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How to Measure the Controllability of an Infectious Disease?
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Quantifying how difficult it is to control an emerging infectious disease is crucial to public health
decision-making, providing valuable evidence on if targeted interventions, e.g., quarantine and isolation,
can contain spread or when population wide controls, e.g., lockdowns, are warranted. The disease
reproduction number R or growth rate r are universally assumed to measure controllability because R = 1
and r = 0 define when infections stop growing and hence the state of critical stability. Outbreaks with
larger R or r are therefore interpreted as less controllable and requiring more stringent interventions. We
prove this common interpretation is impractical and incomplete. We identify a positive feedback loop
among infections intrinsically underlying disease transmission and evaluate controllability from how
interventions disrupt this loop. The epidemic gain and delay margins, which, respectively, define how much
we can scale infections (this scaling is known as gain) or delay interventions on this loop before stability is
lost, provide rigorous measures of controllability. Outbreaks with smaller margins necessitate more control
effort. Using these margins, we quantify how presymptomatic spread, surveillance limitations, variant
dynamics, and superspreading shape controllability and demonstrate that R and r measure controllability
only when interventions do not alter timings between the infections and are implemented without delay.
Our margins are easily computed, interpreted, and reflect complex relationships among interventions, their

implementation, and epidemiological dynamics.
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I. INTRODUCTION

Understanding and quantifying the effort required to
control or contain outbreaks is a principal goal of
infectious disease epidemiology [1]. During emergent
stages of a potential epidemic, when populations are
immunologically naive, assessments of disease control-
lability provide critical evidence on whether targeted
interventions, for example, contact tracing, isolation,
and quarantines, are sufficient to curb spread [2] or
whether nonselective control actions, such as population-
level lockdowns and closures, are necessary [3]. These
assessments typically rely on mathematical models [4]
that combine disease surveillance data (e.g., infection
times and cases) with intervention mechanisms (e.g., how
isolation interrupts transmission chains) to estimate con-
trollability (in some sense) and have informed the public
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health responses for influenza, measles, SARS, Ebola
virus disease, and COVID-19, among others [2,3,5-7].
Despite these applications, a systematic and rigorous
definition of controllability is lacking [8—10]. While key
factors influencing the difficulty of controlling epidemics
such as transmissibility, superspreading levels, the effi-
ciency of contact tracing, and the proportion of presympto-
matic infections are known [1,8,11], studies generally
compute the reproduction number R, or (less commonly)
the epidemic growth rate r, under proposed interventions to
measure controllability [12]. For example, the impact of
contact tracing and presymptomatic spread on controllabil-
ity are assessed by how they effectively change R [1,13,14].
Here we use R and r to generally indicate the (constant)
controlled reproduction number and growth rate subject to
some control action or intervention. If no controls are
applied, these become the popular basic reproduction
number and intrinsic growth rate. The relationship between
R and r depends on the pathogen generation time distribu-
tion [15] w, which describes the times between infections.
As R = 1 or r = 0 defines critical epidemic stability, i.e.,
the state where infections will neither grow nor wane [4], it
seems reasonable to base controllability on the distance of
R —1 or r—0. Stable epidemics have waning infections
(R < 1,r <0) and unstable ones (R > 1,r > 0) feature
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exponential growth. We therefore expect that larger R or r
values signify reduced controllability, justifying stronger
interventions, while smaller values imply augmented
robustness to transmissibility changes or intervention
relaxations. The common interpretation of these distances
is that we must scale infections by 1/R within timeframes
proportional to 1/r to reach critical stability [12]. This
interpretation further underlies related measures of inter-
vention efficacy such as the herd immunity threshold (i.e.,
the proportion of the susceptible population that must be

vaccinated or acquire immunity) [4,12] and the proportion
of infections that must be targeted by contact tracing [2]
(both relate to 1-1/R), as well as the speed at which
isolation or digital tracing [9,13,16] must be applied to
suppress infections (both relate to doubling time log(2)/r).

In this study, we prove that the above interpretations are
only valid under impractical and quite restrictive assump-
tions. We start by recognizing that, intrinsically, an epi-
demic represents a positive feedback loop between past and
upcoming infections [see Fig. 1(a)]. Interventions are then

(a) Control actions disrupt the positive feedback loop driving infectious disease transmission
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Epidemic architecture and controllability definition. Panel (a) shows that the renewal epidemic model is a positive feedback

system with signals being successively fed back along a loop and added to imported infections M(s). The loop TF L(s) (negative by
convention for positive feedback) governs the poles of the closed-loop TF G(s), which completely expresses how imports combine with
the epidemic dynamics to generate new infections /(s). When we intervene or initiate control action, we disrupt the feedback loop via a
controller K (s). Panel (b) explains the concept of controllability. This is the effort needed to drive the epidemic to critical stability where
at least one pole has a 0 real part (others must be negative). We sketch stable and unstable epidemics with no controller and an initial
import and contrast the conventional notion of controllability with our control theoretic approach. Our margin pair completely and
precisely describes how L(s) can be forced to criticality in the complex plane (via scaling and rotation) and, crucially, emphasizes that
the distance of L(s) from —1 measures controllability. The distances of r from 0 and R from 1 are specializations of this condition.
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control actions that disrupt this loop. This reframing of the
disease transmission process allows us to adapt tools from
control theory [17] and derive what we term as the epidemic
transfer function. This captures how incident (new) infec-
tions are generated under arbitrary generation time distri-
butions and (linear) control actions in response to imported
infection time series. We propose a rigorous controllability
measure defined by the gain and delay margins of the
epidemic transfer function, which quantify two important
and distinct distances from the critical stability point [see
Fig. 1(b)]. If an intervention is applied to two outbreaks, for
example, the one with the larger pair of margins is more
controllable under that intervention.

The gain margin M is the factor by which we can scale
infections (known as the gain) before critical stability is
attained, with M; = 1 demarcating critical stability [18].
An M; = 2 means the epidemic remains controlled unless
infections double (e.g., from releasing interventions or the
emergence of more pathogenic variants), while M; = 1/2
means we must halve infections (e.g., via more stringent
interventions that reduce contact rates) to control trans-
mission. The delay margin M, quantifies the lag we can
afford when imposing interventions, with M = 0 delim-
iting critical stability [18]. An M = 7 indicates that if we
take more than a week to intervene (e.g., to trace and isolate
infected individuals), then we are unable to keep the
epidemic controlled. This (M, M) pair framework yields
a number of advantages and controllability results.

First, our margins more accurately describe what R and r
only attempt to quantify —the scale and speed of the
required control effort. Particularly, we show that the
universal 1/R interpretation of controllability is only valid
if interventions reduce infections without inducing dynam-
ics and are implemented without delay. Under those
conditions M; = 1/R, and M, is unimportant (i.e., it is
undefined if R > 1 or infinite if R < 1). However, these
conditions are unrealistic given mounting evidence that
interventions change generation time and other epidemio-
logical distributions (which is how a control action induces
dynamics) and that practical constraints on outbreak control
inevitably cause lags [7,19-22]. Additionally, by inter-
rogating our epidemic transfer function, we find that r only
quantifies the asymptotic epidemic growth rate [23] and so
neglects short-term dynamics (which are crucial for under-
standing unwanted oscillations in infections) and their
interactions with imposed interventions. These effects belie
our conventional notions of controllability.

Second, our margin-based framework generalizes and
unifies earlier approaches [1,8]. We characterize how
presymptomatic spread, transmission heterogeneities from
superspreading, multitype epidemics (but without consid-
ering contact structures), or cocirculating variants and
surveillance limitations (e.g., reporting delays and under-
reporting) all modulate controllability. These complexities
can be commonly evaluated using our two margins, which

always have the same interpretation. This is beneficial
because R or r is not always clearly defined or even
meaningful for some of these complexities [24,25].
Importantly, our margins yield thresholds of controllability
under these complexities that can be directly compared to
decide the relative effectiveness of targeted and population-
level interventions. These thresholds reduce to more
conventional 1-1/R-type results under the restrictive con-
ditions mentioned above.

Last, our margins offer a more complete measure of
controllability. Because induced dynamics from interven-
tions, implementation delays, and surveillance imperfec-
tions are pervasive, even if proposed interventions are
expected to drive R < 1 or r <0, this does not reliably
inform us about the required control effort and the robust-
ness of the epidemic once controlled by these actions. We
find ample evidence of controlled (R < 1) epidemics with
Mg < 1/R, indicating that standard controllability inter-
pretations overestimate robustness to increases in infec-
tions. We also show that some of these controlled
epidemics possess Mp = 7-14 days, signifying that if
the combined lag from surveillance and intervention delays
rises above this value (e.g., due to downscaling of surveil-
lance or control programs), then the epidemic will become
destabilized. Neither r nor R can generally expose these
issues. Our methodology probes the notion of controllabil-
ity and raises questions about the understudied rebound
effects of interventions.

II. METHODS

A. Renewal models and transfer functions

The renewal branching process [26] is a fundamental and
popular infectious disease model that has been applied to
describe epidemics of COVID-19, pandemic influenza,
Ebola virus disease, measles, SARS, and many others
[12,27]. This model defines how incident infections at
time ¢, i(f) depend on the reproduction number R and
incidence at earlier times i(7) (z < ¢, with a limit infini-
tesimally before ) via the autoregressive relationship in the
left of Eq. (1),

i(1) = m() + R / i(@)w(t — )dr,

1
1= T"%7w

M(s). (1)
We assume that R is constant during our period of interest.
As Eq. (1) has no interventions and we consider initial
epidemic stages, R is the basic reproduction number. Note
that R can describe other (constant) effective reproduction
numbers when the renewal process is a good approximation
to later epidemic stage dynamics. Because this model is
linear, we neglect nonlinear effects such as those due to the
depletion of individuals that are susceptible to infection.
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Equation (1) includes input infections m(z) that have
been imported or introduced into our region of interest and
which eventually contribute to onward transmission [28].
Our output is i(¢). The kernel of the renewal autoregression
is w(r — 7), which is the probability of an infection being
transmitted after a duration of # — 7z time units. The set of
coefficients {w(x),x > 0} composes the generation time
distribution of the disease [15]. This captures variability in
the time it takes for a primary infection to cause a secondary
one. The generation time distribution is a key characteristic
of a pathogen that determines the temporal aspects of its
spread via the convolution in Eq. (1). We denote the mean
generation time as g = [§° tw(z)dr.

Since Eq. (1) is a linear model, we can analyze it in the
frequency or s domain using Laplace transforms; e.g.,

I(s) &ef J&° i(r)edt is the transform of i(7). This gives the
right side of Eq. (1) after some algebra with capitalized
forms as the transformed version of variables from the
time domain. We visualize this using the block diagram of
Fig. 1(a). We propose the ratio G(s) = I(s)M(s)~! as the
epidemic transfer function (TF) that maps input importa-
tions onto output infections. The roots of its characteristic
polynomial 1 — RW(s) [the denominator of G(s)] are the
poles of the renewal process and completely define the
stability of the epidemic [17]. A stable epidemic (infections
decay with time given initial imports) has poles with
negative real parts. An unstable epidemic (infections grow)
has at least one pole with positive real part. Critical stability
requires at least one pole with real part of 0, with all others
negative.

The form of the characteristic polynomial of G(s)
confirms that the dynamics of the epidemic depend
explicitly on R and the generation time distribution.
These are two of three quantities commonly used to depict
the transmissibility of infectious diseases. The third is the
asymptotic exponential growth rate of infections r =
lim,_ dlogi(z)/dt and also emerges from Eq. (1).
Since W(—s) is equivalent to the moment generating
function of the generation time distribution evaluated at
s, we know from Ref. [15] that W(r) = R™!. Interestingly,
r is also the dominant pole of G(s). Often the growth rate is
expressed as 7. = log v/c, the time it takes for infections to
(asymptotically) grow (or decline) by a factor c. At ¢ =2
we get the popular epidemic doubling time. We compute
appropriate forms of G(s) and its poles for generalizations
of Eq. (1) that model various interventions under practical
constraints in Sec. III.

B. Generation time distributions
and Laplace transforms

The dynamics of infectious diseases are largely deter-
mined by the generation time distribution because W(s) is
the only nonconstant term in the TF of Eq. (1). We model
W(s) as a phase-type distribution, which is an expansive

class built from combinations and convolutions of expo-
nential distributions. This class can approximate any
distribution [29] and includes the Erlang, exponential,
deterministic (degenerate), and bimodal distributions that
we examine in Sec. III. Erlang (or related gamma),
deterministic, and exponential distributions are used to
model influenza, measles, and COVID-19, among others
[3,15,26,27]. Multimodal and mixture distributions are
applied to diseases featuring multiple stages (which may
even involve vectors) or pathways of transmission, such as
malaria and Ebola virus disease [19,30].

All phase-type distributions conform to the relations in
Eq. (2), where we use bold to denote vectors or matrices
and x’ to denote the transpose of some row vector x,
W(s) = a(sl —T)"'(-T1"), WO0)=al'=1. (2)
In Eq. (2), T is a n> matrix of transition rates among the 7
distribution states, I the n2 identity matrix, & is a row vector
of length n summing to 1 (providing weights to the states),
and 1 is a row vector of n ones. Here, n represents the
complexity of the phase-type distribution relative to how
exponential distributions are combined. A standard expo-
nential distribution has n = 1. Mixtures of phase-type
distributions are also phase type, and we observe that their
Laplace transforms evaluate to 1 at s = 0 (equivalent to the
fact that probability distributions integrate to 1). We find
that this basic property is important for computing con-
trollability later in Sec. III.

For a mean generation time g, we can construct an Erlang
distribution with shape a and scale b such that g = ab by
setting n =a, a =[1,0,...,0], and T as a matrix with
nonzero elements of T =—b"' and T, = b~' for
1 <k < n. As a result, we obtain W(s) as

1 (bs+1)*—R

W(s):m, 1—RW(s)= (bs+1)7

3)

We also find the characteristic polynomial or denominator
from Eq. (1). This has roots when s = 5! (\/I_€ — 1), which
is the formula for the growth rate as expected from
Ref. [15]. Exponential and deterministic distributions have
a =1 and a — oo, respectively. We get the roots of the
characteristic polynomial of the exponential distribution by
simply substituting in Eq. (3). The deterministic distribu-
tion yields W(s) = e~ at the limit, is equivalent to
applying a delay of ¢ time units, and has a solution to
its characteristic polynomial of s = log v/R.

The bimodal distribution we consider is a mixture of two
Erlang distributions with state sizes n; = a; and n, = a,
and a = [2,0,...,0,1 —,0,...,0], which has n; —1
and then n, — 1 zeros, respectively. The choice of o
defines the mixture weighting. The state matrix has size
(n; +ny)? with T = —b7! and Ty = b7 for 1 <k <
ny and T, = —by!' and Ty, = b5! forn; +1 <k < ny.
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The b, and b, are chosen to get mean generation time g. We
obtain W(s) = >_2_, a,(bys + 1) 7% and numerically com-
pute the roots of its characteristic polynomial. We can
easily extend this formulation to allow higher-order mix-
tures. The phase-type structure allows us to describe
complex distributions without losing analytical tractability.

C. Margins of stability and notions of controllability

In the above subsections, we described the elements of
the renewal epidemic model and its characteristic poly-
nomial 1 — RW(s). Here we review the concepts of gain,
phase, and delay margin from classical control theory,
which underpin our results and provide measures of
how distant linear systems are from critical stability
[17]. The loop TF L(s) = —RW(s) (under no control)
captures the dynamics around the loop as in the block
diagram of Fig. 1(a). While in Sec. III we expand this L(s)
formulation to include a controller K (s) that describes our
epidemic intervention and investigate more generalized
model architectures, the principles and interpretation that
we detail here remain valid for all of these complexities.

Using L(s) our characteristic polynomial becomes 1 +
L(s) with the epidemic TF as G(s) = [1 + L(s)]~!. Poles
are complex solutions to L(s) = —1 + jO where j = v/—1.
We can write a pole as the complex number ¢ + jw. At the
critical stability point the dominant pole has ¢ = 0 so that
L(jw) = —1. Control theory [17] states that the distance in
the complex plane of L(jw) from —1 reflects the stability
properties of the process. We can describe this distance by
the multiplicative factor (the gain), and the angular change
(the phase) that, respectively, scale and rotate L(jw) onto
—1 + jO in the complex plane. These distances are known
as the gain and phase margin [17] and relate to polar
descriptions of complex numbers. Note that the other poles
also contribute to the form of L(jw) and so influence the
margins.

The gain margin M & |L(jwpc)|~! is the inverse of the
magnitude of L(s) evaluated at wpc, the first frequency at
which the phase crosses —z radians. Here, |.| denotes
magnitude so |6 + jo Vo2 + @ The phase margin

MPd:efﬂ—l—(D[(L(ijC)] is 7 plus the phase ®[.] (in

radians) evaluated at wgc, the frequency where |L(jw)|
first crosses 1 from above (known as gain crossover). The
phase margin measures how much the phase lag (i.e.,
clockwise rotation in the complex plane) can be added to
L(jwgc) before driving the epidemic to critical stability
[31,32]. The phase margin is not intuitive for our analyses
but can be transformed into a more interpretable delay
margin M, (e.g., in some cases My, = Mpawgd [31]). This
margin quantifies how much pure time delay or lag forces
L(s) to the critical point (lag reduces phase).

We compute both margins using in-built functions
[specifically, allmargin(.)] from the MATLAB control system
toolbox (see Ref. [33]). This essentially evaluates the

magnitude and phase of L(s) at every s = jo and finds
the appropriate crossover frequencies for determining the
margins. When systems have multiple wpc or wgc cross-
over frequencies, we consider the minimum margin to
ensure our characterization is robust. The gain and delay
margins define the two ways (scaling and rotation) that we
can drive our epidemic to critical stability. If we multiply
L(s) by the scale factor M or the angular shift e=*M»,
which is the Laplace transform of a pure delay of M, time
units, we drive the epidemic to the critical stability point
[32]. We compare this interpretation to more conventional
epidemic measures in Fig. 1(b).

Importantly, the distance of our system from stability
requires specifying both the gain margin and the delay
margin [17]. We propose this pair representation as our
measure of epidemic controllability, which quantifies the
intervention effort required to control an unstable epidemic
or the perturbation (e.g., to disease transmissibility R)
required to destabilize an epidemic that is already under
control. We expand this definition to include various model
architectures and interventions in Sec. III. Note that in
control theory, a system is only formally controllable if
inputs exist that drive it from any initial state to any desired
state in finite time. Our definition is more relaxed and
considers only what changes force epidemics to critical
stability and the required intensity of those changes. This
relates to margins (also termed relative stability) and aligns
with the informal definition commonly applied in infec-
tious diseases [1,10].

Although controllability here defines the control effort
needed to stabilize infections, it does not measure perfor-
mance. Performance depends on our control objectives, i.e.,
what we want our interventions to achieve [17]. These may
include desired margins but generally we may want our
system response, i(¢) in this setting, to meet some desired
dynamics u(7). A key long-term performance metric is the
error lim,_, o, [i(7) — u(t)] = lim,_qs[I(s) — U(s)]. The sec-
ond limit follows from the final value theorem [17]. If
U(s) = us~! is a desired equilibrium of infections (us~! is
the Laplace transform of a step function with amplitude u),
then lim,_0sG(s)M(s) — u measures accuracy. Important
short-term performance measures are the peak overshoot
max,[i(¢) — u(t)] and the level of oscillation of i(r) about
either u(t) or the equilibrium.

III. RESULTS

We start by expanding the framework from Sec. II to
explore the standard assumption that larger R or r signals a
less controllable epidemic [1,10,33]. This belief is sensible
as increases in R cause infections to multiply more and rises
in r engender faster multiplication. In Fig. 1(b), we recap
these conventional notions of controllability. We prove that
these universal notions are only true under restrictive and
idealistic intervention assumptions. Extending the margins
above, we construct a rigorous measure of epidemic
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controllability that accurately reflects the control effort
needed to stabilize a growing epidemic and the robustness
to perturbations of a controlled epidemic. To maintain
analytic tractability and as we focus on deriving funda-
mental insight into controllability, we study constant R or r
and neglect stochasticity (see Sec. II). In later sections, we
discuss relaxations of these assumptions and show that our
framework can assess how variant dynamics, presympto-
matic spread, superspreading, intervention lags, and sur-
veillance biases all modulate controllability.

A. Epidemic models, feedback control,
and transfer functions

The renewal process is widely used to model acute
infectious diseases and is given in Eq. (1). There, new or
output infections at time ¢, () result from multiplying all
active infections by R with m(z) as the introduced infec-
tions or input. Past infections are active if they can still
transmit. The generation time distribution {w(x),x > 0}
sets the transmission probabilities [26,27] with the active
infections computed as a convolution [{w(r—7)i(z)dr.
However, these quantities from Eq. (1) describe uncon-
trolled dynamics. Here we extend this model to include
control. We define a generic control strategy as one
reducing infections to A(7) <i(r) so that [lw(r—7)i(r)dr
is the equivalent convolution. This yields

i(1) = m(t) + R /0 Aot — 7)de,

/ i(7)k(t — 7)dz. (4)

The controller achieves this reduction by weighting
past infections by a kernel k(z) with overall effect
J§ k(z)dr = k. If this kernel has mass only at the present
so k(t) = k&(t), with §(r) as the Dirac delta function,
we get constant (memoryless) feedback control and
A(t) = ki(t). Generally, 0 <k <1 as control reduces
infections. However, if the epidemic is already stable,
we may set k > 1 to assess robustness to perturbations
in infections; i.e., we want to find the largest k that achieves
critical stability. The expressions in Eq. (4) become the
standard ones of Eq. (1) by removing control; i.e., by using
a constant controller with overall effect k = 1.

We Laplace transform Eq. (4) (see Sec. II) with I(s),
M(s), and W(s) as the transformed infection incidence,
importations, and generation time distribution in the
frequency or s domain. Since convolutions are products
in this domain, the controller satisfies A(s) = K(s)I(s)
with K(s) as its transform. We represent these operations as
the block diagram in Fig. 1(a), where we identify that,
fundamentally, an epidemic involves a positive feedback
loop between past and upcoming infections. Taking the

product of blocks along the loop, we obtain the loop TF as
L(s) in Eq. (5) below. Control aims to disrupt this loop,

1

L(s) =—K(s)RW(s), = TZKG)RW)

G(s) (5)

Using this structure, we can define the transmission
dynamics by the properties of the closed-loop TF
G(s) = I(s)M(s)~!, which describes how imports drive
total incidence. We can see the importance of L(s) by
noting that G(s) = [1 + L(s)]~! [18]. The poles of G(s)
determine the dynamics and stability of the epidemic and
are complex number solutions of L(s) = —1-+ jO (see
Sec. II). We recover the uncontrolled epidemic TFs by
setting K(s) = 1, which is the Laplace transform of the
constant controller above with k = 1.

We can interpret Eq. (5) by recognizing that an
unstable epidemic [at least one pole of G(s) has a positive
real part] successively multiplies infections along the
loop. This constitutes the positive feedback we illustrate
in Fig. 1(a). Interventions or control actions having
magnitude |K(s)| <1 limit this positive feedback by
interfering with the loop and hence attenuating this
multiplication. Modification of the intrinsic epidemic
dynamics RW(s) by the controller K(s) within the loop
achieves this goal. A stable epidemic [all poles of G(s)
have nonpositive real parts] is also multiplicative, but
infections reduce along the loop. We can apply |K(s)| > 1
as an amplifier of infections to study the robustness of the
controlled epidemic to any destabilizing perturbations or
uncertainties (e.g., surges in transmissibility or more
pathogenic variants).

There are two important corollaries of Eq. (5). First,
the poles of the epidemic TF G(s) are the roots of the
characteristic polynomial 1 — K(s)RW(s). Solving this
(see Sec. II), we find the epidemic growth rate r is the
dominant pole; i.e., it is the major contributor to the
dynamics of the system (see Sec. II for the explicit
calculation in the uncontrolled case), and its variations
reflect the impact of the controller K(s). Second, K(s)
directly regulates both the generation times and R. For
constant controller K(s) = k, the epidemic has an effective
reproduction number of kR, with related changes to its
effective growth rate. These observations seemingly sup-
port the common paradigm of modeling interventions and
assessing controllability directly from how R or r (or
related parameters such as doubling times or infectious-
ness) change [12].

B. A framework for investigating
epidemic controllability

The above corollaries actually expose why these param-
eters are insufficient for defining controllability, i.e., the
effort required to stabilize an unstable epidemic, or the
intensity of the perturbations required to destabilize a stable
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epidemic. Specifically, the difficulty of controlling the
epidemic in real time also depends on its other
poles (which may be oscillatory) [18], and only asymp-
totically are infections completely determined by the
dominant pole r. Additionally, the assumption that
K (s) is constant and introduces no dynamics is unrealistic
(e.g., isolation is known to reduce generation times
[20,21]) and only likely true in very limited circum-
stances. We therefore need to account for transient and
intervention-induced dynamics [23,34].

To investigate the implications of these corollaries, we
propose a new framework for defining epidemic con-
trollability, which adapts classical control theory as well
as generalizes and more rigorously quantifies the inter-
pretation frequently ascribed to R or r. Figure 1(b)
summarizes and contrasts this framework to standard
(albeit implicit) notions of controllability. We know from
Eq. (5) and stability theory [17] that as L(s) approaches
—1+jO in the complex plane, the closed-loop G(s)
becomes critically stable; i.e., it is on the verge of
instability with r =0. The gain M; and delay M
margins [18] precisely determine the distance of L(s)
from —1 4 jO (see Sec. II for how to compute these and
related margins) [17].

For stable epidemics [r < 0; i.e., all G(s) poles are in
the left half of the complex plane], Ms; and Mp,
respectively, measure how much we can scale up or delay
infections before the system becomes critical [32].
Accordingly, for unstable epidemics [r > 0; i.e., at least
one G(s) pole is in the right half plane], they quantify how
much we must scale down or limit delay to stabilize an
epidemic (assuming certain conditions [17]). If an epi-
demic admits a margin pair (Mp, M), then we can
multiply L(s) along its loop by e=*M» or M, respectively
to force the epidemic to its critical stability point. Critical
stability is rigorously defined as when K (s) = 1 in Eq. (5),
then r matches R — 1 in sign and is the dominant G(s)
pole so L(s)=—1, R=1, and r =0 all correspond.
There is an analogous association with the effective R and
r when some control is acting [K(s) # 1]. The crucial
distinction we make is that the distance of L(s) from —1
and not that of R from 1 or r from O is what actually
determines controllability.

The margins we propose to measure this distance
precisely and holistically characterize the essence of earlier
notions of control effort by quantifying the magnitude and
time by which we must alter infections to attain the brink of
stability. Stable or controlled epidemics feature Ms; > 1
and Mp > 0, and larger margins signify better control-
lability [see Fig. 1(b)]. Computing these for Eq. (5), we get
Mg = | — K(jowpc)RW (jopc)|™! [17] where wpe is the
phase crossover frequency (see Sec. II). From the properties
of distributions, W(0) = 1. We confirm this in Sec. II for a
universal class of phase-type generation time distributions
[29] that include realistic models of w(z) for many

infectious diseases [15,27]. Accordingly, when wpc = 0,
Mg =|—K(0)R|™!. As critical stability occurs when
M = 1, the critical control effort required, based on this
gain margin, is therefore K* = |K(0)| = R~

We show in Fig. 2 for constant controllers applied to
epidemics with various generation time distribution
shapes [Fig. 2(a)] that wpc = 0 is true and unique. For
stable epidemics, we find My — oo (not shown; see
Ref. [33]). Consequently, under these conditions, con-
trollability is completely established by the magnitude of
R~! [Fig. 2(c)], which correlates well with the Euclidean
distance in the complex plane between L(s) and —1
(inset). When the epidemic is unstable, the gain margin
is also set by R~!, but there may be ways of removing
system lag that also define a dimension of control.
However, if we apply a constant controller (so system
lag does not change) with k =aR™' and a <1, the
controlled epidemic has an effective reproduction number
of a and hence a controllability of a~".

The dominant pole and hence the effective growth rate
also shifts from being the solution of RW(s) = 1 to that of
(kR)W(s) = 1. As this equation is scaled only, the growth
rate is now related to the effective reproduction number
kR. For gamma distribution generation times with param-
eters (a,b) for example (see Sec. II), the growth rate
changes from b~ '(/R—1) to b~ '(v/kR—1) [15].
Consequently, if wpc =0, we can completely describe
the controllability of an epidemic using the size of
reproduction numbers or growth rates. As growth rates
are asymptotic (i.e., other poles decay in impact as
t - o), we can equally describe controllability from
widely used exponential growth models of the form
i(r) = i(0)e”’, with p; as the dominant pole of this
model. This closely matches (and often overlaps) the
dominant pole p of the more complex renewal processes
[Fig. 2(b)]. Note that epidemics with the same control-
lability may have diverse responses to imports and
transient (short-term) dynamics [Fig. 2(d)].

Our framework therefore supports the conventional
definition that larger R or r indicates lower controllability
but reveals that this requires wpc = 0 and that our con-
troller is constant [i.e., we need k(¢) = k&(¢)]. Under these
conditions, we cannot destabilize the epidemic through
perturbations that add delay (or change phase). This holds
for broad classes of phase-type generation time distribu-
tions. We show next that our more generalized control-
lability definitions are necessary because these settings are
strongly restrictive and not likely to occur in practice; i.e.,
control actions frequently introduce dynamics (e.g., by
modifying incubation periods, generation times, and infec-
tiousness durations [21,22]). Further, we know that delays
to interventions, surveillance biases, presymptomatic
spread, and superspreading all impact controllability. We
demonstrate that our definitions can rigorously unify these
complexities.

031041-7



KRIS V. PARAG PHYS. REV. X 14, 031041 (2024)

(a) (b)

0.5¢ ' 0.6
I
1
0.4t ! 0.4+
g==6.5
0.3 0.2+
Na Phase-type &
3 0.2 distributions & 0k
’ X r = lim dlogi(t)
. t—00 dt
1
0.1 -0.2 : Mp — oo
I
0 ! -0.4 ! :
0 5 10 15 20 1 2 3 4 5
t (days) R
(c) (d)
5 20
18+
4
16 ¢
&)
= 3
I =14
Q 2
Control 12
1k | / effort R~! 10
1
0 : L L L ) 8 L L L L )
1 2 3 4 5 0 10 20 30 40 50
R t (days)

FIG. 2. Epidemic controllability under ideal conditions. We assess controllability via gain and delay margins for epidemics subject to
constant (nondynamical) control K(s) = k with phase crossover frequencies of O (see text). Panel (a) shows the generation time
distributions w(#) of simulated epidemics that we analyze, which have fixed mean generation time g (taken from COVID-19 [3]) but
feature markedly different shapes. Panel (b) plots the growth rate r of these epidemics [colors match (a)], which is the dominant pole p
(solid) of the resulting TFs G(s). These closely match the dominant pole p; (dashed, often overlapping the solid line of the equivalent p)
of an approximating epidemic featuring simple exponential growth i(7) = i(0)e”'’. Panel (c) plots the gain margin M or critical
controller K* that drives the system to the brink of instability (the delay margin M, here is infinite). The K* curves from every w(t)
exactly equal R~!. These curves correlate well with D (inset), the Euclidean distance between L(s) and —1. Panel (d) demonstrates that
although controllability is the same, transient dynamics of infections may differ (they also depend on nondominant system poles). We
plot incident infections i(#) in response to stable numbers (main) of imported infections (m(r) = m) and to a one-day pulse (inset) of m
imports [colors match (a)].

C. Problems with existing controllability definitions

Previously, we established conditions under which our
generalized framework for assessing controllability
reduced to the popular but informal definition applied
in epidemiology. However, the conditions that allow this

interpretation are strongly restrictive for two reasons. First,
the only controller guaranteed to satisfy |K(0)] = R~! and

have unique wpc =0 is the constant K(s) = k. This
controller seems unrealistic given that interventions not
only scale infections but also change the distribution of
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FIG. 3. Controllers introducing additional dynamics. We simulate epidemics that are forced by a constant supply of imported
infections [m(¢) = 100]). Panel (a) shows the resulting curves of incidence for epidemics with generation time distributions from Fig. 2
(excluding the green one because this becomes unstable; curves match in color) when nonconstant control K(s) is applied. There are
major discrepancies among responses to interventions (controllers) that induce substantial dynamics (solid) and those behaving as we
would conventionally expect (dashed). The former show salient transients that disrupt controllability and feature finite delay M, (and in
some cases, Mg < 2). Conventional interpretations expect Mg =2, M, — oo. The long-term incidence i(o0) remains, however,

unchanged for all our controllers. In panel (b) we apply a 3.5-day delay (e

—33% in the s domain). This pushes the curve from (a) with

finite M ~ 4.2 days toward instability. The value of a two-margin description is clear.

generation times and other epidemiological quantities and
hence induce additional dynamics [and poles in G(s)]
[20-22]. Any realistic intervention (e.g., social distancing
or contact tracing) likely scales infections and slows them
from occurring.

We demonstrate this for the generation time distributions
in Fig. 2(a) using controllers of form K(s) = §(1 4 gs)/
(1 + bs)“, which induce minimal dynamics and satisfy
J§° k(z)dr = k. Here, K(s) can model interventions that
change the effective reproduction number as well as the
generation times of the epidemic. For example, if the
uncontrolled epidemic has exponentially distributed w(¢)
with mean g, then W(s) =1/(1 + gs) and the loop TF
changes from —R/(1 + gs) to —(R/8)(1 + bs)*; i.e., the
control scaled down infections by a factor of 8 and forced
the mean generation time to ab. This illustrates how
controllers can realistically alter dynamics. Intervention-
driven changes to generation times have been observed for
malaria, COVID-19, and other diseases [19,20].

When K(s) is applied to epidemics with R =4, if
wpc =0, then Mg = |— K(0)R|™' = 2. This controller
is strongly stabilizing (we can double infections before
critical stability), attenuating infections so that the effective

reproduction number of the controlled epidemic is %

However, this standard interpretation is misleading and
incomplete due to the temporal variations that control
actions may introduce. In Fig. 3(a), we compare the
resulting epidemic trajectories under two K(s) examples.
For the first (b =2,a = 4), the gain and delay margins
together with the response to a stable input of m(z) = 100
infections over time is consistent with Fig. 2. Note that the g
and R we use here are among the values estimated for
COVID-19.

Strikingly, for the second case (b= %,a =4), the
response is markedly different, featuring oscillations and
faster (transient) growth that might initially strain available
resources. The gain margin for these cases is still 2 (though
in some instances it can fall below 2) but, importantly, the
delay margin for one of the w(¢) in Fig. 2(a) becomes finite
and small (M, ~ 4.2 days). This effect is pronounced, and
this K(s) can cause the overall generation time to shrink to
roughly two days. Case isolation was found to cause similar
shrinking for COVID-19 [21]. Smaller M, values can
occur for further w(r) types under more complex con-
trollers (not shown). As much is unknown about these
rebound effects of interventions [22], we cannot be certain
about realistic formulas for K(s). Recent works [35]
emphasize the need for collecting the data types that will
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allow precise K(s) parametrization. When such data
become available, our margins will be best placed to assess
controllability and expose any unexpected rebound effects.

The finite delay margin is especially valuable, revealing
that interactions between the epidemic and interventions
can cause robustness losses. Real interventions always have
latencies [13], making Mp crucial. If control is applied
after a 3.5-day delay, we obtain infection curves as in
Fig. 3(b). There we observe that the red curve approaches
instability and realize that there is a hard limit from M on
how late we can respond to an epidemic if we want control
to work. The importance of delays in epidemic control is a
known issue [9,16], but it is rarely factored into epidemic
controllability directly. Our (M p, M) framework is com-
prehensive and exposes the pitfalls of measuring control-
lability only in terms of R or r (while not shown, the
dominant poles, and hence, r in Fig. 3 are similar for both
the finite and infinite M, scenarios).

The second major problem with conventional definitions
of controllability is that they are not easily computed,
interpreted, or compared when practicalities such as pre-
symptomatic spread, superspreading, variant dynamics,
and surveillance imperfections (e.g., reporting delays and
incomplete case ascertainment) occur [1,24]. In the next
two sections, we expand our models and demonstrate that
the (Mp, M) framework presents a unified and interpret-
able approach to measuring and monitoring epidemic
controllability under all of these complexities. No matter
the specific model structure, the boundaries of control-
lability specified by our (Mp, M) pair are directly
comparable and possess exactly the same interpretation
as in Fig. 1.

D. Surveillance limitations and
presymptomatic spread

Until now, we have assumed that we can observe and
apply control to all new infections. This is unrealistic, as
commonly we can only count cases or deaths, which are
delayed and scaled versions of infections [36,37]. Here we
generalize Eqgs. (4) and (5) to include these effects. We
denote the proportion of infections that we observe as cases
by probability 0 < p < 1 and model the latency in observ-
ing these cases with a distribution (7). Our controller acts
on the incidence of cases c(¢), and i(¢) — c(¢) infections
remain unobserved. This yields

A1) = A " c(2)k(1 — 1),
(1) :pff(f)h(z—f)dr. (6)

The unobserved infections continue to propagate the
epidemic as they remain uncontrolled. We therefore con-
struct the combined renewal model

(1) = m(f) + RA’(,-@) — e(@))w(t — 7)de
+R A ")l — 7). (7)

This collapses into Eq. (4) when reporting is perfect; i.e.,
p =1 and h(z) has all its probability mass at the present
[h(t) = &(t), the Dirac delta] so that c(r) = i(¢).

We again take Laplace transforms of Egs. (6) and (7) to
obtain our key TFs for evaluating epidemic controllability
in Eq. (8). We illustrate this architecture in Fig. 4(a) and
observe that we also obtain TFs for the observed cases
easily since C(s)M(s)~! = pH(s)G(s),

L(s) = —RW(s){1 — pH(s)[1 — K(5)]}.
1

G(s) =11 ol (8)

When K(s) =1 in Eq. (8), we recover the uncontrolled
epidemic TFs [see Eq. (1)]. Perfect surveillance means
pH(s) =1 and reverts Eq. (8) to Eq. (5). If we instead
perform control on another proxy of infections, for exam-
ple, deaths or hospitalizations, then p is the proportion
of infections that lead to mortality or hospitalization
(e.g., for the incidence of deaths, this includes the infection
fatality ratio and the proportion of deaths that are
observed). The distribution 4(¢) then models the lag from
becoming infected to mortality or being admitted to the
hospital [37,38].

This formulation equally models presymptomatic
and asymptomatic spread, with i(z) defining the delay
between infection and presenting symptoms and p as the
proportion of infections that never become symptomatic.
We compute our (Mp, M) pair to assess how these
differing transmission and surveillance characteristics
impact controllability. Equation (8) includes all the key
controllability factors outlined in Ref. [1] and describes
targeted interventions such as quarantine, contact tracing,
or isolation but not wide-scale lockdowns (we control
only the observed infections). Lockdowns and other
nonselective interventions conform more closely to
Eq. (5), as they act indiscriminately on all infections,
including those that we never observe.

We know from earlier that critical stability is achieved
when L(s) = —1. We substitute this into Eq. (8) and find
that our control needs to satisfy the left side of Eq. (9). As a
constant K(s) = 0 represents the maximum possible con-
trol effort (i.e., all observed infections are suppressed
completely), we insert this condition and rearrange to
derive the threshold on the right side of Eq. (9), outlining
the requirements on the surveillance noise or level of
presymptomatic spread for the epidemic to just be con-
trollable. A smaller |pH(s)| causes loss of controllability
and provides evidence that wide-scale interventions or
surveillance improvements are needed. The relations of
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FIG. 4. Generalized controlled renewal model architectures. Panel (a) illustrates the block diagram of a renewal model for which only
a portion of the new infections I(s) are observable and hence can be controlled by K (). This portion C(s) may model cases, deaths, or
any other time series that is mediated by a scale factor p and a lag distribution H(s). This architecture represents imperfect surveillance
mechanisms or presymptomatic spread. Panel (b) shows the structure of a multitype, controlled renewal model describing N infectious
types or stages with diverse reproduction numbers R,, and generation time distributions W, (s). The weight ¢, is the fraction of new
infections of type n. This architecture models transmission heterogeneity including superspreading, cocirculating variants, and diseases
with multiple routes for spread but considers the combined contributions of all types (hence, contact matrices are not needed). Both
panels have closed-loop TFs G(s) = I(s)M(s)~' = [1 + L(s)]~", with loop TF L(s) as described. See main text for details on how K(s)
and the K, (s) define controllability.

Eq. (9) are required only to hold at the s = jw satisfying  generalizes more conventional notions of controllability (it
L(s) =—1, also relates to the herd immunity threshold, though we do
not consider this directly as our models neglect depletion of
susceptibles). Equation (9) verifies that we need both
(9) margins because wpc = 0 is not guaranteed here, even if
controllers are constant. The temporal impact of imperfect
surveillance or presymptomatic spread via H(s) means that
If wpc = 0, then this requirement is metatp > 1 —R™',as  the dynamics leading to situations as in Fig. 3 always exist.
W(0) = H(0) = 1. This matches the critical contact tracing ~ Transient dynamics are crucial and unavoidable.
efficiency derived in Ref. [2] and the presymptomatic We verify this point in Fig. 5, showing how control-
condition of Ref. [1] and confirms how our methodology lability depends on p and H(s). We first set H(s) = 1 and

o I-[RW(s)] !
KO=1""h

, |pH(s)|2’1—Rv;(s) .

1
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FIG.5. Surveillance noise and presymptomatic spread. We investigate how imperfect case reporting, or equivalently, presymptomatic
spread, limits the controllability of epidemics using our (M, M) framework. Panel (a) shows for curves of constant R > 1 (rising from
blue to red, which is at R = 5) how the reporting rate or proportion of symptomatic infections p reduces controllability. Smaller p
requires more control effort to attain critical stability, i.e., a smaller K* is needed for a gain margin M; = 1. There is no reporting delay
or presymptomatic distribution in this analysis so H(s) = 1. Panel (b) sets p =1 and investigates the influence of two H(s)
distributions, H, (dashed) and H, (solid) modeling exponential and gamma distributions. Both have mean lag 7, R = 2, and a controller
applied that achieves M ; = 2 if the phase crossover frequency wpc = 0. We find that as 7 increases M ; falls below 2 indicating a decline
in controllability. This results from wpc increasing above O (inset). Colors in this and panels (c) and (d) match the generation times
modeled from Fig. 2(a) (excluding the green). Panel (c) confirms that H(s) causes the delay margin M, to become finite [inset, dashed
or solid corresponding to (b)]. This reduced controllability is visible from the peaked, oscillatory response in new infections i(¢) for a
constant number of imports m(¢) (main). This effect is similar to that in Fig. 3. Here, dot-dashed lines plot the response in the absence of
H(s) [i.e., setting H(s) = 1]. Panel (d) shows the combined influence of lags and underreporting given the constant controller of
K = 1/(3R). The inset demonstrates how M, falls with R, and the main shows the infection (solid) and case ¢(r) (dashed) epidemic
curves in response to constant imports (colors match generation time distributions).

explore the controller gain needed to get M; = 1, which
sets critical stability. In the absence of underreporting, we
have p = 1 and K* = R~! for any R. Figure 5(a) shows that
our required K* substantially deteriorates, highlighting that
we need additional control effort to stabilize the epidemic
as p decreases. When K* = 0, the epidemic is no longer
controllable by these targeted interventions. If we cannot
improve surveillance quality or equally diminish asympto-
matic spread (so p rises), then population-level controls are
warranted. Strikingly, at R = 5 (red), we cannot control the

epidemic unless more than 80% of all new infections are
observed (sampled) or symptomatic. Equation (9) defines
fundamental limits on controllability.

In Figs. 5(b) and 5(c), we assume perfect reporting
and test the influence of delays in reporting, or equivalently,
lags in infections becoming symptomatic. We investigate
two h(t) distributions H,(s) and H,(s) in the frequency
domain, with results, respectively, as dashed or solid.
These model exponential and gamma distributed delays
with means z. We apply controls that force M; = 2 when
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wpc = 0 but find in Fig. 5(b) that our gain margin declines
with z. This occurs as wpc > 0 (inset). Figure 5(c) further
shows that the delay margin M becomes finite, decaying
with 7 (inset). Hence, H(s) reduces both the scaling and
delays that the controlled epidemic can robustly support.
Incident infections i(z) display oscillatory dynamics with
substantial peaks (main). This contrasts the plots featuring
no delay, i.e., 7 = 0 (dot-dashed). Colors indicate the w(¢)
from Fig. 2(a) underlying the results in Figs. 5(b)-5(d).
On its own, H(s) substantially reduces our controllabil-
ity. At 7 > 4, we find that M — 0 (and M; < 1) signify-
ing that the epidemic is now unstable. Epidemics with
larger 7 are necessarily uncontrollable. We combine both p
and H(s) in Fig. 5(d) but vary R and apply a strong
controller that scales down cases by 1/(3R). Even for this
constant control, we find a finite M, that declines with R
(inset) and large amplitude oscillations in () (solid, main).
We also plot the observed cases ¢() (dashed), which are the
fraction of infections we can control. Both of the (M, M)
pair are therefore critical to accurately quantifying epi-
demic controllability. In Fig. 5, the ranges of p and 7 that we
explore are realistic and even better than those often
reported for countries with good COVID-19 surveillance,
which can feature smaller p or larger z [37,39,40].

E. Superspreading, variants, and
multiple infector types

Our (Mp, M) framework can also evaluate the con-
trollability of epidemics that are composed of multiple
infectious types or transmission routes. This models super-
spreading, cocirculating variants, and pathogens with
multiple pathways of spread. We unify these multitype
epidemics using the renewal process of Eq. (10), which
features N distinct types or pathways,

i(0) = m() + >R, A (@)W (i — 7)dr,

(1) = /O’eni(r)kn(r— 7)dr. (10)

We denote the reproduction number, generation time
distribution, and controller of the nth type with subscript
n. The parameters €, define the proportion of incidence
associated with the nth type and >V, ¢, = 1. By dividing
control into N functions, we allow for type-specific control.
This includes nontargeted control [all k, () are the same]
and situations where some types are uncontrolled [those
k,(z) = 1], perhaps due to being unobservable.
Specializations of Eq. (10) can model superspreading or
transmission heterogeneity (e.g., we set N =2, Ry > R,,
€y =1, and e, =2 to describe cases where 20% of new
infections have substantially larger transmissibility, which
aligns with data on many diseases [41]), pathogenic
variants with differing transmissibility and generation times

[e.g., with N as the number of cocirculating variants,
although we assume early growth so that the €, are fixed
[42,43] ], and diseases with diverse transmission pathways
[e.g., Ebola virus disease has sexual and nonsexual pathways
with distinct w, (¢) [30] ]. This construction may not always
be valid, e.g., for cocirculating variants at other epidemic
stages or where competition and selection imply that a
specific variant eventually dominates. In these scenarios,
€, and R, are likely time varying, and our construction is only
a constant approximation to these variations.

Relatedly, the above specializations do not include
explicit interaction among types [though all types compose
the total i(¢)], as this commonly requires additional cross-
type reproduction numbers and auxiliary data (e.g., to
estimate contact matrices or to evaluate key epidemic
thresholds) [44,45]. Such extensions are possible provided
the interacting system can be framed as a multidimensional,
linear renewal model. We do not consider these extensions,
but note that if the multidimensional renewal model is
appropriately formulated, our margins should remain valid
since they only require linear control systems theory
to hold.

We take Laplace transforms of Eq. (10) to construct
Eq. (11), which is amenable to our gain and delay margin
controllability analyses. We sketch the architecture of this
model in Fig. 4(b),

1

=i (W

L(S):_ZeanWn(s)Kn(s)’ G(S)
n=1

Using the fact that W, (0) = 1, we find that if wpc = 0 then
Mg =1|->N K,(0)e,R,|"!. We can therefore scale the
epidemic by a quantity that is a weighted sum of control,
reproduction numbers, and proportions of the contributing
infectious types. As we showed in the above sections, this
condition is only likely to be met if every controller is
constant (at which also M;, — o). If controllers introduce
dynamics, which is realistic, then we expect effects similar
to Fig. 3.

Equation (11) provides the flexibility to investigate
several controllability problems. We focus on two questions
about the limitations of targeted control for heterogeneous
populations. We let N = 2 and assume that R; > R, so that
type 1 represents individuals with the more transmissible
variant or superspreading nodes. We consider nonselective
control where K, (s) = K,(s) = K(s) and targeted control,
in which only one type is controlled. We target only type 1,
which is more transmissible, so type 2 is uncontrolled and
K,(s) = 1. Our first question asks under what conditions
the targeted approach, which is often proposed as an
efficient control scheme [11,41], fails to suppress the
overall epidemic, making nonselective control unavoidable.

For this two-type epidemic L(s) =—[e; R, K, (s)W;(s)+
€:R, W ()] for targeted control and —K(s)[e;R,W,(s)+
e,R,W,(s)] for nonselective control, with ¢, =1 —¢.
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FIG. 6. Targeted control in multitype epidemics. We explore controllability and performance limits for epidemics that involve two
distinct types, modeling superspreading or cocirculating variants. Panel (a) plots the constant control effort necessary for critical stability
(M = 1) under a nonselective strategy with controller K* that reduces infections of both types (dashed) and a targeted strategy with
controller K7 that reduces only infections of type 1 (solid), which has larger transmissibility R; > R, = 1.1. For both strategies, we vary
the proportion of type 1, €;, and curves are for increasing R; from blue (1.1) to red (5.5) with intermediate values in gray. We use a
vertical line to show the ¢ for the commonly used 20-80 superspreading rule that describes realistic epidemic heterogeneity. Targeted
control requires substantially more effort (as it must also account for the uncontrolled type 2), and the epidemic is uncontrollable if €; is
smaller than the critical vertical line [see Eq. (12)]. Panel (b) considers targeted controllers that introduce dynamics and apply only K ()
or K, (s) to reduce either type-1 or -2 infections. We fix ¢;R; = ¢,R, = a so that all types contribute to overall transmissibility equally
and both controllers lead to the same M > 1. We illustrate how new infections i(#) change due to both schemes (dashed and solid,
respectively), where type 1 is the faster variant possessing mean generation time g; < g, = 8 days. Targeting the slower type 2 leads to
worse performance (including faster transient growth) and is sensitive to g; (curves are not grouped).

In both cases, wpc =0 and W{(0) =W, (0)=1 (see Sec. II).
If we apply only constant controllers, then M, — oo, and
controllability is exclusively defined by the values of
Mg, which are computed as |e;R;K;(0) + e,R,|~! and
|K(0)]~'|e;R; + €;R,|™'. To attain some specific Mg,
we require K;(0) = (M5! —e;R;)(e,R;)™" and K(0) =
Mg'(e R, + e2R;)™". We can combine these relations to
get the left side of Eq. (12), which shows how much smaller
K(0) needs to be than K(0), i.e., how much more targeted
control effort is required to attain our desired Mg,

&R,

K,(0)=K(0)— <—> (1-K(0)), €3>1

€1R,

"~ MGR,
(12)

We plot the control efforts K* = K(0) and K} = K(0)
from both strategies that are necessary to achieve critical
stability (M; = 1) in Fig. 6(a). There we observe the limits
of targeted control as a critical €; cutoff (dashed vertical).
This follows from the positivity constraint 0 < K;(0) < 1,
where 1 is no control and 0 defines perfect control, in which

type-2 infections are neutralized. We derive this for any
desired gain margin on the right side of Eq. (12).
Interestingly, this cutoff does not depend on R; and, if
M = 1, it indicates that targeted control works only when
the proportion of superspreading nodes or type-1 variants is
above 1 — R;!. This procedure is easily generalized to
N-type epidemics where we can control a subset y of the
types. The controllability cutoff then requires the uncon-
trolled proportion |7,o, €,R,W,(s)| < Mg'.

Our second question relates to the interaction between
differing generation times of the types and induced con-
troller dynamics. We consider targeted control of either
type or variant with type 1 having smaller mean generation
time and hence being faster than type 2, i.e., g; < g,. We set
€1Ry = 6;R, =  to remove any relative transmissibility
advantage between the types. Consequently, variations in
the infections caused by the types emerge from their
generation time distribution differences. Targeted control
applies nonconstant control K (s) exclusively to type 1 or
K,(s) exclusively to type 2, yielding loop TFs L(s) =
—a[K (s)Wi(s) + Wa(s)] and —a[W,(s) + K(s)Wa(s)].
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Because the controller induces additional dynamics, we are
neither guaranteed wpc = 0 nor M, — oo and must evalu-
ate the complete (Mp, M) pair.

We compute these margins and dynamical responses to
constant importations in Fig. 6(b) for a range of fast type-1
generation time distributions w;(¢) and a fixed (slow)
type-2 distribution w,(¢). Although M is the same for
both schemes, controlling type 2, which may occur when
transmission chains of slower variants are easier to inter-
rupt, yields worse performance. The overshoots and oscil-
lations are also accompanied by a finite M, highlighting
that neglecting the faster variant can potentially reduce
robustness of the controlled epidemic to perturbations or
equally reduce controllability below what we may expect
from conventional measures based on reproduction num-
bers or asymptotic growth rates. For certain controllers (not
shown), we also find that wpc > 0 can occur and reduce
Mg for either targeted scheme. This underscores the
importance of our two-margin solution to understanding
controllability.

IV. DISCUSSION

Measuring the controllability of an infectious disease
subject to various intervention options is a fundamental
contribution of mathematical modeling to epidemiology
[4,12]. However, there exists no rigorous and precise
definition of what controllability means [8,10] and studies
have highlighted a need for robust analytical frameworks to
better appraise the impacts of targeted and reactive
interventions [1]. Currently, the distance from the epi-
demic threshold of R =1 or r = 0 is frequently used to
measure controllability. Here we demonstrated that this
notion of controllability, although reasonable, is idealistic
and likely misleading because neither R nor r completely
and unambiguously measures distance from stability. We
proposed an alternative and analytic definition of this
distance by reformulating the disease transmission proc-
ess as a positive feedback loop and leveraging results from
control engineering [31].

We derived epidemic transfer functions to describe the
dynamics of this loop and model how stabilizing inter-
ventions interrupt and attenuate this positive feedback
(e.g., by blocking new infections through quarantines).
For already stable or controlled epidemics, we tested
robustness to perturbations or uncertainties that amplify
infections along this loop (e.g., by relaxing any inter-
ventions or from pathogenic variants). This allowed us to
develop stability margins that accurately measure the
distance from stability (Fig. 1) in units of the scale and
speed of the required control efforts. The gain and delay
margins are key metrics from control engineering
[17,18], a field that studies stability and feedback
problems across many dynamical systems. Although
there is increasing interest in using tools from this field
to better understand infectious disease spread [9,46-49],

our study appears to be among the earliest to construct
margins for epidemics and appraise existing notions of
disease controllability.

Our central contribution is a flexible method for quanti-
fying epidemic controllability that is both computable and
easily interpreted across many salient characteristics of
infectious diseases. This is important for three main
reasons. First, R and r can lose their meaning or compa-
rability as threshold parameters when characteristics such
as superspreading and multitype spread are included
[24,50]. Second, for a given transmission model there
can be numerous ways of constructing and defining valid
epidemic thresholds, and these are not always consistent
when assessing interventions [25,45,50]. For example,
when interventions change generation times, then we can
find situations where r increases yet R decreases [51].
Third, earlier frameworks were unable to directly include
reactive or feedback effects within their measures and did
not account for how the implementation of interventions
might modify effectiveness.

In contrast, our gain and delay margins maintain their
interpretation, validity, uniqueness, and comparability
across complex disease models and explicitly reflect
feedback loops intrinsic to transmission and intervention.
These properties allowed controllability to be measured
across realistic generation time distributions (Fig. 2),
constraints on interventions (Fig. 3), surveillance imper-
fections (Fig. 5), and transmission heterogeneities
(Fig. 6). Principal insights emerging from this unified
approach were that (i) R and r only track controllability in
restrictive settings where interventions do not alter tem-
poral disease characteristics and are applied instantly,
(i1) sharp thresholds of controllability exist due to pre-
symptomatic spread, superspreading, delays, and under-
reporting and cocirculating variants that generalize
1 — 1/R-type results, and (iii) the delay margin is crucial
because lags along feedback loops (from both intervention
delays and surveillance biases) can destabilize epidemics
that are conventionally deemed controlled.

While our approach rigorously incorporates many real-
istic epidemic complexities and extends earlier frameworks
[1,8,10], it depends on several simplifying assumptions,
which we made to ensure tractability and to extract general
insights. Specifically, our analysis uses deterministic
renewal models and assumes constant R or r. Although
some or all of these assumptions are common to seminal
studies and recent works on controllability thresholds
[1,43], the influence of stochasticity in disease transmission
can be substantial [7,11]. We recommend computing our
margins to initially assess intervention impact and then
using them to guide the running of more complex stochastic
models. Our margins are only well defined for linear
systems, which include epidemics describable by renewal
models with constant R. If R varies on the timescale of
interventions or involves nonlinear effects such as
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saturation or susceptible depletion, this assumption may be
invalidated. However, we can use piecewise-constant trans-
missibility approximations and fit renewal models to each
piece, to partially circumvent this issue.

Moreover, we examined linear and reactive control
actions only (i.e., convolutions of kernels with past
infections). This improves upon many studies, where
controllers simply multiply and reduce R or r but may
not model other notable types of interventions, such as
those reducing infections due to nonlinear switching
triggers or those that completely ignore feedback signals
in favor of predetermined action [34,53]. Understanding the
relative benefits of these different strategies is an ongoing
area of research. Last, we comment that controllability here
focused on intrinsic epidemic dynamics and neglected the
costs of actions. Including how these costs further constrain
the realizable limits of controllability, as well as incorpo-
rating key behavioral effects within our feedback loops are
the future directions of this research.

In summary, we demonstrated that controllability is
completely and accurately measured only by the distance
of the loop transfer function L(s) from -1. This general-
izes and improves upon the conventionally used distances
of R from 1 or r from 0, but still admits interpretable
margins or safety factors that quantify how much we can
scale infections or delay interventions to attain critical
stability. This allows us to better evaluate when targeted
interventions are insufficient and hence when nonselective
controls such as lockdowns are justified from the view-
point of curbing transmission. We found that targeted
controls fail when the dynamics of the unobserved or
untargeted infectious population, together with constraints
on surveillance and intervention implementation, cross
margin thresholds that are analytically derived from our
framework.

All data and code underlying the analyses and figures
within this study are freely available in MATLAB on
GitHub [33].
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