not anticipate
any new significant qualitative changes.
However, given the good agreement with simulations,

we are confident that this analytical, linear, nonlocal
electrostatic theory captures the key features of the electric
field around DNA and hence emphasizes the importance of
the solvent structural effects in the electrostatics of this
most important molecule of life.

ACKNOWLEDGMENTS

This work was made possible with support from
the Leverhulme Visiting Professorship Grant to A. A.

ELECTRIC FIELD OF DNA IN SOLUTION: WHO IS IN … PHYS. REV. X 14, 031042 (2024)

031042-21



(No.VP2-2019-012). J. G. H. acknowledges support from the
Imperial College President’s PhD Scholarship; J. G. H. and
A. A. K. were supported by the Leverhulme Trust Grant
No. RPG-2022-142. K. C. and A. A. acknowledge support
from the Human Frontier Science Project (No. RGP0047/
2020) and the National Institute of General Medical Sciences
(No. R01-GM137015). Supercomputer time was provided
through the Leadership Resource AllocationNo.MCB20012
on Frontera of the Texas Advanced Computing Center and
ACCESS Allocation No. MCA05S028.

APPENDIX A: NONLOCAL SPATIAL
ELECTROSTATIC PROPAGATOR

1. Characteristic lengths and coefficients

Equation (42) contains a number of parameters that
were too cumbersome to include in the main text. Their
expressions result from taking the integral over K in
Eq. (24) by contour integration, with the dielectric function
defined as in Eqs. (6) and (7). We present these expressions
here, in terms of the quantities defined in the main text.

κ̃n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2 þ n2g2

q
; ðA1Þ

q̃nd1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Λ2
1

þ n2g2
s

; ðA2Þ

g̃Rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 −q2d2−n2g2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 −q2d2−n2g2Þ2þ 4Q2q2d2

q
2

vuut
;

ðA3Þ

g̃In ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d2 −Q2þn2g2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2−q2d2−n2g2Þ2þ 4Q2q2d2

q
2

vuut
;

ðA4Þ
where we can clearly see that g̃Rn → Q and g̃In → qd2 ¼
1=Λ2 for n → 0, as stated in the main text. The prefactors
for each term in Eq. (42) are given by

g̃κ ¼
1

ε�
−

γ

1− κ2Λ2
1

�
1

ε�
−
1

ε

�

−
ð1− γÞðq2d2þQ2Þ2

Q4þ 2Q2ðq2d2þ κ2Þþ ðq2d2 − κ2Þ2
�
1

ε�
−
1

ε

�
; ðA5Þ

g̃L ¼ 1

1 − κ2Λ2
1

�
1

ε�
−
1

ε

�
; ðA6Þ

g̃O ¼ π

4

ðq2d2 þQ2Þ2
Qqd2ðQ2 − q2d2 − 2iQqd2 þ κ2Þ

�
1

ε�
−
1

ε

�
: ðA7Þ

2. Comparison with local electrostatic approximation

While the structure and terms ofEq. (42)were discussed in
Sec. III C, it is not immediately clear how the electrostatic

potential will differ from the classical, local theory with the
combination of Bessel and Hankel functions presented. The
classical limit can be obtained rather simply by considering
ε� → ε, which, fromEq. (6), leads to amacroscopic dielectric
response, where εðkÞ ¼ ε. This result can clearly be seen in
the coefficients in Eqs. (A5)–(A7), where the nonlocal
“correction” terms go to zero in the local limit.
In Fig. 9, we show a comparison of calculations of the

electrostatic propagator, based on the nonlocal theory,
Eq. (42), with the results of a calculation in which the
dielectric response of the solvent is described by a constant.
Note here that only the zeroth harmonic (n ¼ 0) of the
propagator is plotted, which is proportional to the electro-
static potential created by a homogeneously charged cylin-
der. As discussed for a simple spherical ion in Sec. II B, the
water structure manifests as decaying oscillations, a result
of the “overscreening” dielectric response of water. When
compared to the local limit, the electrostatic potential is
greatly enhanced in the vicinity of the charge distribution.
However, for DNA in reality, oscillations of such large

amplitudes will never emerge. Indeed, thermal fluctuations
and the excluded volume of the charge distribution will
substantially suppress these oscillations. These effects can
be accounted for in the simplest way by smearing of the
charge distribution in the radial direction, which is done by
application of the smearing operator ζ̂, as defined in Eq. (45).
As expected, for intermediate levels of smearing, the
amplitudes of the oscillations are dramatically reduced,
yet they still show a significant deviation from the local
limit. For larger smearing parameters, the oscillatory patterns
are entirely dephased. However, effects of nonlocality still

FIG. 9. Comparison of nonlocal and local calculations of the
electrostatic propagator, and the effect of smearing. Here, the
zeroth harmonic (n ¼ 0) of Eq. (42) is plotted, with the character-
istic lengths and coefficients defined as in Eqs. (A1)–(A7). The
nonlocal parameters and Debye length are as defined in Fig. 3.
The local limit is obtained by setting ε� ¼ ε. Smearing of the
electrostatic potential is performed by applying the smearing
operator ζ̂, as defined in Eq. (45), with ā ¼ 10 Å, for the
smearing parameters δa, indicated in the figure legend.
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remain; there is an enhancement in the profile close to the
charge, a result of theLorentzian contribution to thedielectric
response.

APPENDIX B: ANALYTICAL EXPRESSIONS
FOR ELECTRIC FIELD AND CHARGE DENSITY

Here, we present analytical expressions for the electric
field E and the total charge density ϱ derived from the
electrostatic potential. In cylindrical coordinates,

E ¼ −
�

∂

∂R
uR þ 1

R
∂

∂ϕ
uϕ þ

∂

∂z
uz

�
φ; ðB1Þ

where uR, uϕ, and uz are the unit vectors of the three
components of the electric field. Each of these components
can be split into three contributions: DNA, phosphate
charges of DNA; CC, condensed counterions; and W,
the surface bound charge.

EDNA
R ¼ −8πaDNAσ̄

X∞
n¼0

e−
1
2
n2g2Δ2

eff

δn;0 þ 1
cos ½nðϕ − gzÞ� cos

�
nϕs

2

�
W 0

nðR; aDNA; κÞ; ðB2Þ

EDNA
z ¼ −8πaDNAσ̄

X∞
n¼1

nge−
1
2
n2g2δz2str sin ½nðϕ − gzÞ� cos

�
nϕs

2

�
WnðR; aDNA; κÞ; ðB3Þ

EDNA
ϕ ¼ 8πaDNAσ̄

R

X∞
n¼1

ne−
1
2
n2g2δz2str sin ½nðϕ − gzÞ� cos

�
nϕs

2

�
WnðR; aDNA; κÞ; ðB4Þ

ECC
R ¼ 8πaCCσ̄Θ

X∞
n¼0

ðf1e−1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2Þ

δn;0 þ 1
cos ½nðϕ − gzÞ�W 0

nðR; aCC; κÞ; ðB5Þ

ECC
z ¼ 8πaCCσ̄Θ

X∞
n¼1

ng(f1e−
1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2) sin ½nðϕ − gzÞ�WnðR; aCC; κÞ; ðB6Þ

ECC
ϕ ¼ −

8πaCCσ̄Θ
R

X∞
n¼1

n(f1e−
1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2) sin ½nðϕ − gzÞ�WnðR; aCC; κÞ; ðB7Þ

EW
R ¼ 8πaWP̄0

X∞
n¼0

(w1e−
1
2
n2g2δz2w1 þ w2ð−1Þne−1

2
n2g2δz2w2)

δn;0 þ 1
cos ½nðϕ − gzÞ�W 0

nðR; aW; κÞ; ðB8Þ

EW
z ¼ 8πaWP̄0

X∞
n¼1

ng(w1e−
1
2
n2g2δz2w1 þ w2ð−1Þne−1

2
n2g2δz2w2) sin ½nðϕ − gzÞ�WnðR; aW; κÞ; ðB9Þ

EW
ϕ ¼ −

8πaWP̄0

R

X∞
n¼1

n(w1e−
1
2
n2g2δz2w1 þ w2ð−1Þne−1

2
n2g2δz2w2) sin ½nðϕ − gzÞ�WnðR;aW; κÞ; ðB10Þ

where, in Eqs. (B2), (B5), and (B8), W 0
n ¼ ∂Wn=∂R.

To incorporate the effect of smearing of the charge
distributions, each of these contributions will be smeared
with the operator ζ̂ν as defined in the main text. Each
component of the electric field will then be Ētot

β ¼P
ν ζ̂νE

ν
β (the bar signifies smearing), where β ¼ fR;ϕ; zg

and ν ¼ fDNA;CC;Wg. Thus, themagnitude of the smeared
electric field is

jĒtotalj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
β

ðĒtot
β Þ2

s
: ðB11Þ

The total charge density is proportional to the Laplacian
of the potential,

ϱ ¼ −
1

4π

�
1

R
∂

∂R
ðR ∂

∂R
Þ þ 1

R2

∂
2

∂ϕ2
þ ∂

2

∂z2

�
φ: ðB12Þ
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For ease of calculation, we can separate out each term of the total charge density, ϱ ¼ ϱR þ ϱz þ ϱϕ. The R-component
ϱR is given by

ϱR ¼ −2aDNAσ̄
X∞
n¼0

e−
1
2
n2g2Δ2

eff

δn;0 þ 1
cos ½nðϕ − gzÞ� cos

�
nϕs

2

�
Wð2Þ

n ðR; aDNA; κÞ

þ 2aCCσ̄Θ
X∞
n¼0

(f1e−
1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2)

δn;0 þ 1
cos ½nðϕ − gzÞ�Wð2Þ

n ðR; aCC; κÞ

þ 2aWP̄0

X∞
n¼0

(w1e−
1
2
n2g2δz2w1 þ w2ð−1Þne−1

2
n2g2δz2w2)

δn;0 þ 1
cos ½nðϕ − gzÞ�Wð2Þ

n ðR; aW; κÞ; ðB13Þ

where Wð2Þ
n ¼ ð1=RÞ∂ðRW 0

nÞ=∂R. When writing the smeared charge density ϱ̄, it is also convenient to separate

Wð2Þ
n ðR; aν; κÞ into three terms:

Wð2Þ
n ¼ Wð2Þ

n;R<aν
þWð2Þ

n;R¼aν
þWð2Þ

n;R>aν
: ðB14Þ

Here, Wð2Þ
n;R¼aν

¼ δðR − aνÞ; using the truncated Gaussian distribution defined in Eq. (44), the smearing of this term gives

ζ̂Wð2Þ
n;R¼aν

¼
ffiffiffi
2

π

r
ΘðRÞ

δaνð1þ erf½ āνffiffi
2

p
δaν
�Þ exp

�
−
ðR − āνÞ2
2δa2ν

�
: ðB15Þ

The left and right terms, when smeared, are calculated numerically. We can also write expressions for the z and ϕ
components,

ϱz ¼ 2aDNAσ̄
X∞
n¼1

n2g2e−
1
2
n2g2Δ2

eff cos ½nðϕ − gzÞ� cos
�
nϕs

2

�
WnðR; aDNA; κÞ

− 2aCCσ̄Θ
X∞
n¼1

n2g2(f1e−
1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2) cos ½nðϕ − gzÞ�WnðR;aCC; κÞ

− 2aWP̄0

X∞
n¼1

n2g2(w1e−
1
2
n2g2δz2w1 þ w2ð−1Þne−1

2
n2g2δz2w2) cos ½nðϕ − gzÞ�WnðR; aW; κÞ; ðB16Þ

ϱϕ ¼ 2aDNAσ̄
R2

X∞
n¼1

n2e−
1
2
n2g2Δ2

eff cos ½nðϕ − gzÞ� cos
�
nϕs

2

�
WnðR; aDNA; κÞ

−
2aCCσ̄Θ

R2

X∞
n¼1

n2(f1e−
1
2
n2g2δz2c1 þ f2ð−1Þne−1

2
n2g2δz2c2) cos ½nðϕ − gzÞ�WnðR; aCC; κÞ

−
2aWP̄0

R2

X∞
n¼1

n2(w1e−
1
2
n2g2δz2w1 þ w2ð−1Þne−1

2
n2g2δz2w2) cos ½nðϕ − gzÞ�WnðR; aW; κÞ; ðB17Þ

where smearing is applied in a way similar to the above.
These expressions for the magnitude of the electric field
and the charge density are plotted in Figs. 3(e) and 3(f).

APPENDIX C: EFFECT OF STRUCTURAL
FLUCTUATIONS ON THE ELECTROSTATIC

PROPERTIES OF DNA IN SOLUTION

In the main text, we used MD simulations to determine
the electrostatic properties of DNA. In those simulations,
the DNA atoms were restrained to their initial coordinates

using rather stiff harmonic potentials (spring constant
kspring ¼ 10 kcalmol−1 Å−2). In order to investigate the
potential impact of structural fluctuations on our conclu-
sions, we conducted two additional simulations using
much weaker harmonic restraints (spring constant kspring ¼
0.5 kcalmol−1 Å−2) for the 0.154-M KCl and pure water
electrolyte conditions.
While the cylindrically averaged 2D maps [Fig. 10(a)]

appear quite similar to and visually indistinguishable from
those with strong restraints on DNA atoms [Fig. 5(a)], the

HEDLEY, COSHIC, AKSIMENTIEV, and KORNYSHEV PHYS. REV. X 14, 031042 (2024)

031042-24



(a) (b)

(c)

(d) (e) (f)

FIG. 10. Effect of restraining the potential on the MD description of DNA electrostatics. (a) Cylindrically averaged electrostatic
potential maps for KCl (top) and pure water (bottom) systems. (b) Radially averaged profiles of the electrostatic potential for KCl (red)
and MgCl2 (blue) with the stiff spring (kspring ¼ 10 kcal mol−1 Å−2), and KCl (orange) with the weaker spring (kspring ¼
0.5 kcal mol−1 Å−2). Solid and dashed lines have the same meaning as in Fig. 5(b), bottom. (c) Difference potentials computed as
in Fig. 5(c). KCl (red) and pure water (black) systems with the stiff spring are made transparent. (d) Base-pair-reference averaged
electrostatic potential map for KCl (top) and pure water (bottom). (e) Radial profiles representing consecutive angular patches measured
with respect to the x axis. The analysis and line colors follow the same convention as in Fig. 7(b). The systems with the stiff spring are
shown as light gray lines. (f) Dipole moment originating from water molecules, for KCl (top) and pure water (bottom) with the weaker
spring kspring ¼ 0.5 kcal mol−1 Å−2. Equivalent plots for the stiff spring are shown in Fig. 7(d). The analysis procedure and plot
characteristics follow the same convention as in Fig. 7(d).
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corresponding line plots [Figs. 10(b) and 10(c)] exhibit a
slight lateral shift. The oscillatory peaks align well but are
shifted by approximately 0.4 Å away from the center of the
DNA helix. This shift is caused by the softer restraints on
DNA atoms, resulting in an average RMSD of the non-
hydrogen atoms of about 0.68 Å compared to 0.28 Å with
the stronger restraints, yielding a relative difference of
around 0.4 Å. A similar shift is observed in the difference of
the radially averaged potentials obtained using fine and
coarse electrostatic calculations [Fig. 10(c)], following the
analysis described in Fig. 5(c). Similar oscillations are also
seen when averaged with respect to the reference base pair
[Figs. 10(d) and 10(e)].
Despite the similarity in the potential with and without

strong restraints, the dipole moment pattern is significantly
disrupted with the weaker restraints. In the KCl system, the
dipole moment is nearly completely disordered [Fig. 10(f),
top]. In contrast, the pure water system displays an asym-
metric pattern (Fig. 10, bottom), with more order within the
minor groove. This finding can be attributed to the higher
tendency of water molecules to become trapped within the
minor groove [27].

APPENDIX D: DIRECT COMPARISON
BETWEEN THEORY AND SIMULATIONS

The electrostatic potential as calculated in the theory is
directly compared here against the results of the molecular
dynamics simulations in Fig. 11.

Inside the DNA, for R < 10 Å, we can clearly see that,
despite there being qualitative similarities, it is not possible
to make quantitative comparisons between the results of the
theory and simulation. This finding can be attributed to
the theory not explicitly considering the contribution of the
quadrupolar moment to the adsorbed water in the grooves.
A preliminary analysis of the molecular dynamics simu-
lations shows that this quadrupolar contribution is incred-
ibly strong, leading to the massive values of potential inside
the DNA relative to the bulk, in line with previous
suggestions [61]. However, given the size of the simulated
system, this analysis itself is limited by computational
power and memory, so a more detailed investigation of this
effect is left to future work. Regardless of quantitative
differences, both the theory and simulations point towards
structured water in the grooves as the main reason for this
positive potential inside the DNA.
Outside the DNA, for R > 10 Å, a much better agree-

ment is found. Not only do the theory and simulation match
well in terms of absolute value of the potential but also in
terms of its oscillating features. Of course, within about
2.5 Å of the phosphate group, there are some qualitative
differences, which can be attributed to nonlinear response
and dielectric saturation effects neglected within the linear
response theory developed here, which of course will be
present in the simulations. Such effects were discussed
above in the context of the embedded charge approxima-
tion, and they have been explored in detail in Refs. [49,88].
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