
Enumeration and Representation Theory of Spin Space Groups

Xiaobing Chen ,1,* Jun Ren,1,* Yanzhou Zhu ,2,* Yutong Yu ,1,* Ao Zhang,1 Pengfei Liu,1 Jiayu Li,1

Yuntian Liu,1 Caiheng Li,2 and Qihang Liu 1,3,4,†

1Department of Physics and Shenzhen Institute for Quantum Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China

2National Center for Applied Mathematics Shenzhen, and Department of Mathematics,
Southern University of Science and Technology, Shenzhen 518055, China

3Guangdong Provincial Key Laboratory of Computational Science and Material Design,
Southern University of Science and Technology, Shenzhen 518055, China

4Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,
Southern University of Science and Technology, Shenzhen 518055, China

(Received 31 July 2023; revised 18 April 2024; accepted 16 May 2024; published 28 August 2024)

Fundamental physical properties, such as phase transitions, electronic structures, and spin excitations, in all
magnetic ordered materials, were ultimately believed to rely on the symmetry theory of magnetic space
groups. Recently, it has come to light that a more comprehensive group, known as the spin space group
(SSG), which combines separate spin and spatial operations, is necessary to fully characterize the geometry
and underlying properties of magnetic ordered materials. However, the basic theory of SSG has seldom been
developed. In this work, we present a systematic study of the enumeration and the representation theory of the
SSG. Starting from the 230 crystallographic space groups and finite translation groups with a maximum order
of eight, we establish an extensive collection of over 100 000 SSGs under a four-index nomenclature as well
as international notation. We then identify inequivalent SSGs specifically applicable to collinear, coplanar,
and noncoplanar magnetic configurations. To facilitate the identification of the SSG, we develop an online
program that can determine the SSG symmetries of any magnetic ordered crystal. Moreover, we derive the
irreducible corepresentations of the little group in momentum space within the SSG framework. Finally, we
illustrate the SSG symmetries and physical effects beyond the framework of magnetic space groups through
several representative material examples, including a candidate altermagnet RuO2, spiral spin polarization in
the coplanar antiferromagnet CeAuAl3, and geometric Hall effect in the noncoplanar antiferromagnet
CoNb3S6. Our work advances the field of group theory in describing magnetic ordered materials, opening up
avenues for deeper comprehension and further exploration of emergent phenomena in magnetic materials.

DOI: 10.1103/PhysRevX.14.031038 Subject Areas: Condensed Matter Physics, Magnetism,
Materials Science

I. INTRODUCTION

Symmetry has always been one of the core aspects of
physics and materials science. The crystallographic group
theory, which Fedorov and Schönflies refined at the end
of the 19th century, provides a fundamental framework for
understanding and predicting the properties and behavior
of crystal solids, facilitating advancements in fields
ranging from solid-state physics and chemistry to materials

engineering [1]. The complete set of symmetry elements
exhibited by three-dimensional (3D) nonmagnetic or para-
magnetic solids are depicted by 32 point groups (PGs) and
230 space groups (SGs), the latter of which include
rotations, reflections, inversion (P), translations, and their
combinations. The wave-function properties of such crys-
tals, like phase transition, selection rules, and band degen-
eracy, are successfully described by the representations
(reps) of 230 SGs.
The crystallographic group theory was further explored

in the early 20th century when Shubnikov and others
realized that magnetic materials exhibit additional sym-
metries beyond the purely geometric symmetries found in
nonmagnetic crystals. By introducing antiunitary time-
reversal operation T that flips the direction of spin, the
32 PGs and 230 SGs are extended to 122 magnetic point
groups (MPGs) and 1651 magnetic space groups (MSGs),
respectively [2]. With the development of x-ray-diffraction
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and neutron-diffraction techniques, the structure of a given
magnetic crystal and the orientation of its spins can be
determined and assigned a specific MSG. Since then, the
theory of MSGs has been believed to be the ultimate theory
in understanding the exotic properties such as ordering
phenomena, phase transitions, spin excitation, and band
topology in all magnetic ordered materials [3–9]. However,
as an axial vector, spin symmetry contains not only T that
reverses its direction (like an inversion operator in spin
space), but also spin rotation operations. The underlying
concept of MPG and MSG is based on the assumption that
a rotation operator acts simultaneously on spatial and spin
coordinates. Exemplified by a simple collinear antiferro-
magnetic order shown in Fig. 1, the system does not exhibit
any fourfold rotations within the regime of magnetic
groups. However, if we consider the spatial coordinate
and spin coordinate separately, the system thus has a spatial
fourfold operation followed by a twofold spin rotation.
Therefore, from a geometric perspective, separating rota-
tional operations from real space and spin space is
necessary to fully describe the symmetry of a system
with a vector field [10]. Such an extended magnetic group,
first proposed in the 1960s, is referred to as a spin
group [11–18], which includes both spin point groups
(SPGs) and spin space groups (SSGs).
From a physical perspective, the spin group also con-

stitutes the symmetry-operator group of magnetic
Hamiltonians capturing the behavior of corresponding qua-
siparticles. Examples include single-particle Hamiltonians
for electrons and the Heisenberg Hamiltonian for spin
waves when spin-orbit coupling (SOC) is not considered
[15,19,20]. Even in the presence of SOC with certain forms,
the system can manifest some hidden symmetries associated
with a particular spin group [21–23]. With the recent
prosperity of antiferromagnetic spintronics [24–26], it has
been recognized that antiferromagnetic order can generate
various spintronic effects that typically emerge in systems
with strong SOC, such as spin splitting, spin current, and
spin torque [27–44]. Consequently, spin group symmetries

naturally serve as a starting point for investigating these
Hamiltonians and related effects. For example, the
recently discovered “altermagnetic phase” in collinear
antiferromagnets is defined in the SOC-free limit, and
thus is delimited by spin groups [45–48]. In addition, the
spin group also helps us understand the band structures,
topology, and transport phenomena in systems with
negligible SOC [49–52], and provides descriptions of
complex magnetic orderings (e.g., helical, spiral, quasi-
one-dimensional helimagnets) [53–55] and fruitful appli-
cations to magnetically ordered quasicrystals [56–58].
The development of crystallographic group theory

includes the enumeration and classification of groups, as
well as the rep theory. While the theories of crystallo-
graphic groups and magnetic groups have been firmly
established in textbooks [1,2], the theory of spin groups
is still in its nascent stage, with only the enumeration of
598 SPGs completed so far [18]. The enumeration of SSGs
and the related rep theory describing band degeneracies and
wave-function properties are still lacking. This is because
including degrees of freedom in both real space and spin
space poses significant challenges in classifying SSGs. For
example, the infiniteness of the translation group implies an
infinite number of SSGs.
In this work, we present a systematic study of the SSG

enumeration and rep theory:
(i) The entire enumeration procedure starts from the

230 SGs, combining a translational supercell having
a maximum order of eight. We traverse all inequi-
valent normal subgroups and establish their mapping
onto a PG in spin space through inequivalent
isomorphism relationships. Consequently, using
group extension, we establish a comprehensive
collection of more than 100 000 SSGs, each labeled
with a four index and international notation (Sec. II).
The number of SSGs exceeds that of MSGs by 2
orders of magnitude because SSGs involve not only
spin-flip operation T but also partially decoupled
spin rotation and lattice rotation. In addition, SSGs
contain combined symmetry operations of spin
rotation and lattice translation corresponding to
the propagation vector. Therefore, SSGs offer a
more comprehensive symmetry description for mag-
netic structures in comparison with MSGs. Interest-
ing examples include collinear magnetic structures
in cubic crystal systems, spiral magnetic structures
with arbitrary angles between nonmagnetic unit
cells, cubic magnetic configurations within trigonal
or hexagonal lattice systems, etc.

(ii) We then distinguish inequivalent SSGs for collinear,
coplanar, and noncoplanar magnetic configurations,
for which the nontrivial operations in spin space play
a crucial role. We find that collinear SSGs manifest
one-by-one correspondence with the 1421 MSGs,
in which the magnetic sublattices with opposite

FIG. 1. Schematic plot of a spin group symmetry of an
antiferromagnetic structure. It takes a fourfold rotation (4001)
in real space followed by a twofold rotation (2001) in spin space,
constituting a spin group symmetry f2001k4001g. Such a sym-
metry operation contains separated lattice and spin rotations and
is thus beyond the framework of magnetic groups.
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directions of local moments can be regarded as black
and white. In addition, the number of inequivalent
coplanar SSGs is significantly reduced to 16 383 due
to the mirror symmetry in spin space. Moreover,
in collinear and coplanar magnetic structures, the
mirror symmetry in spin space serves as an effective
time-reversal operation, thereby preventing the oc-
currence of the SOC-free anomalous Hall effect.

(iii) In addition, we derive the irreducible corepresenta-
tions (coirreps) of the little group at high-symmetry
momenta within the framework of SSG (Sec. III).
The band representations of SSGs supporting non-
collinear (coplanar and noncoplanar) magnetic con-
figurations are constructed using the projective rep
theory and the modified Dimmock and Wheeler sum
rule. On the other hand, band representations of
collinear SSGs are considered separately due to the
presence of infinite symmetry operations in the spin-
only group. In particular, the SO(2) spin rotation
symmetry provides a simpler perspective in under-
standing spin degeneracy, where the coirreps can
be obtained from the single-valued coirreps of the
type-II MSG augmented by some additional degen-
eracy rules in spin space. From the perspective of
SSG, the complete criteria for magnetic-order-
induced spin degeneracy and spin splitting can be
straightforwardly summarized.

(iv) We then introduce our online program FIND-
SPINGROUP of SSG identification for any given
magnetic structure [59], where the SSGs of the
2001 experimentally reported magnetic structures
in the MAGNDATA database [60] are also identified
(Sec. IV). We also provide several representative
material examples to demonstrate their SSG sym-
metries and physical properties beyond the frame-
work of MSG. The first example is a candidate
altermagnet RuO2, in which extra band degeneracies
are observed along Z-R-A high-symmetry lines,
while MSG provides only one-dimensional coirrep.
These band degeneracies can be attributed to the
sticking effect of two conjugated 1D irreps of SO(2)
in SSG. The second example is coplanar antiferro-
magnet CeAuAl3 with Uτ symmetry, the combina-
tion of a twofold spin rotation U and a fractional
lattice translation τ. A spiral-order-induced antifer-
romagnetic spin splitting is found, of which the
symmetry requirement differs from that of collinear
antiferromagnets, i.e., breaking PT and Uτ [46].
The third example is noncoplanar antiferromagnet
CoNb3S6. While PT symmetry is broken, it man-
ifests a spin-degenerate band structure within the
whole Brillouin zone. Such a spin degeneracy
originates from the D2 double group in spin space
at any arbitrary wave vector, providing two-
dimensional coirreps and thus prohibiting any

components of spin polarization. Despite its spin-
degenerate band structure, CoNb3S6 exhibits a geo-
metric Hall effect, i.e., SOC-free anomalous Hall
effect originating from magnetic configuration, aris-
ing from the nonzero z-direction orbital magnetiza-
tion. Finally, we provide a summary of the work
in Sec. V.

In the appendixes, we begin in Appendix A by defining
the SSGs, establishing connections with the more familiar
nonmagnetic SGs and MSGs. In Appendix B, we review
the international notation for SGs and MSGs. Next, in
Appendix C, we introduce the nomenclature for t-type,
k-type, and g-type SSGs and show how to obtain all
group elements using the international notation of SSGs.
These nomenclatures are also integrated in our online
platform [59]. In Appendix D, we provide some details
regarding the rep theory of SSG, including the projective
reps for SSGs, the decomposition of regular projective reps
using the CSCO method and the band reps in collinear
SSGs. In Appendix E, we provide the specific procedure
for identifying the SSG of a given magnetic ordered crystal.
Lastly, in Appendix F, we provide the computational
methods for the first-principles calculations.

II. ENUMERATION OF SPIN SPACE GROUPS

In this section, we first introduce the construction
methodology of SSGs, which is based on the group
extension approach of SPGs [17,18]. This approach has
also been adopted in constructing the full set of crystallo-
graphic PGs, MPGs, and MSGs. However, the complex-
ity of SSGs lies in the possible cell expansions to
accommodate complicated magnetic orders, leading to
an infinite number of SSGs. We thus consider the
magnetic supercells with reduced translation symmetry
to have a maximum order of eight, obtaining a compre-
hensive collection of 100 612 SSGs. We then develop the
four-index nomenclature for each SSG according to the
way of group construction, and the international notation
according to the types of Bravais lattices and symmetry
operations. Furthermore, we discuss the features of SSGs
when considering pure spin operations in collinear and
coplanar configurations.

A. Basics and methodology

Compared with MSGs, the critical characteristic of SSGs
is that the spatial and spin operations are considered
separately (see Appendix A for the types of symmetry
operations) [19]. Therefore, the symmetry elements of spin
groups can be written as fgskglg, where gl denotes the
spatial operation fCnðθÞ; PCnðθÞjτg of the lattice [CnðθÞ,
P, and τ are the rotation of the θ angle along the n axes,
inversion, and translation, respectively]. To the left of the
double bar, gs ¼ fUmðϕÞ; TUmðϕÞg consists of spin rota-
tions UmðϕÞ∈SUð2Þ and the antiunitary time-reversal
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operator T that reverses spin and momentum simultane-
ously. Similar to that of SPGs, the general form of SSGs,
denoted GSS, could be expressed as the direct product
of a nontrivial SSG GNS and a spin-only group GSO. The
nontrivial SSG is the SSG that has every spin operation
combined with a spatial operation (except for the identity
element fEkEj0g); the spin-only group consists of pure
spin operations fgskEj0g [17]:

GSS ¼ GNS ×GSO. ð1Þ

While for noncoplanar magnetic order Gn
SO ¼ fEg (iden-

tity group), for coplanar magnetic order Gp
SO ¼ fE;

TUnðπÞg ¼ ZK
2 , implying the mirror symmetry in spin

space (n is perpendicular to the coplanar order). For
collinear magnetic order, Gl

SO ¼ ZK
2 ⋉ SOð2Þ, where

SOð2Þ ¼ fUzðϕÞ;ϕ∈ ½0; 2πÞg contains full spin rotations
along a specific axis z [19]. Next, we first focus on the
construction of nontrivial SSGs, while the full SSGs
directly constructed using Eq. (1) are discussed later.
In analogy to the construction of 598 SPGs, the central

idea of constructing nontrivial SSGs is based on the
decomposition of normal subgroups of crystallographic
SGs and group extension. First, an SG G0 can be decom-
posed into cosets with respect to one of its normal
subgroups L0,

G0 ¼ L0 ∪ g1L0 ∪ … ∪ gn−1L0: ð2Þ

When the resulting quotient group G0=L0 is isomorphic to
a PG, one can use such a PG as the operations for spin
space, Gs¼fE;gs1 ;…;gsn−1g½gsi∈SOð3Þ×fE;Tg≅Oð3Þ�,
and map Gs to G0=L0 through an isomorphism relation-
ship, forming an SSG written as

GNS¼fEkL0g∪fgs1kg1L0g∪…∪fgsn−1kgn−1L0g: ð3Þ

The enumeration of all nontrivial SSGs includes exhaus-
tively enumerating all (G0; L0) pairs and inequivalent
choices of coset representative elements that lead to
inequivalent coset decompositions, finding all Gs isomor-
phic to G0=L0 in spin space, and finding all inequivalent
mappings between Gs and G0=L0. However, compared
with that of SPGs, the enumeration of SSGs faces more
challenges due to the existence of crystallographic trans-
lation groups of SGs. To distinguish different cases, three
types of subgroups L0 are categorized:
(1) A subgroup L0 of an SG G0 is referred to as a

“translationengleiche” subgroup [61] or a t sub-
group of G0 if their translation subgroup TðG0Þ is
retained, i.e., TðL0Þ ¼ TðG0Þ, while the PG part
PðL0Þ is a subgroup, i.e., PðL0Þ ≤ PðG0Þ. An SSG
formed in this way is called a t-type SSG, in which
the t index it is used to present the reduction of
the PG symmetry it ¼ jPðG0Þj=jPðL0Þj. It is

straightforward that the quotient groups G0=L0 of
t-type SSGs must be isomorphic to one of the 32
crystallographic PGs. Therefore, the derivation of
598 nontrivial SPGs can be directly extended to
obtain t-type SSGs.

(2) A subgroup L0 of an SG G0 is referred to as a
“klassengleiche” subgroup [61] or a k subgroup
of G0 if the PG part PðG0Þ is retained, i.e.,
PðL0Þ ¼ PðG0Þ, while the translation subgroup
TðL0Þ is reduced to TðL0Þ < TðG0Þ. An SSG
formed in this way is called a k-type SSG, in which
the k index ik is used to present the reduction of the
translation symmetry ik ¼ jTðG0Þj=jTðL0Þj. In gen-
eral, the k subgroup implies cell multiplication to
accommodate the magnetic configuration. There-
fore, unlike it which can be solely determined by the
PG part of G0 and L0, ik is an independent condition
to label an SSG. Importantly, since G0 and L0 have
the same PG part, the quotient group G0=L0 is
isomorphic to the quotient group of their translation
part TðG0Þ=TðL0Þ, which forms a 3D lattice trans-
lation group Zn1 × Zn2 × Zn3 , where ni are natural
numbers. As a result, the group structures of G0=L0

are not limited to 32 crystallographic PGs (they
could even be a non-PG) and are countless, leading
to infinite numbers of SSGs. In this work, we set a
cutoff of ik ¼ n1n2n3 ≤ 8 to enumerate the SSGs
that require cell expansion. For example, an SSG,
whose translation quotient group G0=L0 has the
structure of Z5, allows for a fivefold rotation of spins
propagating along a specific direction. For the
commensurate magnets with ik > 8, their SSGs
can still be diagnosed case by case by our procedure.

(3) The L0 that have lost PG operations as well as
translation operations are called “general” sub-
groups of G0 [PðL0Þ < PðG0Þ and TðL0Þ<TðG0Þ].
An SSG formed in this way is called a g-type SSG,
for which the quotient group G0=L0 is not neces-
sarily Abelian. For example, G0=L0 could be iso-
morphic to a dihedral group Dn with n being any
positive integer. In this case, TðG0Þ=TðL0Þ is iso-
morphic to Zn which contributes a generator r of
order n, while PðG0Þ=PðL0Þ is isomorphic to Z2 that
contributes a generator h of order two. When the
coset representative h is chosen as a twofold rotation
along an axis perpendicular to the translation vector
of r, the two generators satisfy hrh−1 ¼ r−1, leading
to G0=L0 ≅ Dn. Through our construction pro-
cedure with a specific ik cutoff, we find that g-type
subgroups constitute most of the total (over 85%).

To mathematically enumerate all group-normal subgroup
pairs (G0; L0) with a specific ik index, we adopt an inverse
procedure, starting from L0 and finding all supergroups G0

whose subgroup contains L0. The full list of group-normal
subgroup pairs is obtained with the assistance of the
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SUPERGROUPS program [62] implemented in the Bilbao
Crystallographic Server [63], leading to 10 660 combi-
nations of (G0; L0; ik). For each combination, there may
be multiple possibilities with different coset representa-
tive elements, which relates to the symmetry operation
between different magnetic sublattices. Furthermore, for
a given ik there are also multiple possibilities fulfilling
ik ¼ n1n2n3, which correlates the cell expansion along
different directions.
After coset decomposition, we next consider the coupled

PG in spin space, Gs ≅ G0=L0. The isomorphism relation-
ship implies that given a specific combination of
(G0; L0; ik), Gs could have different choices. For example,
if the quotient groupG0=L0 is isomorphic to aD8,Gs could
be D8, C8v, and D4d. Moreover, for a given Gs, the
isomorphic mapping between Gs and G0=L0 also have
multiple possibilities, leading to different nontrivial SSGs
according to Eq. (3). Therefore, by enumerating inequiva-
lent coset decompositions of G0=L0, different Gs and
inequivalent mappings between Gs and G0=L0, we are
able to identify an SSG by a four-index (L0, G0, ik, m)
label. The mathematical procedure of finding inequivalent
coset decompositions and inequivalent mappings is pro-
vided in Appendix A.

B. Nontrivial SSGs

Through the abovementioned methodology, we can
mathematically obtain 122 types of Gs, and 100 612
nontrivial SSGs (GNS) with the cell expansion limited to
ik ≤ 8. The complete list provided in Supplemental
Material [64] includes 8505 t-type, 6738 k-type, and
85369 g-type SSGs. In Table I, we show the statistics of
SSGs classified by the crystal systems of G0, which is the
SG of the nonmagnetic symmetry of the magnetic primitive
cell. It is shown that most SSGs concentrate in crystal
systems with relatively lower symmetry, i.e., monoclinic,
orthorhombic, and tetragonal (89% in total). In Table II,

we show the 122 types ofGS in spin space for all SSGs with
ik ≤ 8, 90 of which are not crystallographic PGs.
We next take a series of t-type nontrivial SSGs to

illustrate the correspondence of the group construction
and the realistic magnetic structure. For clarity, we use the
international symbol to present group operations hereafter,
where P and T are denoted by 1̄ in real space and spin
space, respectively. Considering two SGs L0 ¼ P2=c
(No. 13) and G0 ¼ Pcca (No. 54) fulfilling normal sub-
group relationship, G0 ¼ L0 ∪ f2010j0 0 1=2gL0. One can
define two different sublattices [marked by different colors
in Fig. 2(a)] with the group elements of L0 keeping the
sublattice invariant. Thus, L0 can be defined as the
sublattice group. On the other hand, the coset elements
f2010j0 0 1=2gL0 transform one sublattice to the other,
as shown in Fig. 2(b). Therefore, there are three possibil-
ities of Gs being isomorphic to Z2 ðG0=L0Þ, i.e., 1̄, 2, and
m, leading to three inequivalent mappings for the magnetic
moments, as shown in Figs. 2(c)–2(e). Taking (13.54.1.1)
as an example, the nontrivial SSG is constructed by
mapping the 1̄ operator in spin space (i.e., T) to the
representative element f2010j0 0 1=2g, leading to GNS ¼
fEkL0g ∪ f1̄k2010j0 0 1=2gL0.
While there is no multiplicity of different mappings for a

specific order-two Gs, there is another inequivalent coset
decomposition G0 ¼ L0 ∪ f2001j1=2 0 0gL0 for (L0; G0),
owing to the inequivalence between the a and c axes for SG
P2=c. Consequently, there are another three nontrivial
SSGs with a different choice of sublattices, as shown in

TABLE I. Nontrivial SSGs for different crystal systems and
different magnetic configurations. “Collinear only” indicates
nontrivial SSGs that support only collinear magnetic orders,
i.e.,Gs ¼ 1 and 1̄. Similarly, “Noncoplanar only” requires thatGs

is a polyhedral PG (T, Td, Th, O, and Oh). “Coplanar” contains
nontrivial SSGs that support coplanar magnetic orders.

Crystal system
Collinear
only Coplanar

Noncoplanar
only Total

Triclinic (2) 5 55 0 60
Monoclinic (13) 78 3540 0 3618
Orthorhombic (59) 503 53 734 0 54 237
Tetragonal (68) 502 31 185 0 31 687
Trigonal (25) 83 2331 62 2476
Hexagonal (27) 137 7149 111 7397
Cubic (36) 113 840 184 1137

Total (230) 1421 98 834 357 100 612

TABLE II. The PG Gs in spin space for all SSGs with the cell
expansion limited to ik ≤ 8. The H-M symbol stands for
Hermann-Mauguin symbol.

H-M
symbol Point group

n 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24,
28, 30, 42

nm 3m, 5m, 7m, 9m, ð15Þm, ð21Þm
nmm mm2, 4mm, 6mm, 8mm, ð10Þmm, ð12Þmm, ð14Þmm,

ð16Þmm, ð18Þmm, ð20Þmm, ð24Þmm, ð28Þmm,
ð30Þmm, ð42Þmm

−n −1, m, −3, −4, −5, −6, −7, −8, −9, −10, −12, −14.
−15, −16, −18, −20. −21, −24, −28, −30, −42,

n=m 2=m, 4=m, 6=m, 8=m, ð10Þ=m, ð12Þ=m, ð14Þ=m,
ð16Þ=m

n2 32, 52, 72, 92, (15)2, (21)2
n22 222, 422, 622, 822, (10)22, (12)22, (14)22, (16)22,

(18)22, (20)22, (24)22, (28)22, (30)22, (42)22
−nm −3m, −5m, −7m, −9m, ð−15Þm, ð−21Þm
−n2m −42m, −62m, −82m, ð−10Þ2m, ð−12Þ2m, ð−14Þ2m,

ð−16Þ2m, ð−18Þ2m, ð−20Þ2m, ð−24Þ2m,
ð−28Þ2m, ð−30Þ2m, ð−42Þ2m

n=mmm mmm, 4=mmm, 6=mmm, 8=mmm, ð10Þ=mmm,
ð12Þ=mmm, ð14Þ=mmm, ð16Þ=mmm

Cubic 23, 432, m − 3, −43m, m − 3m
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Figs. 2(f)–2(h). Overall, there are six t-type nontrivial SSGs
for the given (L0; G0) pair, with two supporting collinear
magnetic structures (Gs ¼ 1̄), and four of them supporting
coplanar magnetic structures (Gs ¼ 2 andm). However, we
show later that when considering the spin-only group, the
SSGs generated by Gs ¼ 2 and m are indeed equivalent.
The group constructions of the k-type and g-type nontrivial
SSGs follow similar procedures, as exemplified by the
SSGs of realistic materials CeAuAl3 and CoNb3S6, respec-
tively (see Secs. IVB and IVC).

C. International notation

International notation, also known as Hermann-Mauguin
notation, is a widely used nomenclature for PGs, SGs,
MPGs, and MSGs. It is employed in the standard structural
and symmetry reference, the International Tables for
Crystallography [65], and is extensively utilized in various
crystallography textbooks. Compared with Schoenflies
notation, international notation is more favorable for
presenting the directions of the symmetry axes and the
translation symmetry elements in SGs.
We next develop the international notation for all SSGs.

The international notation of an SG is denoted as Bg1g2g3,
where the first uppercase letter B describes the Bravais
lattice, including the primitive (P), based-centered (A, B,
C), body-centered (I), face-centered (F), and rhombohedral
(R) lattice. The following three letters describe the repre-
sentative symmetry operations, as defined in Appendix B
Table VII. Since the translation operations in real space

could also couple a PG operation in spin space in SSGs,
we first need to expand the Bg1g2g3 notation to a more
comprehensive one Bg1g2g3tatbtcb1b2b3. Here, ta∼c
present the integral translation of cell expansion, while
for SGs we simply have ta ¼ ð1 0 0Þ, tb ¼ ð0 1 0Þ,
tc ¼ ð0 0 1Þ. b1∼3 stand for the fractional translations for
the specific Bravais centering type. The specific b1, b2, and
b3 for each Bravais lattice can be found in Appendix C
Table XVII (see more details on the international notation
and operation symbols for SSG in Appendix B and
Supplemental Material, Sec. I).
To construct an SSG, an SG G0 ¼ Bg1g2g3tatbtcb1b2b3

is decomposed into cosets with respect to one of its normal
subgroups L0 by Eq. (2), and then a PG Gs is mapped to
the quotient group G0=L0 through an isomorphism rela-
tionship by Eq. (3). Consequently, each of the represen-
tative symmetry operations g1∼3, Bravais centering-type
fractional translation b1∼3, and integral translation ta∼c
could combine with a spin PG operation under the basis of
G0. Such a nomenclature is done for t-type and g-type
SSGs. For k-type SSGs, we use a multicolor extension
of the Belov-Neronova-Smirnova (BNS) convention of
MSGs [66,67], yielding more convenience and simpler
notations (see Appendix C 2).
Now we turn to the specific nomenclature of three types

of SSGs. For t-type SSGs, TðL0Þ¼TðG0Þ;PðL0Þ≤PðG0Þ.
This implies that the group element of Gs (excluding the
identity) in a t-type SSG can be combined only with
nontrivial SG operations fRj0g or fRjτgwith R ≠ E, rather
than pure translations fEjτg. As a result, the Bravais

FIG. 2. Nontrivial SSGs generated from a t-type (L0, G0) subgroup pair and the corresponding magnetic configurations. In this case,
the coordinate system xyz in spin space coincides with the coordinate system abc in real space. (a) Structure with sublattice group
L0 ¼ P2=c (No. 13). The group generators are indicated by green arrows. The balls with different colors denote different sublattices.
(b) Structure with nonmagnetic group G0 ¼ Pcca (No. 54). The group generators that connect different sublattices are indicated by
orange arrows. (c)–(h) Magnetic configurations and the corresponding international notations for different nontrivial SSGs. Green and
orange arrows indicate the generators connecting the same and the different sublattices, respectively. The double star denotes SSGs for
collinear magnetic configurations. Note that when considering the spin-only group, the SSGs generated by Gs ¼ 2 and m [e.g., panels
(d) and (e); panels (g) and (h)] are equivalent.
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fractional translation b1∼3 and integral translation ta∼c
always combine with identity in spin space in a t-type
SSG; thus, they can be omitted. In other words, a t-type
SSG can be described following Litvin’s notation on
SPGs [18], i.e., Bgs1g1

gs2g2
gs3g3 in the G0 basis. The

corresponding symmetry operations can be directly con-
structed by fgs1kg1g, fgs2kg2g, and fgs3kg3g. We still take
SSG (13.54.1.1) as an example, where the symmetry
operations and the resultant general positions are listed
in Table III. Note that the Wyckoff positions and the
corresponding magnetic configurations are constructed
by using the site-symmetry groups of the SSG, with the
details provided in Supplemental Material, Sec. II. It can
be found that for G0 ¼ Pcca, the 1̄ operator in spin space
is mapped to the glide reflections fm100j1=2 0 1=2g
and fm010j0 0 1=2g, leading to the international notation
P−1c−1c1a. Similarly, the international notations for
(13.54.1.2) to (13.54.1.6) shown in Fig. 2 are
P2001c2001c1a, Pm001cm001c1a, P−1c1c−1a, P2001c1c2001a,
and Pm001c1cm001a, respectively (see Appendix C for
details).
For k-type SSGs, TðL0Þ < TðG0Þ; PðL0Þ ¼ PðG0Þ.

This indicates that a k-type SSG can be constructed
directly using the sublattice SG fEkL0g and an additional
spin translation group GS

T ¼ ff1k1j0g; fgs1k1jτ1g;…;
fgsn−1k1jτn−1gg generated by fgs1k1jτ1g, fgs2k1jτ2g, and
fgs3k1jτ3g. Among them, τi ¼ ðai bi ciÞ denote the frac-
tional translations after cell expansion along the three basis
vectors of L0, and the product of the multiplicities of τ1−3
fulfills the imposed cutoff ik ≤ 8. Note that in k-type
SSGs, L0 and G0 always belong to the same crystal
systems, but not necessarily the same Bravais lattice.
As a result, it is more convenient to denote a k-type
SSG as B1g11g21g3

gs1τ1
gs2τ2

gs3τ3 in the L0 basis, where
τi ¼ ðai bi ciÞ. In this sense, the symmetry operations
of a k-type SSG can be directly constructed from the
direct product of sublattice SG fEkBg1g2g3g and GS

T .
Indeed, such a nomenclature is a natural multicolor
extension of the conventional BNS setting for type-IV
MSGs [66,67]. Specifically, type-IV MSGs have the
form Gþ TτG ðik ¼ 2Þ and can thus be denoted by
BXg1g2g3, where X labels the black and white Bravais
lattices. In comparison, the complexity of multicolor

Bravais lattices is incorporated by the notation of
gs1τ1

gs2τ2
gs3τ3. We provide an example of a k-type

SSG (99.107.4.1), whose international notation is written
as P141m1m 41

001ð1=2 1=2 1=4Þ of a realistic material
CeAuAl3. A detailed explanation of this material example
can be found in Sec. IV B and Appendix C.
Now we turn to the g-type SSGs with TðL0Þ < TðG0Þ

and PðL0Þ < PðG0Þ. The group element ofGs in spin space
will combine with the representative symmetry operation
g1∼3, integral translation ta∼c, and Bravais fractional trans-
lation b1∼3, no matter in theG0 or L0 basis. In g-type SSGs,
L0 and G0 could belong to different crystal systems.
Consequently, it is advantageous to write the international
notation of the g-type SSGs in theG0 basis, as the first letter
B will reflect the information of the Bravais lattice of the
magnetic cell (see Appendix C). Since each of the spatial
operations is allowed to connect an independent rotation
in spin space, the g-type SSGs are thus denoted as
Bgs1g1

gs2g2
gs3g3jðgs4 ; gs5 ; gs6 ; gs7 ; gs8 ; gs9Þ in the G0 basis.

Note that gs4 ; gs5 ; gs6 denote the spin rotation associated
with ta; tb; tc, while gs7 ; gs8 ; gs9 denote the spin rotation
associated with b1; b2; b3 (Appendix C Table XVII).
Particularly, for the P Bravais lattice, gs7 ; gs8 ; gs9 can be
simply omitted because all centering-type fractional trans-
lations b1; b2; b3 are absent. We provide an example of a
g-type SSG (4.182.4.2), whose international notation is
written as P32−11−163

m1102m0112jð2001; 2100; 1Þ, of a realistic
material CoNb3S6. A detailed explanation of this material
example can be found in Sec. IV C and Appendix C.
Besides the examples mentioned above, we present more

examples of various complicated cases of the three types of
SSGs in Appendix C. In addition, the international nota-
tions of all the enumerated nontrivial SSGs are provided in
our online program FINDSPINGROUP [59].

D. SSGs for different magnetic configurations

In Table I, we enumerate the nontrivial SSGs supporting
collinear-only, noncoplanar-only, and coplanar magnetic
configurations. We next implement spin-only group GSO
into GNS to count all inequivalent SSGs for different
magnetic configurations, including collinear, coplanar,
and noncoplanar orders. We elucidate that GSO plays a
crucial role in finding equivalent collinear and coplanar

TABLE III. Symmetry operations and general positions of SSG (13.54.1.1) P−1c−1c1a. In this table, a, b, and c
represent the coordinates of a general position using the lattice basis of the SSG; x, y, and z denote the corresponding
components of the magnetic moment using Cartesian coordinates.

Operation Coordinates Operation Coordinates

f1k1j0g a, b, c, x, y, z f−1k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2, −x, −y, −z
f1k − 1j0g −a, −b, −c, x, y, z f−1km100j1=2 0 1=2g −aþ 1=2, b, cþ 1=2, −x, −y, −z
f1k2001j1=2 0 0g −aþ 1=2, −b, c, x, y, z f−1k2010j0 0 1=2g −a, b, −cþ 1=2, −x, −y, −z
f1km001j1=2 0 0g aþ 1=2, b, −c, x, y, z f−1km010j0 0 1=2g a, −b, cþ 1=2, −x, −y, −z
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SSGs. Without the loss of generality, we assume that each
sublattice contains only one type of magnetic ion. The
enumeration process is based on different Gs, and is
divided into the following classes:
Collinear SSGs. In collinear magnets, all local moments

point toward the same or opposite direction (e.g., the z
axis), and the corresponding SSG does not depend on the
direction of the spins. The full SSG of a collinear magnet is
written asGSS ¼ GNS × ZK

2 ⋉ SOð2Þ. The spin-only group
Gl

SO ¼ ZK
2 ⋉ SOð2Þ (the international notation is ∞m1) of

collinear SSG ensures that only time-reversal T needs to be
considered for the spin space of GNS, rendering only two
possibilities, Gs ¼ 1 and 1̄, corresponding to ferromagnets
(ferrimagnets) and antiferromagnets, respectively.
Therefore, collinear SSGs manifest one-by-one correspon-
dence with the structure of MSGs, in which the magnetic
sublattices with opposite directions of local moments can
be regarded as black and white. Specifically, there are
230 SSGs for collinear ferromagnets or ferrimagnets with
their nontrivial SSG GNS ¼ fEkG0g, where G0 is one of
the 230 SGs. These nontrivial t-type SSGs also have
G0 ¼ L0 and Gs ¼ 1 corresponding to 230 type-I MSGs.
For antiferromagnets, Gs ¼ 1̄, the nontrivial SSG can thus
be written as fEkL0g ∪ fTkAL0g, where A denotes the
symmetry operation connecting the sublattices with opposite
spins. If A is a pure translation, i.e., PðL0Þ ¼ PðG0Þ and
ik ¼ 2, the resulting SSGs correspond to 517 type-IVMSGs.
On the other hand, if A is an inversion or rotation (proper
or improper), the resulting SSGs with TðL0Þ ¼ TðG0Þ and
it ¼ 2 correspond to 674 type-III MSGs. Overall, there are
1421 inequivalent collinear SSGs in total, as marked by
double stars in Supplemental Material [64].
Coplanar SSGs. For those SSGs describing coplanar

magnetic configurations, the spin-only group is Gp
SO ¼

fE; TUnðπÞg (the international notation is m1). Thus, all the
spin rotation axes of Gs should be either perpendicular or
parallel to a specific axis n, implying that polyhedral PGs
are excluded for Gs. In addition, due to the existence of
the spin-only group Gp

SO, we can further limit Gs to unitary
PGs, which do not contain T. To prove this, we consider an
antiunitary nontrivial SSG GAU

NS with its maximal unitary
subgroup LMU

NS :

GAU
NS × fE; TUnðπÞg
¼ �

LMU
NS ∪

�
GAU

NS nLMU
NS

��
× fE; TUnðπÞg

¼ �
LMU
NS ∪ TUnðπÞ

�
GAU

NS nLMU
NS

��
× fE; TUnðπÞg

¼ GU
NS × fE; TUnðπÞg: ð4Þ

Equation (4) suggests that for any antiunitary nontrivial
SSGGAU

NS , we can construct an equivalent unitary nontrivial
SSG GU

NS ¼ LMU
NS ∪ TUnðπÞðGAU

NS nLMU
NS Þ when taking Gp

SO
into account. Therefore, to obtain all inequivalent coplanar
SSGs from the full (L0; G0; ik; m) SSG list, it is adequate to

add the conditionGs ≅ Cn orDn. Note that for k subgroups
and g subgroups, the Cn and Dn groups are not limited to
crystallographic PGs (e.g., Z5), resulting in 41 possibilities
out of 122 Gs’s. Within the considered cell multiplicity
ik ≤ 8, we find 16 383 inequivalent coplanar SSGs, which
is a significantly reduced number compared with the
number of GNS that support coplanar magnetic configura-
tions (98 834). We note two special portions of GNS
for coplanar configurations. The first one is Gs ¼ 2 and
m, for which GNS supports both collinear and coplanar
(but not noncoplanar) configurations. However, when they
describe collinear configurations, they are exactly equiv-
alent to the SSGs with Gs ¼ 1̄ due to the existence of Gl

SO,
so they do not contribute new entries to 1421 inequivalent
collinear SSGs. On the other hand, when they describe
coplanar configurations, they are equivalent to each
other because of Eq. (4), contributing 1191 inequivalent
coplanar SSGs. Therefore, there are 1191 entries with
Gs ¼ m rendering equivalent SSGs when considering the
GSO part. Specifically, as for our example, (13.54.1.2) and
(13.54.1.3) [Figs. 2(d) and 2(e)] are equivalent coplanar
SSGs. The second case is Gs ¼ 2=m, for which the GNS
supports coplanar configurations only. However, consider-
ing Gp

SO, the SSGs generated by antiunitary 2=m is
equivalent to those generated from Gs ¼ 222 according
to Eq. (4). Therefore, there are 9501 entries with Gs ¼ 2=m
rendering equivalent SSGs when considering the GSO part.
Noncoplanar SSGs. The spin-only group for noncopla-

nar SSGs is simply an identity group. When Gs is a
polyhedral PG (T, Td, Th, O, and Oh), there are 357 SSGs
in total supporting only noncoplanar magnetic configura-
tions. On the other hand, when taking other Gs except 1, 1̄,
2, m, 2=m, and polyhedral PGs, the corresponding GNS
(86 951 entries) support both coplanar and noncoplanar
configurations. Since GSS ¼ GNS, all of these SSGs for
noncoplanar configurations are inequivalent. Finally, there
are 87 308 inequivalent noncoplanar SSGs in total.
We show in Fig. 3 the summary of the inequivalent

SSGs for different magnetic configurations, indicating
that the spin-only groups serve as another factor for
equivalent SSGs. For example, the nontrivial SSGs sup-
porting coplanar magnetic configurations indeed form a
small subset of inequivalent coplanar SSGs (98 834).

III. REPRESENTATION OF SPIN SPACE GROUPS

Representation theory is the key to encoding the infor-
mation of symmetry to quantum-mechanics wave functions,
which determine the elementary excitations, geometric
phases, selection rules, etc. In this section, we explore the
general rep theory of SSGs, i.e., obtain the projective
coirreps of the little group Gk, which consists of all
symmetry operations that leave k invariant. In the following,
we separately consider the SSGs supporting noncollinear
(coplanar and noncoplanar) and collinear magnetic
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configurations, because the latter possess infinite symmetry
operations owing to the spin-only group ∞m1.
For a noncollinear unitary SSG, we examine its regular

projective reps, which are reducible reps containing all the
possible irreducible representations (irreps). We then apply
an approach that utilizes the eigenvalues and eigenvectors
of a complete set of commuting operators (CSCOs) to
decompose the regular projective rep to obtain all irreps
of the unitary SSG [68,69]. Finally, we apply a modified
Dimmock and Wheeler character sum rule to derive the
coirreps of antiunitary SSGs. To illustrate the procedure,
we derive the coirreps of the little groups for two materials,
i.e., CeAuAl3 and CoNb3S6. The comparison of coirreps
under SSG and MSG shows that the coirreps in SSG may
have higher dimensions.
The 1421 collinear SSGs have one-by-one correspon-

dence to types-I, -III, and -IV MSGs. However, we show
that the coirreps of collinear SSGs can be obtained by
considering the single-valued coirreps of type-II MSGs
plus the extra degeneracies that originated from some
critical spin symmetries. To illustrate this, we compare
the dimensions of the coirreps under SSG and MSG for a
collinear antiferromagnet RuO2 in Sec. IVA.

A. Basics of representation theory For SGs and MSGs

We first briefly review the traditional approach to obtain
the irreps of little group Gk ¼ fR1jτ1gT þ fR2jτ2gT þ
� � � þ fRnjτngT (T denotes the crystallographic translation
group; Ri and τi denote the real-space PG operation and
fractional translation, respectively) in SGs and MSGs, with

more details provided in Appendix A. In SGs, the complex-
ity of reps comes from the fractional translations.
Specifically, the group of rep matrices covers the corre-
sponding little cogroup Ğk ¼ fR1; R2;…; Rng multiple
times because one Rk could combine with multiple
translations. To simplify the problem, the theory of the
projective rep is used to “mod” the influence of fractional
translations and get all irreps of G̃k ¼ Gk=T ¼
ffR1jτ1g; fR2jτ2g;…; fRnjτngg. In SGs, a projective irrep
Ml

kðfRijτigÞ of a little group Gk leaves the complexity
of fractional translation to the factor system, i.e.,
dlkðfRijτigÞ ¼ expð−ikτiÞMl

kðfRijτigÞ, where dlkðfRijτigÞ
denotes the lth irrep of G̃k. On the other hand,Ml

kðfRijτigÞ
can be obtained by looking for the reps of an extended
group constructed by Ğk and a cyclic group formed by the
factor system expð−iKiτiÞ, which is also known as a central
extension (Ki ¼ R−1

i k − k). This means that to obtain all
the irreps of a SG, it is only necessary to find the reps of a
few cyclic groups in addition to those of PGs (Ğk) that are
already known [2].
For MSGs, the incorporation of antiunitary operations

gives rise to coirreps, which can be obtained in two steps.
Since the little group Gk

MS for a given MSG could contain
antiunitary operations, the first step is to get the irreps of
the maximal unitary subgroup of Gk

MS; they are calculated
following the procedure of an SG discussed above. The
second step is to take into account the antiunitary elements
of Gk

MS, leading to three types of coirreps according to the
famous Dimmock and Wheeler sum rule. The theory of
coirreps is useful for analyzing extra degeneracies caused
by antiunitary operations and the corresponding degenerate
states [2]. The details of projective rep, central extension,
and Dimmock and Wheeler’s sum rule are introduced
in Appendix A.

B. Representation of coplanar and noncoplanar
(nontrivial) SSGs

The rep theory of the SSG developed here combines the
theory of projective reps in SG and a modified version
of Dimmock and Wheeler’s sum rule in MSG. In the
projective reps, the effect of unitary spin rotation is
absorbed into the factor system. However, the little group
of an SSG may contain some “spin nonsymmorphic
symmetries” fgskEjτg, i.e., combined operations of spin
operation gs and fractional translation τ, rendering the
central extension method rather complicated. Instead, we
focus on the regular projective reps that contain all the
irreps. These regular projective reps are decomposed into
projective irreps using CSCO method.
Unlike SGs, a single lattice operation Ri in SSGs may

correspond to multiple nonsymmorphic translations τðaÞi

for the case of ik > 1, as well as spin operations gðaÞsi ,
where a labels different translations and spin operations

FIG. 3. Summary of inequivalent SSGs for collinear, coplanar,
and noncoplanar magnetic configurations when considering their
spin-only groups. The blue fonts denote the corresponding Gs.
“Polyhedral” indicates polyhedral PGs, i.e., T, Td, Th,O, andOh.
“Others” indicates other Gs except 1, 1̄, 2, m, 2=m, and
polyhedral PGs. “⇀” means that when considering collinear
spin-only group Gl

SO, G
s ¼ 1̄ and 2 yield equivalent collinear

SSGs. “⊊” means that when considering coplanar spin-only
group Gp

SO, the 86 951 nontrivial SSGs (supporting both coplanar
and noncoplanar magnetic configurations) is reduced to 15 192
inequivalent coplanar SSGs.
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accompanied with one Ri. In addition, the factor system

can also absorb an additional phase of spin rotation gðaÞsi ,
where the rotation of 2π picks up a phase of −1.
Considering dlkðfgðaÞsi kRijτðaÞi gÞ an irrep of a unitary little
SSG Gk

SS, we have

dlk
�n

gðaÞsi kRijτðaÞi

o�
¼ exp

�
−ikτðaÞi

�
Ml

k

�n
gðaÞsi kRijτðaÞi

o�
:

ð5Þ

Here, 0 ≤ ϕðgðaÞsi Þ < 2π, in which ϕðgðaÞsi Þ is the rotation

angle of gðaÞsi . We note that projective reps Ml
k do not

distinguish translation operations that differ by integer

multiples of lattice vectors, i.e., Ml
kðfgðaÞsi kRijτðaÞi þ tigÞ ¼

Ml
kðfgðaÞsi kRijτðaÞi þ tjgÞ for ti; tj ∈TðL0Þ. That is to say,

Ml
kðfgðaÞsi kRijτðaÞi gÞ is a matrix-valued function on the

elements fgðaÞsi kRijτðaÞi g of the finite quotient group
G̃k

SS ¼ Gk
SS=TðL0Þ. According to the multiplication of reps

dlk, for the projective reps of elements fgðaÞsi kRijτðaÞi g;
fgðaÞsj kRjjτðaÞj g∈ G̃k

SS½0 ≤ ϕðgðaÞsi Þ;ϕðgðaÞsj Þ < 2π�, we have

Ml
k

�n
gðaÞsi kRijτðaÞi

o�
Ml

k

�n
gðaÞsj kRjjτðaÞj

o�
¼ ð−1Þξ

�
gðaÞsi

;gðaÞsj

�
expð−iKiτ

ðaÞ
j ÞMl

k

�n
gðaÞsl kRljτðaÞl

o�
:

ð6Þ

Here, fgðaÞsl kRljτðaÞl g ¼ fgðaÞsi g
ðaÞ
sj kRiRjjτðaÞi þ Riτ

ðaÞ
j mod

TðL0Þg, Ki ¼ R−1
i k − k, ξðgðaÞsi ; g

ðaÞ
sj Þ ¼ 0 for 0 ≤

ϕðgðaÞsi g
ðaÞ
sj Þ < 2π, and ξðgðaÞsi ; g

ðaÞ
sj Þ ¼ 1 for 2π ≤

ϕðgðaÞsi g
ðaÞ
sj Þ < 4π. Therefore, it is only necessary to find

out all projective irreps of G̃k
SS. For simplicity, we use gðaÞi

to represent fgðaÞsi kRijτðaÞi g hereafter.
Next, the CSCOmethod is employed to obtain projective

irreps by decomposing the regular projective reps [68,69].
In quantum mechanics, a set of commuting operators
ðJ2; JzÞ form the CSCO of the Hilbert space of angular
momentum. The corresponding quantum numbers j andmj

are sufficient to diagonalize the Hamiltonian and label all
the resulting eigenstates. Similarly, the basic idea of the
CSCO approach used here is to decompose the projective
reps of G̃k

SS into blocks to distinguish all the irreps of G̃k
SS.

This is done by constructing a series of class operators
analogous to the set of ðJ2; JzÞ, which commute with each
other and commute with every group element. The specific
procedure is described in Appendix D.
For any antiunitary little group Gk

SS, one can first
decompose it with respect to its maximal unitary subgroups

Lk
SS; i.e.; G

k
SS ¼ Lk

SS ∪ TALk
SS, where TA is the antiunitary

coset representative element. The projective irrepsMl
kðgðaÞi Þ

and the corresponding irreps dlkðgðaÞi Þ with gðaÞi ∈ L̃k
SS ¼

Lk
SS=T can certainly be treated by using the CSCO method.

Assuming that the basis set of dlkðgðaÞi Þ is jψi ¼ jψ1;
ψ2;…;ψnli, then for the coset the basis set can be
adopted as jϕi ¼ jϕ1;ϕ2;…;ϕnli ¼ TAjψ1;ψ2;…;ψnli.
Consequently, the coreps for the full basis set jψ ;ϕi are

Dl
kðgðaÞi Þ ¼

2
64 dlk

�
gðaÞi

�
0

0 dl�k
�
A−1gðaÞi A

�
3
75;

Dl
kðTAgðaÞi Þ ¼

2
64 0 dlk

�
TAgðaÞi TA

�
dl�k

�
gðaÞi

�
0

3
75: ð7Þ

Then we can prove the following modified Dimmock
and Wheeler character sum rule (see Supplemental
Material, Sec. III), which helps to identify whether the
coreps are irreducible or not:

X
gðaÞi ∈TAL̃k

SS

χl
�
ðgðaÞi Þ2

�
¼

8>>><
>>>:

þ
���L̃k

SS

��� ðaÞ;

−
���L̃k

SS

��� ðbÞ;
0 ðcÞ:

ð8Þ

For Eq. (8a), the corep matrices Dl
k in Eq. (7) are reducible

and have the same dimension as the irrep dlk. For Eqs. (8b)
and (8c), the dimension of Dl

k is doubled compared with
that of dlk. Following the approach presented here, we can
obtain the projective coirreps of any arbitrary k-point for all
finite SSGs.
The abovementioned procedure of obtaining the coirreps

is exemplified by two realistic materials, i.e., CeAuAl3
and CoNb3S6, as shown in Supplemental Material, Secs. V
and VI. The corresponding electronic band structures and
additional exotic properties of these two materials are
discussed in Sec. IV.

C. Representation of collinear SSGs

The CSCO method cannot be applied to collinear SSGs
because the SOð2Þ spin rotation symmetry renders the SSG
a continuously infinite group. Interestingly, the incorpo-
ration of spin-only group Gl

SO ¼ ZK
2 ⋉ SOð2Þ ensures that

the coirreps of collinear SSGs can be obtained by consid-
ering the single-valued coirreps of 230 type-II MSGs plus
the extra degeneracies in spin space originated from some
crucial symmetries beyond MSGs. We next discuss col-
linear SSGs in two categories, i.e., those describing
ferromagnets and antiferromagnets.
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For SSGs describing collinear ferromagnets and ferri-
magnets, it is straightforward that G0 ¼ L0, Gs ¼ 1,
and Gl

SO ¼ ZK
2 ⋉ SOð2Þ. The corresponding SSG can be

written as

GSS ¼ fEkL0g × ZK
2 ⋉ SOð2Þ: ð9Þ

While ZK
2 ⋉ SOð2Þ itself cannot contribute extra degen-

eracy in spin space (see Appendix D 3), the conjugate
symmetry operator K can combine two conjugated single-
valued irreps in real space. Therefore, the coirreps of this
type of SSG (230 in total) are the same as spinless gray SGs
(L0 × ZK

2 ), or single-valued coirreps of type-II MSGs.
For SSGs describing collinear antiferromagnets, L0 is

the sublattice group, which is an index-two normal sub-
group of G0. In addition, we have Gs ¼ 1̄ and a real-space
operation A connecting the two sublattices with opposite
magnetic moments. The corresponding SSG can be
expressed as

GSS ¼ ðfEkL0g ∪ fTkAL0gÞ × ZK
2 ⋉ SOð2Þ: ð10Þ

The critical symmetries beyond MSGs include spin SO(2),
fTkAg, and fUnðπÞkAg. Among these, the SO(2) group
provides conjugated one-dimensional (1D) irreps ΓS

þ1=2 and

ΓS−1=2 in spin space, leading to the following degeneracy
doubling mechanisms: If the little group of k has
fUnðπÞkAg or fTkAg symmetry, the combination of SO(2)
and fUnðπÞkAg or fTkAg pairs ΓS

þ1=2 and ΓS−1=2 into a
two-dimensional (2D) irrep or coirrep, respectively (see
Appendix D 3).
Overall, the general procedure to obtain coirreps of

collinear SSGs can be summarized as the coirreps of the
single-valued coirreps of the type-II MSG L0 × ZK

2 (real
space) plus additional double degeneracy caused by
fUnðπÞkAg or fTkAg symmetry (spin space). As an
example, we perform calculations of the coirreps for a
collinear antiferromagnet RuO2, as shown in Supplemental
Material, Sec. IV. The corresponding electronic band
structures and the extra degeneracies in SSG are discussed
in Sec. IV.

IV. REALISTIC MATERIALS

While SOC ultimately exists in realistic magnetic sys-
tems, under the circumstances when the SOC effect is
weak or when considering the SOC-induced effects (e.g.,
orbital polarization) [70], it is useful to analyze the wave-
function properties of an SOC-free Hamiltonian [19]. SSGs
provide a comprehensive symmetry description of such
Hamiltonians. Given a realistic material with specific
atomic positions and local moments, a practical need is
to identify its SSG with all possible symmetry operations.
We develop an online program FINDSPINGROUP for
identifying the SSG symmetries of a magnetic crystal,

given the lattice parameters, the atomic positions, and the
local moments in a magnetic cell [59]. The required input is
a .mcif or .cif file (with magnetic moments). The corre-
sponding outputs are the details of the SSG, including L0,
G0, it, ik, Gs, type of the magnetic configuration, the
international notation, standard magnetic cell, and all the
symmetry operations written based on the lattice vectors of
the standard magnetic cell. We provide in Appendix E the
specific procedure for identifying the SSG. Furthermore,
we also identify the SSGs for the 2001 experimentally
reported magnetic structures provided in the MAGNDATA

database on the Bilbao Crystallographic Server. The results
are listed on FINDSPINGROUP [59].
We then perform density-functional-theory (DFT) cal-

culations on several material candidates to exemplify their
SSG symmetries, the electronic band degeneracies, spin
textures, geometric Hall effects, and the distinctions from
MSG (see Appendix F for DFT methods). Importantly, we
show that the spin space part and real space part of an SSG
directly lead to the features of spin polarization and the
geometric Hall effect, respectively. Our representative
examples include the candidate altermagnet RuO2 (t-type
SSG), spiral antiferromagnet CeAuAl3 (k-type SSG) with
coplanar configuration, and noncoplanar antiferromagnet
CoNb3S6 (g-type SSG).

A. Extra band degeneracies in altermagnet RuO2

RuO2 is a candidate altermagnet with a spin-polarized
Fermi surface and thus holds great potential to realize
various spintronic effects, including spin-polarized current,
giant magnetoresistance, and spin-splitting torque [35–43].
It has a rutile structure with an out-of-plane collinear
antiferromagnetic order, with Ru and O ions occupying
2a and 4f Wyckoff positions, respectively [Fig. 4(a)].
The resulting nonmagnetic SG and MSG are P42=mnm
(No. 136) and P402=mnm0 (136.499), respectively. To
elucidate its SSG, we first determine its sublattice SG
L0 by considering the subgroup of SG that preserves the
moment of Ru, i.e., L0 ¼ Cmmm (No. 65). It is a t-type
normal subgroup of G0 ¼ P42=mnm, with the subgroup
indices it ¼ 2, ik ¼ 1. The coset representative element,
which is the symmetry connecting the sublattices with
opposite magnetic moments, is a nonsymmorphic fourfold
rotation f41001j1=2 1=2 1=2g, and the coupled spin space
PG is Gs ¼ 1̄ ¼ fE; Tg. Consequently, the nontrivial SSG
has the form GNS ¼ fEkL0g ∪ f1̄k41001j1=2 1=2 1=2gL0

labeled as (65.136.1.1); the corresponding international
notation is written as P−142=1m−1n1m. The full SSG
GSS taking into account the spin-only group is
P−142=1m−1n1m∞m1, which is a continuously infinite
group.
Figure 4(c) shows the band structure of RuO2 calculated

by DFT (see Appendix F). It can be found that the bands
along several high-symmetry lines, such as Γ-X-M,
Γ-Z-R-A, have twofold band degeneracies, while
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significant spin splitting occur along Γ-M and A-Z. The
dimensions of the projective coirreps for these wave vectors
are shown in Fig. 4(d), demonstrating that the rep theory
successfully reproduces the calculated band degeneracies.
In comparison, we also plot in Fig. 4(e) the band structure
with the SOC, where the coirreps of MSG dictate the band
degeneracy [Fig. 4(f)]. It is shown that the high-symmetric
line Z-R-A manifests band splitting with the SOC, which is
consistent with the MSG coirreps. While in MSG, the little
groups of k along Z-R-A (mm2 or mmm) support only
1D coirreps, in SSG the little groups of these k-points have
the operation f1̄km010j1=2 1=2 1=2g, which can stick two
conjugate 1D irreps of SO(2) (ΓS

þ1=2 and ΓS−1=2) forming
extra degeneracies. The details of the derivation of coirreps
in SSG and the comparison of coirreps in SSG and MSG
are provided in Supplemental Material, Sec. IV. Similar
extra degeneracies protected by SSG have also been
discussed in CoNb3S6 with collinear order [49,50], and
Mn3Sn with coplanar magnetic order [19]. On the other
hand, in SSG, the little group 1mmm1m∞1 at the Σ and S
lines does not support 2D coirreps, thus leading to spin
splitting even without SOC.

B. Spiral spin polarization in helimagnet CeAuAl3
Spiral magnets, or helimagnets, present a type of

magnetic ordering where the neighboring magnetic
moments are arranged in a spiral pattern, with a character-
istic turn angle between 0° and 180°. Such magnetic orders
generally originated from the competition between ferro-
magnetic and antiferromagnetic exchange interactions.

Spiral magnets usually manifest combined spin rotation
and fractional translation symmetry operations, which are
not allowed within the MSG framework. However, for
commensurate magnetic configurations, they serve as a
nice platform to illustrate k-type and g-type SSGs.
CeAuAl3 has a tetragonal crystal structure with in-plane
coplanar antiferromagnetic order [71], with a magnetic Ce
ion occupying 4aWyckoff positions [Fig. 5(a)]. The spin of
the Ce layer rotates π=2when moving to its neighboring Ce
layer, resulting in a spiral configuration with a fourfold cell
expansion. While its nonmagnetic SG is I4mm (No. 107),
the MSG is degraded to Pc41 (76.10), with only eight
symmetry operations left.
Within the regime of SSG, its sublattice group is

L0 ¼ P4mm (No. 99), a k-type normal subgroup of
G0 ¼ I4mm, with the subgroup indices it ¼ 1, ik ¼ 4.
The coset representative element connecting the
neighboring sublattices (Ce layers) is a fractional trans-
lation f1j1=2 1=2 1=4g. Therefore, there are two possibil-
ities of Gs being isomorphic to G0=L0 i.e., 4 and 4̄,
resulting in two different nontrivial SSGs (99.107.4.1)
and (99.107.4.2). CeAuAl3 adopts the former one
(99.107.4.1), which is constructed by mapping the
element 41001 in spin space to f1j1=2 1=2 1=4g, i.e., GNS ¼
L0 ∪ f41001k1j1=2 1=2 1=4gL0 ∪ f2001k1j0 0 1=2gL0 ∪
f43001k1j1=2 1=23=4gL0. Specifically, it has a screw axis
in spin space; i.e., f41001k1j1=2 1=2 1=4g, serves as the
generator of the spin translation group GS

T isomorphic to 4
(a PG). Thus, the corresponding international notation
is written as P141m1m41

001ð1=2 1=2 1=4Þ (Appendix C).

FIG. 4. Spin space group of altermagnet RuO2. (a) Crystal structure. The symmetry connecting different sublattices is indicated. The
coordinate system xyz in spin space coincides with the coordinate system abc in real space. (b) Brillouin zone in momentum space.
(c) SOC-free band structure with the projection of the spin components. (d) Little groups and the corresponding projective coirreps for
different k-points within the regime of SSG. Brown fonts denote the k-points manifesting spin splitting; green fonts denote the k-points
manifesting extra degeneracies compared with the band structure with SOC. (e) Same as (c) but with SOC. (f) Same as (d) but within the
regime of MSG.
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The full SSG is written as GSS ¼ GNS × ZK
2 ¼

P141m1m41
001ð1=2 1=2 1=4Þm1, which has 64 symmetry

operations. A similar procedure applies to (99.107.4.2)
except that the coset representative of the nontrivial SSG
is f4̄3001k1j1=2 1=2 1=4g.
The DFT-calculated local moment for each Ce ion is

0.98μB, which is close to the experimental value (1.05μB
[71]). Figure 5(b) exhibits the DFT-calculated band struc-
ture of CeAuAl3. We find that all the bands along the X-M
line are fourfold degenerate, and some of these bands split
into two branches of doubly degenerate bands along the
Γ-X line. For the Γ and Z points, both Dirac and Weyl
nodes exist. These node features are well explained by our
CSCO projective rep theory, as comprehensively shown in
Supplemental Material, Sec. V. As shown in Fig. 5(e),
while the X-M line supports only 4D coirreps, the Γ and Z
points also allow 2D coirreps. Note that while the full SSG
is isomorphic to the type-II MSG I4mm10, the spin trans-
lation group generated by f41001k1j1=2 1=2 1=4g contrib-
utes to the factor system of projective reps, resulting in the
emergence of 4D coirreps. In comparison, the type-II MSG
I4mm10 supports only 1D and 2D coirreps. Importantly,
while it is believed that the existence of “Uτ” symmetry
(here it is f2001k1j0 0 1=2g) protects spin degeneracy
throughout the Brillouin zone [32,72], in noncollinear
magnet CeAuAl3 there is spin splitting along Γ-Z, indicat-
ing 1D coirreps for the corresponding little groups with
fUnðπÞkEjτg. Our results demonstrate that spin degen-
eracy enforced by fUnðπÞkEjτg symmetry is indeed
present in collinear antiferromagnets, as fUnðπÞkEjτg
sticks two conjugate 1D irreps of SO(2).
More remarkably, such spiral magnets exhibit a new type

of spiral spin polarization, for which the spin component

aligns the spiral axis, which is perpendicular to the
direction of local moments. Figure 5(d) shows the spin
texture of CeAuAl3 at the kz ¼ π=2 plane for the band
marked in Fig. 5(b). While all local moments are in plane,
the Sx and Sy components of the extended Bloch states are
enforced to be zero, leaving significant and continuous Sz
distribution along the spiral direction (kz). Such a spiral
spin polarization is in sharp contrast to the conventional
Rashba and Dresselhaus spin polarization (along the
k-dependent effective magnetic field) in nonmagnetic
materials and Zeeman spin polarization (along the direction
of local moments) in ferromagnetic materials. To explain
this, we note that the spin little group at an arbitrary k-point
is 4, indicating that the spin texture has only an Sz
component while the SSG-allowed operation 14 ensures
fourfold symmetric pattern, consistent with our calculation
shown in Fig. 5(d). Therefore, while such a spin polari-
zation can survive with moderate SOC, its physical
mechanism is apparently beyond the scenario of MSG.

C. Geometric Hall effect in nonplanar CoNb3S6

CoNb3S6 has attracted great interest due to its surpris-
ingly large anomalous Hall effect and controversial mag-
netic configurations [50,73–77]. While its magnetic order
was historically determined as a collinear antiferromagnet
by neutron-diffraction measurements [78], a recent study
reported an all-in–all-out noncoplanar antiferromagnetic
order and accompanied topological Hall effect [77]. Here,
we discuss the SSG symmetry of CoNb3S6 with the all-in–
all-out antiferromagnetic order and conclude that such a
noncoplanar order generates an anomalous Hall effect even
without the assistance of SOC. As shown in Fig. 6(a),
CoNb3S6 has a hexagonal crystal structure (nonmagnetic

FIG. 5. Spin space group of spiral antiferromagnet CeAuAl3. (a) Crystal structure. The symmetry connecting different sublattices is
indicated. The coordinate system xyz in spin space coincides with the coordinate system abc in real space. (b) SOC-free electronic band
structure. (c) Brillouin zone in momentum space. (d) Spin polarization Sz at the kz ¼ π=2 plane for the band marked in panel (b).
(e) Little groups and the corresponding projective coirreps for different k-points.
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SG is No. 182, P6322) with magnetic Co ion occupying
2d Wyckoff positions. Interestingly, its all-in–all-out
antiferromagnetic order forms a cubic structure in spin
space, i.e., Gs ¼ 4̄3m. However, the corresponding MSG
is P32’ with only six symmetry elements because within
the MSG framework, the spin rotation must compromise
the spatial rotation, implying that the cubic nature of spin
symmetry is lost.
With G0 ¼ P6322, the sublattice group L0 ¼ P21

(No. 4) forms a g-type normal subgroup with the subgroup
indices it ¼ 6 and ik ¼ 2 × 2 × 1 ¼ 4, the latter of which
corresponds to twofold cell expansions along the x and y
directions, i.e., f1j1 0 0g and f1j0 1 0g. In addition, the
threefold rotation f31001j0g and twofold rotation f2110j0g
also belong to G0=L0. Overall, there are two possibilities of
24-element Gs being isomorphic to G0=L0, i.e., 432 and
4̄3m, with each corresponding to one inequivalent map-
ping. Therefore, there are two nontrivial SSGs in total
labeled by (4.182.4.1) and (4.182.4.2), respectively.
In the case of CoNb3S6, real-space f2100j0g operation
couples spin space m110 operation, rendering Gs ¼ 4̄3m
and thus a nontrivial SSG (4.182.4.2). It can be
generated using f32−11−1k61001j0 0 1=2g, fm110k2100j0g,

fm011k2210j0 0 1=2g, and generators of spin translation
group GS

T , i.e., f2001k1j1 0 0g and f2100k1j0 1 0g. We
note that the PG part of GS

T forms a D2 group in spin space.
Therefore, the corresponding international notation is
written as P32−11−163

m1102m0112jð2001; 2100; 1Þ (Appendix C).
Since GSO is the identity group, the full SSG has
48 symmetry operations. Interestingly, such SSGs contain
real-space and spin space symmetries from totally incom-
patible crystal systems, a scenario that is impossible within
the scope of MSG.
Figure 6(b) shows the band structure of CoNb3S6

calculated using DFT. Notably, while PT is absent, the
bands exhibit double degeneracy throughout the Brillouin
zone. Such a new form of spin degeneracy appears only in
the framework of SSG, attributed to the double-valued
2D coirreps of the little cogroup D2 in spin space (the
elements in GS

T leave k invariant) at any arbitrary k-point.
Furthermore, the three perpendicular twofold spin rotation
axes enforce any spin-polarization components to be zero.
Therefore, the spin degeneracy or spin splitting induced by
magnetic order in noncollinear magnetic structures extends
beyond the scope of MSGs, as only Tτ symmetry in the
spin translation group can be maintained when considering

FIG. 6. Spin space group of noncoplanar antiferromagnet CoNb3S6. (a) Crystal structure. The symmetry connecting different
sublattices is indicated. The cubic structure in spin space is illustrated by the two tetrahedrons. The relationship between the xyz
coordinate system in spin space and the abc coordinate system in real space can be expressed as follows: a ¼ −x − y, b ¼ yþ z, and
c ¼ −xþ y − z. (b) Electronic band structure. (c) Brillouin zone in momentum space. (d) Geometric Hall conductivity as a function of
energy. SOC is excluded in the calculations.
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the MSGs. Consequently, we summarize the complete
criteria of spin splitting for noncollinear antiferromagnetic
orders, i.e., (i) the absence of PT, and (ii) the spin space PG
of the spin translation group does not contain Dn. This
further highlights the importance of the enumeration and
representation theory of SSGs.
The noncoplanar magnetic order could lead to responses

without the assistance of SOC. For example, the anomalous
Hall effect has long been attributed as a consequence of
SOC under time-reversal breaking [79]. On the other hand,
the exchange field induced by noncoplanar order could also
induce an anomalous Hall effect without SOC. Instead
of the topological Hall effect, we use the terminology of
geometric Hall effect to emphasize the sole origin of
magnetic geometry. While the characteristic quantities
of noncoplanar magnets, e.g., scalar spin chirality [80]
or band-resolved Berry curvature [81], cannot fully
describe the existence of the geometric Hall effect, we
note that due to the absence of SOC, the geometric Hall
conductivity tensor can be fully determined by SSG. For
collinear and coplanar orders, the spin-only symmetry
TUnðπÞ behaves similarly to T, which enforces the geo-
metric Hall conductivity σGxy to be zero when integrating
the Berry curvature over the Brillouin zone. Therefore, the
anomalous Hall effect in collinear or coplanar magnets
(even for ferromagnets) must be an SOC effect. However,
for noncoplanar CoNb3S6, the PG symmetries of the real-
space part of the SSG (62020) leave the z component of the
magnetization invariant. Thus, an orbital magnetization
along the z direction is allowed, leading to nonzero σGxy. As
shown in Fig. 6(d), our DFT calculation obtains nonzero
geometric Hall conductivity throughout the energy win-
dow, consistent with our symmetry analysis. Remarkably,
σGxy reaches 47 Ω−1 cm−1 at the Fermi level, which is
comparable to the largest anomalous Hall conductivities
in antiferromagnets with the assistance of SOC [82].

V. SUMMARY

To conclude, we present a systematic study of the
enumeration and the representation theory of SSG applied
to describe different magnetic configurations. By using a
group extension approach, our enumeration constructs
a collection of over 100 000 nontrivial SSGs named by a
four-index nomenclature. The international notation system
for SSGs is also developed. Furthermore, we derive the
irreducible projective corepresentations of the little groups
of the wave vectors within the SSG framework, which is
the foundation for understanding the symmetry-enforced
degeneracies in band spectra. To facilitate the search
for SSG symmetries, we develop an online program
FINDSPINGROUP [59] that can identify the SSG sym-
metries of any given magnetic crystal. The SSG identi-
fication for the 2001 experimentally reported magnetic
structures provided in the MAGNDATA database is also

provided. We then show representative material examples,
including altermagnet RuO2, helimagnets CeAuAl3, and
noncoplanar antiferromagnet CoNb3S6 to illustrate their
SSG symmetries and the emergent properties beyond the
MSG framework. Our work further develops the group
theory in describing materials with magnetic order, thereby
unlocking possibilities for future exploration into exotic
phenomena within magnetic materials. A recent example is
the comprehensive diagnosis of quantum geometry non-
linear transports induced by magnetic geometry [83].

LIST OF SYMBOLS AND ABBREVIATIONS

PG, point group
SG, space group
MPG, magnetic point group
MSG, magnetic space group
SPG, spin point group
SSG, spin space group
SOC, spin-orbit coupling
rep, representation
irrep, irreducible representation
corep, corepresentation
coirrep, irreducible corepresentation
HM, Hermann-Mauguin Notation, inter-

national notation
CSCO, complete set of commuting operators
DFT, density-functional theory
G0, supergroup of L0

L0, normal subgroup of G0

gs, operations in spin space
gl, operations in real space
R, PG part of gl
τ, fractional translation part of gl
T , translation group
P, space inversion
T, time reversal
UαðθÞ, spin rotation of θ degree along the

α axis
CβðθÞ, spatial rotation of θ degree along the

β axis
TðGÞ, translation subgroup of SG G
PðGÞ, quotient group of G with respect to

the TðGÞ
t, integral translation operation in trans-

lation group T or TðGÞ
jGj, order of group G
it, PG index of jPðG0Þj=jPðL0Þj
ik, supercell index of jTðG0Þj=jTðL0Þj
Gs, mapped PG in spin space
GSG; SG
GMS, MSG
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GSS, SSG
GSO, spin-only group
GNS, nontrivial SSG
L, maximal unitary subgroup of G
Gk, little group of G at the k-point
G̃k, the quotient group of Gk with respect

to translation group T
Ğk, little cogroup of G at the k-point
Ğk;�, central extension group of Ğk

Zg, cyclic group of integers

G̃k, intrinsic group of G̃k

Mk, projective irrep of the little group Gk

dk, irrep of G̃k

Dk, rep matrix of corep
GR, SG of input structure without mag-

netic configurations
GS, the quotient group of the PG of

magnetic moment vectors with re-
spect to the spin-only groupn

gðaÞsi kRijτðaÞi

o
, SSG symmetry with i labels the PG

part Ri in real space, and ðaÞ labels
the corresponding translations and
spin operations

ϕðgðaÞsi Þ, rotation angle of gðaÞsi
NGðLÞ, normalizer of L with respect to G
NAþðLÞ, chirality-preserving affine normalizer

of L
GS

T , spin translation group
Gq, site-symmetry group at the q-point
MT , transformation matrix

Note added. Recently, we became aware of related studies
of the classification of spin space groups from Fang and
co-workers [84] and Song and co-workers [85]. In addition,
we also noticed recent studies of symmetry analysis
and search of spin space groups [86,87], as well as the
representations of spin point groups [88].
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APPENDIX A: SGs, MSGs, SSGs, AND THEIR
REPRESENTATIONS

1. Types of symmetry operations

We first discuss SGs, MSGs, and SSGs in terms of
their symmetry operations, as summarized in Table IV. SGs
describe the geometry of a nonmagnetic material, or the
Hamiltonian that does not contain the spin operator (non-
magnetic materials without SOC). Therefore, their sym-
metry operations include spatial symmorphic symmetry
(pure spatial PG symmetry) fCnðθÞ; ICnðθÞj0g and spatial
nonsymmorphic symmetry fCnðθÞ; ICnðθÞjτg, as shown in
the first two rows of Table IV.
On the other hand, while MSGs and SSGs contain all the

operations listed in Table IV, the specific manifestations of
each row for the two types of groups are quite different. If
no additional symmetry operations is introduced compared
to ordinary SGs, the MSGs are often regarded as type-I
MSGs (colorless group). If an MSG contains pure spin PG
symmetry fgskEj0g where no spatial rotations or fractional
translations τ are involved, gs can be only time-reversal T,

TABLE IV. Six types of operations in SGs, MSGs, and SSGs. For pure spin PG symmetry and spin
nonsymmorphic symmetry in MSGs, gs can be only time-reversal T; for general symmorphic symmetry and
general nonsymmorphic symmetry in MSGs, gs can be only proper or improper spin rotations UnðθÞ or TUnðθÞ
compatible with the spatial rotation CnðθÞ.

Notation Spin PG Spatial PG Fractional translation

Spatial symmorphic symmetry fCnðθÞ; ICnðθÞj0g
p

Spatial nonsymmorphic symmetry fCnðθÞ; ICnðθÞjτg
p p

Pure spin symmetry fgskEj0g
p

Spin nonsymmorphic symmetry fgskEjτg
p p

General symmorphic symmetry fgsjjCnðθÞ; ICnðθÞj0g
p p

General nonsymmorphic symmetry fgsjjCnðθÞ; ICnðθÞjτg
p p p
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corresponding to a type-II MSG (gray group). If an MSG
contains general symmetry fgsjjCnðθÞ; ICnðθÞjτg, gs can be
only proper or improper spin rotations UnðθÞ or TUnðθÞ
compatible with the spatial rotation CnðθÞ corresponding to
a type-III MSG (colored point group). If an MSG contains
spin nonsymmorphic symmetry fgskEjτg where a spin
operation is combined with a fractional translation τ, again,
gs can be only time-reversal T corresponding to a type-IV
MSG (colored lattice). In comparison, SSGs allow sepa-
rated spatial and spin rotations, leading to much more
symmetry operations that are not allowed by MSGs.
Specifically, pure spin PG symmetries in SSGs form the
spin-only groupGSO, includingG

p
SO ¼ fE; TUnðπÞg ¼ ZK

2

for coplanar configurations and Gl
SO ¼ ZK

2 ⋉ SOð2Þ for
collinear configurations. In addition, spin nonsymmorphic
symmetry widely exists in spiral magnetic configurations
with a -type SSG. For example, the k-type SSG with ik ¼ 4
has spin nonsymmorphic symmetry fUzðπ=2ÞkEjτ1=4g.
For general symmorphic symmetry and general non-

symmorphic symmetry, MSG requires that gs can be only
proper or improper spin rotations UnðθÞ or TUnðθÞ
compatible with the spatial rotation CnðθÞ. In comparison,
within the framework of SSG, gs can be UmðϕÞ or TUmðϕÞ
with the rotational angle and axis not necessarily compat-
ible with those of the spatial rotation.

2. Construction of SSGs by finding inequivalent coset
decompositions and inequivalent mappings

This part is devoted to explaining the mathematical
procedure of finding inequivalent coset decompositions and
inequivalent mappings between the quotient group G0=L0

and the spin space PG Gs, which is an essential step to
eliminate equivalent SSGs in the enumeration process.
Before getting into the details of the mathematical pro-
cedure, we first introduce some necessary concepts.
Chirality-preserving operations are symmetry operations

that preserve the chirality of the object. Specifically, in 3D
Euclidean space R3, the orthogonal linear transformations
form a 3D orthogonal group Oð3Þ ¼ SOð3Þ ∪ PSOð3Þ,
where P represents space inversion. Elements of SOð3Þ are
regarded as chirality-preserving operations because their
transformation matrices have a determinant of 1. Therefore,
the chirality-preserving Euclidean mappings in R3 include
all translations, proper rotations, and screw rotations, yet
excluding reflections, inversions, rotoinversions, and glide
reflections.
Affine transformation, or affine mapping, is a linear

mapping method that preserves points, straight lines,
and planes. After an affine transformation, although the
Euclidean lengths and angles may change, sets of parallel
lines remain parallel.
Normalizer. For a group G and its subgroup L, the

normalizer of L with respect to G denotes the set of
elements g∈G that leave the subgroup L unchanged by
conjugation:

NGðLÞ ¼ fgjg−1Lg ¼ L; g∈Gg: ðA1Þ

Let us review the establishment of SG briefly. In the
enumeration of SG, the group G0 and G0

0 belong to the
same affine space-group type if an affine transformation
a∈TðR3Þ⋊GLð3; RÞ exists, for which

G0
0¼ a−1G0a ðA2Þ

holds. Here, TðR3Þ contains all translations in R3, and
GLð3; RÞ denotes the 3D general linear group whose entries
of matrices are real numbers. However, there are only 219
affine space-group types in total as the rotation part of an
affine transformation a may have a negative determinant.
In other words, it means that a does not preserve the
chirality of G0. Only when the affine transformation a is
required to be chirality preserving during the mapping
process, can we distinguish 11 pairs of enantiomorphic SGs
(left-handed versus right-handed structures), as shown in
Table V, and 230 ¼ 219þ 11 crystallographic SG types are
obtained [65].
To construct an SSG, the first step is to decompose an

SG G0 into its subgroups L0,

G0 ¼ L0 ∪ g1L0 ∪ … ∪ gn−1L0: ðA3Þ

For two pairs (G0; L0) and (G0
0; L

0
0), it is obvious that if G0

and G0
0 belong to different SGs, as well as L0 and L0

0, the
coset decompositions and thus the resulting SSGs are
different. On the other hand, even if both (G0; L0) and
(G0

0; L
0
0) cannot be distinguished just by their SGs, the coset

decompositions of the two pairs may still be different.
To provide a differentiation, one can first transform L0 and
L0
0 to the default setting of SGs so that they are identical

(L0 ¼ L0
0). Then the chirality-preserving affine normalizer

of L0, NAþðL0Þ and acted to G0 to judge the equivalency of
the two pairs following the process described below.
Overall, the chirality-preserving affine normalizer

NAþðL0Þ was employed to find all inequivalent coset
decompositions [65]. All affine mappings in R3 that

TABLE V. Eleven pairs of enantiomorphic SGs.

P41ðNo:76Þ P43ðNo:78Þ
P4122ðNo:91Þ P4322ðNo:95Þ
P41212ðNo:92Þ P43212ðNo:96Þ
P31ðNo:144Þ P32ðNo:145Þ
P3112ðNo:151Þ P3212ðNo:153Þ
P3121ðNo:152Þ P3221ðNo:154Þ
P61ðNo:169Þ P65ðNo:170Þ
P62ðNo:171Þ P64ðNo:172Þ
P6122ðNo:178Þ P6522ðNo:179Þ
P6222ðNo:180Þ P6422ðNo:181Þ
P4132ðNo:213Þ P4332ðNo:212Þ
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map L0 onto itself by conjugation and preserve its chirality
form the chirality-preserving affine normalizer of L0:

NAþðL0Þ¼faja−1L0a¼L0;a∈TðR3Þ⋊ SLð3;ℤÞg ðA4Þ
Here, SLð3;ℤÞ denotes the 3D linear group whose entries
of matrices are integers and the determinant is of 1. Thus,
two pairs (G0; L0) and (G0

0; L0) are equivalent if their
supergroups are conjugated under a∈NAþðL0Þ:

a−1G0
0a ¼ G0; ∃ a∈NAþðL0Þ: ðA5Þ

The conclusion can be directly extended when consid-
ering the inclusion of a spin part, i.e., nontrivial SSGs.
Two nontrivial SSGs G0

NS and GNS with equivalent
(G0; L0) pairs are equivalent if they can be mapped onto
each other by

a−1G0
NSa ¼ GNS;

∃ a∈ ½NAþðL0Þ ∩ NAþðG0Þ� × NOð3ÞðGsÞ; ðA6Þ
where NAþðG0Þ is the chirality-preserving affine normal-
izer of G0, and NOð3ÞðGsÞ is the normalizer of Gs in
orthogonal group O(3).
The abovementioned mathematical procedure of identi-

fying all inequivalent coset decompositions and inequiva-
lent mappings for constructing SSGs using Eqs. (A4)–(A6)
is performed by MAGMA, which is a large, well-supported
software package designed for computations in abstract
mathematical objects. It basically provides nearly all the
significant algorithms for finite groups and finitely pre-
sented infinite groups.

3. Little group and little cogroup

The translation generators of an SG G determine its
Bravais lattice and also its Brillouin zone (BZ). Points in
the BZ are denoted by k in momentum space. The action of
g ¼ fRjτg∈G on k is gk ¼ Rk, where translation τ leaves
k invariant. All elements in an SG G that keep a reciprocal
vector k invariant form a group named the little group of k.
Since we focus on the properties of Bloch states under
band theory, where Bloch states are labeled by reciprocal
vectors k, the little group of k is of great importance. The
PG part of a little group is called a little cogroup. Such a
concept is introduced because the theory of projective rep
maps the derivation of the irreps of a little group to the
derivation of projective irreps of the corresponding little
cogroup, in which lattice translation is neglected, and the
fractional translation is included in factor systems (the
details will be discussed later).

4. Representation, irreducible representation,
and regular representation

A representation of group G is formally defined as a
homomorphism from G to the group form by general linear

transformations on a vector space V, i.e., the general linear
group GLðVÞ. The matrix forms of those linear trans-
formations are called representation matrices. In quantum
physics, group rep is considered with a certain group
of quantum states as a basis. Under this situation, a group
rep can be simply understood as the matrix form of all
symmetry operators. This method allows us to describe the
symmetry of quantum systems with easily manipulated
linear algebra. Generally, by basis transformation, a vector
space can be separated into subspaces such that all vectors
of one subspace are transformed only into each other.
This allows us to block diagonalize the full rep matrices of
all group elements simultaneously and view the full rep as
the direct sum of reps on every subspace. Those reps
which have rep matrices that cannot be block diagonalized
by any basis transformation are called irreducible repre-
sentations. In quantum physics, irreps describe the degen-
eracy of quantum states and encode basic symmetry
information of quantum states, e.g., parity, angular
momentum numbers, etc.
A regular representation is defined as the rep formed by

using the group space as the rep space, where the group
elements function as both the operators and as the basis for
the space. It is a particularly interesting set of matrices that
forms a reducible rep of the group G, which can be block
diagonalized to give all irreps of the group. The matrices of
the regular rep are constructed with the following relation:

Dreg
jk ðRiÞ ¼

	
1 if RiRk ¼ Rj;

0 otherwise:
ðA7Þ

The multiplicity aj of each irrep in the regular rep can be
calculated to be equal to its dimension lj:

aj ¼
1

g

X
R∈G

χjðRÞ�χregðRÞ ¼ χjðEÞ� ¼ lj: ðA8Þ

Namely,

X−1DregðRÞX¼⊕
j
ljDjðRÞ; χðRÞ¼

X
j

ljχ
reg
j ðRÞ; ðA9Þ

where χjðRÞ, DjðRÞ represent the character and the rep
matrix for the irrep j of the group G, respectively, while
χregðRÞ, DregðRÞ represent the character and the rep matrix
for the reducible rep of the regular rep, respectively. E, g,
and X stand for the identity, the order of the group G, and
the similarity transformation, respectively.
In summary, the regular rep contains each irrep a

number of times equal to the dimensionality of the rep;
i.e., the n-dimensional irreps appear n times in regular reps.

5. Projective representation in ordinary SGs

In SGs, the fractional translations usually bring complex-
ities to the reps, leading to extra degeneracies that could
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corresponds to emergent Dirac semimetal, hourglass semi-
metal, symmetry enhanced spin-polarization, etc. The reps
of any little group of k can be obtained by the projective
reps of the corresponding little cogroup. To elaborate on
this, we first consider a little group Gk with the coset form
with respect to translation group T to be

Gk ¼ fR1jτ1gT ∪ fR2jτ2gT ∪ … ∪ fRnjτngT : ðA10Þ

The rep of T with a basis of Bloch functions at momentum
k is already known with the form expð−ikτÞ. Thus, to get a
full list of irreps of Gk, all we need to do is to derive the
irreps of the coset representatives G̃k ¼ Gk=T ¼ ðfR1jτ1g;
fR2jτ2g;…; fRnjτngÞ. One can naively think the rep of
the coset representatives as the rep of the corresponding
little cogroup Ğk ¼ ðR1; R2;…; RnÞ. However, they are not
always the same because of the possible nonsymmorphic
translation τi; i.e., if we assume RiRj ¼ Rk, the product
of fRijτig and fRjjτjg may not be fRkjτkg, but follow
the relation

fRijτigfRjjτjg ¼ fRiRjjτi þ Riτjg ¼ fEjτijgfRkjτkg;
ðA11Þ

where τij ¼ τi þ Riτj − τk. Therefore, the nonsymmorphic
translation τi and τj could result in a lattice translation
fEjτijg beyond the fRkjτkg. Thus, the product relation of a
rep dk at the k-point should obey the following:

dkðfRijτigÞdkðfRjjτjgÞ¼dkðfEjτijgÞdkðfRkjτkgÞ
¼ expð−ikτijÞdkðfRkjτkgÞ; ðA12Þ

which exhibit an additional phase factor expð−ikτijÞ.
Strictly speaking, the group of rep matrices could be

much larger than the group of coset representatives G̃k, or
the little cogroup Ğk. These rep matrices should include
all reps of fRiRjjτi þ Riτjg in addition to those of fRijτig.
In other words, the group of rep matrices could cover little
cogroup Ğk multiple times because one Rk could combine
with different translations. To simplify the problem, we can
use the theory of projective rep to “mod” the influence of
nonsymmorphic translations and get all irreps of Gk by
deriving the corresponding irreducible projective reps.
Projective representation is formally defined as follows:

For a group H consisting of elements hi, where i ranges
from 1 to jHj, a nonsingular matrix function Δ on group H
is a projective representation of H if it satisfies the
following rule: For each group product hihj ¼ hk, there
exists a scalar function μðhi; hjÞ on the group elements
hi; hj, obeying that

ΔðhiÞΔðhjÞ ¼ μðhi; hjÞΔðhkÞ: ðA13Þ

The function μðhi; hjÞ is called a factor system for the
projective rep Δ.
In the problem of multiple reps of fRiRjjτi þ Riτjg

discussed above, we can see that the product of rep dk
does not follow the rule of Eq. (A13) because τij ¼
τi þ Riτj − τk is dependent on τk. To solve this, we define
the projective rep corresponding to dk to be Mk:

dkðfRjτgÞ ¼ expð−ikτÞMkðfRjτgÞ: ðA14Þ

Under this definition, one can show that

MkðfRijτigÞMkðfRjjτjgÞ ¼ expð−iKi ⋅ τjÞMkðfRkjτkgÞ;
ðA15Þ

where Ki ¼ R−1
i k − k. The set ofMk together with a factor

system μðRi; RjÞ ¼ expð−iKiτjÞ form a projective irrep
of the little group Gk. The set Mk forms an irrep of the
isomorphic PG, where the factor system μðRi; RjÞ ¼
expð−iKiτjÞ is completely dependent on fRijτig and
fRjjτjg. Consequently, to get all irreps dk of G̃k, one
needs to derive all of the corresponding projective irreps
Mk of Ğk. In practice, Mk is obtained by the central
extension method, which is introduced in the following.

6. Central extension

We now encounter two possibilities regarding the multi-
plier factor system. One case is the entire factor system
μðRi; RjÞ ¼ 1, and hence, the irreps of little group Gk and
the little cogroup Ğk coincide. If one of the following three
conditions is reached, the factor system maps into unity:
(1) G is a symmorphic SG; (2) Gk is a symmorphic group;
(3) k lies inside the first Brillouin zone.
Another case is that the factor system μðRi; RjÞ can take

multiple values when Gk is a nonsymmorphic group and k
lies on the Brillouin zone boundary. In such a situation, a
typical treatment, called the central extension, to obtain the
projective reps is to find the reps of a new abstract group
Ğk;� ¼ Ğk × Zg, where Zg denotes the cyclic group of
integers (0; 1;…; g − 1). Here, g comes from the factor
system μðRi; RjÞ ¼ exp½2πiaðRi; RjÞ=g� with the condition
0≤aðRi;RjÞ≤g−1. The multiplication table of the oper-
ations in Ğ�

k is determined by the following relationship:

ðRi; αÞðRj; βÞ ¼ ½RiRj; aðRi; RjÞ þ αþ β�; ðA16Þ

where ðRi; αÞ are group elements of the central extension of
little cogroup Ğk;� and α∈ f0; 1;…; g − 1g.
Following this approach, Ğk;� can be identified with one

isomorphic abstract group and the irreps can be determined.
Of all irreps, we focus only on the right irreps with
MkðE; αÞ ¼ expð2πiα=gÞI, where I is the identity matrix.
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Following the above, we can construct the character table
of the projective irreps of Gk. More details and specific
examples can be found in Ref. [2].

7. Corepresentation

In magnetic materials, group description usually involves
antiunitary operations that include time-reversal operator T.
These operations contain a complex-conjugation operation
that transforms any complex number into its complex
conjugate. A well-known example of band degeneracy
induced by antiunitary groups is the so-called Kramers
degeneracy. However, a comprehensive understanding of
the transformation of quantum states under antiunitary
groups requires more than just knowledge of the Kramers
degeneracy. To achieve this, we must first know the unitary
rep matrices under antiunitary groups. Owing to the proper-
ties of antiunitary operations, the matrix representativesD do
not obey the ordinary multiplication relations associated with
unitary groups, but rather satisfy the following equations:

Dðu1ÞDðu2Þ¼Dðu1u2Þ; DðuÞDðaÞ¼DðuaÞ; ðA17Þ

DðaÞD�ðuÞ¼DðauÞ; Dða1ÞD�ða2Þ¼Dða1a2Þ; ðA18Þ

where u; u1; u2 represent any unitary operation, a; a1; a2
represent any antiunitary operation of the same magnetic
group, and D� is the complex conjugate rep of D. This
kind of rep is called a “corepresentation” by Wigner. The
theory of corep is useful for analyzing extra degeneracies
caused by antiunitary operations and the corresponding
degenerate states.

8. Dimmock and Wheeler’s character sum rule

Following the above, the coirreps of MSGs are con-
structed. For any little group Gk

MS of an MSG GMS: (1) If
Gk

MS contains only unitary group elements, then the irreps
of Gk

MS are given as those in SGs; (2) if Gk
MS contains

antiunitary group elements, then Gk
MS can be written as

Gk
MS ¼ Lk

MS ∪ TALk
MS, where Lk

MS is a unitary subgroup
of index two in Gk

MS, and TA ∉ Lk
MS is an antiunitary

group element of Gk
MS. Now we define the quotient group

G̃k
MS ¼ Gk

MS=T ¼ L̃k
MS ∪ TAL̃k

MS. Since the irreps of L̃k
MS

are already given in the SGs, we need only to classify the
induced coirreps from the irreps of the maximal unitary
subgroup L̃k

MS using Dimmock and Wheeler’s sum rule as
summarized in three cases.

(a) The corep DðiÞ of G̃k
MS corresponds to a single rep dðiÞ

of L̃k
MS and has the same dimension; in this case, no

extra degeneracy is introduced.
(b) The corep DðiÞ of G̃k

MS corresponds to a single rep dðiÞ

of L̃k
MS but with the doubled dimension; in this case,

the degeneracy is doubled.
(c) The corepDðiÞ of G̃k

MS corresponds to two inequivalent
reps of L̃k

MS, but these two can be stuck together under
the antiunitary operators.

We summarize Dimmock and Wheeler’s sum rule as

P
g∈TAL̃k

MS

χðg2Þ ¼

8>><
>>:

þ��L̃k
MS

�� ðaÞ;
−��L̃k

MS

�� ðbÞ
0 ðcÞ;

; ðA19Þ

where χ is the character of d.

APPENDIX B: INTERNATIONAL NOTATION

In international notation, SGs are designated by a
symbol Bg1g2g3 that combines the SG symmetry with
an uppercase letter describing the centering of the Bravais
lattice. Specifically, B is denoted by P for primitive lattice,
A, B,C for base-centered lattice, I for body-centered lattice,
F for face-centered lattice, and R for rhombohedral
lattice. The subsequent three symbols g1g2g3 represent
the representative symmetry operations when projected
along one of the high-symmetry directions of the crystal.
The high-symmetry directions of different crystal systems
are shown in Table VI. Detailed Seitz symbols in real
space and the extended one in spin space are given in
Supplemental Materials, Secs. IA and IB. The complete
list of SG Bg1g2g3 with international notation and their
corresponding Seitz symbols are also tabulated in
Supplemental Materials, Tables S3–S9.

1. Viewing direction of SGs

For example, the four letters of P3212 (153) represent a
primitive lattice consisting of a threefold rotation along
the [001] direction with a 2=3c translation, identity along
the [100] direction, and a twofold rotation along the [210]
direction.

2. International symbols of SGs

Here we list the international symbols and their corre-
sponding symmetry operations used for SGs, such as

TABLE VI. The viewing direction of SGs in International notations.

Order Triclinic Monoclinic Orthorhombic Tetragonal Trigonal Hexagonal Cubic

1 [010] [100] [001] [001] [001] [100]
2 [010] [100] [100] [100] [111]
3 [001] [110] [210] [210] [110]
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rotation, mirror, rotation inversion in the PG, as well as
glide and screw in the SG.

APPENDIX C: THE NOMENCLATURE
FOR t-TYPE, k-TYPE, AND g-TYPE SSGs

Below, we give the guidance for constructing nontrivial
SSG GNS using the nomenclature of t-type, k-type, and
g-type SSGs.

1. t-type SSG

The t-type SSG Bgs1g1
gs2g2

gs3g3 can be formed from
fgs1kg1g, fgs2kg2g, fgs3kg3g.

a. 65.136.1.1

Following Table S6 [64], P−142=1m−1n1m (65.136.1.1)
can be generated using f−1k41001j1=2 1=2 1=2g,
f1km001j0g, f−1km100j1=2 1=2 1=2g, and f1km110j0g.
All elements are listed below. Here, a, b, c and x, y, z
coordination correspond to space coordination and the vector
of magnetic moment, respectively, τ ¼ ð1=2 1=2 1=2Þ.
As shown in Table VIII, we can conclude that the SSG

with Gs ¼ −1 supports only collinear magnetic structures,

supposing that there is no inequivalent magnetic ion in the
magnetic cell. Take the collinear antiferromagnet RuO2

as an example, whose nontrivial SSG is P−142=1m−1n1m
(65.136.1.1). The spin-only part is Gl

SO ¼ Z2
K ⋉ SOð2Þ,

which is denoted as ∞m1 in international notation. As a
result, for collinear antiferromagnet RuO2, its complete
SSG is P−142=1m−1n1m∞m1.

b. 13.54.1.1–13.54.1.6
All general positions of 13.54.1.1–13.54.1.6 are also

listed below in Tables IX–XIV. The international notations
for 13.54.1.1–13.54.1.6 are P−1c−1c1a, P2001c2001c1a,
Pm001cm001c1a, P−1c1c−1a, P2001c1c2001 , and Pm001c1cm001a,
respectively.

2. k-type SSG

In the BNS setting, MSGs are constructed from space
group L0. This can be achieved by adding a “primed
sublattice” generated by an operation that combines time
inversion with a fractional translation to describe the
“reversal” of spin between different nonmagnetic unit cells.
The type-IV group is constructed by MIV ¼ L0 þ TτL0,
where τ is the mentioned translation. The k-type SSG can
be seen as the multicolor extension of MSG. In this case,
due to the decoupling of spin space and lattice space, a
point group in spin space is used to describe the propa-
gation vector in the enlarged magnetic unit cell. As a result,
we use the nomenclature of B1g11g21g3

gs1τ1
gs2τ2

gs3τ3 for the
k-type SSG under the L0 basis. In this vein, the k-type SSG
is directly constructed from the direct product of sublattice

TABLE VII. Symbols of SG using international notation, in-
cluding rotation axes, mirror planes, screw axes, and glide planes.

Name Notation Remark

Identity 1
Inversion −1
Rotation n n-fold rotation
Rotation inversion −n n-fold rotation followed by an

inversion
Mirror m Reflection in a plane
Mirror plane ⊥ to
n-fold axes

n=m

Screw ni n-fold rotation followed by i=n
fraction translation
(i ¼ 1; 2;…; n − 1)

Glide mirror (combination of a mirror and a fraction translation)
Axial glide a Translation of a=2

b Translation of b=2
c Translation of c=2

Diagnonal glide n Translation of ðaþ bÞ=2, ðbþ cÞ=2,
ðaþ cÞ=2

Diamond glide d Translation of ðaþ bÞ=4, ðbþ cÞ=4,
ðaþ cÞ=4

Two ⊥ glidesa e
aSGs with two perpendicular glides are attributed to the

centering type and the glide with perpendicular direction. For
instance, the SG Aem2 (39) has a mirror parallel to a with a
translation of b=2 and a centering fraction translation of
ðbþ cÞ=2, resulting in the mirror parallel to a with a
translation of c=2. As a consequence, Aem2 can be referred as
Abm2 and Acm2 simultaneously. Therefore, the symbol “e” is
employed for such planes. Similar situations can be found in
Aea2 (41), Cmce (64), Cmme (67) and Ccce (68).

TABLE VIII. General positions of P−142=1m−1n1m
(65.136.1.1).

Seitz Coordination Seitz Coordination

f1k1j0g a, b, c,
x, y, z

f−1k41001jτg −bþ 1=2, aþ 1=2,
cþ 1=2, −x, −y, −z

f1k2001j0g −a, −b, c,
x, y, z

f−1k43001jτg bþ 1=2, −aþ 1=2,
cþ 1=2, −x, −y, −z

f1k2110j0g b, a, −c,
x, y, z

f−1k2100jτg aþ1=2, −bþ 1=2,
−cþ 1=2, −x, −y,

−z
f1k21−10j0g −b, −a, −c,

x, y, z
f−1k2010jτg −aþ 1=2, bþ 1=2,

−cþ 1=2, −x, −y,
−z

f1k − 1j0g −a, −b, −c,
x, y, z

f−1k − 41001jτg bþ 1=2, −aþ 1=2,
−cþ 1=2, −x, −y,

−z
f1km001j0g a, b, −c,

x, y, z
f−1k − 43001jτg −bþ 1=2, aþ 1=2,

−cþ 1=2, −x, −y,
−z

f1km110j0g −b, −a, c,
x, y, z

f−1km100jτg −aþ 1=2, bþ 1=2,
cþ 1=2, −x, −y, −z

f1km1−10j0g b, a, c,
x, y, z

f−1km010jτg aþ 1=2, −bþ 1=2,
cþ 1=2, −x, −y, −z
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TABLE IX. General positions of P−1c−1c1a (13.54.1.1).

Seitz Coordination Seitz Coordination

f1k1j0g a, b, c, x, y, z f−1k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2, −x, −y, −z
f1k − 1j0g −a, −b, −c, x, y, z f−1km100j1=2 0 1=2g −aþ 1=2, b, cþ 1=2, −x, −y, −z
f1k2001j1=2 0 0g −aþ 1=2, −b, c, x, y, z f−1k2010j0 0 1=2g −a, b, −cþ 1=2, −x, −y, −z
f1km001j1=2 0 0g aþ 1=2, b, −c, x, y, z f−1km010j0 0 1=2g a, −b, cþ 1=2, −x, −y, −z

TABLE X. General positions of P2001c2001c1a (13.54.1.2).

Seitz Coordination Seitz Coordination

f1k1j0g a, b, c, x, y, z f2001k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2, −x, −y, z
f1k − 1j0g −a, −b, −c, x, y, z f2001km100j1=2 0 1=2g −aþ 1=2, b, cþ 1=2, −x, −y, z
f1k2001j1=2 0 0g −aþ 1=2, −b, c, x, y, z f2001k2010j0 0 1=2g −a, b, −cþ 1=2, −x, −y, z
f1km001j1=2 0 0g aþ 1=2, b, −c, x, y, z f2001km010j0 0 1=2g a, −b, cþ 1=2, −x, −y, z

TABLE XI. General positions of Pm001cm001c1a (13.54.1.3).

Seitz Coordination Seitz Coordination

f1k1j0g a, b, c, x, y, z fm001k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2, x, y, −z
f1k − 1j0g −a, −b, −c, x, y, z fm001km100j1=2 0 1=2g −aþ 1=2, b, cþ 1=2, x, y, −z
f1km001j1=2 0 0g aþ 1=2, b, −c, x, y, z fm001km010j0 0 1=2g a, −b, cþ 1=2, x, y, −z
f1k2001j1=2 0 0g −aþ 1=2;−b, c, x, y, z fm001k2010j0 0 1=2g −a, b,−cþ 1=2; x, y, −z

TABLE XII. General positions of P−1c1c−1a (13.54.1.4).

Seitz Coordination Seitz Coordination

f1k1j0g a, b, c, x, y, z f−1k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2,−x, −y, −z
f1k − 1j0g −a, −b, −c, x, y, z f−1km100j1=2 0 1=2g −aþ 1=2, b, cþ 1=2,−x, −y, −z
f1km010j0 0 1=2g a, −b, cþ 1=2, x, y, z f−1km001j1=2 0 0g aþ 1=2, b, −c,−x, −y, −z
f1k2010j0 0 1=2g −a, b, −cþ 1=2, x, y, z f−1k2001j1=2 0 0g −aþ 1=2, −b, c,−x, −y, −z

TABLE XIII. General positions of P2001c1c2001a (13.54.1.5).

Seitz Coordination Seitz Coordination

f1k1j0g a, b, c, x, y, z f2001k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2,−x, −y, z
f1k − 1j0g −a, −b, −c, x, y, z f2001km100j1=2 0 1=2g −aþ 1=2, b, cþ 1=2, −x, −y, z
f1k2010j0 0 1=2g −a, b, −cþ 1=2, x, y, z f2001k2001j1=2 0 0g −aþ 1=2, −b, c,−x, −y, z
f1km010j0 0 1=2g a, −b, cþ 1=2, x, y, z f2001km001j1=2 0 0g aþ 1=2, b, −c,−x, −y, z

TABLE XIV. General positions of Pm001c1cm001a (13.54.1.6).

Seitz Coordination Seitz Coordination

f1k1j0g a, b, c, x, y, z fm001k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2, x, y, −z
f1k − 1j0g −a, −b, −c, x, y, z fm001km100j1=2 0 1=2g −aþ 1=2, b, cþ 1=2, x, y, −z
f1k2010j0 0 1=2g −a, b, −cþ 1=2, x, y, z fm001k2001j1=2 0 0g −aþ 1=2, −b, c, x, y, −z
f1km010j0 0 1=2g a, −b, cþ 1=2, x, y, z fm001km001j1=2 0 0g aþ 1=2, b, −c, x, y, −z
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SG fEkBg1g2g3g and additional spin translation group GS
T ,

where GS
T can be generated by fgs1kτ1g, fgs2kτ2g, and

fgs3kτ3g. Note that the integer translation of L0 is always
ta ¼ ð1 0 0Þ; tb ¼ ð0 1 0Þ; tc ¼ ð0 0 1Þ.

a. 99.107.4.1

P141m1m41
001ð1=2 1=2 1=4Þ (99.107.4.1) can be con-

structed using fEkP4mmg and GS
T ¼ ff1k1j0g; f41001k1j

1=2 1=2 1=4g; f2001k1j0 0 1=2g; f43001k1j1=2 1=2 3=4gg.
All general positions are listed in Table XV.
Similarly,P141m1m−43

001ð1=2 1=2 1=4Þ (99.107.4.2) canbe
constructed by GS

T ¼ ff1k1j0g; f−43001k1j1=2 1=2 1=4g;
f2001k1j0 0 1=2g; f−41001k1j1=2 1=2 3=4gg, and
fEkP4mmg.

b. 174.174.3.1

Now we show why we use the L0 basis rather than
the G0 basis for the k-type SSG. The L0 basis depicts the
magnetic primitive cell, while theG0 basis sometimes gives
a larger primitive cell. Now we take P1 − 63

1
001ð2=3 1=3 0Þ

(174.174.3.1) as an example.
Under the L0 basis, the sublattice SG is L0 ¼ P − 6,

and the spin translation group is GS
T ¼ ff1k1j0g;

f31001k1j2=3 1=3 0g; f32001k1j1=3 2=3 0gg. All general
positions are listed in Table XVI.
Using the transformation matrix

MT ¼

0
B@

1 1 0 0

−1 2 0 0

0 0 1 0

1
CA;

which transforms from the L0 basis to G0 basis, the three
spin translation operations are transformed into f1k1j0g,
f31001k1j1 0 0g, f32001k1j1 1 0g, and the full GS

T is

GS
T ¼

8><
>:

f1jj1j0g;f1jj1j1 2 0g;f1jj1j2 1 0g;
f31001jj1j1 0 0g;f32001jj1j1 1 0g;f31001jj1j0 1 0g;
f32001jj1j2 0 0g;f32001jj1j0 2 0g;f31001jj1j2 2 0g:

9>=
>;

ðC1Þ

It is clear that the magnetic cell under theG0 basis is 3 times
larger than the L0 basis as shown in Fig. 7. In other words,
the magnetic cell under the L0 basis is also the minimum
periodic unit cell, while the magnetic cell under the G0

basis is sometimes larger than the previous one, depending
on the transformation matrix.

3. g-type SSG

For the g-type SSG with Bgs1g1
gs2g2

gs3g3jðgs4 ; gs5 ; gs6 ;
gs7 ; gs8 ; gs9Þ in the G0 basis, gs4 ; gs5 ; gs6 are combined with
the three-integer translation ta; tb; tc, while gs7 ; gs8 ; gs9 are
combined with the centering-type fractional translation
b1; b2; b3. The spin translation group can be constructed
from fgs4ktag, fgs5ktbg, fgs5ktcg, fgs7kb1g, fgs8kb2g, and
fgs7kb3g. The sequence of b1; b2; b3 for different Bravais
lattices is given in Table XVII. When B ¼ P for a primitive
lattice, gs7 ; gs8 ; gs9 are omitted. Below we show several
examples of a g-type SSG.

a. 4.182.4.2

The first is P32−11−163
m1102m0112jð2001; 2100; 1Þ (4.182.4.2)

of CoNb3S6. It can be generated using f32−11−1k
61001j0 0 1=2g, fm110k2100j0g, fm011k2210j0 0 1=2g, and
the spin translation group GS

T ¼ ff1k1j0g; f2001k1j1 0 0g;
f2100k1j0 1 0g; f2010k1j1 1 0gg. All general positions are
listed in Table XVIII.

TABLE XV. General positions of P141m1m41
001ð1=2 1=2 1=4Þ

(99.107.4.1).

Seitz Coordination

f1k1j0g a, b, c, x, y, z
f1k2001j0g −a, −b, c, x, y, z
f1k41001j0g −b, a, c, x, y, z
f1k43001j0g b, −a, c, x, y, z
f1km010j0g a, −b, c, x, y, z
f1km100j0g −a, b, c, x, y, z
f1km110j0g −b, −a, c, x, y, z
f1km1−10j0g b, a, c, x, y, z
f41001k1j1=2 1=2 1=4g aþ 1=2, bþ 1=2, cþ 1=4, −y, x, z
f41001k2001j1=2 1=2 1=4g −aþ 1=2, −bþ 1=2, cþ 1=4, −y, x, z
f41001k41001j1=2 1=2 1=4g −bþ 1=2, aþ 1=2, cþ 1=4, −y, x, z
f41001k43001j1=2 1=2 1=4g bþ 1=2, −aþ 1=2, cþ 1=4, −y, x, z
f41001km010j1=2 1=2 1=4g aþ 1=2, bþ 1=2, cþ 1=2, −y, x, z
f41001km100j1=2 1=2 1=4g −aþ 1=2, bþ 1=2, cþ 1=4, −y, x, z
f41001km110j1=2 1=2 1=4g −bþ 1=2, −aþ 1=2, cþ 1=4, −y, x, z
f41001km1−10j1=2 1=2 1=4g bþ 1=2, aþ 1=2, cþ 1=4, −y, x, z
f2001k1j0 0 1=2g a, b, cþ 1=2, −x, −y, z
f2001k2001j0 0 1=2g −a, −b, cþ 1=2, −x, −y, z
f2001k41001j0 0 1=2g −b, a, cþ 1=2, −x, −y, z
f2001k43001j0 0 1=2g b, −a, cþ 1=2, −x, −y, z
f2001km010j0 0 1=2g a, −b, cþ 1=2, −x, −y, z
f2001km100j0 0 1=2g −a, b, cþ 1=2, −x, −y, z
f2001km110j0 0 1=2g −b, −a, cþ 1=2, −x, −y, z
f2001km1−10j0 0 1=2g b, a, cþ 1=2, −x, −y, z
f43001k1j1=2 1=2 1=4g aþ 1=2, bþ 1=2, cþ 3=4, y, −x, z
f43001k2001j1=2 1=2 1=4g −aþ 1=2, −bþ 1=2, cþ 3=4, y, −x, z
f43001k41001j1=2 1=2 1=4g −bþ 1=2, aþ 1=2, cþ 3=4, y, −x, z
f43001k43001j1=2 1=2 1=4g bþ 1=2, −aþ 1=2, cþ 3=4, y, −x, z
f43001km010j1=2 1=2 1=4g aþ 1=2, bþ 1=2, cþ 3=4, y, −x, z
f43001km100j1=2 1=2 1=4g −aþ 1=2, bþ 1=2, cþ 3=4, y, −x, z
f43001km110j1=2 1=2 1=4g −bþ 1=2, −aþ 1=2, cþ 3=4, y, −x, z
f43001km1−10j1=2 1=2 1=4g bþ 1=2, aþ 1=2, cþ 3=4, y, −x, z
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b. 3.22.8.1

In the G0 basis, the Bravais-centering fractional trans-
lation b1b2b3 can also combine with nontrivial spin oper-
ation. Below, we show how to construct the full SSG
from the nomenclature of Fm0102m010212jð1;1;2001;m001;41001;−43001Þ (3.22.8.1).

The spin translation group GS
T for 3.22.8.1 can be

constructed from f2001k1j0 0 1g, fm001k1j1=2 1=2 0g,
f41001k1j1=2 0 1=2g, f−43001k1j0 1=2 1=2g, and the full
GS

T is

GS
T ¼

8>>>><
>>>>:

f1jj1j0g; f−1jj1j1=2 1=2 1g;
f−43001jj1j0 1=2 1=2g; f−41001jj1j0 1=2 3=2g;

f2001jj1j0 0 1g; fm001jj1j1=2 1=2 0g;
f41001jj1j1=2 0 1=2g; f43001jj1j1=2 0 3=2g:

9>>>>=
>>>>;

ðC2Þ

The integral translations along the three basis vectors
of G0 for 3.22.8.1 are f1k1j1 0 0g, f1k1j0 1 0g, and
f1k1j0 0 2g, respectively. Then we add fm010k2100j0g,

TABLE XVI. General positions of P1 − 63
1
001ð2=3 1=3 0Þ (174.174.3.1).

Seitz Coordination

f1k1j0g a, b, c, x, y, z
f1k31001j0g −b, a − b, c, x, y, z

f1k32001j0g −aþ b, −a, c, x, y, z
f1km001j0g a, b, −c, x, y, z
f1k − 65001j0g −b, a − b, −c, x, y, z
f1k − 61001j0g −aþ b, −a, −c, x, y, z
f31001k1j2=3 1=3 0g aþ 2=3, bþ 1=3, c, −ðxþ ffiffiffi

3
p

yÞ=2, ð ffiffiffi
3

p
x − yÞ=2, z

f31001k31001j2=3 1=3 0g −bþ 2=3, a − bþ 1=3, c, −ðxþ ffiffiffi
3

p
yÞ=2, ð ffiffiffi

3
p

x − yÞ=2, z
f31001k32001j2=3 1=3 0g −aþ bþ 2=3, −aþ 1=3, c, −ðxþ ffiffiffi

3
p

yÞ=2, ð ffiffiffi
3

p
x − yÞ=2, z

f31001km001j2=3 1=3 0g aþ 2=3, bþ 1=3, −c, −ðxþ ffiffiffi
3

p
yÞ=2, ð ffiffiffi

3
p

x − yÞ=2, z
f31001k − 65001j2=3 1=3 0g −bþ 2=3, a − bþ 1=3, −c, −ðxþ ffiffiffi

3
p

yÞ=2, ð ffiffiffi
3

p
x − yÞ=2, z

f31001k − 61001j2=3 1=3 0g −aþ bþ 2=3, −aþ 1=3, −c, −ðxþ ffiffiffi
3

p
yÞ=2, ð ffiffiffi

3
p

x − yÞ=2, z
f32001k1j1=3 2=3 0g aþ 1=3, bþ 2=3, c, ð−xþ ffiffiffi

3
p

yÞ=2, −ð ffiffiffi
3

p
xþ yÞ=2, z

f32001k31001j1=3 2=3 0g −bþ 1=3, a − bþ 2=3, c, ð−xþ ffiffiffi
3

p
yÞ=2, −ð ffiffiffi

3
p

xþ yÞ=2, z
f32001k32001j1=3 2=3 0g −aþ bþ 1=3, −aþ 2=3, c, ð−xþ ffiffiffi

3
p

yÞ=2, −ð ffiffiffi
3

p
xþ yÞ=2, z

f32001km001j1=3 2=3 0g aþ 1=3, bþ 2=3, −c, ð−xþ ffiffiffi
3

p
yÞ=2, −ð ffiffiffi

3
p

xþ yÞ=2, z
f32001k − 65001j1=3 2=3 0g −bþ 1=3, a − bþ 2=3, −c, ð−xþ ffiffiffi

3
p

yÞ=2, −ð ffiffiffi
3

p
xþ yÞ=2, z

f32001k − 61001j1=3 2=3 0g −aþ bþ 1=3, −aþ 2=3, −c, ð−xþ ffiffiffi
3

p
yÞ=2, −ð ffiffiffi

3
p

xþ yÞ=2, z

FIG. 7. Magnetic primitive cell of P1 − 63
1
001ð2=3 1=3 0Þ

(174.174.3.1) under L0 basis (black line) and under G0 basis
(orange line).

TABLE XVII. The centering-type fractional translation
b1; b2; b3 for SG in different Bravais lattices, which is used as
a default sequence in g-type SSG.

Bravais
lattice b1 b2 b3

P
F f1j1=2 1=2 0g f1j1=2 0 1=2g f1j0 1=2 1=2g
I f1j1=2 1=2 1=2g
A f1j0 1=2 1=2g
C f1j1=2 1=2 0g
R f1j2=3 1=3 1=3g f1j1=3 2=3 2=3g
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fm010k2010j0g, f1k2001j0g, and all general positions of
SSG are shown in Table XIX.

APPENDIX D: REPRESENTATION
THEORY OF SSG

1. Projective representation for spin rotation

In SSG, the projective rep is similar to that of MSG,
where spin rotation is included. Based on SG, in SSG we
introduce spin operation here with the full group of spin
operations being SOð3Þ × ZT

2 . Since we focus on spin-1=2
systems, the full spin rotation group SO(3) should be
represented by an SU(2) double-valued rep, which is also a
projective rep. Specifically, for any two elements gsi and gsj
in spin rotation group SO(3), the multiplication of these

TABLE XVIII. General positions of P32−11−163
m1102m0112j

ð2001; 2100; 1Þ (4.182.4.2).
Seitz Coordination

f1k1j0g a, b, c, x, y, z
f31−11−1k31001j0g −b, a − b, c, z, −x, −y
f32−11−1k32001j0g −aþ b, −a, c, −y, −z, x
f1k2001j0 0 1=2g −a, −b, cþ 1=2, x, y, z
f31−11−1k65001j0 0 1=2g b, −aþ b, cþ 1=2, z, −x, −y
f32−11−1k61001j0 0 1=2g a − b, a, cþ 1=2, −y, −z, x
fm − 101k2110j0g b, a, −c, z, y, x
fm110k2100j0g a − b, −b, −c, −y, −x, z
fm011k2010j0g −a, −aþ b, −c, x, −z, −y
fm−101k21−10j0 0 1=2g −b, −a, −cþ 1=2, z, y, x
fm110k2120j0 0 1=2g −aþ b, b, −cþ 1=2, −y, −x, z
fm011k2210j0 0 1=2g a, a − b, −cþ 1=2, x, −z, −y
f2001k1j1 0 0g 1þ a, b, c, −x, −y, z
f31−1−11k31001j1 0 0g 1 − b, a − b, c, −z, x, −y
f32111k32001j1 0 0g 1 − aþ b, −a, c, y, z, x
f2001k2001j1 0 1=2g 1 − a, −b, cþ 1=2, −x, −y, z
f31−1−11k65001j1 0 1=2g 1þ b, −aþ b, cþ 1=2, −z, x, −y
f32111k61001j1 0 1=2g 1þ a − b, a, cþ 1=2, y, z, x

f−41010k2110j1 0 0g 1þ b, a, −c, −z, −y, x
fm1−10k2100j1 0 0g 1þ a − b, −b, −c, y, x, z
f−41100k2010j1 0 0g 1 − a, −aþ b, −c, −x, z, −y
f−41010k21−10j1 0 1=2g 1 − b, −a, −cþ 1=2, −z, −y, x
fm1−10k2120j1 0 1=2g 1 − aþ b, b, −cþ 1=2, y, x, z
f−41100k2210j1 0 1=2g 1þ a, a − b, −cþ 1=2, −x, z, −y
f2100k1j0 1 0g a, 1þ b, c, x, −y, −z
f31111k31001j0 1 0g −b, 1þ a − b, c, z, x, y

f321−1−1k32001j0 1 0g −aþ b, 1 − a, c, −y, z, −x
f2100k2001j0 1 1=2g −a, 1 − b, cþ 1=2, x, −y, −z
f31111k65001j0 1 1=2g b, 1 − aþ b, cþ 1=2, z, x, y

f321−1−1k61001j0 1 1=2g a − b, 1þ a, cþ 1=2, −y, z, −x
f−43010k2110j0 1 0g b, 1þ a, −c, z, −y, −x
f−43001k2100j0 1 0g a − b, 1 − b, −c, −y, x, −z
fm01−1k2010j0 1 0g −a, 1 − aþ b, −c, x, z, y
f−43010k21−10j0 1 1=2g −b, 1 − a, −cþ 1=2, z, −y, −x
f−43001k2120j0 1 1=2g −aþ b, 1þ b, −cþ 1=2, −y, x, −z
fm01−1k2210j0 1 1=2g a, 1þ a − b, −cþ 1=2, x, z, y
f2010k1j1 1 0g a, b, c, −x, y, −z
f311−1−1k31001j1 1 0g −b, a − b, c, −z, −x, y
f32−1−11k32001j1 1 0g −aþ b, −a, c, y, −z, −x
f2010k2001j1 1 1=2g −a, −b, cþ 1=2, −x, y, −z
f311−1−1k65001j1 1 1=2g b, −aþ b, cþ 1=2, −z, −x, y
f32−1−11k61001j1 1 1=2g a − b, a, cþ 1=2, y, −z, −x
fm101k2110j1 1 0g b, a, −c, −z, y, −x
f−41001k2100j1 1 0g a − b, −b, −c, y, −x, −z
f−43100k2010j1 1 0g −a, −aþ b, −c, −x, −z, y
fm101k21−10j1 1 1=2g −b, −a, −cþ 1=2, −z, y, −x
f−41001k2120j1 1 1=2g −aþ b, b, −cþ 1=2, y, −x, −z
f−43100k2210j1 1 1=2g a, a − b, −cþ 1=2, −x, −z, y

TABLE XIX. General positions of Fm0102m010212jð1; 1; 2001;
m001; 41001;−43001Þ (3.22.8.1).
Seitz Coordination

f1k1j0g a, b, c, x, y, z
f2001k1j0 0 1g a, b, cþ 1, −x, −y, z
f41001k1j1=2 0 1=2g aþ 1=2, b, cþ 1=2, −y, x, z
f43001k1j1=2 0 3=2g aþ 1=2, b, cþ 3=2, y, −x, z
f−1k1j1=2 1=2 1g aþ 1=2, bþ 1=2, cþ 1, −x, −y, −z
fm001k1j1=2 1=2 0g aþ 1=2, bþ 1=2, c, x, y, −z
f−41001k1j0 1=2 3=2g a, bþ 1=2, cþ 3=2, y, −x, −z
f−43001k1j0 1=2 1=2g a, bþ 1=2, cþ 1=2, −y, x, −z
f1k2001j0g −a, −b, c, x, y, z
f2001k2001j0 0 1g −a, −b, cþ 1, −x, −y, z
f41001k2001j1=2 0 1=2g −aþ 1=2, −b, cþ 1=2, −y, x, z
f43001k2001j1=2 0 3=2g −aþ 1=2, −b, cþ 3=2, y, −x, z
f−1k2001j1=2 1=2 1g −aþ1=2, −bþ 1=2, cþ 1, −x, −y, −z
fm001k2001j1=2 1=2 0g −aþ 1=2, −bþ 1=2, c, x, y, −z
f−41001k2001j0 1=2 3=2g −a, −bþ 1=2, cþ 3=2, y, −x, −z
f−43001k2001j0 1=2 1=2g −a, −bþ 1=2, cþ 1=2, −y, x, −z
fm010k2010j0g −a, b, −c, x, −y, z
fm100k2010j0 0 1g −a, b, −cþ 1, −x, y, z
fm110k2010j1=2 0 1=2g −aþ 1=2, b, −cþ 1=2, −y, −x, z
fm−110k2010j1=2 0 3=2g −aþ 1=2, b, −cþ 3=2, y, x, z
f2010k2010j1=2 1=2 1g −aþ 1=2, bþ 1=2, −cþ 1, −x, y, −z
f2100k2010j1=2 1=2 0g −aþ 1=2, bþ 1=2, −c, x, −y, −z
f2110k2010j0 1=2 3=2g −a, bþ 1=2, −cþ 3=2, y, x, −z
f2−110k2010j0 1=2 1=2g −a, bþ 1=2, −cþ 1=2, −y, −x, −z
fm010k2100j0g a, −b, −c, x, −y, z
fm100k2100j0 0 1g a, −b, −cþ 1, −x, y, z
fm110k2100j1=2 0 1=2g aþ 1=2, −b, −cþ 1=2, −y, −x, z
fm−110k2100j1=2 0 3=2g aþ 1=2, −b, −cþ 3=2 y, x, z
f2010k2100j1=2 1=2 1g aþ 1=2, −bþ 1=2, −cþ 1, −x, y, −z
f2100k2100j1=2 1=2 0g aþ 1=2, −bþ 1=2, −c, x, −y, −z
f2110k2100j0 1=2 3=2g a, −bþ 1=2, −cþ 3=2, y, x, −z
f2−110k2100j0 1=2 1=2g a, −bþ 1=2, −cþ 1=2, −y, −x, −z
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two elements could have rotation angle ϕðgsigsjÞ between 0
and 2π or between 2π and 4π. We use d1 to represent a
rotation of 2π. Then we have

gsigsj ¼
(
gsl ; 0 ≤ ϕðgsigsjÞ < 2π;
d1gsl ; 2π ≤ ϕðgsigsjÞ < 4π;

ðD1Þ

where gsl ∈SOð3Þ.
Then, we define ρðgsiÞ to be the SU(2) rep of SO(3) with

rep matrices belonging to the SU(2) group. We define
the rotation angle and rotation axis of ρðgsiÞ in the SU(2)
group to be the same as those of gsi in the SO(3) group.
Accordingly, we will have ρðd1Þ ¼ −1. Therefore, the
product of any two rep matrices follows the relation

ρðgsiÞρðgsjÞ ¼
(
ρðgskÞ; 0 ≤ ϕðgsigsjÞ < 2π;

−ρðgskÞ; 2π ≤ ϕðgsigsjÞ < 4π;
ðD2Þ

since the coefficients of the above product results in
complete dependence on gsi and gsj . This SU(2) rep is
naturally a projective rep of SO(3) with factor system �1.
Then, for a spin-1=2 rep dkðfgskRjτgÞ of little group Gk

of an SSG, the corresponding projective repMkðfgskRjτgÞ
has the same definition as that of an SG

dlkðfgskRjτgÞ ¼ expð−ikτÞMl
kðfgskRjτgÞ: ðD3Þ

The product of the two projective rep matrices follows
the relation

Ml
kðfgsikRijτigÞMl

kðfgsjkRjjτjgÞ
¼ ð−1Þξðgsi ;gsj Þ expð−iKiτjÞMl

kðfgslkRljτlgÞ: ðD4Þ

Here, fgslkRljτlg ¼ fgsigsjkRiRjjτi þ Riτj mod TðL0Þg,
Ki ¼ R−1

i k − k, ξðgsi ; gsjÞ ¼ 0 for 0 ≤ ϕðgsigsjÞ < 2π

and ξðgsi ; gsjÞ ¼ 1 for 2π ≤ ϕðgsigsjÞ < 4π.

2. Decomposition of regular projective representations
using the CSCO method

In quantummechanics, the commuting operators ðJ2; JzÞ
form the CSCO of the Hilbert space of angular momentum,
effectively characterizing the systems in terms of these
observables. Note that J2 is the invariant quantity (Casimir
element) of SO(3) and Jz is that of its subgroup SO(2).
Similarly, the projective irreps in a certain unitary group G
can be identified through CSCO. The core principle of the
CSCO method lies in the fact that every projective irrep
reduced from the regular projective reps is labeled by
eigenvalues of the CSCO. Consequently, all projective
irreps can be extracted from the left regular projective reps.
The overall strategy to decompose the regular projective

reps can be summarized as follows, with detailed explan-
ations of some terminologies provided later:
(1) Construct the left regular projective reps for a given

factor system.
(2) Construct the CSCO-I formed by the class operators

of G to label the different rep spaces.
(3) Construct the CSCO-II formed by the class operators

of the canonical subgroup chain of the group G
to distinguish each of the irreducible bases as the
eigenvalues of CSCO-I are often degenerate [as
shown in Fig. 8(b)].

(4) Since the n-dimensional irreps appear n times in
the regular reps, the next step is to construct the
CSCO-III formed by the class operators of the
canonical subgroup chain of the intrinsic group Ḡ
to distinguish the projective irreps that occur more
than once [as shown in Fig. 8(c)].

FIG. 8. The overall procedure of reducing left regular projective reps MkðgðaÞi Þ. (a) The left regular projective reps are Nk × Nk rep

matrices. (b) The transformation matrices U1 formed by common eigenvectors of (C;CðsÞ) can partly diagonalize MkðgðaÞi Þ but fail to
distinguish the same irreps. (c) the transformation matrices U formed by common eigenvectors of (C;CðsÞ; C̄ðsÞ) can be used to
completely lift the remaining degeneracy and find all inequivalent irreps.
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(5) Change the class and repeat above procedure until
the projective irreps of all classes are obtained.

It is important to note that the character of a certain
unitary group element is invariant under unitary trans-
formation, and the character if each group element in a class
is the same. Therefore, the CSCO method is applied to
obtain the projective irreps of L̃k

SS, which is the maximal
unitary subgroup of the little group G̃k

SS.
Several essential concepts of the projective reps are

introduced in the following:
(1) Left regular projective representation. In mathemat-

ics, the regular rep refers to a particular way of
representing a group G as a set of linear trans-
formations on a vector space V, whose basis vectors
are nothing but the elements of G. In addition, the
linear transformation for each group element that acts
on each basis vector of V is defined as the group
operation. The reason we use the regular projective
rep to obtain the irreps of a unitary SSG is because a
regular rep is a reducible rep that contains all the
possible irreps. The left regular projective reps for a
given factor system can be constructed using the
group space as the rep space, where the group

elements gðaÞi ∈ L̃k
SS are also basis jgðaÞi i. The action

of a group element gðaÞi on jgðaÞj i is

gðaÞi

���gðaÞj

E
¼ ð−1ÞξðϕðgðaÞsl

ÞÞ exp
�
−iKiτ

ðaÞ
j

����gðaÞl

E
;

ðD5Þ
the matrix element

Mk

�
gðaÞi

�
g;gðaÞj

¼ hgjgðaÞi jgðaÞj i

¼ ð−1Þξ
�
ϕ
�
gðaÞsl

��
exp

�
−iKiτ

ðaÞ
j

�
δ
g;gðaÞi gðaÞj

; ðD6Þ

where gi has the form of fgðaÞsi kRijτðaÞi g,
Ki ¼ R−1

i k − k, and the superscript (a) labels differ-
ent translations and spin operations accompanied

with one Ri. ð−1ÞξðϕðgðaÞsl
ÞÞ equals 1 or −1 when 0 ≤

ϕðgðaÞsl Þ < 2π or 2π ≤ ϕðgðaÞsl Þ < 4π, respectively.
(2) Class operator. For a regular projective rep

of a certain finite group L̃k
SS, the class operator is

defined as

CðaÞ
i ¼

X
gðaÞj ∈ L̃k

SS

Mk
−1
�
gðaÞj

�
Mk

�
gðaÞi

�
Mk

�
gðaÞj

�
;

ðD7Þ

where the class operator CðaÞ
i commutes with all the

regular projective reps MkðgðaÞj Þ.

(3) Canonical subgroup chain. The canonical subgroup
chain has a close relationship with the restricted
reps. In the mathematical sense, an irrep dlk of the
group L̃k is certainly a rep of L̃k ’s subgroup L̃k1

denoted by dlk ↓ L̃k1. (L̃k is the maximal unitary
subgroup of G̃k.) In general, the restricted rep
dlk ↓ L̃k1 is a reducible rep of L̃k1, which can be
reduced to a direct sum of the irreps of L̃k1,

dlk ↓ L̃k1 ¼ ⊕
v
alvdvk1; ðD8Þ

where alv is the multiplicity that irrep dvk1 of L̃k1

occurs in the restricted rep dlk ↓ L̃k1. When alv ≤ 1

for all l and v, L̃k1 is said to be a canonical subgroup
of L̃k. A group chain L̃k > L̃k1 > L̃k2 > … > L̃kn is
a canonical subgroup chain if L̃kðiþ1Þ is a canonical
subgroup of L̃ki for i ¼ 0; 1;…; n − 1 and L̃kn is an
Abelian group.
Although we do not know the irreps dlk of the

group L̃k in advance, we can still find the canonical
subgroup by using certain empirical strategies in
practical terms. Taking L̃k > L̃k1 as an example, L̃k1
contains all the translations and pure spin sym-
metries of L̃k while the spatial PG part PðL̃k1Þ is one
of the maximal subgroups of the spatial PG part
PðL̃kÞ. In this way, L̃k1 usually serves as a canonical
subgroup of L̃k, and the canonical subgroup chain
could be constructed.

(4) Intrinsic group. The intrinsic group Ḡ of a groupG is
the group of elements with multiplication on a
basis defined as right multiplication. Specifically,
for each element R of a group G, we can define a
corresponding operator R̄ in the group rep space Lg

through the right-multiplication rule with

R̄S ¼ SR for all S∈Lg: ðD9Þ

The group formed by the collection of operators R̄
is called the intrinsic group of Ḡ.

(5) Intrinsic regular projective reps. Each group element

gðaÞi ∈ L̃k
SS corresponds to an element ḡðaÞi in the

intrinsic group L̃k
SS, which obeys the right multipli-

cation rule with ḡðaÞi gðaÞj ¼ gðaÞj gðaÞi . Distinct from the

typical right regular reps, L̃k
SS is anti-isomorphic to

L̃k
SS. Thus, one can define the intrinsic regular

projective reps

ḡðaÞi

���gðaÞj

E
¼ ð−1Þξ½ϕðgðaÞsm Þ� exp

�
−iKjτ

ðaÞ
i

����gðaÞm

E
;

ðD10Þ
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in which gðaÞm ¼ fgðaÞsm kRmjτðaÞm g ¼ fgðaÞsj g
ðaÞ
si kRjRij

τðaÞj þ Rjτ
ðaÞ
i g. Note that regular projective

reps of G̃k
SS commute with its intrinsic regular

projective reps.
(6) CSCO-I. The linear combination of class operators

CðL̃k
SSÞ ¼

P
i λiC

ðaÞ
i form the CSCO-I of the left

regular projective rep, where λi is any constant.
(7) CSCO-II. For the canonical subgroup chain of L̃k

SS,
L̃k
SSðsÞ ¼ L̃k

SS1 > L̃k
SS2 > …, repeat the procedure in

CSCO-I:

CðaÞ
i1 ¼

X
gðaÞj ∈ L̃k

SS1

Mk
−1
�
gðaÞj1

�
Mk

�
gðaÞi1

�
Mk

�
gðaÞj1

�
;

ðD11Þ

where the linear combination of class operators

CðL̃k
SS1Þ ¼

P
i λiC

ðaÞ
i1 form CSCO-Is for the sub-

group chain. The collection of the corresponding
class operators CðsÞ ¼ (CðL̃k

SS1Þ; CðL̃k
SS2Þ; ...) com-

mute with the C, forming the operator set (C;CðsÞ),
also known as CSCO-II.

(8) CSCO-III. For the canonical subgroup chain of L̃k
SS,

L̃k
SSðsÞ ¼ L̃k

SS1 > L̃k
SS2 > …, repeat the procedure in

CSCO-I:

C̄ðaÞ
i1 ¼

X
gðaÞj ∈ L̃k

SS1

Mk
−1
�
ḡðaÞj1

�
Mk

�
ḡðaÞi1

�
Mk

�
ḡðaÞj1

�
;

ðD12Þ

where the linear combination of class operators

CðL̃k
SS1Þ ¼

P
i λiC̄

ðaÞ
i1 form CSCO-Is for the sub-

group chain of the intrinsic group L̃k
SS. The collec-

tion of the corresponding class operators
C̄ðsÞ ¼ (C̄ðL̃k

SS1Þ; C̄ðL̃k
SS2Þ; ...) commute with C

and CðsÞ. This complete set of class operators
(C;CðsÞ; C̄ðsÞ) is named CSCO-III.

Now we show the decomposition of the regular
projective reps of the little group G̃k

SS using the CSCO
method.
(1) The left regular projective reps MkðgðaÞi Þ are block

diagonalized to obtain all the projective irreps,

where the projective reps MkðgðaÞi Þ are Nk × Nk
reducible matrices [shown in Fig. 8(a)].
We start from the unitary L̃k

SS, in which the
character χli of a projective irrep is a function of

class operators CðaÞ
i as defined in Eq. (D7). The

number of independent classes Nc equals the num-
ber of projective irreps, and an nl-dimensional

projective irrep will appear nl times in MkðgðaÞi Þ.

By constructing the linear combination of class

operators C ¼ P
i kiC

ðaÞ
i (ki is arbitrary constant

numbers), we can decompose MkðgðaÞi Þ into Nc
blocks. The number of eigenvalues of C is equal
to the number Nc of inequivalent irreps. Analogous
to quantum mechanics, we obtain the principal
quantum number jji.

(2) Generally, these principle quantum numbers are
degenerate and cannot distinguish each of the
irreducible bases. Therefore, the magnetic quantum
number is introduced from the canonical subgroup
chain of L̃k

SS, L̃
k
SSðsÞ ¼ L̃k

SS1 > L̃k
SS2 > … [69,89].

The collection of corresponding class operators
CðsÞ ¼ (CðL̃k

SS1Þ; CðL̃k
SS2Þ; ...) commute with C,

forming a CSCO-II set of (C;CðsÞ) together with

C and provide the required magnetic quantum
numbers mj [shown in Fig. 8(b)]. Such a set helps
us to distinguish the rows of an nl-dimensional block

of MkðgðaÞi Þ. The CSCO-II can distinguish all the
bases only if each irrep is one dimensional in the
reduced regular rep.

(3) However, in a left regular projective rep, an nl-
dimensional projective irrep occurs nl times (see
Appendix A 4). Therefore, we need another canoni-

cal subgroup chain of the intrinsic group L̃k
SS,

L̃k
SSðsÞ ¼ L̃k

SS1 > L̃k
SS2 > … and the set of corre-

sponding class operators C̄ðsÞ ¼ (C̄ðL̃k
SS1Þ;

C̄ðL̃k
SS2Þ; ...) to lift the remaining degeneracy.

Finally, we have a CSCO set of (C;CðsÞ; C̄ðsÞ)
and a corresponding collection of eigenvalues,
say, jj; mj; m̄ji, of group L̃k

SS. By rearranging their
eigenvectors, we can construct a transformation

matrix to block diagonalize MkðgðaÞi Þ and get all
projective irreps [shown in Fig. 8(c)].
The CSCO approach is applied to calculate the

projective coirreps of any arbitrary k-points for all
noncollinear SSGs. This approach is also applied
to MSGs examples as given in Supplemental
Material [64], Secs V and VI, yielding the same
coirreps as those obtained in the Bilbao Crystallog-
raphy Server [90,91].

3. Band representations in collinear SSGs

Now we turn to the derivation of coirreps in
collinear SSGs. Considering the spin-only group Gl

SO ¼
ZK
2 ⋉ SOð2Þ ¼ ∞m1, the SSGs describing collinear ferro-

magnets and ferrimagnets with G0 ¼ L0; Gs ¼ 1 are
expressed by

GSS ¼ fEkL0g × ZK
2 ⋉ SOð2Þ; ðD13Þ
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while for SSGs describing collinear antiferromagnets, L0 is
an index-two normal subgroup of G0 and Gs ¼ −1, and
they can be written by

GSS ¼ ðfEkL0g ∪ fTkAL0gÞ × ZK
2 ⋉ SOð2Þ: ðD14Þ

Note that GSS actually is the quotient group with respect
to the translation group T .

a. Double-valued representation

Since we are focusing on the SOC-free electronic band
structure, the spinor rep or double-valued rep are necessary
for constructing the coirreps of collinear SSGs. The spinor
rep of rotations read

D(Un̂ðϕÞ)

¼ exp
�
−iσ n̂ϕ

2

�

¼

0
BB@ cos

�
ϕ
2

�
− inz sin

�
ϕ
2

�
ð−inx − nyÞ sin

�
ϕ
2

�
ð−inx þ nyÞ sin

�
ϕ
2

�
cos

�
ϕ
2

�
þ inz sin

�
ϕ
2

�
1
CCA;

ðD15Þ

where n̂ ¼ ðnx; ny; nzÞ is the direction vector of the rotation
axis n̂, and ϕ is the rotation angle.
The character table of the double group SO(2) is given

in Table XX.
In collinear SSG, there are only nontrivial spin space

symmetries T, UxðπÞ, UzðϕÞ and their combinations. (Here
we define the spin principle axis and any axis perpendicular
to the spin principle axis as the z and x direction,
respectively). For electron systems with m ¼ �1=2,

D(UzðϕÞ) ¼
�
e−iϕ

2 0

0 e
iϕ
2

�
; ðD16Þ

DðTÞ ¼
�

0 1

−1 0

�
K; ðD17Þ

DðUxðπÞÞ ¼
�

0 −i
−i 0

�
; ðD18Þ

where K denotes complex conjugation.

In addition, we can find that

½UxðπÞ�2 ¼ T2 ¼ −E; ðD19Þ

½TUxðπÞ�2 ¼ E; ðD20Þ

½TUxðπÞUzðϕÞ�2 ¼ E; ðD21Þ

½TUzðϕÞ�2 ¼ Uzð2ϕÞ; ðD22Þ

b. General rules for doubled degeneracy in SSGs

(1) The combination of SO(2) with UxðπÞA symmetry
pairs two conjugated one-dimensional irreps
ΓS
þ1=2ð1Þ and ΓS−1=2ð1Þ into a two-dimensional irrep

ΓS
�1=2ð2Þ as shown in Table XXI.

(2) The combination of SO(2) with TA symmetry pairs
two conjugated one-dimensional irreps ΓS

þ1=2ð1Þ and
ΓS−1=2ð1Þ into a two-dimensional coirrep ΓS

�1=2ð2Þ
according to the Dimmock and Wheeler character
sum rule (L ¼ ∞):X
β∈TAL

χðβ2Þ ¼
X
ϕ

χ
�ðTAUzðϕÞÞ2

�
¼

X
ϕ

χ(Uzð2ϕÞ)

¼
X
ϕ

χ

�
e−iϕ 0

0 eiϕ

�

¼
Z

2π

0

2 cosð2ϕÞ ¼ 0 � � � ðcÞ: ðD23Þ

(3) The combination of SO(2) with TUxðπÞ symmetry
cannot contribute to extra degeneracy in spin space
according to the Dimmock and Wheeler character
sum rule (L ¼ ∞):X
β∈TUxðπÞL

χðβ2Þ ¼
X
ϕ

χ(ðTUxðπÞUzðϕÞÞ2)

¼
X
ϕ

χðEÞ ¼ g � � � ðaÞ: ðD24Þ

(4) TUxðπÞ can combine two conjugated single-valued
irreps in real space, similar to that in SGs.

TABLE XXI. Character table of the double group of
∞2ð2m∈ℤ; 0 < ϕ < 2πÞ.
∞2 E UzðϕÞ UxðπÞ
Γ0g 1 1 1
Γ0u 1 1 −1
Γm 2 2 cosðmϕÞ 0

TABLE XX. Character table of the double group of SO(2)
ð2m∈ℤ; 0 < ϕ < 2πÞ.
SO(2) E UzðϕÞ
Γ0 1 1
Γm 1 e−imϕ
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(5) The concurrence of SO(2) and TUxðπÞ, UxðπÞA
(also TA) cannot contribute to quadruple degeneracy
in spin space. The combination of TUxðπÞ and ∞2

cannot pair the real two-dimensional irrep ΓS
�1=2ð2Þ

of ∞2, as calculated from the character sum rule
(L ¼ ∞2):X
β∈TUxðπÞL

χðβ2Þ ¼
X
ϕ


χ
�ðTUzðϕÞÞ2

�
þ χ

�ðTUxðπÞUzðϕÞÞ2
��

¼ 0þ g ¼ g � � � ðaÞ: ðD25Þ

Here we give some typical little cogroups in collinear
SSG in Table XXII.

APPENDIX E: ONLINE PROGRAM IN SSG
IDENTIFICATION

Here we provide the procedure for identifying the spin
group symmetries from a given crystal and magnetic
structure as schematic in Fig. 9, which is equipped on
our online program [59]. On the website, the sentence “All
experimentally determined magnetic structures available in
the MAGNDATA database have been identified and provided
here” presents the complete list of SSGs of magnetic

structures. This file includes the nontrivial SSG and
spin-only group for all commensurate magnetic materials
in MAGNDATA.
Step 1: Obtain the SG GR of the input structure (without

considering the magnetic moments) using the module
SPGLIB [92], which is an open-source PYTHON package
for searching crystal symmetries.
Step 2: Determine the type of magnetic moment, i.e.,

noncoplanar, coplanar, or collinear, by calculating the rank
of all vectors of the magnetic moments.
Step 3: Extract all the magnetic moments and obtain the

allowed PGGS for spin space using PYMATGEN [93], which
is an open-source PYTHON library for materials analysis. In
order to construct the GNS, the spin-only part in GS should
be excluded. For collinear magnetic configurations, set GS

to be f1; 1̄g; for coplanar magnetic configurations, add a
constant small canting to each moment to exclude the
mirror operation (ZK

2 ) in GS.
Step 4: Traverse all the symmetry operations of the direct

product group GR ×GS and apply them to the magnetic
structure. The operations that keep the magnetic structure
invariant form the nontrivial SSGGNS of the given material.
Step 5: Within the symmetry operations of GNS, all

elements of real-space operations form G0 by dropping the
operations in spin space; all elements of G0 that map the
identity operation in spin space form the sublattice group
L0; all elements of spin space operations form PGGs; ik, it,
and the international notation of GNS can also be obtained
straightforwardly.
Step 6: Add the spin-only group to GNS to obtain GSS.

For collinear configurations, we output the symmetry
operations in GNS because the spin-only group is contin-
uously infinite; for coplanar configurations, we output the
symmetry operations in GSS ¼ GNS × ZK

2 .

APPENDIX F: FIRST-PRINCIPLES METHODS

All DFT calculations herein are performed using pro-
jector augmented wave method, implemented in Vienna
ab initio simulation package [94,95]. The generalized-
gradient approximation of the Perdew-Burke-Ernzerhof-
type exchange-correlation potential [96] is adopted. To
include the effect of electron correlation, the DFTþ U
approach within the rotationally invariant formalism [97]
are performed with Ueff ¼ 2.0 eV for Ru 4d (RuO2),
Ueff ¼ 4.0 eV for Ce 4f (CeAuAl3), and Ueff ¼ 1.0 eV
for Co 3d (CoNb3S6). Tight-binding models are con-
structed from DFT bands using the WANNIER90 package
[98,99]; the WANNIERTOOLS package is used for the
calculations of anomalous Hall conductivity [100].
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Tsymbal, Néel spin currents in antiferromagnets, Phys.
Rev. Lett. 130, 216702 (2023).

[43] D.-F. Shao, S.-H. Zhang, M. Li, C.-B. Eom, and E. Y.
Tsymbal, Spin-neutral currents for spintronics, Nat. Com-
mun. 12, 7061 (2021).

[44] Y.-P. Zhu et al.,Observation of plaid-like spin splitting in a
noncoplanar antiferromagnet, Nature (London) 626, 523
(2024).

[45] L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging
research landscape of altermagnetism, Phys. Rev. X 12,
040501 (2022).

[46] L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond conven-
tional ferromagnetism and antiferromagnetism: A phase
with nonrelativistic spin and crystal rotation symmetry,
Phys. Rev. X 12, 031042 (2022).

[47] S. Lee, S. Lee, S. Jung, J. Jung, D. Kim, Y. Lee, B. Seok,
J. Kim, B. G. Park, L. Smejkal, C.-J. Kang, and C. Kim,
Broken Kramers degeneracy in altermagnetic MnTe,
Phys. Rev. Lett. 132, 036702 (2024).

[48] J. Krempasky et al., Altermagnetic lifting of Kramers spin
degeneracy, Nature (London) 626, 517 (2024).

[49] P. Liu, A. Zhang, J. Han, and Q. Liu, Chiral Dirac-like
fermion in spin-orbit-free antiferromagnetic semimetals,
Innovation 3, 100343 (2022).

[50] A. Zhang et al., Chiral Dirac fermion in a collinear
antiferromagnet, Chin. Phys. Lett. 40, 126101 (2023).

[51] Jian Yang, Zheng-Xin Liu, and C. Fang, Symmetry
invariants in magnetically ordered systems having weak
spin-orbit coupling, arXiv:2105.12738.

[52] P.-J. Guo, Y.-W. Wei, K. Liu, Z.-X. Liu, and Z.-Y. Lu,
Eightfold degenerate fermions in two dimensions, Phys.
Rev. Lett. 127, 176401 (2021).

[53] L. M. Sandratskii, Symmetry analysis of electronic states
for crystals with spiral magnetic order. I. General proper-
ties, J. Phys. Condens. Matter 3, 8565 (1991).

[54] L. M. Sandratskii, Symmetry analysis of electronic states
for crystals with spiral magnetic order. II. Connection with
limiting cases, J. Phys. Condens. Matter 3, 8587 (1991).

[55] N. Lazić, M. Milivojević, and M. Damnjanović, Spin line
groups, Acta Crystallogr. Sect. A 69, 611 (2013).

[56] R. Lifshitz, Symmetry of magnetically ordered quasicrys-
tals, Phys. Rev. Lett. 80, 2717 (1998).

[57] R. Lifshitz and S. Even-Dar Mandel,Magnetically ordered
quasicrystals: Enumeration of spin groups and calculation
of magnetic selection rules, Acta Crystallogr. Sect. A 60,
167 (2004).

[58] S. Even-Dar Mandel and R. Lifshitz, Symmetry of mag-
netically ordered three-dimensional octagonal quasicrys-
tals, Acta Crystallogr. Sect. A 60, 179 (2004).

[59] See https://findspingroup.com for the online program
FINDSPINGROUP of SSG identification for any given
magnetic structure, all the enumerated nontrivial SSGs and
SSGs for all experimentally reported magnetic structures
reported in MAGNDATA database.

[60] S. V. Gallego, J. M. Perez-Mato, L. Elcoro, E. S. Tasci,
R. M. Hanson, K. Momma, M. I. Aroyo, and G.
Madariaga, MAGNDATA: Towards a database of magnetic
structures. I. The commensurate case, J. Appl. Crystallogr.
49, 1750 (2016).

[61] H. Wondratschek, in Symmetry Relations between Space
Groups, International Tables for Crystallography Vol. A1,
edited by H. Wondratschek and U. Müller (Springer,
Dordrecht, 2004).

[62] S. Ivantchev, E. Kroumova, M. I. Aroyo, J. M. Perez-Mato,
J. M. Igartua, G. Madariaga, and H. Wondratschek, SUPER-
GROUPS—A computer program for the determination of the
supergroups of the space groups, J. Appl. Crystallogr. 35,
511 (2002).

[63] L. Elcoro, B. Bradlyn, Z. Wang, M. G. Vergniory, J. Cano,
C. Felser, B. A. Bernevig, D. Orobengoa, G. de la Flor, and
M. I. Aroyo, Double crystallographic groups and their
representations on the Bilbao Crystallographic Server,
J. Appl. Crystallogr. 50, 1457 (2017).

[64] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevX.14.031038 for Seitz
symbols in SSG, the site-symmetry groups and Wyckoff
positions of SSGs and the construction of a magnetic
structure using site-symmetry groups, the modified Dim-
mock and Wheeler’s character sum rule, the band reps of
SSGs and the comparison of those between SSGs and
MSGs for collinear RuO2, coplanar CeAuAl3, and non-
coplanar CoNb3S6.

[65] M. I. Aroyo, International Tables for Crystallography
(Wiley, New York, 2013).

[66] N. V. Belov, N. N. Neronova, and T. S. Smirnova, Shubni-
kov groups, Sov. Phys. Crystallogr. 2, 311 (1957).

[67] A. V. Shubnikov, N. V. Belov, and W. T. Holser, Colored
symmetry (Pergamon Press, London, 1964).

[68] J.-Q. Chen, M.-J. Gao, and G.-Q. Ma, The representation
group and its application to space-groups, Rev. Mod.
Phys. 57, 211 (1985).

[69] J.-Q. Chen, J. Ping, and F. Wang, Group Representation
Theory for Physicists (World Scientific, Singapore, 2002).

[70] J. Li, Q. Yao, L. Wu, Z. Hu, B. Gao, X. Wan, and Q. Liu,
Designing light-element materials with large effective
spin-orbit coupling, Nat. Commun. 13, 919 (2022).

[71] D. T. Adroja, C. de la Fuente, A. Fraile, A. D. Hillier, A.
Daoud-Aladine, W. Kockelmann, J. W. Taylor, M. M.
Koza, E. Burzurí, F. Luis, J. I. Arnaudas, and A. del
Moral,Muon spin rotation and neutron scattering study of
the noncentrosymmetric tetragonal compound CeAuAl3,
Phys. Rev. B 91, 134425 (2015).

XIAOBING CHEN et al. PHYS. REV. X 14, 031038 (2024)

031038-32

https://doi.org/10.1038/s41928-022-00744-8
https://doi.org/10.1038/s41928-022-00744-8
https://doi.org/10.1038/s41928-022-00866-z
https://doi.org/10.1038/s41928-022-00866-z
https://doi.org/10.1103/PhysRevLett.130.216701
https://doi.org/10.1103/PhysRevLett.130.216702
https://doi.org/10.1103/PhysRevLett.130.216702
https://doi.org/10.1038/s41467-021-26915-3
https://doi.org/10.1038/s41467-021-26915-3
https://doi.org/10.1038/s41586-024-07023-w
https://doi.org/10.1038/s41586-024-07023-w
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.040501
https://doi.org/10.1103/PhysRevX.12.031042
https://doi.org/10.1103/PhysRevLett.132.036702
https://doi.org/10.1038/s41586-023-06907-7
https://doi.org/10.1016/j.xinn.2022.100343
https://doi.org/10.1088/0256-307X/40/12/126101
https://arXiv.org/abs/2105.12738
https://doi.org/10.1103/PhysRevLett.127.176401
https://doi.org/10.1103/PhysRevLett.127.176401
https://doi.org/10.1088/0953-8984/3/44/004
https://doi.org/10.1088/0953-8984/3/44/005
https://doi.org/10.1107/S0108767313022642
https://doi.org/10.1103/PhysRevLett.80.2717
https://doi.org/10.1107/S0108767303026746
https://doi.org/10.1107/S0108767303026746
https://doi.org/10.1107/S0108767304002272
https://findspingroup.com
https://findspingroup.com
https://doi.org/10.1107/S1600576716012863
https://doi.org/10.1107/S1600576716012863
https://doi.org/10.1107/S002188980200732X
https://doi.org/10.1107/S002188980200732X
https://doi.org/10.1107/S1600576717011712
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031038
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031038
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031038
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031038
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031038
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031038
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031038
https://doi.org/10.1103/RevModPhys.57.211
https://doi.org/10.1103/RevModPhys.57.211
https://doi.org/10.1038/s41467-022-28534-y
https://doi.org/10.1103/PhysRevB.91.134425


[72] L.-D. Yuan, Z. Wang, J.-W. Luo, E. I. Rashba, and A.
Zunger, Giant momentum-dependent spin splitting in
centrosymmetric low-Z antiferromagnets, Phys. Rev. B
102, 014422 (2020).

[73] N. J. Ghimire, A. S. Botana, J. S. Jiang, J. Zhang, Y.-S.
Chen, and J. F. Mitchell, Large anomalous Hall effect in
the chiral-lattice antiferromagnet CeAuAl3, Nat. Com-
mun. 9, 3280 (2018).

[74] G. Tenasini, E. Martino, N. Ubrig, N. J. Ghimire, H.
Berger, O. Zaharko, F. Wu, J. F. Mitchell, I. Martin, L.
Forró, and A. F. Morpurgo, Giant anomalous Hall effect
in quasi-two-dimensional layered antiferromagnet
Co1=3NbS2, Phys. Rev. Res. 2, 023051 (2020).

[75] H. Tanaka, S. Okazaki, K. Kuroda, R. Noguchi, Y. Arai,
S. Minami, S. Ideta, K. Tanaka, D. Lu, M. Hashimoto, V.
Kandyba, M. Cattelan, A. Barinov, T. Muro, T. Sasagawa,
and T. Kondo, Large anomalous Hall effect induced by
weak ferromagnetism in the noncentrosymmetric antifer-
romagnet CoNb3S6, Phys. Rev. B 105, L121102 (2022).

[76] X. P. Yang, H. LaBollita, Z.-J. Cheng, H. Bhandari, T. A.
Cochran, J.-X. Yin, M. S. Hossain, I. Belopolski, Q.
Zhang, Y. Jiang, N. Shumiya, D. Multer, M. Liskevich,
D. A. Usanov, Y. Dang, V. N. Strocov, A. V. Davydov, N. J.
Ghimire, A. S. Botana, and M. Z. Hasan, Visualizing the
out-of-plane electronic dispersions in an intercalated
transition metal dichalcogenide, Phys. Rev. B 105,
L121107 (2022).

[77] H. Takagi, R. Takagi, S. Minami, T. Nomoto, K. Ohishi,
M.-T. Suzuki, Y. Yanagi, M. Hirayama, N. D. Khanh, K.
Karube, H. Saito, D. Hashizume, R. Kiyanagi, Y. Tokura,
R. Arita, T. Nakajima, and S. Seki, Spontaneous topo-
logical Hall effect induced by non-coplanar antiferromag-
netic order in intercalated van der Waals materials, Nat.
Phys. 19, 961 (2023).

[78] S. S. P. Parkin, E. A. Marseglia, and P. J. Brown, Magnetic
structure of Co1=3NbS2 and Co1=3TaS2, J. Phys. C 16,
2765 (1983).

[79] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and
N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82,
1539 (2010).

[80] R. Shindou and N. Nagaosa, Orbital ferromagnetism and
anomalous Hall effect in antiferromagnets on the distorted
fcc lattice, Phys. Rev. Lett. 87, 116801 (2001).

[81] M. Hirschberger, Y. Nomura, H. Mitamura, A. Miyake, T.
Koretsune, Y. Kaneko, L. Spitz, Y. Taguchi, A. Matsuo, K.
Kindo, R. Arita, M. Tokunaga, and Y. Tokura, Geometrical
Hall effect and momentum-space Berry curvature from
spin-reversed band pairs, Phys. Rev. B 103, L041111
(2021).

[82] L. Šmejkal, A. H. MacDonald, J. Sinova, S. Nakatsuji, and
T. Jungwirth, Anomalous Hall antiferromagnets, Nat. Rev.
Mater. 7, 482 (2022).

[83] H. Zhu, J. Li, X. Chen, Y. Yu, and Q. Liu, Magnetic
geometry to quantum geometry nonlinear transports,
arXiv:2406.03738.

[84] Yi Jiang, Ziyin Song, Tiannian Zhu, Zhong Fang,
Hongming Weng, Zheng-Xin Liu, Jian Yang, and C.
Fang, following paper, Enumeration of spin-space groups:
Towards a complete description of symmetries of magnetic
orders, Phys. Rev. X 14, 031039 (2024)..

[85] Zhenyu Xiao, Jianzhou Zhao, Yanqi Li, Ryuichi Shindou,
and Z.-D. Song, preceding paper, Spin space groups: Full
classification and applications, Phys. Rev. X 14, 031037
(2024).

[86] K. Shinohara, A. Togo, H. Watanabe, T. Nomoto, I.
Tanaka, and R. Arita, Algorithm for spin symmetry
operation search, Acta Crystallogr. Sect. A 80, 94
(2024).

[87] H. Watanabe, K. Shinohara, T. Nomoto, A. Togo, and
R. Arita, Symmetry analysis with spin crystallographic
groups: Disentangling effects free of spin-orbit coupling
in emergent electromagnetism, Phys. Rev. B 109,
094438 (2024).

[88] H. Schiff, A. Corticelli, A. Guerreiro, J. Romhányi, and P.
McClarty, The spin point groups and their representations,
arXiv:2307.12784.

[89] J. Yang and Z.-X. Liu, Irreducible projective representa-
tions and their physical applications, J. Phys. A 51,
025207 (2017).

[90] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova,
S. Ivantchev, G. Madariaga, A. Kirov, and H.
Wondratschek, Bilbao Crystallographic Server: I. Data-
bases and crystallographic computing programs, Z. Kris-
tallogr. Crystallogr. Mater. 221, 15 (2006).

[91] Y. Xu, L. Elcoro, Z.-D. Song, B. J. Wieder, M. G.
Vergniory, N. Regnault, Y. Chen, C. Felser, and
B. A. Bernevig, High-throughput calculations of mag-
netic topological materials, Nature (London) 586, 702
(2020).

[92] A. Togo, K. Shinohara, and I. Tanaka, SPGLIB: A software
library for crystal symmetry search, arXiv:1808.01590.

[93] S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher,
S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson, and G.
Ceder, PYTHON Materials Genomics (PYMATGEN): A robust,
open-source PYTHON library for materials analysis,
Comput. Mater. Sci. 68, 314 (2013).

[94] G. Kresse and J. Furthmüller, Efficient iterative schemes
for ab initio total-energy calculations using a plane-wave
basis set, Phys. Rev. B 54, 11169 (1996).

[95] G. Kresse and D. Joubert, From ultrasoft pseudopotentials
to the projector augmented-wave method, Phys. Rev. B 59,
1758 (1999).

[96] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized
gradient approximation made simple, Phys. Rev. Lett. 77,
3865 (1996).

[97] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J.
Humphreys, and A. P. Sutton, Electron-energy-loss
spectra and the structural stability of nickel oxide: An
LSDAþ U study, Phys. Rev. B 57, 1505 (1998).

[98] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D.
Vanderbilt, and N. Marzari, WANNIER90: A tool for
obtaining maximally-localised Wannier functions, Com-
put. Phys. Commun. 178, 685 (2008).

[99] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D.
Vanderbilt, Maximally localized WANNIER functions: Theory
and applications, Rev. Mod. Phys. 84, 1419 (2012).

[100] Q. Wu, S. Zhang, H.-F. Song, M. Troyer, and A. A.
Soluyanov, WANNIERTOOLS: An open-source software
package for novel topological materials, Comput. Phys.
Commun. 224, 405 (2018).

ENUMERATION AND REPRESENTATION THEORY OF SPIN … PHYS. REV. X 14, 031038 (2024)

031038-33

https://doi.org/10.1103/PhysRevB.102.014422
https://doi.org/10.1103/PhysRevB.102.014422
https://doi.org/10.1038/s41467-018-05756-7
https://doi.org/10.1038/s41467-018-05756-7
https://doi.org/10.1103/PhysRevResearch.2.023051
https://doi.org/10.1103/PhysRevB.105.L121102
https://doi.org/10.1103/PhysRevB.105.L121107
https://doi.org/10.1103/PhysRevB.105.L121107
https://doi.org/10.1038/s41567-023-02017-3
https://doi.org/10.1038/s41567-023-02017-3
https://doi.org/10.1088/0022-3719/16/14/016
https://doi.org/10.1088/0022-3719/16/14/016
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/RevModPhys.82.1539
https://doi.org/10.1103/PhysRevLett.87.116801
https://doi.org/10.1103/PhysRevB.103.L041111
https://doi.org/10.1103/PhysRevB.103.L041111
https://doi.org/10.1038/s41578-022-00430-3
https://doi.org/10.1038/s41578-022-00430-3
https://arXiv.org/abs/2406.03738
https://doi.org/10.1103/PhysRevX.14.031039
https://doi.org/10.1103/PhysRevX.14.031037
https://doi.org/10.1103/PhysRevX.14.031037
https://doi.org/10.1107/S2053273323009257
https://doi.org/10.1107/S2053273323009257
https://doi.org/10.1103/PhysRevB.109.094438
https://doi.org/10.1103/PhysRevB.109.094438
https://arXiv.org/abs/2307.12784
https://doi.org/10.1088/1751-8121/aa971a
https://doi.org/10.1088/1751-8121/aa971a
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1038/s41586-020-2837-0
https://doi.org/10.1038/s41586-020-2837-0
https://arXiv.org/abs/1808.01590
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.57.1505
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1016/j.cpc.2017.09.033
https://doi.org/10.1016/j.cpc.2017.09.033

