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By applying a microwave drive to a specially designed Josephson circuit, we have realized a double-well
model system: a Kerr oscillator submitted to a squeezing force. We have observed, for the first time, the
spectroscopic fingerprint of a quantum double-well Hamiltonian when its barrier height is increased:
a pairwise level kissing (coalescence) corresponding to the exponential reduction of tunnel splitting in the
excited states as they sink under the barrier. The discrete levels in the wells also manifest themselves in the
activation time across the barrier which, instead of increasing smoothly as a function of the barrier height,
presents steps each time a pair of excited states is captured by the wells. This experiment illustrates the
quantum regime of Arrhenius’s law, whose observation is made possible here by the unprecedented
combination of low dissipation, time-resolved state control, 98.5% quantum nondemolition single shot
measurement fidelity, and complete microwave control over all Hamiltonian parameters in the quantum
regime. Direct applications to quantum computation and simulation are discussed.
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I. INTRODUCTION

Quantum tunneling under the barrier of a double-well
potential is a standard textbook effect illustrating the
characteristics of quantum physics in a system with a
direct classical counterpart [1]. Since its discovery in the
early days of quantum theory [2], the effect has been
observed in a variety of natural [2–6] and synthetic [7–24]
systems. However, preparing excited states in a double-well
potential is difficult and controlling the Hamiltonian
parameters can be challenging. As a consequence, studies
of tunneling have usually been restricted to the energy
splitting and dynamics of the ground and first excited states
[25–30]. The higher excited states, though, crucially
influence activation over the barrier [29], which provides
a minimal model for many molecular and nuclear reactions.
In superconducting circuits, a prototypical double-well

system has long been available in the form of the flux qubit
[31,32] and its cousin the rf SQUID [33–35], each inter-
rogated with a variety of spectroscopic techniques [36,37].

The advent of tunable tunneling barrier heights [35,38–40]
makes these qubits particularly appealing for quantum
annealing applications [41]. The role of excited states has
been utilized, for example, in Mach-Zehnder interferometry
[42], yet the spectroscopic measurement of the excited states
as the tunnel barrier is finely tuned in this and other systems
has remained elusive, in part due to insufficient coherence,
precision control, and readout fidelity.
In this work, we realize a fully controllable double-well

Hamiltonian in a strongly microwave-driven superconduct-
ing circuit and observe elementary predictions of quantum
mechanics not accessed before. Assisted by precision
measurement techniques, we observe the exponential
reduction of tunneling with barrier height for several
excited states, an effect we refer to in this work as spectral
kissing (see below). We also uncover how the quantization
of action modifies the Arrhenius’s law, governing thermal
activation across the barrier [27,43–47]. Apart from this
demonstration of microscopic kinetic rate theory, our
experimental system implements a Kerr-cat qubit [48] that
attains record relaxation times. We achieve a bit-flip rate
1450 times smaller than the phase-flip rate while remaining
quantum coherent enough for gate operations and high-
fidelity measurements. This leaves our system poised for
potential applications in quantum computing [49–54].

II. MODEL SYSTEM

Our experiment is performed in a strongly microwave-
driven superconducting Kerr parametric oscillator [55]
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operating in the quantum regime. The central element of
the circuit is the Josephson tunnel junction, which is the
exact electrical analog of a pendulum [56]. We combine
several Josephson junctions in an array of two super-
conducting nonlinear asymmetric inductive elements
(SNAILs) [57–59], which creates the analog of an
asymmetric pendulum with a third-order nonlinearity,
or in other words, a system capable of three-wave mixing.
The Hamiltonian for this so-called SNAIL transmon,
when driven via its charge degree of freedom, reads

ĤðtÞ=ℏ ¼ ωoâ†âþ
X∞
m¼3

gm
m

ðâþ â†Þm

− iΩdðâ − â†Þ cosωdt; ð1Þ

which, in turn, describes a generic driven nonlinear
oscillator. In this expression, â is the bosonic annihilation
operator. The parameters ωo and gm ≪ ωo are the bare
oscillator frequency and the mth-order nonlinearity coef-
ficients of the oscillator. The sinusoidal drive is specified
by its amplitude Ωd and frequency ωd.
When the drive frequency approaches twice the natural

oscillator frequency ωd ≈ 2ωo, the system governed by
Eq. (1) exhibits a period-doubling bifurcation whose
ground states, in the quantum regime, host the Kerr-cat
qubit [48], one representative of stabilized Schrödinger
cat qubits [60–64]. After a canonical transformation and
keeping terms beyond leading order in the rotating wave
approximation (RWA) (see Appendix A and Ref. [65]),
the evolution in the frame rotating at ωd=2 is given
by the effective, time-independent, squeeze-driven Kerr
Hamiltonian:

ĤSK=ℏ ¼ ϵ2ðâ†2 þ â2Þ − Kâ†2â2: ð2Þ

Concretely, the drive frequency chosen for Eq. (2) to be
valid is ωd ¼ 2ωa, where ωa ¼ ωo þ 3g4 − 20g23=3ωo þ
ð6g4 − 9g23=ωoÞð2Ωd=3ωoÞ2 is the Lamb- and Stark-shifted
small oscillation frequency. The quartic Kerr nonlinearity is
given to leading order by K ¼ −ð3g4=2Þ þ ð10g23=3ωoÞ.
The quadratic term in Eq. (2) conserves the photon-number
parity—but not the photon number—and is governed by
the squeezing amplitude ϵ2 ¼ g3ð2Ωd=3ωoÞ. Both the
effective Kerr coefficient and the squeezing amplitude
are functions of the bare nonlinearities and the drive
parameters. Note that the Hamiltonian describes a dou-
ble-well system. The barrier height is given by ℏϵ22=K,
and the interwell separation by 2

ffiffiffiffiffiffiffiffiffiffiffi
ϵ2=K

p
. Both can be

controlled via the microwave drive amplitude and the Kerr
nonlinearity, which itself depends on the applied mag-
netic field.
The quantum Hamiltonian in Eq. (2) has received

theoretical attention over the previous decades [66–76]
and, in particular, recently [77–86]. However, experiments

that adhere to this simple model require a Kerr nonlinear
frequency shift much larger than the dissipation rate that is
difficult to achieve, even in the classical regime. For
systems with sizable dissipation, the stabilization of the
associated period-doubled bifurcation is provided by losses
and pump depletion, not by the Kerr nonlinearity.
Alternatively, for systems where the nonlinearity domi-
nates, spurious nonlinearities easily turn this strongly
driven system into a chaotic one. The experimental reali-
zation of a system described by Eq. (2), in a fully
controllable quantum regime and including excited states,
is important in view of recent proposals for quantum
information processing with driven circuits [49–54,75,87].

III. EXPERIMENT AND RESULTS

The setup is presented in Figs. 1(a)–1(c) where we show
our SNAIL circuit. The array of SNAILs, flux biased at
Φ=Φ0 ¼ 0.33 via current applied to coils beneath the
copper section of the package, provides the target param-
eters of resonance frequency ωa=2π ¼ 6.03 GHz and Kerr
nonlinearity K=2π ¼ 320 kHz. In absence of squeezing
drive, this SNAIL transmon has an excitation lifetime of
T1 ¼ ð20� 3Þ μs, and the superposition lifetime of its two
lowest lying Fock states is T2R ¼ ð2.17� 0.05Þ μs.
In Fig. 1(d), we show the Wigner phase-space repre-

sentationHSKða; a�Þ [89,90] of ĤSK, which we also refer to
as the metapotential of the system [71]. The metapotential
provides benefits for intuition in that it is a representation
of the effective time-independent Hamiltonian of the
driven system. Its coordinates a (a�) are the same as those
of the Wigner function, namely, the Wigner transform of
the bosonic annihilation (creation) operators â (â†). The
Wigner functions of the seven lowest lying energy states in
the phase-space Hamiltonian surface (gray) are also plotted.
The ground state of the system is doubly degenerate
and spanned by the even and odd Schrödinger cat states
jC�α i ∝ j þ αi � j − αi, where j � αi are coherent states
with squared amplitude jαj2 ¼ ϵ2=K. We refer to these
ground states as the Kerr-cat qubit computational states
j � Zi ¼ jC�α i with Wigner functions shown in Fig. 1(e)
for jαj2 ¼ 8.5. Their equal weight superpositions j � Xi ¼
j � αi þOðe−2jαj2Þ correspond, in the lab frame, to two
oscillations of the circuit with a relative phase shift of 180°.
Measurements of the oscillator state were performed

through a separate on-chip readout resonator with fre-
quency ωb=2π ¼ 8.5 GHz and coupling rate κb=2π ¼
0.40 MHz to the quantum-limited measurement chain
(see other parameters of the setup in Table II in
Appendix C). In order to activate a frequency-converting
beam-splitter interaction between the squeeze-driven Kerr
oscillator and the readout resonator, we apply an additional
drive at ωBS ¼ ωb − ωd=2. This transfers photons from the
squeeze-driven Kerr oscillator to the readout resonator,
which are subsequently collected by the measurement
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chain. The strong squeezing drive (ϵ2 > K) replenishes
these radiated photons, thereby maintaining a steady
oscillation amplitude. This is a necessary condition for a
quantum nondemolition (QND) measurement of the which-
well observable X̂ ≈ j þ αihþαj − j − αih−αj [48]. In
effect, the readout resonator state is displaced, conditioned
on which of the two metapotential wells is occupied.
In Fig. 2(a), we show a histogram of X̂ measurements.

The single shot readout infidelity is 0.46%. Correlation
measurements determined that the QND infidelity in our
experiment is 1.5% (see Appendix D). These values mean
that we can continuously monitor our system and recon-
struct the trajectories associated with the quantum jumps of
the well occupation.
In Fig. 2(b), we show the experimental protocol for

measuring the quantum trajectories. After the squeezing

drive is turned on, a waiting time equal to 5T1 is imposed to
let the system adopt a steady state [91], and a series of
measurements is then performed. The sequence of their
outcomes constitutes a quantum trajectory record. Two
examples of quantum trajectories are shown in shades of
gray in Fig. 2(c). The green and orange data points
correspond to averages of 5 × 105 trajectories, each con-
ditioned on the initial measurement falling on the positive
or negative side of a threshold defined by the demodulated
field quadrature I ¼ 0. The decay curve is fitted by a single
exponential (black), yielding an incoherent environment-
induced activation time of T jumps

�X ¼ ð485� 1Þ μs. We next
compare these measurements to the free decay of the
coherent states j � αi. This is obtained by performing only
two measurements spaced by a variable idling time, in
absence of continuous monitoring; the results are shown in
Fig. 2(d). The decay is also fitted by an exponential whose
lifetime is found to be T�X ¼ ð482� 4Þ μs, thus showing
that continuous monitoring does not significantly modify
the coherent state timescale TX in the metapotential.
To observe the energy levels’ dependence on the barrier

height [74], we perform spectroscopy of discrete quantum
energy levels as a function of the squeezing amplitude. This
is achieved by interrupting the idling time, now kept

(a) (b)

(c)

(d)

FIG. 2. QND measurement and quantum jumps. (a) Top and
middle: histogram of the readout resonator output field when
performing 2.5 × 108 measurements after preparation in j � αi
with a previous, stringently thresholded measurement with a bias
of 6.5 standard deviations (σ). Bottom: corresponding probability
distribution along the I quadrature, and Gaussian fits (solid lines)
with standard deviation used to scale the axes. Applying a fair
(unbiased) threshold represented by the dashed vertical line
yields a readout infidelity of 0.46%. All data shown here are
for ϵ2=K ¼ 10.7. (b) Pulse sequence to performing repeated
measurements, each with a duration of 4.44 μs. (c) Example
quantum jump trajectories (gray) under repeated measurements.
Averages of trajectories conditioned on the first measurement of
j � αi (green and orange) fit together with single exponentials
(black line) with decay time T jumps

X ¼ ð485� 1Þ μs. (d) State
lifetime for j � αi (green and orange) with no intermediate
measurements (free decay). Black lines are a single-exponential
fit with decay time TX ¼ ð482� 4Þ μs.

(a) (d)

(b) (e)(c)
Re(a)

Im(a)

FIG. 1. Implementation of the squeeze-driven Kerr oscillator.
(a) Rendering of the half-aluminum, half-copper sample package
containing two sapphire chips, each with a SNAIL transmon,
readout resonator, and Purcell filter (see Ref. [88]). Only one chip
is used in the present work. Applying a strong microwave drive at
ωd ≈ 2ωa transforms the SNAIL-transmon Hamiltonian into a
squeeze-driven Kerr oscillator. (b) Schematic of the SNAIL
transmon: A two-SNAIL array serves as the nonlinear element.
The capacitor pads are shifted with respect to the axis of the array
to couple it to the readout resonator. (c) Scanning electron
micrograph of the two-SNAIL array. The SNAIL loops are
biased with an external magnetic flux Φ=Φ0 ¼ 0.33, where Φ0

is the magnetic flux quantum. (d) Metapotential (gray) of the
squeeze-driven Kerr oscillator static-effective Hamiltonian
Eq. (2) for ϵ2=K ¼ 8.5. Wigner functions of the first seven
eigenstates are shown. The highly nonlinear double-well struc-
ture hosts three pairs of degenerate eigenstates. The arrows
represent incoherent jumps causing a well-occupation flip from
right to left. (e) Wigner functions of the even and odd super-
positions of the two degenerate ground coherent states of (d), the
Kerr-cat qubit j � Zi ¼ jC�α i states.
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constant, between the readout pulses by a microwave probe
tone at frequency ωpr. If ωpr coincides with the energy
difference between the ground state and an excited state
close to or above the metapotential barrier, an interwell
transition becomes likely. In Figures 3(a) and 3(b), we
show the measurement of the survival probability Ps for an
initial state localized in one well as a function of squeezing
amplitude ϵ2=K and probe frequency ωpr. In Fig. 3(c), we
show the fitted location of the spectroscopic lines as open
purple dots. In the same figure, with dashed lines, we also
show a numerical diagonalization with no adjustable
parameters of the static-effective Hamiltonian Eq. (2).
The agreement between theory and experiment is remark-
able given the simplicity of the model. For jαj2 → 0, we
extrapolate the spectrum to that of the bare SNAIL trans-
mon exhibiting the expected Kerr anharmonic ladder.
As the squeezing amplitude—and therefore jαj2—grows,
the spectrum becomes pairwise degenerate with levels of
different photon-number parity approaching each other
in an exponential fashion. We refer to this exponential
approach of energy levels as spectral kissing. This is

the first observation of a controllable highly excited
(quasi)energy spectrum of a driven system.
To understand the observed spectrum, we now explore a

semiclassical model. The limiting classical orbit, which is
the separatrix of the wells in Fig. 1(b), forms a figure-8 curve
known as Bernoulli’s lemniscate [70]. In an approximation
along the lines of Bohr’s action quantization, its area in units
of Planck’s constant h counts the number N of quantum
states in thewells. Analytically, we findN¼ ϵ2=πK¼jαj2=π.
Every time N coincides with an integer value, a new pair of
excited semiclassical orbits is captured by the wells (see
Appendix G). The vertical dashed lines in Figs. 3(a), 3(c),
and 3(d) correspond to this semiclassical condition. As the
squeezing amplitude ϵ2 increases, the captured levels sink
under themetapotential barrier and, coupled only byquantum
tunneling, exponential level kissing takes place.
The most remarkable consequence of the pairwise level

kissing is the staircase-shaped increase of the lifetime TX as
a function of the squeezing amplitude, which was inde-
pendently found theoretically [92,93]. This we show in
Fig. 3(d). This stepwise increase can be understood, to a

(a) (e)

(b) (f)

(c)

(d)

FIG. 3. Spectroscopic fingerprint of the squeeze-driven Kerr oscillator and coherence of the ground-state manifold. (a) Spectroscopy data
taken with the pulse sequence in (b). While applying a squeezing drive with swept amplitude ϵ2=Kð¼ jαj2Þ, we perform spectroscopy by
scanningωpr. Color denotes probability Ps that both measurements give the same result. A low Ps means a transition has occurred between
the readout pulses. For jαj2 < 0.3, the measurement is not QND and thus yields a poor contrast. (c) Purple open dots are the extracted
resonances from (a). Black dashed lines are a parameter-free diagonalization of −ĤSK. Gray vertical lines indicate the number of levels per
Hamiltonian well using quantization calculated by phase-space area (see Appendix F). (d) Coherent state lifetime TX (black circles) as a
function of squeezing amplitude, measured by fitted single-exponential decay timescale from experimental pulse sequences in (b) (without
spectroscopy probe). Solid lines are extracted from fits to time-dependent master equation simulations including phenomenological
parameters that emulate coupling to a photon bath at rate κ1 with nonzero temperature nth (colors), and low-frequency detuning noise (see
Appendix G). (e) The cat-state—equally weighted superpositions of j � αi—lifetime (TYZ, blue open dots) as a function of its size (jαj2),
measured with the Ramsey-like pulse sequence in (f). The solid line inside the gray band is the prediction with no free parameters.
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first approximation, using Bohr’s action quantization. For
ϵ2 ≪ K, TX corresponds to loss of coherence of the
superposition between the ground state and the first excited
state of a Kerr oscillator (T2R), but increases exponentially
as each of the two metapotential wells becomes wide
enough to host one action quantum each (ϵ2=πK ∼ 1, first
vertical dashed line). The exponential increase stops when
excitations to the first pair of excited states (â†-like events)
become the limiting factor. An excitation into these states
will allow the transition between wells. The incoherent
environment-induced activation time thus plateaus at
∼250 μs until Bohr’s quantization condition is met again
and the first pair of excited states is captured by the
metapotential wells (ϵ2=πK ∼ 2, second vertical dashed
line). At this point, the tunnel splitting between the first pair
of excited states vanishes and the increase of lifetime
resumes. This cycle repeats itself for the next pair of excited
states as shown by the third rising slope in lifetime at
ϵ2=πK ∼ 3 (third vertical dashed line). We thus interpret the
experimental data as a manifestation of action quantization
modifying the incoherent environment-induced activation
time TX across the double-well barrier [27,43].
Despite the success of action quantization to explain

features of our experimental data, the argument is semi-
classical and unitary. It thus neglects tunneling and dis-
sipation, but it can be refined. We now refine our modeling
with a simple RWA Lindbladian model given by the master
equation,

ρ̇¼ 1

iℏ
½ĤSK−ℏΔâ†â;ρ� þ κ1ð1þnthÞD½â�ρþ κ1nthD½â†�ρ;

ð3Þ
where D½Ô� is the standard Lindbladian dissipator
of jump operator Ô defined by D½Ô�• ≔ Ô • Ô†−
ðÔ†Ô •þ • Ô†ÔÞ=2, and which contains the Hamiltonian
dynamics governed by Eq. (2) with an added detuning Δ ¼
ωa − ωd=2 term, aswell asMarkovian single-photon gain and
loss at the measured coupling rate κ1 and with a phenomeno-
logical temperature given by a mean photon number in the
bath nth. We also include low-frequency detuning noise by
samplingΔ from a normal distributionwith mean 0 andwidth
∼10 kHz to account for flux noise and reproduce the behavior
of our experimental data for ϵ2=K ¼ jαj2 ≲ 2.Weobserve that
the incoherent activation time TX in the regime jαj2 ≲ 2
increases rapidly; a sufficiently high barrier makes the
ground-state Kerr-cat qubit insensitive to frequency fluc-
tuations in the resonance of the circuit. Such dephasing
ceases to be the limiting mechanism when the coherent
states become nonoverlapping, a condition captured
by Bohr’s quantization (see Appendix F and Ref. [75]).
Once low-frequency detuning errors become irrelevant,
the first plateau in Fig. 3(d) is reached.
For values of jαj2 between π and 2π, the lifetime of the

states remains essentially constant, limited by thermal

excitation toward the first pair of excited states that have
energies close to the metapotential barrier. The model
including only single-photon gain and loss predicts a
simple expression for the lifetime saturation value that
reads TX ¼ ðnthκ1Þ−1. The predictions of this Lindbladian
model are shown in the colored curves in Fig. 3(d).
The model correctly predicts that the rising edge after the

first plateau occurs at the value of jαj2 where the dissipation
rate κ1 overcomes the nonlinear tunnel splitting between
the first pair of excited states δ1 (see Appendix and
Refs. [92,93]): A thermal excitation populating the first pair
of nondegenerate excited states induces tunneling from one
well to the other at rate δ1, while single-photon dissipation
fights against this effect by bringing the population back to
the ground state at rate κ1. Thus, if δ1 < κ1, the tunneling
between wells via the first pair of excited states is reduced by
dissipation. This explains in semiquantitative terms why the
elementary picture based on action quantization works well
for our experiment: The nonlinear splitting of the nth pair of
excited levels δn vanishes as the eigenstates are captured by
the lemniscate [94]. At that point, the splitting is exponen-
tially reduced by the tunnel effect and fulfills the condition
δn < κ1 almost immediately thereafter [95]. The slight
downward slope within each plateau in the data can be
explained by adding higher-order dissipators to the model
(see Fig. 11 in Appendix G).
Our experiment illustrates how the classical law of thermal

activation across a barrier, known as the Arrhenius’s law, is
modified byBohr’s action quantization. The activation across
a barrier has a long history [25,27–30,43] (for spin analogs,
see Refs. [46,47,96]). In the “classical limit” ϵ2=K ≫ 1
(formally equivalent here to ℏ → 0), the expected smooth
exponential behavior is recovered in themodel. Alternatively,
if κ1 ≳ K, the classical behavior expected from Arrhenius’s
law is recovered even for moderate values of ϵ2=K too (see
Fig. 14 in Appendix G).
While we have explained the presence and location

of the plateaus in the measurements of TX, there is no
quantitative agreement between the simple RWA
Lindbladian model and the data. The data traverse iso-
therms in Fig. 3(d) and seem to suggest that the simple
model requires the introduction of extra heating terms.
Trivial heating of the attenuators in the microwave lines is
improbable, as checked by changing the duty cycle of the
measurement sequence. We remark that, in our experiment
and regardless of this discrepancy, the phase flips
(j þ αi ↔ j − αi) of our Kerr-cat qubit as measured here
by TX are robust to gate drives, readout drives, and flux
noise as expected (see Fig. 7 in Appendix E, Fig. 6 in
Appendix D, and Fig. 11 in Appendix G, respectively).
Further work, probably requiring beyond-RWA dissipa-
tors [65,68,97–99], will be needed to improve the present
state of the modeling (see Ref. [65]).
We also measure the lifetime TYZ of the Schrödinger

cat superpositions of j � αi, which are all degenerate
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ground states of Eq. (2) for jαj > 0. The results are shown
in Fig. 3(e). As expected, the lifetime TYZ does not
present steps and is well described by standard dissipa-
tors. This is because the decoherence of cat states is
dominated by single-photon-loss events while the system
remains in the ground states. The experimental sequence
used for this measurement is shown in Fig. 3(f). The
interruption of the stabilization drive for a period of
784 ns ≈ π=2K maps parityless cat states into coherent
states (and vice versa) under free Kerr evolution for
preparation and measurement (see Fig. 10 in Appendix G
and [48]). The lifetime TYZ is measured as the decay time
of oscillation between cat states. This is achieved by
applying a drive at ωd=2 while the squeezing drive is on.
Under these conditions, the coherent states remain locked
to the minima of the wells while the phase-space
interference fringes of the cat states roll, continuously
changing the cat parity from odd to even and producing
an oscillatory behavior in the data (see Appendices E
and G and [48,62]). The black line in Fig. 3(e) corresponds
to a prediction with no adjustable parameters given by
T1=2hn̄i, where hn̄i ¼ jαj2ð1þ e−4jαj2Þ=ð1 − e−4jαj2Þ is the
time-averaged number of photons in the oscillation (see
Appendix G). The gray band accounts for the uncertainty in
the independently determined T1.
Note that the full Hamiltonian control we have over the

system provides different operating points. If highest
average cat-qubit coherence is desired, we choose ϵ2=K ¼
1.85 for which we measure, as described in Figs. 4(a)
and 4(b), lifetimes of TX ≳ 97 μs [results shown in
Fig. 4(c)] and TYZ ≳ 5.7 μs [Fig. 4(d)]. Alternatively, it
is possible to increase TX at the expense of some reduction
of TYZ. With this in mind, we note that in addition to
the drive amplitude, we can tune the drive frequency to
exploit the rich nonlinear dynamics of our double-well
system. By pumping the parametric squeezing off-
resonantly, a quadratic static effective term arises in Eq. (2):
−Δâ†â, where Δ ¼ ωd=2 − ωa is the drive detuning.
Applying Bohr quantization to the separatrix in the new
metapotential surface, we find that the number of bound
semiclassical orbits now reads N ¼ ðϵ2=πKÞ − ðΔ=8KÞ.
We then reduce the squeezing amplitude, and thus
the associated anomalous heating, to ϵ2=K ¼ 8.9 and
set Δ=2π ¼ −4.5 MHz ¼ 14K=2π. In this condition, we
measure a lifetime of TX ¼ ð1.102� 0.008Þ ms—an
increase of TX=T�

2 ∼ 440 times—while maintaining
coherent control over the cat states for a time TYZ ¼
ð0.76� 0.08Þ μs. We show these results in Figs. 4(e)
and 4(f). Note, nonetheless, that interference effects
between quantum phase-space trajectories take place as
a function of Δ [100,101] and contribute also to the
lifetime enhancement. A detailed experimental explora-
tion of lifetime control with the detuning parameter Δ is
communicated elsewhere [102]; see also recent theory
work exploiting the detuning parameter [103,104].

IV. REMARKS AND CONCLUSION

We have experimentally realized a squeeze-driven Kerr
oscillator by applying a strong microwave drive to a SNAIL
transmon and resolved excited quantum levels. The double-
well spectroscopic fingerprint of pairwise kissing is in
excellent agreement with a static effective theory of our
quantum driven system with no adjustable parameters.
Finally, we observe the remarkable signature of action
quantization in the incoherent environment-induced acti-
vation time TX across the double-well barrier.
Our results indicate that, depending on the requirements

of a desired quantum information application, different
experimental operating points can be selected. For quantum
information applications, for example, the operating point
shown in Figs. 4(c) and 4(d) (Δ ¼ 0 and ϵ2=K ¼ 1.85), the
average decoherence rate over the six cardinal states of the
Kerr-cat qubit Bloch sphere is smaller than that of the qubit

(a)

(c)

(b)

(d)

(e) (f)

FIG. 4. Global error protection and large error bias cat qubits.
(a) Pulse sequence for measurement of TX coherent state lifetime
in (c) and (e). (b) Pulse sequence for measurement of TYZ cat-
state lifetimes in (d). (c),(d) Kerr-cat qubit operating at Δ ¼ 0 and
ϵ2=K ¼ 1.85 where average coherence surpasses that of the bare
system. (c) Green and orange data for preparation in j � αi and
black lines are single-exponential fits with decay time TþX ¼
ð101� 4Þ μs and T−X ¼ ð103� 4Þ μs. (d) Cat-state coherences
for the two parityless cats (top, yellow and pink) and for the even
and odd parity cats (bottom, red and blue). Black lines are single-
exponential fits with TþY ¼ð5.9�0.2Þ μs, T−Y ¼ ð6.5� 0.2Þ μs,
and TþZ ¼ ð6.1� 0.1Þ μs, T−Z ¼ ð6.2� 0.4Þ μs, respectively.
(e),(f) Operation point with drive detuning Δ=2π ¼ −4.5 MHz
and ϵ2=K ¼ 8.9 implying a mean photon number of 15. (e) Life-
time measurement for j � αi (green and orange). The black line is
an exponential fit with timescale T�X ¼ ð1.102� 0.008Þ ms.
(f) Oscillations between cat states as a function of single-photon
drive time and phase [pulse sequence as in Fig. 3(f)]. Fits of the
line cut at zero phase yield a coherent oscillation with decay time
of TYZ ¼ ð0.76� 0.08Þ μs.
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encoded in the two lowest lying Fock states in our system
by an autonomous error protection gain factor of 2.8 (see
Appendix B 1). We remark, though, that the Kerr-cat qubit,
like a repetition code [105,106], is designed to correct
logical errors along only one axis of the Bloch sphere.
If qubit applications instead require a “large error bias”

(TX ≫ TYZ > 0) [49,51–53], one could choose to operate
the Kerr-cat qubit at ϵ2=K ¼ 10, where we measure
TX ¼ 500 μs (TX=T�

2 ∼ 200) and TYZ ¼ 1 μs. Note that
for quantum applications, large error bias demands that
the short timescale, here TYZ, remains long enough to
perform the required coherent operations and high-fidelity
measurements.
With detuning, TX is increased by an additional factor

of 2 preserving finite cat lifetime and thus a large bias
(TX=TYZ ∼ 1450, at Δ ¼ 14K, and ϵ2=K ¼ 8.9). This
result demands the extension of the theoretical and exper-
imental techniques to treat Hamiltonian stabilization of
bosonic qubits, now for off resonant with respect to 2 times
the SNAIL small oscillation frequency driving.
Short-term applications of our system include the reali-

zation of a pair of strongly driven Kerr oscillators operated
simultaneously and in interaction (see Fig. 1). This Kerr-cat
molecule will be of great interest for the implementation of
single and multiqubit gates in a quantum processor with
reduced hardware overhead [50–54]. Another immediate
use of our system is as a fault-tolerant ancilla [49] for other
bosonic error correction codes [107,108]. The large error
bias and the possibility to perform fast Raman gates via the
excited-state spectrum are enabling assets of our imple-
mentation [109–111], leading to the development of a
wealth of now possible techniques.
In the longer term, the setup presented in this work can be

used to perform new experiments of fundamental interest.
Among them we mention the demonstration of new dynami-
cal Casimir effects and quantum heating [112,113], dynami-
cal tunneling and interference in the classically forbidden
region [100], quantum simulation of excited-state phase
transitions in nuclear and molecular systems [114–116],
fluids of light [117], quantum annealing and quantum
simulation of Ising models [73,86,118,119], and the explo-
ration of quantum chaos in systems with a direct classical
correspondence [67,120–122].
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APPENDIX A: DERIVATION OF THE
STATIC-EFFECTIVE SQUEEZED

KERR HAMILTONIAN

The SNAIL-transmon Josephson circuit [57] is well
modeled as a nonlinear oscillator. To compute the static-
effective squeezed Kerr oscillator Hamiltonian, we consider
the Hamiltonian of a driven nonlinear oscillator in the
bosonic basis,

ĤðtÞ
ℏ

¼ ωoâ†âþ
X
m≥3

gm
m

ðâþ â† þ Πe−iωdt þ Π�eiωdtÞm;

ðA1Þ

where the oscillator is characterized by ωo, its bare
frequency, gm=m, its mth-order nonlinearity, and â† the
bosonic creation operator satisfying the standard commu-
tation relation between bosonic operators: ½â; â†� ¼ 1.
The Hamiltonian in Eq. (1) is related to Eq. (A1) by a
displacement transformation into the linear response of the
oscillator, where the effective amplitude of the displace-
ment is Π ¼ ð2Ωd=3ωoÞ.
Next, we seek a transformed frame in which the non-

linear Hamiltonian rates are small compared to the drive
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subharmonic frequency ωd=2 ≈ ωo. We achieve this
by going into a rotating frame induced by ðωd=2Þâ†â,
transforming Eq. (A1) to

ĤðtÞ
ℏ

¼ −δâ†âþ
X
m≥3

gm
m

ðâe−iωdt=2 þ ðA2Þ

â†eiωdt=2 þ Πe−iωdt þ Π�eiωdtÞm; ðA3Þ

where δ ¼ ðωd=2Þ − ωo ≪ ωd.
From Eq. (A2), we compute, perturbatively, an effective

Hamiltonian that captures the relevant dynamics in this
displaced rotating frame. Here, we introduce φZPS ≪ 1,
the zero-point spread of the phase across the Josephson
junction which is the perturbative parameter of our expan-
sion. The source of the nonlinearity being the Josephson
potential guarantees a hierarchy in the Hamiltonian non-
linearities. The mth nonlinearity is order m − 2 in the
perturbation, i.e., gm=m ¼ Oðωoφ

m−2
ZPS Þ for m ≥ 3, where

φZPS is the zero-point spread of the superconducting phase
across the nonlinear element. With the placement of our
drive, we ensure that δ≲ g3.
Following Ref. [65], we find an effective Hamiltonian

with following structure:

Ĥeff ¼
X
n≥1

ĤðnÞ
eff ; ĤðnÞ

eff ¼
X
k≥0

ĤðnÞ
eff½k�jΠj2k; ðA4Þ

where the superscript n denotes the order in the perturba-
tion parameter and the subscript k denotes the number of
participating drive excitation pairs.
At orders 1 and 2, we find the effective Hamiltonian

takes the form

Ĥeff

ℏ
¼ −Δâ†â − Kâ†2â2 þ ϵ2â†2 þ ϵ�2â

2 þOðωaφZPS
3Þ;
ðA5Þ

with

Δ¼
X
n¼1;2

ΔðnÞ; K¼
X
n¼1;2

KðnÞ; ϵ2¼
X
n¼1;2

ϵðnÞ2 ; ðA6Þ

where we find

−Δð1Þ ¼ −δ; − Δð2Þ ¼ −
X
k¼0;1

Δð2Þ
½k� jΠj2k;

−Δð2Þ
½0� ¼ 3g4 −

20

3

g23
ωo

; −Δð2Þ
½1� ¼ 6g4 − 9

g23
ωo

;

−Kð1Þ ¼ 0; − Kð2Þ ¼ 3g4
2

−
10

3

g23
ωo

;

ϵð1Þ2 ¼ g3Π; ϵð2Þ2 ¼ 0: ðA7Þ

We remark that Δð2Þ
½0� and Δð2Þ

½1� are the well-known Lamb

shift and ac Stark shift, respectively. Similarly, the depend-

ence of Kð2Þ and ϵð1Þ2 on external flux have been previously
verified in SNAIL parametric amplifiers [58,59].
At order 3, following the notation introduced above, we

find the effective Hamiltonian as

Ĥð3Þ
eff

ℏ
¼ −Δð3Þâ†â − Kð3Þâ†2â2 þ ðA8Þ

ϵð3Þ2 â†2 þ ϵð3Þ�2 â2 þ ϵ0ð3Þ2 â†3âþ ϵ0�ð3Þ2 â†â3; ðA9Þ

where

−Δð3Þ ¼−
20

3

δg23
ω2
o
−
17

2

δg23
ω2
o
jΠj2; −Kð3Þ ¼−

10

3

δg23
ω2
o
; ðA10Þ

ϵð3Þ2 ¼
�
6g5 −

141

10

g3g4
ωo

þ 221

180

g33
ω2
o

�
jΠj2Π ðA11Þ

þ
�
6g5 −

63

4

g3g4
ωo

þ 1

3

g33
ω2
o

�
Π; ðA12Þ

ϵ0ð3Þ2 ¼
�
4g5 −

21

2

g3g4
ωo

þ 2

9

g33
ω2
o

�
Π: ðA13Þ

Note that the Hamiltonian terms ∝ â†3âþ â†â3 ¼
â†2ðâ†âÞ þ ðâ†âÞâ2 represent a photon-number-dependent
squeezing interaction.
With this understanding, we remark that even at the third

order the effective Hamiltonian contains no parasitic terms,
a quantum manifestation of the robustness of the period-
doubling bifurcation.
At order 4, we find a four-photon drive, and the first

nonsqueezing drive term, in the effective Hamiltonian:

Ĥð4Þ
eff

ℏ
¼ −Δð4Þâ†â − Kð4Þâ†2â2 − λð4Þâ†3â3 ðA14Þ

þϵð4Þ4 â†4þϵð4Þ�4 âð4Þ þ â†2
�
ϵð4Þ2;Πþϵð4Þ2;n̂â

†â
�

ðA15Þ

þ
�
ϵ�ð4Þ2;Π þ ϵ�ð4Þ2;n̂ â†â

�
â2; ðA16Þ

where

Δð4Þ ¼
X

k¼0;1;2

Δð4Þ
½k� jΠj2k;

and Kð4Þ¼ P
k¼0;1K

ð4Þ
½k� jΠj2k.
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The expressions for all the coefficients of Eq. (A14) are
displayed below:

−Δð4Þ
½0� ¼ 15g6 −

220

3

g3g5
ωo

− 18
g24
ωo

þ 188
g23g4
ω2
o
−
20

3

δ2g23
ω4
o
;

−Δð4Þ
½1� ¼

�
60g6 − 232

g3g5
ωo

−
108

5

g24
ωo

þ 1342

5

g23g4
ω2
o
þ 1612

45

g43
ω3
o
−
33

4

δ2g23
ω3
o

�
;

−Δð4Þ
½2� ¼

�
30g6 −

644

5

g3g5
ωo

þ 9
g24
ωo

þ 15113

150

g23g4
ω2
o
þ 257963

2700

g43
ω3
o

�
;

−Kð4Þ
½0� ¼

�
15g6 − 84

g3g5
ωo

−
153

8

g24
ωo

þ 225
g23g4
ω2
0

−
10

3

δ2g23
ω4
o
−
470

3

g43
w3
o

�
;

−Kð4Þ
½1� ¼

�
30g6 − 116

g3g5
ωo

−
54

5

g24
ωo

þ 671

5

g23g4
ω2
o
þ 806

45

g43
ω3
o

�
;

−λð4Þ ¼ 10

3
g6 −

56

3

g3g5
ωo

−
17

4

g24
ωo

þ 50
g23g4
ω2
o
−
940

27

g43
w3
o
;

ϵð4Þ4 ¼
�
5

2
g6 þ

2

15

g3g5
ωo

−
33

4

g24
ωo

−
101

24

g23g4
ω2
o
þ 221

18

g43
ω3
o

�
Π2;

ϵð4Þ2;n̂ ¼
�
353

24

−δg3g4
ω2
o

þ 521

54

−δg33
ω3
o

�
Π;

ϵð4Þ2;Π ¼
�
10669

600

−δg3g4
ω2
o

þ 46313

5400

−δg33
ω3
o

�
jΠj2Π

þ
�
353

16

−δg3g4
ω2
o

þ 521

36

−δg33
ω3
o

�
Π:

All in all, the squeezed Kerr Hamiltonian is not modified
structurally by contributions beyond the rotating wave
approximation, up to the fourth order. This theoretical
understanding explains our clean experimental realization
of the squeezed Kerr Hamiltonian with a driven SNAIL.

APPENDIX B: BLOCH SPHERE
FOR THE KERR-CAT QUBIT

The ground states of Hamiltonian Eq. (2) in the main
text are exactly degenerate Schrödinger cat states jC�α i.
Restricting our system to these two ground states we define
a computational Kerr-cat qubit subspace. Its Bloch sphere
is shown in Fig. 5. The even and odd Schrödinger cat states
are taken to be in the north and south poles of the sphere
since they adiabatically map to the zero and one Fock states
of the transmon Kerr oscillator as ϵ2 → 0. This provides a
physically realizable mapping [48] to standard Bloch
sphere used in the superconducting circuit platform.
Under this convention we define the basis for the

computational space by

j � Zi ¼ jC�α i
¼ N �

α ðj þ αi � j − αiÞ

¼ N �
α e−jαj

2=2
X∞
n¼0

ð1� ð−1ÞnÞ αnffiffiffiffiffi
n!

p jni;

N �
α ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� e−2jαj2Þ

q
; ðB1Þ

where N �
α are normalization constants.

The mean photon number in these states is given by
n̄� ¼ hC�α jâ†âjC�α i ¼ r�2jαj2, and

r ¼ N þ
α

N −
α
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2jαj2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2jαj2

p → 1 − e−2jαj2 ; ðB2Þ

where the arrow corresponds to the expressions in the limit
ϵ2 ≫ K ðjαj2 ≫ 1Þ. We thus define the other two comple-
mentary and mutually nonbiased Pauli basis as

j�Xi¼ 1ffiffiffi
2

p ðjCþα i�jC−α iÞ→ j�αi;

j�Yi¼ 1ffiffiffi
2

p ðjCþα i� ijC−α iÞ→
1ffiffiffi
2

p ðjþαi∓ ij−αiÞ: ðB3Þ

FIG. 5. The adiabatic mapping of the Kerr-cat qubit Bloch sphere to the Fock encoding. The logical states in the Kerr-cat qubit and
their parity conserving adiabatic mapping to the two-level transmon Bloch sphere.
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The Pauli operators are then defined as

X̂ ¼ jCþα ihC−α j þ jC−α ihCþα j;
Ŷ ¼ −ijCþα ihC−α j þ ijC−α ihCþα j;
Ẑ ¼ jCþα ihCþα j − jC−α ihC−α j; ðB4Þ

and their scaling with α is shown in Table I.

1. Definition of autonomous error correction gain

Given that we have defined the Bloch sphere, we may
also define the average coherence of the Bloch sphere as

γ ¼ 1

6

X
i¼�X;�Y;�Z

1

Ti
; ðB5Þ

where Ti is the decay time constant for preparing the
system in one of the six cardinal states (jii) of the
Bloch sphere.
For the Fock qubit, we use the measured Ramsey decay

to calculate ð1=TþXþ1=T−Xþ1=TþYþ1=T−YÞ=4¼1=T2R,
and the measured single excitation decay time to calculate
1=TþZ þ 1=T−Z ¼ 1=T1; this defines the average coher-
ence of the Fock qubit.
For the Kerr-cat qubit, we either independently measure

each cardinal state’s coherence or use TYZ as in Fig. 3(e)
to summarize the coherence on the YZ plane. The combi-
nation of these measurements allows us to define the
autonomous quantum error correction gain factor γFock=γcat,
which efficiently summarizes the Kerr-cat qubit’s perfor-
mance as a quantum memory relative to the bare Fock qubit
encoding. At the bias point shown in Figs. 4(c) and 4(d),
this leads to an autonomous quantum error correction gain
factor of 2.8 beyond breakeven.

2. Photon loss

It is interesting to notice that in a realistic scenario, the
presence of dissipation will slightly deform the computa-
tional states. We analyze this by considering only single-
and two-photon loss. We generalize the Hamiltonian in
Eq. (2) by casting the no-jump Hamiltonian of the open
quantum system as

Ĥno-j
SK =ℏ ¼ −Δ̃â†â − K̃â†2â2 þ ϵ2ðâ†2 þ â2Þ: ðB6Þ

Here the Hamiltonian constants are complex numbers:
Generalized detuning Δ̃ ¼ Δþ iκ1=2, and generalized
Kerr K̃ ¼ K þ iκ2=2, where κ1 and κ2 are the single-
and two-photon-loss rates in the system. The phase-space
center of mass of the new eigenstates is obtained by
displacing this no-jump Hamiltonian by a complex ampli-
tude α̃ ¼ jα̃je−iðarg ϵ2=K̃Þ=2eiϕ̃ and solving for null-linear
terms in the displaced Hamiltonian. The dissipative eigen-
states are found to be centered at

jα̃j2 ¼ 1

2jK̃j2
�
−ΔK þ κ1κ2

4

�
ðB7Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi���� ϵ2K̃

����2 −
�
Kκ1 − Δκ2

4jK̃j2
�

2

s
; ðB8Þ

sinð2ϕ̃Þ ¼ Kκ1 − Δκ2
4jϵ2jjK̃j

; ðB9Þ

where the þ solution is valid when jϵ2j2 ≥ ðΔ2 þ κ21=4Þ=4,
which is beyond the parametric instability exploited for
parametric amplification and inside the double-well regime
of bifurcation relevant to this work (see Ref. [88] for
in-depth discussion). Note that the cat size also increases
with −Δ, and thus increases the protection of the coherent
states to perturbations.
Examining the equation for ϕ̃, the remarkable π perio-

dicity of the solutions is evident. This is the quantum
manifestation of a classically robust period-doubling bifur-
cation and it contains the essence of the noise-resilient
properties of the our cat qubit. The solutions are always
maximally spaced in phase space forming an angle of 180°.
For Δ ¼ 0 and in the bifurcation regime, we have that the
ground-state manifold is spanned by the coherent states
j � α̃i even in the presence of dissipation.

APPENDIX C: SUPERCONDUCTING PACKAGE
AND DESIGN CHOICES

In this appendix, we outline the key design principles
for the superconducting package and circuit quantum

TABLE I. Projection of some “local” (low order in â and â†) phase-space operators over the oscillator to the Kerr-
cat logical manifold. They represent the main source of errors in bosonic codes. Besides the exact expression for all
values of α, we provide instructive limits for large and small photon number. Note that in the large cat limit the
operators contain corrections of at most Oðα2e−4jαj2Þ.

α → 0 α Large jαj
â 1

2
ðX̂ þ iŶÞ αðrþr−1

2
ÞX̂ − iαðr−r−1

2
ÞŶ αX̂ þ iαe−2jαj2 Ŷ

â† 1
2
ðX̂ − iŶÞ α�ðrþr−1

2
ÞX̂ þ iα�ðr−r−1

2
ÞŶ α�X̂ − iα�e−2jαj2 Ŷ

â†â 1
2
ðÎ − ẐÞ jαj2ðr2þr−2

2
ÞÎ þ jαj2ðr2−r−2

2
ÞẐ jαj2Î − 2jαj2e−2jαj2 Ẑ

NICHOLAS E. FRATTINI et al. PHYS. REV. X 14, 031040 (2024)

031040-10



electrodynamics (cQED) system. The overarching design
goal was to incorporate two capacitively coupled SNAIL-
transmon circuits that could each be individually stabilized
with a squeezing drive and independently readout. With
such a system, we plan to implement two qubit gates
between two Kerr-cat qubits: specifically, a noise-bias-
preserving CNOT gate [51]. For the work presented here, we
address only one of the two chips with microwave drives
and the modes from the other chip play the role of
spectators. Table II lists a few key design parameters.
The design closely follows the coaxline architecture that

includes a seam between the two package pieces for easy
assembly and multiplexing [125]. The package structure

consists of two rectangular waveguide cavities designed
with lowest box mode at 12.46 GHz for the addressed
system and 12.78 GHz for the spectator system. An
aperture between the two cavities couples the two spatially
separate box modes weakly compared to their detuning,
which helps keep the box eigenmodes—and thus strong
microwave drives applied to them—spatially separated
while still allowing for direct capacitive coupling between
the two SNAIL transmons. The aspect ratio of the boxes
(tall and narrow) restricts the on-chip eigenmodes from
having significant participation in either the seam or the
copper bottom piece. The copper bottom piece is necessary
(as opposed to aluminum) to allow penetration of magnetic

TABLE II. Summary of device parameters. All design simulations were performed with ANSYS HFSS and black box quantization
[123,124] including corrections to Kerr from cubic nonlinearities [88], which follow from similar corrections in lumped-element
calculations [58]. All parameters in the lower two sections correspond to the particular flux bias pointΦ=Φ0 ¼ 0.33 common to all data
in this work. “msmt” refers to “measurement”.

Parameter Value Method of estimate or measurement

Oscillator dipole capacitance EC=h 60 MHz Design simulation
Oscillator number of SNAILs 2 Design
Oscillator SNAIL asymmetry α 0.1 Room temperature resistance msmt
Oscillator inductance of 1 large junction 0.6 nH Room temperature resistance msmt
Oscillator inductance of 1 small junction 6 nH Room temperature resistance msmt
Oscillator frequency at Φ=Φ0 ¼ 0 6.668 GHz Two-tone spectroscopy
Oscillator frequency at Φ=Φ0 ¼ 0.5 5.815 GHz Two-tone spectroscopy

External flux bias point Φ=Φ0 0.33 Two-tone spectroscopy
Oscillator frequency ωa=2π 6.039 GHz Two-tone spectroscopy
Oscillator cubic nonlinearity g3=3=2π ≈10 MHz Design simulation
Oscillator self-Kerr nonlinearity K=2π 320 kHz Coherent state refocusing experiment (Fig. 10)
Oscillator single-photon decay time T1 ð20� 3Þ μs Standard coherence msmt (with fluorescence readout)
Oscillator Ramsey decay time T�

2 ð2.17� 0.05Þ μs Standard Ramsey coherence msmt (with fluorescence
readout)

Oscillator Hahn echo decay time T2E 13 μs Standard echo coherence msmt (with fluorescence readout)
Readout resonator frequency ωb=2π 8.506 GHz Direct rf reflection measurement
Readout resonator linewidth κb=2π 0.40 MHz Direct rf reflection measurement
Readout resonator internal linewidth < 0.04 MHz Direct rf reflection measurement
Readout to oscillator cross-Kerr χab=2π ∼10 kHz Design simulation
Purcell filter frequency 8.703 GHz Direct rf reflection measurement
Purcell filter linewidth 25 MHz Direct rf reflection measurement
Lowest box mode frequency 12.46 GHz Design simulation

Spectator SNAIL-transmon frequency 6.302 GHz Two-tone spectroscopy
Capacitive coupling between oscillator and spectator 9.4 MHz Avoided crossing in two-tone spectroscopy vs flux
Spectator SNAIL-transmon self-Kerr 2.8 MHz Two-tone spectroscopy
Spectator SNAIL-transmon single-photon decay
time

20 μs Standard coherence msmt (with fluorescence readout)

Spectator SNAIL-transmon Ramsey decay time 2 μs Standard Ramsey coherence msmt (with fluorescence
readout)

Spectator to oscillator cross-Kerr ≈0.03 MHz Design simulation
Spectator readout resonator frequency 8.775 GHz Direct rf reflection measurement
Spectator readout resonator linewidth 0.58 MHz Direct rf reflection measurement
Spectator Purcell filter frequency 8.890 GHz Direct rf reflection measurement
Spectator Purcell filter linewidth 14 MHz Direct rf reflection measurement
Lowest spectator box mode frequency 12.78 GHz Design simulation
Coupling between lowest box modes ≈20 MHz Design simulation
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flux to bias the superconducting SNAIL loops via two
small coils mounted within counterbored holes in the
copper piece. Despite superconducting aluminum’s pro-
pensity to reject magnetic fields, the necessary applied field
to bias the SNAIL loops at one Φ0 is similar to the same
geometry made entirely of copper; as long as the coil area is
smaller than magnetic field’s entry hole in the aluminum,
the magnetic field lines have a convenient return path back
through the same hole implying the presence of the
aluminum actually has a focusing effect of the field toward
the SNAIL loops. This results in independent flux-biasing
capabilities for two qubits in a 3D superconducting
architecture with field crosstalk of order 10−2.
Each sapphire chip is clamped to two copper posts with

beryllium copper clips, and hosts three electromagnetic
modes of interest: SNAIL transmon, readout resonator,
and Purcell filter. A beryllium copper pin inserted into the
cavity defines the readout port and sets the linewidth of the
readout resonator and Purcell filter; a second weakly coupled
pin serves for the application of all microwave drives.
Focusing on the design of the addressed SNAIL transmon,

the design change compared to previous work [48], where
the coherent state lifetime saturated at jαj2 ¼ 2.6, is a
20-fold reduction in self-Kerr nonlinearity. We actuated this
reduction by moving to a series array of M ¼ 2 SNAILs,
reducing the SNAIL junction asymmetry parameter [57],
and working at a larger magnetic flux bias Φ=Φ0 ¼ 0.33
closer to (but not at) the Kerr-free flux point [58]. These
changes resulted in coherent state lifetime saturation around
jαj2 ¼ 10 in the current device (for Δ ¼ 0). This trend is
consistent across multiple (including unpublished) devices;
namely, lower self-Kerr K devices attain larger jαj2 before
the coherent state lifetime saturates despite lower third-order
nonlinearity g3. The intuition for this result mirrors a similar
intuition as to why SNAIL parametric amplifiers with lower
self-Kerr handle more signal power before unwanted satu-
ration effects occur [58,59]. Specifically, although increasing
M reduces both g3 and K, it also increases the maximum
number of allowed photons in the nonlinear oscillator, which
may be parametrized by ncrit ≈ 15M2=p2φ2

ZPS, where p is
the inductive participation ratio of the entire SNAIL array
in the electromagnetic mode (see Ref. [88] for derivation).
With the intuition backed by experiments that drive-induced
heating becomes problematic at some fraction of ncrit, we
may derive an expected increase in Kerr-cat size (at Δ ¼ 0)
at which drive-induced heating becomes problematic:

jαj2 ¼ jϵ2=Kj
¼ jg3Π=Kj
∝ MΠ

∝ M2: ðC1Þ

In the third line we assumed that jg3=Kj ∝ M [58,88] and in
the last line that ncrit scales the limit on Π ∝ M. From this

simple argument, we conclude that increasing the number of
SNAILs to decrease Kerr nonlinearity effectively increases
the experimentally achievable cat size.
Keeping in mind that gate speeds are limited by the gap

in the excited-state spectrum 4Kjαj2 and that K ∝ 1=M2,
gate speeds are independent of the Kerr nonlinearity if the
expected jαj2 increase is simultaneously achieved. The
exception to this is the Kerr-refocusing gate, which takes
time π=2K irrespective of jαj2. Generally, the gate fidelity,
however, will decrease under this optimization since
the cat-state lifetime TYZ ¼ 1=2jαj2T1. As such, we expect
there to be an optimum Kerr nonlinearity for a given
application depending on the trade-off between achievable
gate speed and noise bias. Improvements in gate design and
control techniques will help increase gate speed for a given
gap in the excited-state spectrum [109], and thereby will
allow designs with less nonlinearity to further increase
coherent state lifetime and noise bias.

APPENDIX D: READOUT OF THE SQUEEZED
KERR OSCILLATOR

It is critical for our implementation that we do not rely
on the ordinary dispersive readout of the superconducting
circuit platform. This means that our Kerr cats are
prepared, evolved, and detected without relying on standard
Fock qubit operations or measurements. This ensures the
high performance of a system with a weak bare non-
linearity. Instead of using the dispersive coupling of the
SNAIL transmon to the readout resonator, we use a
parametrically activated readout scheme with a large on-
off ratio. The readout is enacted by playing a microwave
pulse at the frequency difference in between the squeezed
Kerr oscillator frame ωd=2 and readout resonator at ωb
while the stabilization drive is on. The nonlinear term
providing the interaction originates from the SNAIL
array that, when activated by a microwave tone of dis-
placement amplitude ξBS and frequency ωBS ¼ ωb − ωd=2,
transforms as

g3

�
âþ gba

Δba
b̂þ H:c:

�
3

→ g3

�
âe−iωdt=2 þ ξBSe−iωBSt þ gba

Δba
b̂e−iωbt þ H:c:

�
3

≈ 6g3
gba
Δba

ðξBSâb̂† þ ξ�BSâ
†b̂Þ: ðD1Þ

Here, we have used the RWA to get rid of fast rotating terms
in a displaced and rotating frame for â. g3 is the third-order
nonlinearity of the SNAILs, gba is the bare capacitive
coupling in between the Kerr oscillator and the readout
resonator, b̂ is the annihilation operator of the resonator,
and Δba ¼ ωb − ωa. The hybridization is given in the
dispersive approximation for simplicity. Note, however,
that the RWA approximation is unjustified—the detuning
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of the readout drive is of order the oscillator frequencies—
and higher orders need to be considered. To leading order,
their effect is a renormalization of the beam-splitter
coupling rate gBS in the effective interaction,

gBSâb̂
† þ g�BSâ

†b̂; ðD2Þ

which is the announced frequency-converting beam-splitter
interaction.
When activated in the presence of the stabilization drive,

the photons in the squeezed Kerr oscillator displace the
readout resonator with a resonant drive strength �gBSα,
which subsequently radiates into a quantum-limited ampli-
fier chain that we demodulate and monitor with a precision
microwave measurement setup at room temperature. For
sufficiently weak readout drive strength such that
jgBSj2 ≪ 2Kjαjκb, the photons emitted by the oscillator
are replenished by the stabilization drive effectively pre-
serving the photon number in the state. These photons
should be thought of as displacing the readout resonator
by an amount β ¼ �i2gBSα=κb, which is conditional
on â ≈�α, and thus forcing the cat to collapse into
one of its coherent state components. The process enacts
then a quantum nondemolition measurement of the quad-
rature in the Kerr-cat qubit, thus named cat-quadrature
readout [48]. For nearly degenerate excited states within
the metapotential wells, the readout resonator is similarly
displaced conditioned on which well�α. The readout gains
no information on population within each well assuming
κb ≪ 4Kjαj2, as is the case in our experiment. For excited
states outside the metapotential wells, the readout drive
is sufficiently off resonance from any transitions such that
the readout resonator is not appreciably displaced from its
vacuum state.
Writing the Langevin equation for the coupled system

and solving for the steady state amplitude in the readout
resonator (see Refs. [48,88]), we find, as derived [126] and
verified [127] for conditional displacement readout, the
voltage signal-to-noise ratio of the measurement, which is
the square root of the usual power-defined SNR,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNRðτÞ

p
¼

ffiffiffiffiffiffiffiffi
32η

p jgBSαj
κb

ðD3Þ

× ½κbτ−4ð1−e−κbτ=2Þþð1−e−κbτÞ�1=2; ðD4Þ

where τ is the square measurement pulse time and η is the
quantum efficiency of the entire measurement chain. The
expression here assumes the optimal demodulation
envelope, as used in the experiment. The experimentally
measured SNR may be read from histograms as
SNR ¼ jIþα − I−αj2=2σ2, where I�α is the mean in-phase
quadrature value for preparation in j � αi and σ is the
standard deviation of the resultant histogram (cf. main
text Fig. 2). Note, all information is aligned to the

in-phase quadrature either by the demodulation envelope
or by choosing the readout drive phase such that
argðgBSÞ ¼ þπ=2. Invoking the aforementioned drive
strength limitation to prevent leakage to higher excited
states, we may bound the SNR as

SNR ∝
jgBSαj2
κ2b

κbτ ≪ 2Kjαj3τ ðD5Þ

in the long-time κbτ ≫ 1 limit.
The expression favors large values of the mean photon

number jαj2 in the oscillator. This is of technological
relevance since obtaining high readout SNR is then con-
sistent with the other two main desiderata for the Kerr-cat
qubit: namely, fast gate speed (limited by the gap to the first
excited state in the spectrum measured here to scale as
≈4Kjαj2) and large noise bias (found to increase with jαj2
in the decoherence studies presented here).
In Fig. 6, we examine the measurement quality as

function of squeezing drive amplitude and readout drive
amplitude. To this end, we first calibrate the readout drive
amplitude in terms of the induced beam-splitter rate gBS
with the experimental pulse sequence of Fig. 6(a). With the
squeezing drive off (ϵ2 ¼ 0), we prepare the Fock qubit on
the equator of its Bloch sphere and turn on an uncalibrated
readout drive (frequency ωBS ¼ ωb − ωa) to pitch the Fock
qubit state out the overcoupled port of the readout reso-
nator. This effectively performs a fluorescence readout of
the Fock qubit [128], which is of higher fidelity than
dispersive readout in this system. An example emitted
signal measured via heterodyne detection is shown in
Fig. 6(b). In the limit gBS ≪ κb, the emitted field’s energy
would decay exponentially at rate 4g2BS=κb, implementing a
so-called “Q switch” on the Fock qubit often used for
cooling. However, in our experiment gBS ≳ κb, so the
photon swaps back and forth at rate gBS=2 between the
Fock qubit and the readout resonator before being emitted
out the detection port. Fitting these oscillations (black line)
allows us to extract gBS (see Refs. [48,129] for model
derivation). Performing this experiment for different read-
out drive amplitudes, we extract gBS and fit the dependence
to a line with no offset [Fig. 6(c)] as expected for this three-
wave mixing process.
With readout amplitude calibration in hand, we apply the

squeezing drive to assess the quality of readout. As in the
main text, we follow the pulse sequence in Fig. 6(d) to
repeatedly perform readout with the squeezing drive on
to set the mean number of photons in the squeezed Kerr
oscillator to jαj2 ¼ ϵ2=K (Δ ¼ 0). We examine three
readout metrics for three different squeezing strengths
as a function of readout drive amplitude: fidelity in
Fig. 6(e), QNDness in Fig. 6(f), and decay time during
readout in Fig. 6(g). We calculate the fidelity as
F ¼ 1 − pðþαj − αÞ − pð−αj þ αÞ, where pð�αj ∓ αÞ
is the probability—as extracted from experimental
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histograms—of measuring the qubit in j � αi after initial-
izing the opposite state j ∓ αi with a previous stringently
thresholded measurement. We characterize the QNDness
as Q ¼ ½Pðþαj þ αÞ þ Pð−αj − αÞ�=2, where PðijiÞ is the
probability of obtaining measurement outcome i in two
successive fair measurements. We extract the decay time-
scale during measurement by averaging many measure-
ment records together conditioned on the first initialization
measurement and fitting to a single exponential decay (see
main text Fig. 2).
Focusing first on the readout drive amplitude depend-

ence, both the fidelity and QNDness increase sharply at
low amplitude as the blobs separate in IQ space and the
bare SNR increases. For a large region of readout drive
amplitude, the fidelity and QNDness are both approxi-
mately constant until eventually degrading at higher
amplitudes. We interpret the constant region to correspond
to the drive amplitudes where the fidelity is no longer
limited by the bare SNR of the blob separation, but instead
by the decay of one coherent state to the other during
readout. This interpretation is consistent with comparing
the total time for a single measurement τ ¼ 4.44 μs to the
measured decay time during readout. The measured
QNDness also saturates since the maximally extractable
QNDness for this experimental definition depends on the
readout fidelity. A fidelity-independent way to extract

QNDness is to look at the extracted decay time during
readout. The decay time decreases monotonically (ignoring
the lowest amplitude points of low QNDness) with increas-
ing readout drive amplitude. This is reminiscent of the same
reduction of lifetime during readout with increased readout
power—colloquially often referred to as “T1 vs n̄”—that
plagues most circuit QED systems [130–132].
Turning to the cat size jαj2 dependence on readout

quality, the data clearly indicate increased fidelity,
increased QNDness, and increased lifetime during readout
for larger jαj2 in the range shown. The reason for this
trend is threefold: Increasing jαj2 increases bare SNR
[cf. Eq. (D4)], increasing jαj2 increases coherent state
lifetime [cf. main text Fig. 3(d) and Appendix G 3], and
increasing jαj2 increases robustness to external drives
(cf. Fig. 7 in Appendix E). Generally, these trends continue
until increasing jαj2 no longer increases the coherent state
lifetime TX, implying that designing systems with larger TX
will correspondingly increase readout performance even in
the regime of T1-vs-n̄-type effects. Such considerations
might lead future experiments to optimize readout perfor-
mance by always performing readout at the highest TX bias
point. For instance, an application that might wish to set
jαj2 lower to optimize the breakeven metric may still wish
to inflate jαj2 before readout by increasing ϵ2 adiabatically
with respect to 4Kjαj2. Without increasing TX, increasing

(a) (d) (e)

(f)

(g)

(b)

(c)

FIG. 6. Measurement calibration and robustness to readout power. (a) Pulse sequence for readout drive amplitude calibration
experiment [see (b) and (c)]. Preparing the Fock qubit on the equator of the Bloch sphere (squeezing drive off), a readout pulse at
ωBS ¼ ωb − ωa implements a fluorescence readout. (b) Example time trace of readout resonator output field recorded as a heterodyne
signal after amplification. Black lines are fits to extract beam-splitter strength gBS. (c) Extracted gBS (green circles) as of function of
readout pulse amplitude fit to a line (black) with no offset. (d) Pulse sequence for repeated measurement as in main text, where again
ωBS ¼ ωb − ωd=2. (e)–(g) Fidelity, QNDness, and decay time during repeated measurements, respectively, as a function of readout
drive amplitude for three different squeezing drive strengths on resonance. Lines connecting points are a guide to the eye.
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readout speed would further increase readout fidelity (in the
flat regime of readout amplitude where fidelity is otherwise
limited by lifetime). The relatively conservative value of
κb=2π ¼ 0.40 MHz limited our readout time τ ¼ 4.44 μs
and may be easily increased in future experiments.

APPENDIX E: PRESERVATION OF THE BIAS
DURING CONTINUOUS CAT RABI GATE

The metapotential describes a double-well energy sur-
face with nonlinear components in both the x and p
quadratures. Regardless, around its minima α̃ a harmonic
approximation becomes increasingly good as ϵ2 ≫ K.
Defining the operator δâ ¼ â − α̃, we use the generalized
Taylor expansion for Hilbert space operators to write now
the non-Hermitian Hamiltonian Eq. (B6) as

Ĥno-j
SK =ℏ ≈ −4K̃jα̃j2ðδâ†Þδâ − K̃ðδâ†Þ2ðδâÞ2

− 2K̃ α̃ðδâ†Þ2δâþ H:c:;

which stands for an oscillator that becomes stiffer as ϵ2
grows while its Kerr nonlinearity remains constant. This
increasingly harmonic oscillator is described by an energy
ℏΔgap ¼ −ℏð4K þ i2κ2Þjαj2. This energy limits the speed
of operation of the Kerr-cat qubit and can be thought of as
the energy gap in between the degenerate logical space of
the qubit and the first level out of the code space. We have
reported the experimental verification of this scaling in the
case K ≫ κ2 in the main text. In absence of Kerr non-
linearity (K ≪ κ2) it has been verified and reported
in Ref. [62].
The operation speed limit is discussed in Ref. [48]

but can be understood, alternatively, in the following
way. The cat Rabi drive, in resonance with ωd=2 and of
amplitude ϵx, can be thought of as drive detuned by Δgap

over the stiff harmonic wells of the metapotential. In the
presence of single-photon dissipation, such a detuned drive
will stabilize, in the harmonic oscillators, a coherent state
of amplitude ϵx=ðΔgap − iκ1=2Þ ≈ ϵx=Δgap. The condition

of perturbative drive is that the displacement of ground state
is much smaller than the vacuum spread: ϵx=Δgap ≪ 1.
This condition ensures that the state will not “leak” out
of the logical manifold into the excited states and limits
the achievable Rabi rate Ωx ¼ Ref4ϵxα�g to jΩxj ≪
4jΔgapαj ¼ 16jαj3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ κ22=4

p
.

We further verify that the coherent state lifetime is not
degraded by pushing the rate of the continuous cat Rabi
gate toward this limit. In Fig. 7, we observe that even past
the largest gap involved in our experiments (∼12 MHz for
jαj2 ∼ 10), the coherent state lifetime TX is essentially
unaffected. Naturally, for such high Rabi amplitudes the
state undergoes coherent oscillations in between the ground
state and the excited states of the metapotential (corre-
sponding to leakage) and should be avoided during the
operation of the Kerr-cat qubit. Importantly, at these high
amplitudes where the drive is explicitly causing leakage,
TX is unaffected because the leakage is primarily to
pairwise degenerate state within the wells. This relaxes
constraints on leakage errors during gates in applications
that require the preservation of a large noise bias.

APPENDIX F: BOHR QUANTIZATION OF THE
SQUEEZED KERR OSCILLATOR

In this appendix, we will treat in a semiclassical fashion
the squeezed Kerr oscillator and use Bohr’s quantization
principle to find the number of bound states per well.
We first take the invertible Wigner transform W of the
squeezed Kerr Hamiltonian operator in Eq. (2) in the
main text. The quantum phase-space Hamiltonian
reads [89,90,133–135]

HSKðx; pÞ=ℏ ¼
�
K −

Δ
2

�
ðx2 þ p2Þ ðF1Þ

−
K
4
ðx2 þ p2Þ2 þ ϵ2ðx2 − p2Þ; ðF2Þ

(a) (b)

FIG. 7. Bias robustness during gate operation. (a) Pulse sequence to measure TX in the presence of a strong cat Rabi drive at frequency
ωd=2 with amplitude ϵx and phase set to zero to drive cat Rabi oscillations at rateΩx ¼ Ref4ϵxα�g. (b) The coherent state lifetime TX is
unaffected by the strong Rabi drive. The two sets of points corresponds to a coherent state of jαj2 ¼ 10 (Δ=2π ¼ 0, orange) and
jαj2 ¼ 15 (Δ=2π ¼ −4.5 MHz, blue).
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where we took â ¼ ðx̂þ ip̂Þ= ffiffiffi
2

p
with ½x̂; p̂� ¼ i and

neglected irrelevant additive constants. The frequency shift
Kðx2 þ p2Þ is the expected McCoy [90,133] correction
and it has its origin in the familiar noncommutativity
in between â and â†. This correction is nothing but the
Lamb shift.
Following Dirac’s correspondence [136] we take the

classical limit “ℏ → 0” to transform Eq. (F1) into the fully
classical phase-space Hamiltonian:

Hcl
SKðx;pÞ=ℏ¼−

Δ
2
ðx2þp2Þ−K

4
ðx2þp2Þ2þϵ2ðx2−p2Þ:

ðF3Þ

As one can see in Fig. 8(a), the equienergy
contours defined by Hcl

SKðx; pÞ ¼ E, for Δ ¼ 2ϵ2,
define trajectories that are Cassinian oval orbits [70].
The separatrix dividing the bound states from the
out-of-well states is given by E ¼ 0 and describes a
figure-8 curve known as Bernoulli’s lemniscate. The area
enclosed by the teardrop loop can be analytically computed
to be

1

2π

I
Hcl

SK¼0

PdX ¼ ℏ

�
ϵ2
πK

þ −Δ
8K

�
; ðF4Þ

where jαj2 ¼ ϵ2=K and X and P are the dimensionated
quadratures. Since Bohr’s quantization condition reads
ð1=2πÞ H PdX ¼ ℏN, where N is the number of bound
states, one finds N ¼ ½ðϵ2=πKÞ þ ð−Δ=8KÞ�. This gives a
new rule of thumb to estimate the degree of error protection
of the coherent state in the Kerr-cat qubit as a function of
its size.
To verify the semiclassical understanding we compare

this prediction with a full quantum treatment that we
show in Figs. 8(b)–8(d). First, we consider the spectrum
of ĤSK [Fig. 8(b)] and define the energy difference

ΔEðnÞ
SK ¼ Eð2nþ1Þ

SK − Eð2nÞ
SK in between pairs of kissing lines.

We see [Fig. 8(c)] thatΔEðnÞ
SK describe sigmoidal curves. For

relatively small jαj2 the energy gap in between excited
states remains approximately constant. At critical jαj2
values an exponential degeneration takes place. The
inflection point [Fig. 8(d)] at which the rate of approach
is maximal defines the kissing point after which the

(a) (c)

(d)

(e)

(b)

FIG. 8. Bohr quantization of the squeezed Kerr oscillator. (a) Equienergy contours ofHcl
SK describing Cassinian oval orbits, including a

lemniscate of Bernoulli (red) taken for Δ ¼ 0. (b) Quantum spectrum of the squeezed Kerr oscillator and (c) the energy gap in between
kissing eigenenergies as a function of the squeezing drive amplitude. (d) The point of maximal rate of approach is defined as the kissing
point and determined by the inflection point in the energy gaps. These are marked as blue dots in (b). (e) Comparison in between the
quantum Hamiltonian treatment and Bohr’s quantization semiclassical argument.
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marginal splitting left vanishes toward infinity. This defines
unambiguously the kissing point. Note, however, that since
the approach is so abrupt the argument is largely indepen-
dent of the exact definition of the kissing point and that any

reasonable cutoff imposed over ΔEðnÞ
SK yields essentially the

same result. We compare the fully quantum treatment (for
Δ ¼ 0) with the semiclassical argument in Fig. 8(e) to find
remarkable agreement.

APPENDIX G: DECOHERENCE IN THE
SQUEEZED KERR OSCILLATOR

1. Decoherence for our stabilized Schrödinger cat states

In Fig. 9 we show the coherence damping of Rabi-like
fringes while the Kerr-cat qubit oscillates in between the
different cat parities as N ðtÞðjαi þ eiΩxtj − αiÞ. This is
achieved by applying a resonant drive on the system
while the squeezing drive remains on as depicted in
Fig. 9(a): The stabilization drive is on during a first
QND measurement that is used to prepare a coherent state
in the metapotential. The squeezing drive is then turned off

abruptly to perform a Kerr gate [48] and prepare a Yurke-
Stoler parityless cat. After free Kerr evolution time of π=2K
the stabilization drive is turned on again to “catch” the cat
state. Then a resonant Rabi drive is applied on the qubit.
The stabilization drive frustrates the displacement of the
coherent components but causes the interference fringes of
the Kerr-cat qubit to roll, changing its parity as it exchanges
photons, coherently and one-by-one, with the resonant
drive. This is the mechanism used to perform the continu-
ous X gate in the Kerr-cat qubit [48], following a similar
gate in dissipatively stabilized cat qubits [62]. The oscil-
lation around the cat meridian of the Kerr-cat qubit Bloch
sphere for different values of the squeezing drive amplitude
are show in Fig. 9(b). Since the Rabi dynamics will perform
a π pulse every time a “red” cat fringe (W > 0; see Fig. 1 in
the main text) is displaced to the position previously
occupied by a “blue” fringe (W < 0), one expects the
Rabi frequency to be a strong function of jαj2: As the cat
states become larger, their fringes become narrower and a
smaller displacement is required to enact the coherent
parity flip [137]. By fitting the Rabi frequency ΩxðαÞ we

(a)

(c)

(d)

(b)

(e)

FIG. 9. Cat Rabi as a calibration tool. (a) The experimental sequence used to perform Rabi oscillations in between oscillator states.
(b) We show 15 of the 101 cat Rabi oscillations, each for a different squeezing amplitude. The frequency of the oscillation is directly
proportional to the square root of the cat size and the decoherence constant is inversely proportional to it. (c) Fit of the cat Rabi frequency
as a function of the voltage control parameter. (d) Inverting the formula for the Rabi frequency we measure directly the average number
of photons hn̄i in the ground state of the metapotential, which is equivalent to average number of photons in the parityless Yurke-Stoler
(YS) cats.. (e) Measurement of the cat-state lifetime. The solid line is a parameter-free theory prediction with shaded error bars
correspondng to the experimental uncertainty on the independently measured single-photon lifetime.

OBSERVATION OF PAIRWISE LEVEL DEGENERACIES … PHYS. REV. X 14, 031040 (2024)

031040-17



can calibrate the size of the cat as a function of digital
control amplitude (DAC) controlling the stabilization
drive ϵ2.
In the large cat limit, a drive term V̂x ¼ ϵxâ† þ ϵ�xâ

breaks the degeneracy in between the even and odd cat
states by [48,62]

Ωx ¼ 2hαjV̂xjαi ¼ Reð4ϵxα�Þ ðG1Þ

to first order in perturbation theory.
Extending this simple treatment to be valid for smaller

values of jαj2, one gets Ωx ≈ Reð4ϵx
ffiffiffiffiffiffiffi
n̄YS

p Þ, where we have
introduced a notation for the mean number of photons in
the parityless cats as n̄YS ¼ 1

2
jαj2ðr2 þ r−2Þ with r being

the ratio of the normalization constants for the even and odd
cats as defined in Eq. (B2). The extension of this formula
relies on the fact that the parityless cats map naturally to the
equatorial superposition of the Fock-state Bloch sphere,
while at large values of α the difference in photon number
for different cats is vanishingly small. The maximal
photon-number difference is in between the even and
odd cat states and reads ðn̄þ − n̄−Þ → −4jαj2e−2jαj2 in
the limit of large jαj2. In Fig. 9(c) we show the fit of
the data with the generalized formula. The inverse of the
same formula is used to calibrate directly the cat size of the
Hamiltonian ground state as a function of the digital control
amplitude for the squeezing drive as shown in Fig. 9(d). As
expected, the dependency becomes linear already at fairly
low values of jαj2.
It is clear that the oscillations shown in Fig. 9(b) are not

fully coherent. Indeed, their increasing decay rate with jαj2
is a characteristic of Schrödinger cat states and a signature
of the quantum to classical transition [138]. In Fig. 9(e) we
show the measured coherence time of the cat states for
different values of jαj2 ¼ ϵ2=K. Since in a Kerr-cat Bloch
sphere with a given α the mean photon number of the cat
states is only the same if jαj2 ≳ 1, measuring the Rabi-like
damping of the Kerr-cat Rabi oscillations (instead of
monitoring the exponential relaxation of a cat with a given
parity) provides us with an effective damping rate repre-
sentative of the encoding, which we refer to as TYZ.
The dots are experimental data and the lines are independ-
ently calibrated theory plots. The solid line represents
the parameter-free curve TYZ ¼ T1=2hn̄i, where hn̄i is
the Bloch-sphere-average photon number around the cat
meridian and reads hn̄i ¼ n̄YS. The dashed lines represent
the uncertainty in the independently measured transmon
lifetime T1 ¼ ð20� 3Þ μs.

2. Decoherence of q-legged cats during free Kerr
evolution (the Kerr gate)

During the Kerr gate [48] the state evolves under the
native (undriven) Kerr Hamiltonian of the system. Turning

off abruptly the squeezing drive, which stabilized the cat
manifold, enacts a Yurke-Stoler evolution [139] transform-
ing the state from a coherent state into a two-legged
parityless cat state after a time t ¼ π=2K. It is interesting
to notice that the system visits a series of intermediate
q-legged cat states every t ¼ π=qK [138]. These multi-
legged cats exhibit a complex pattern of interference
fringes in phase space and their sharp phase-space features
exposes them to accentuated diffusion under dissipation.
This makes the fidelity of the Kerr gate a strong function
of the mean photon number, and thus a sensitive tool to
study the decoherence in our system. It is important to note
that the high-frequency variation in the Wigner distribution
of q-legged cat sates is set by the square of their phase-
space diameter (D ¼ 2

ffiffiffī
n

p
).

We here study experimentally the decoherence during
the free Kerr evolution as a function of the cat size jαj2.
Our measurement configuration allows us to easily access
the mean value of the Kerr-cat qubit Pauli operator
X̂ ≈ j þ αihþαj − j − αih−αj [see Eq. (B4)]. The experi-
mental measurement sequence is shown in Fig. 10(a). A
preparation QND measurement performed in the presence
of the stabilization drive is followed by a period of free Kerr
evolution before the final measurement is performed. The
experimental results are show in Fig. 10(b). We see that at
the time of the phase refocusing π=K the degree of
coherence decreases rapidly with the photon number up
to the point that the state is largely dephased. By that time,
the phase-space distribution is expected to be essentially
classical. The solid black line is a fit via simulation of a
master equation including only single-photons loss.
Including photon excitation in the simulation with a free
thermal photon number as an additional free parameter
achieves the same goodness of fit at the cost of a high
uncertainty in the fit parameters. We thus exclude it from
the analysis here. We find that a correct interpretation of the
data is achieved by understanding κeff ∼ κ1ð1þ 2nthÞ as
verified numerically. The fitted parameters are shown in
Figs. 10(c)–10(e).
By giving the fit function complete freedom over the

Hamiltonian parameters K and ϵ2, we find that only a
modulation of ∼3% is required to reproduce the complex
free Kerr evolution for all values in a large range of jαj2.
Moreover, we see from Fig. 10(c) that fitted values are
consistent with independently performed calibrations
discussed in the previous section and in the main text.
We notice that in the free Kerr experiment the Kerr
coefficient has a slight decreasing trend as the size of the
cat states grows. As expected for larger values of jαj2, the
refocusing signal becomes weaker. We see nonetheless a
significant increase in the effective decoherence rate of
∼200% making 2n̄TY < T1 ¼ κ−1eff . The fitted value for
κeff is compatible with κ1 ¼ 1=20 μs and nth ∼ 0.3
for jαj2 < 4.9.
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(a)

(b)

(c) (d) (e)

FIG. 10. The Yurke and Stoler experiment as a calibration tool. (a) The experimental sequence of pulses allowing for the
observation of the phase collapse and the phase revival in free Kerr oscillator. At times equal to π=qK the system is in a q-legged
Schrödinger cat state. (b) The signal corresponds to the mean vale of the operator X̂ ≈ j þ αihþαj − j − αih−αj [cf. Eq. (B4)]
achieving maximal revival at π=K. For large cats the periodicity of the signal is lost due to decoherence (see Ref. [140]). (c) Fitting
the cat size over the free Kerr evolution signal provides an efficient calibration of the drive parameters which is consistent with that
obtained from the cat Rabi experiments discussed in Fig. 9. (d) The revival is expected at π=K independently of the cat size and thus
fitting the signals in (b) provides a good calibration for the Kerr parameter K. It is found to be K ∼ 320 kHz in agreement with
independently performed spectroscopic experiments (see main text). (e) The fitted effective dissipation rate as a function of the cat
size. We find a nontrivial dependence on the dissipation rate for larger cats. This suggests an effective heating of the setup for the
larger squeezing amplitudes.
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3. Decoherence of stabilized coherent states

The most striking result regarding the interplay of
nonlinearity and decoherence in our work is the exper-
imental discovery of a stepped increase in the coherent state
lifetime versus the mean photon number in the logical state.
This showcases the interplay in between nonlinearity and
dissipation and the relevance of the excited-state structure in
our system to the error correcting properties of our qubit
implementation. Every time that the quantity jαj2=π hits an
integer value the Kerr-cat qubit earns one more order
of error protection. This is a direct consequence of the
vanishing tunnel splitting as excited states sink into the wells
of the metapotential and under the barrier. The qualitative
effect over the decoherence in the system is largely inde-
pendent of the specific error channels considered: A staircase
in the lifetime is expected. On the other hand, quantitative
predictions do depend on the dominating error channel
at play. We here discus how some of the main features
of decoherence of our coherent states can be explained
by a simple model keeping RWA terms in the coupling
to the environment which contains single-photon loss
(κ1ð1þ nthÞD½â�), thermal excitations (κ1nthD½â†�), and
detuning-type noise (κϕD½â†â�). A non-Markovian contri-
bution motivated by highly correlated magnetic flux noise
threading the superconducting SNAIL loops is also included.
We first provide a numerical model including single-

photon loss, thermal excitations, dephasing, and non-
Markovian low-frequency detuning noise. We then provide

an analytical model to showcase the importance of the
excited level spectrum, which we restrict to single-photon
loss and thermal excitations for brevity.
A beyond-RWA Lindbladian model that explains quan-

titatively the data by deriving from first principles a set of
exotic dissipators created by the interplay of nonlinearity
and dissipation will be presented elsewhere.
RWA Lindbladian evolution. In Figs. 11(a) and 11(b) we

show Markovian master equation simulations considering
single-photon loss and a bath at constant temperature for
two different magnitudes of white dephasing noise (κϕ).
Here the colored dots are numerical simulation and the
lines are a guide to the eye. The base temperature of our
fridge is close to 30 mK but the radiation environment is
believed to be at a higher temperature [48]. A thermal
population of nth ∼ 0.05 was used as a lower bound since it
corresponds to a blackbody temperature at ∼6 GHz of
100 mK, which is pessimistic for superconducting circuits
(nth ∼ 0.1 corresponds to ∼120 mK). In this oversimplified
model, the temperature is scanned maintaining the single-
photon lifetime fixed at ∼20 μs. In view of the expected
1=f dependence of the flux noise, the computations in
absence of dephasing noise is only a heuristic. We represent
high-frequency flux noise that causes leakage with an
effective white noise strength κϕ.
In all our simulations we observe a marked inflection

point at jαj2 ∼ 2π and jαj2 ∼ 3π as expected from Bohr’s
phase-space quantization (see Appendix F). The first-order

(a) (c) (e)

(b) (d) (f)

FIG. 11. (a) Numerical simulations in absence of phase noise (κϕ ¼ 0) for a set of different thermal populations. The steps in the
coherence state lifetime originated by the discretization of phase-space orbits are apparent. (b) The lifetime study is performed in
presence of white phase noise for a range of temperatures keeping the coherent state lifetime in the region of interest. (c) The lifetime
study is performed in absence of thermal photons for a set of white phase-noise amplitudes. (d) For a given temperature, the effect of
different phase-noise amplitude is compared. (e) Experimental data compared with a sample of Markovian noise models. (f) The low
jαj2 behavior of the data is reproduced by a non-Markovian toy model including low-frequency components in the fluctuations of the
Hamiltonian term Δâ†â [see Eq. (1) in the main text].
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protection happening at jαj2 ∼ π presents itself as a subtle
inflection point. This is due to the fact that for small
values of jαj2 (≲1) the limiting factor is not thermal
excitation to the first excited state. Instead, the limiting
factor originates from the fact that the Hamiltonian wells
are not sufficiently distant in phase space for the states
j � Xi to be well approximated by coherent states; the
metapotential wells do not yet contain enough area to host
two nonoverlapping states. As such, single-photon loss
and dephasing still dominate the decoherence for jαj2 ≲ π.
Additionally, due to this lack of separation, coherent and
incoherent tunneling represented by residual no-jump
Hamiltonian terms −ðΔþ iκ1=2Þâ†â is not yet suffi-
ciently suppressed. In this regime decoherence is also
facilitated by errors in the calibration of the drive
frequencies, slow fluctuations of the resonance condition
in the setup, and by deterministic ac Stark shifts over the
SNAIL’s oscillator frequency due to the stabilization
drive. These types of effect for nonzero effective detuning
have been studied theoretically in Ref. [29] and explained
via the WKB approximation as the opening up of phase-
space tunneling channels in between the wells. An in-
depth experimental study of these physics in our system is
left for a future work. We here restrict to the observation
that these tunneling effects are suppressed in the Kerr-cat
regime entered as jαj2 > 1 [75].
We see that in absence of Markovian dephasing noise

(κϕ ¼ 0) the plateaus are rather flat, while for κϕ > 0 they
contain a downward slope that we recognize in our data.
This downward trend implies a degradation of the coher-
ence during the intervals where the mean photon number
grows but the increase in area of the limiting orbit is not
sufficient to host a new excited pair of levels. A steep
increase is then observed when the Bohr’s quantization
condition is fulfilled. This behavior is expected analytically
from the photon-number dependence of the dissipators
associated with photon loss (or gain) and the one causing
detuning errors. The imaginary operator contribution
of each of the involved dissipators to the no-jump
non-Hermitian Hamiltonian is either ∝ jαj2 or ∝ jαj4,
respectively (see Table I).
In Figs. 11(c) and 11(d), we plot the behavior for a few

values of κϕ at given sample temperatures. From Fig. 11(c),
we learn that phase noise by itself cannot explain the
qualitative behavior of our data, even if we allow for a
monotonic parametrization of κϕ as a function of jαj2. This
would represent the approximation of in-band white noise
at a single relevant frequency. From Fig. 11(d), we see that
a finite temperature limits the coherent state lifetime before
the first-order protection peak is achieved, but the value
consistent with this saturation fails to control the lifetime at
larger values of jαj2. Larger values of κϕ that control the
lifetime at jαj2 ∼ 10 fail instead to reproduce the exper-
imentally observed value of saturation at jαj2 ∼ π.

In Figs. 11(e) and 11(f), we reproduce the experimental
data as black dots on top of numerical computations for the
expected lifetime under different decoherence models. In
Fig. 11(e), we reproduce a choice of Markovian models
including single-photon gain, single-photon loss, and a
κϕ ¼ 500 s−1. We see that, in the center region of the plot, it
is possible to assign a temperature to the measurement, but
the choice becomes inconsistent at either low or high values
of jαj2. At the high end of jαj2, we see what may be
interpreted as an increased effective heating as the data
traverse different isotherms. This is consistent with the
observations made during the discussion of the free Kerr
evolution and suggests that an effective heating is present at
larger cat sizes.
The delayed growth of the measured coherent state

lifetime for jαj2 < 2 in comparison with the Lindbladian
simulations suggests noise sources beyond the Markov
approximation. This is confirmed experimentally by apply-
ing a spin-echo sequences over the Fock qubit that
produced an increase from T�

2 ∼ 2 μs to T2E ∼ 13 μs and
reveals correlated noise in the experiment. A model for the
noise relying on the assumption that the tunneling oscil-
lations caused by Δ < 0 are close to critically damped
seems to explain well our observations [see Fig. 11(f)].
To mimic this behavior, we take the oscillator frequency
from a random normal distribution and average over many
realizations of the noise. The frequency fluctuations
required to match the experiment (∼10 kHz) are below
the spectroscopic linewidth resolution of the fundamental
frequency of our SNAIL transmon. As expected [48,75,88],
this effect becomes unimportant for jαj2 ≳ 1, which is the
Kerr-cat operation regime.
In our setup, measurements can be reliably made for

jαj2 ≳ 20, and a decrease in the coherent state lifetime is
observed beyond jαj2 ≳ 10. For illustrative purposes, we
mention that the RWA Lindbladian models would suggest
that for jαj2 ∼ 25 the lifetime of the coherent state in our
system should be ∼50 min in realistic conditions. These
results were obtained in absence of dissipative two-photon
stabilization [63] which would, theoretically, provide yet
another large improvement factor.
RWA Lindbladian spectrum. We here elaborate a sim-

plified (κϕ ¼ 0) treatment with the objective of developing
further the relationship between the nonlinear spectrum of
the Lindbladian and the decoherence properties of the
system. This study is based on the fact that the lifetimes
of excitations above the equilibrium states are obtained
from the real part of the corresponding eigenvalue of the
Lindbladian superoperator. This identification provides a
fully quantum interpretation of the experimentally observed
steps in the coherent state lifetime of our system, if still
only qualitatively.
Diagonalization of the Lindbladian superoperator.

We begin this analysis by introducing the notation for
the spectrum of the resonantly squeezed (Δ ¼ 0) Kerr
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Hamiltonian Eq. (2): ĤSKjψ�
n i ¼ ℏω�

n jψ�
n i. We choose the

eigenstates jψ�
n i to have overall real expansion coefficients

in the Fock basis. For n ¼ 0 we have the degenerate cat-
state manifold jψ�

0 i ¼ jC�α i. We denote the energy
differences by δjknm¼ωj

n−ωk
m (j; k ¼ �). Here, δn ¼ δþ−

nn
is the tunnel splitting in between the even and odd
parity states in the nth excited manifold in the well (see
Fig. 12) and decreases exponentially with jαj2 after the
kissing point, whereas the out-of-manifold energy gap
δjkn;nþ1 ≈ 4Kjαj2 increases linearly.
Now we provide a physical interpretation of the eigen-

values of the Lindbladian superoperator. Under single-
photon loss and single-photon gain, the Lindbladian that
governs the evolution of the density operator is

L ¼ LH þ LD; LH• ¼
1

iℏ
½ĤSK; •�;

LD• ¼ κ1ð1þ nthÞD½â� •þ κ1nthD½â†� • :

Here κ1 is the rate of single-photon loss to the environment
and nth is the average number of thermal photons. Then the
lifetime of the longest-lived excitation is TX ¼ ½−ReðλÞ�−1,
where λ is the eigenvalue of L with the smallest nonzero
real component. In Fig. 13(a), we show the lifetime
obtained from the eigenvalue of L is in agreement with
that extracted from exponential fits (dots) of the time
evolution, obtained as explained in the previous section
from numerical time evolution of the master equation
(see Fig. 11).
First-order perturbation theory. We carry the analysis

further by exploiting the condition κ1=K; nth ≪ 1. In
absence of dissipation, the Lindbladian reduces to LH,
whose eigenoperators are jψ j

nihψk
mjwith eigenvalues −iδjknm

directly determined by the energy differences. The
differences are zero for all population eigenoperators
jψ�

n ihψ�
n j and cat-state manifold coherence eigenopera-

tors jψ�
0 ihψ∓

0 j. We now treat dissipation as a perturbation
to the unitary dynamics generated by LH. Moreover, we
observe that a truncation of the Lindbladian can be
performed because the eigenoperators corresponding to
δjknm ≳ κ1 do not contribute to the first-order perturbative
expansion. That is to say that (i) we exclude out-of-
manifold coherence eigenoperators jψ j

nihψk
m≠nj, where

δjkn;m≠n ∼ 4Kðn −mÞjαj2 > κ1, (ii) we exclude the non-
degenerate in-manifold coherence eigenoperators
jψ j

nihψk≠j
n j when the their tunnel splittings have not

reached the kissing point and δþ−
nn ≡ δn > κ1, whereas

(iii) we keep the population eigenoperators jψ�
n ihψ�

n j
because they correspond to zero energy difference, and
(iv) we keep the pairs of sufficiently degenerate in-
manifold coherence eigenoperators jψ�

n ihψ∓
n j corre-

sponding to δn < κ1. In summary, at a fixed value of

FIG. 12. Tunnel splitting for ĤSK. jψþ
0 i and jψ−

0 i are exactly
degenerate. The nth excited-state manifold has tunnel splitting
δn ≡ δþ−

nn ¼ ωþ
n − ω−

n < δnþ1.

(a) (b)

L

L

L

L

L

L

FIG. 13. Spectral fingerprint of the RWA Lindbladian on the coherent state lifetime. (a) Comparison between exact and approximate
coherence time of jXi using L and LðγÞ

eff . Orange dots: coherence time extracted from Lindbladian time evolution initialized in state
jXihXj. Solid blue line: ½−ReðλÞ�−1 where λ is the eigenvalue ofLwith the smallest nonzero real part. Solid green line: ½−Reðλ̃Þ�−1 where
λ̃ is the eigenvalue of the 2γ × 2γ matrix LðγÞ

eff with the smallest nonzero real part, and γ ¼ 1. Solid red line: γ ¼ 2. Dashed black line:

γ ¼ 3. (b) Comparison of TðγÞ
X in presences and absences of tunnel splittings. The lifetime in the absences of tunnel splittings is derived

from LðγÞ
D . Black line: extracted from LðγÞ

eff with γ ¼ 8. Blue line: with γ ¼ 4. Gray lines: extracted from LðγÞ
D with γ ¼ 1; 2; 3;…; 8 from

bottom to top. In both figures, κ1=K ¼ 0.025 and nth ¼ 0.01. Red dashed line: fit of the black line restricted to jαj2 > 6.
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jαj2 the number of tunnel splittings that satisfy δn < κ1
is γ, which is a function of both jαj2 and κ1. We then
restrict the treatment to the quasidegenerate subspace

B ¼ Bpop ∪ BðγÞ
coh, where

Bpop ¼ fjψþ
n ihψþ

n j; jψ−
n ihψ−

n j;…;where n ≥ 0g;
BðγÞ
coh ¼ fjψþ

n ihψ−
n j; jψ−

n ihψþ
n j;…;where 0 ≤ n < γg:

To further reduce the problem, we consider the
initial state ρð0Þ ¼ jXihXj [where we remind j � Xi≡
ð1= ffiffiffi

2
p ÞðjCþα i � jC−α iÞ], which can be written as

ρð0Þ ¼ 1

2
ðjψþ

0 ihψþ
0 j þ jψ−

0 ihψ−
0 jÞ

þ 1

2
ðjψþ

0 ihψ−
0 j þ jψ−

0 ihψþ
0 jÞ:

The first term belongs to the subspace Bpop and closely
approximates the sole steady state of the Lindbladian.
Thus we expect any change in ρ to result from variations

in the second term which belongs to BðγÞ
coh. In addition,

under perturbations proportional to D½â� and D½â†�
population and coherence operator subspaces are
decoupled under the Lindbladian, due to parity.
These two observations allow us to restrict to the

2γ-dimensional subspace BðγÞ
coh, which we rewrite in the

following order:

BðγÞ
coh ¼ fjψþ

0 ihψ−
0 j; jψþ

1 ihψ−
1 j;…; jψþ

γ−1ihψ−
γ−1j;

jψ−
0 ihψþ

0 j; jψ−
1 ihψþ

1 j;…; jψ−
γ−1ihψþ

γ−1jg:

We thus construct the effective Lindbladian matrix

LðγÞ
eff ¼ LðγÞ

H þLðγÞ
D with the elements of L in BðγÞ

coh as

LðγÞ
H ¼

�−Δ 0

0 Δ

�
;

LðγÞ
D ¼ κ1ð1þ nthÞ

�−A B

B −A

�

þ κ1nth

�
−A − I BT

BT −A − I

�
;

where Δ, A, and B are γ × γ matrices whose entries
depend on jαj2 only:

Δ ¼

0
BBBBB@

0

iδ1
iδ2

. .
.

1
CCCCCA;

A ¼

0
BBBBB@

A0

A1

A2

. .
.

1
CCCCCA;

B ¼

0
BBBBB@

B00 B01 B02 � � �
B10 B11 B12 � � �
B20 B21 B22 � � �
..
. ..

. ..
. . .

.

1
CCCCCA;

δn ¼ ωþ
n − ω−

n ;

An ¼
1

2
ðhψþ

n jâ†âjψþ
n i þ hψ−

n jâ†âjψ−
n iÞ;

Bmn ¼ hψ−
mjâjψþ

n ihψ−
n jâ†jψþ

mi:

The first-order approximation to the coherent state life-

time is then TX ≈ TðγÞ
X ¼ ½−ReðλðγÞÞ�−1, where λðγÞ is the

eigenvalue of LðγÞ
eff with the smallest real component. In

Fig. 13(a) we plot TðγÞ
X as a function of jαj2 for κ1=K ¼

0.025 and nth ¼ 0.01. While the level of truncation γ, as
defined, should vary with jαj2, we here show the full span
for different fixed values of γ. We see, then, that each
stepped increase in the coherent state lifetime TX can be
associated to an excited-state manifold; truncating at a
particular value of γ amounts to the assumption that
δn>γ ≫ κ1. Thus, the tunneling associated to states with

n > γ is considered immediate, and TðγÞ
X only approx-

imates well TX if the number of degenerate levels
(N ≈ jαj2=π) is ≲ðγ þ 1Þ. If instead jαj2 > πðγ þ 1Þ,
TðγÞ
X plateaus and informs the rate of excitation outside

of the first 2γ states considered in the truncation.
To further illustrate the role of the tunnel splittings

in TX enhancement, we set LðγÞ
H ¼ 0 and plot the lifetime

extracted from LD as gray curves in Fig. 13(b). The double-
well structure is thus encoded only in the unperturbed
eigenbases. The first observation we make is that stepped
increase in lifetime vanishes in absence of the kissing
spectrum. Secondly, we observe that for jαj2 smaller than
the kissing point of the manifold n ¼ γ [jαj2 < πðγ þ 1Þ],
the tunneling due to finite splitting in the manifold n ¼ γ is
a limiting factor for the lifetime [92,93]. Finally, we
observe that the exponential trend shown by the lifetime
as a function of jαj2 is largely independent of the particular
Hamiltonian spectrum involved, provided the tunnel

OBSERVATION OF PAIRWISE LEVEL DEGENERACIES … PHYS. REV. X 14, 031040 (2024)

031040-23



splitting vanishes for excited states progressively. This
feature defines “double-well” potentials. This is a property
strictly related to the “nonlocal” character of the phase-
space double-well encoding in the classical limit ϵ2 ≫ K.
Finally, in Fig. 14 we plot TX against ϵ2=K for different

values of the single-photon-loss rate κ1. Note that, as
explained in the main text, the location of the plateaus
depends on κ1, illustrating the limitations of the naive Bohr
quantization model. We see that, as the dissipation over-
comes the nonlinearity, the quantum features disappear, and
the classical Arrhenius exponential law emerges. This
behavior is a generic feature of quantummechanical double
wells, and reflects the essence of the quantum to classical
correspondence.
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