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In this work, we exhaust all the spin space symmetries, which fully characterize collinear, noncollinear,
and commensurate spiral as well as incommensurate spiral magnetism, etc., and investigate enriched
features of electronic bands that respect these symmetries. We achieve this by systematically classifying the
so-called spin space groups (SSGs)—joint symmetry groups of spatial and spin operations that leave the
magnetic structure unchanged. Generally speaking, they are accurate (approximate) symmetries in systems
where spin-orbit coupling (SOC) is negligible (finite but weaker than the energy scale of interest), but we
also show that specific SSGs could remain valid even in the presence of strong SOC. In recent years, SSGs
have played increasingly pivotal roles in various fields such as altermagnetism, topological electronic
states, and topological magnon, etc. However, due to its complexity, a complete SSG classification has not
been completed up to now. By representing the SSGs as OðNÞ representations, we—for the first time—
obtain the complete classifications of 1421, 9542, and 56 512 distinct SSGs for collinear (N ¼ 1), coplanar
(N ¼ 2), and noncoplanar (N ¼ 3) magnetism, respectively. SSG not only fully characterizes the symmetry
of spin degrees of freedom, but also gives rise to exotic electronic states, which, in general, form projective
representations of magnetic space groups (MSGs). Surprisingly, electronic bands in SSGs exhibit features
never seen in MSGs, such as (i) nonsymmorphic SSG Brillouin zone, where SSG operations behave as a
glide or screw when acting on momentum, (ii) effective π flux, where translation operators anticommute
with each other and yield duplicate bands, (iii) higher-dimensional representations unexplained by MSGs,
and (iv) unconventional spin texture on a Fermi surface, which is completely determined by SSGs,
independent of Hamiltonian details. To apply our theory, we identify the SSG for each of the 1595
published magnetic structures in the MAGNDATA database on the Bilbao Crystallographic Server.
Material examples exhibiting the novel features (i)–(iv) are discussed with emphasis. We also investigate
new types of SSG-protected topological electronic states that are unprecedented in MSGs. In particular, we
propose a 3D Z2 topological insulator state with a fourfold degenerate Dirac point on the surface and a new
scenario of anomalous Z2 helical states that appear on magnetic domain walls.

DOI: 10.1103/PhysRevX.14.031037 Subject Areas: Condensed Matter Physics, Magnetism,
Topological Insulators

I. INTRODUCTION

Symmetry is one of the central concepts inmodern physics.
In condensed matter, symmetry plays determining roles in
phase transitions, low-energy excitations, transport in disor-
dered systems, etc., allowing physicists to qualitatively
understand a realistic system without knowing microscopic

details. One cannot overemphasize the importance of sym-
metry in physics. For more than one hundred years, the
230 space groups have been the standard mathematical
description of symmetries in solid material crystallography.
For magnetic materials, the complete symmetry theory was
generally believed to be the 1651 magnetic space groups
(MSGs), where a symmetry operation could be a pure spatial
operation or a combination of the time-reversal symmetry
(TRS) and a spatial operation. In the 1960s, people realized
that Heisenberg models with negligible spin-orbit coupling
(SOC) enjoy higher symmetries, namely, spin space groups
(SSGs) [1]. In an SSG, an operation can be a combination
of a spatial operation and an arbitrary spin rotation that is
compatible with the group structure. Such symmetries are
found crucial to describe the spin waves correctly. Later, the
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spin point groups, where the spatial operations are limited to
point group operations, were fully classified by Litvin [2,3].
However, due to the complexity of joining spatial and spin
operations, a full classification of SSGs has not been
completed up to now.
In recent years, SSGs have drawn growing attention

because of their applications in magnetic materials with
negligible or weak SOC, such as magnetic topological
electronic states [4–7], topological magnon bands [8–14],
unconventional spin-momentum locking without SOC
[15–18], which was later realized as a common feature
of the altermagnetism [19–26], etc. To be specific, SSGs
can protect (i) exotic nodal-line or -point semimetals, e.g.,
twelvefold degenerate fermion in three dimensions [5] and
eightfold degenerate fermion in two dimensions [6],
that are disallowed by conventional symmetries [27];
(ii) exotic topological insulators (TIs), e.g., SOC-free
and TRS-free two-dimensional Z2 TIs [4], that are dis-
allowed by conventional symmetries [28–32]; and
(iii) exotic nodal magnon bands, e.g., Dirac points with
Z-valued monopole charges [12], which evolve into nodal
lines with Z2-monopole charges [33,34] if weak SOC is
considered, as confirmed by the experiment [13]. SSGs
are also crucial for understanding the so-called altermag-
netism [19,26], where antiparallel spin momenta at
two sublattices compensate each other exactly (as in
antiferromagnetism) but the two sublattices are not related
by inversion or translation. Altermagnetism can exhibit
unconventional, e.g., d-, g-, and i-wave-like, spin-
momentum locking [15,25], which can lead to a surpris-
ingly large anomalous Hall conductivity when a weak
SOC is introduced [16,17], as confirmed by experiments
[21–24]. Unconventional momentum-dependent spin
polarization also exists in noncollinear magnetism without
SOC [18,35]. Therefore, SSGs not only give rise to
theoretically exotic states, but also have a strong relevance
in realistic magnetic materials. It provides a precise
description of magnetic materials with negligible SOC
and a good starting point to understand magnetic materials
with weak SOC. However, due to lacking a complete
classification of SSGs, most discussions are limited to spin
point groups or several simple SSGs.
In this work, by reducing the group classification

problem to a representation problem, we obtain the full
classification of SSGs and find that there exist 67 475
inequivalent SSGs in total (see Sec. F in Supplemental
Material [36]). These SSGs fully characterize collinear
magnetism (including ferro-, ferri-, antiferro-, and alter-
magnetism), coplanar magnetism, noncoplanar magnetism,
and spiral magnetism (including commensurate and incom-
mensurate structures).
The complete classification reveals additional novel

features of magnetic states beyond those found in previous
works. To investigate electron bands using SSGs, we
generalize crystal momentum to SSG momentum k̃ and

introduce a concept of the SSG Brillouin zone (SBZ)—the
reciprocal space formed by SSG momenta. Because of
enriched symmetry algebra, the action of SSG translations
on electronic states may exhibit anticommutation. An SBZ
is said to be noncommuting if the SSG translations have
this property and commuting otherwise. Commuting SBZs
can be further classified into symmorphic SBZs and non-
symmorphic SBZs, wherein the latter exhibits nontrivial
transformations of SSG momentum. In a symmorphic SBZ,
the momentum transforms normally under an SSG oper-
ation g, i.e., k̃ → k̃0 ¼ sgRgk̃, with Rg being the point group
part of g and sg being 1 (−1) for unitary (antiunitary) g. In a
nonsymmorphic SBZ, k̃ transforms to sgðRgk̃þ q̃gÞ, where
q̃g is not a reciprocal lattice vector of SBZ but a “fractional
translation” in momentum space. In Secs. III C and IV B,
we discuss the noncommuting and nonsymmorphic SBZ in
more detail and present several theoretical and material
examples. We identify whether the SBZ is noncommuting,
nonsymmorphic for each of the 67 475 SSGs (see
Tables S1–S690 in Supplemental Material [36]). We note
that, while anticommuting translations and nonsymmorphic
transformation of momentum [41] can arise in systems
subjected to external magnetic flux, these exotic behaviors
studied in this work are intrinsically derived from the
magnetic structures.
Another advancement from the SSG classification is a

systematic classification of spin textures of SSG Bloch
states in the momentum space. Spin expectation of SSG
Bloch states is transformed under SSG operations, and the
transformation realizes a representation of the SSG. If the
realized representation is nontrivial, the spin polarization
on the Fermi surface must be momentum dependent and
generally cannot be described by MSGs. This description
fully characterizes the spin textures not only in altermag-
netism [15,25], but also in noncollinear magnetism [35],
which can be p-; d-; f-…-wavelike. We explicitly derive
the representations formed by spin textures in all SSGs
that have symmorphic SBZs (see Tables S1–S690 in
Supplemental Material [36]).
To apply our theory, we identify the SSGs for the

1595 published experimental magnetic structures in
the MAGNDATA database [42,43] on the Bilbao
Crystallographic Server and tabulate the results in Sec. G
in Supplemental Material [36]. For every material, we
further determine whether it has a noncommuting, non-
symmorphic, or symmorphic SBZ and whether it possesses
a nontrivial spin texture. Remarkably, these materials
exhibit all the aforementioned exotic features of SSG.
Among them, 33 materials have noncommuting SBZs; 153
materials have nonsymmorphic SBZs; 460 of 1409 remain-
ing materials with symmorphic SBZs possess nontrivial
spin textures in the momentum space. Within this group of
460 materials, 139 are collinear and fall into the category of
altermagnetism.We believe that this useful information will
lead to further research for new physics and potential
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applications in fields like spintronics. To illustrate these
concepts, we perform first-principle calculations on repre-
sentative examples of materials.
SSGs also protect novel electron topological states

that are absent in conventional space groups [44–46] and
MSGs [47–52]. In Sec. V, we present three examples of
SSG-protected topological states. The first example is a
physical realization of a two-dimensional SOC-free and
TRS-free Z2 TI. The hopping Hamiltonian of this model is
real, and the topology is introduced by a noncollinear
magnetic order. The second example is a three-dimensional
SOC-free and TRS-free Z2 TI possessing a fourfold Dirac
point on surfaces. The third example is a two-dimensional
system with a protected helical mode along the domain wall
between two magnetic domains with the same topological
invariant. To our knowledge, the latter two states have never
been discussed in conventional symmetry groups or SSGs.

In particular, the third example demonstrates a new
scenario of topological states—topological gapless domain
wall—that is unseen in previously known free-fermion
states (in the absence of chiral and particle-hole sym-
metries). These examples should be the tip of the iceberg of
the unexplored fruitful topological states in SSGs.
We summarize the main results of this work in Fig. 1,

and the rest of this paper is organized as follows. In Sec. II,
we explain why OðNÞ representations of space groups can
classify all SSGs (see Sec. II A). We also describe a method
of constructing all OðNÞ representations (Sec. II B) and
criteria for determining whether two representations yield
physically distinct SSGs (Sec. II D). We use O(3) repre-
sentations of the space group P3 as an example of the
classification (Sec. II C). We summarize basic information
of SSGs in Sec. II E and tabulate all the SSGs in Sec. F in
Supplemental Material [36]. In Sec. III, we investigate

Materials: 954 (234)

Materials: 436 (84)

Materials: 205 (66)

FIG. 1. Summary of results. We obtain all 1421, 9542, and 56 512 distinct SSGs for collinear (N ¼ 1), coplanar (N ¼ 2), and
noncoplanar (N ¼ 3) magnetic structures by enumerating OðNÞ representations. Nonspiral and spiral: All the collinear SSGs describe
commensurate magnetic structures, whereas 775 (7745) of the coplanar (noncoplanar) SSGs describe spiral magnetic structures with either
commensurate or incommensurate spiral angles. Electron representation: In collinear magnetism, electronic Bloch states form a linear
representation of a MSG of type II (gray group). In coplanar (noncoplanar) magnetism, they form projective representations ofMSGsM of
type II (I, III, and IV), classified by group cohomology H2½M; Uð1Þ�. Topology: We show possible electronic topological states for
different SSGs, where TSM denotes topological semimetal. We provide concrete models of topological states, e.g., a fourfold degenerate
surface Dirac fermion, in noncoplanar magnetism. Spin texture: SSGs determine the dimension d of the span of spin expectations on Fermi
surfaces and, if d > 0, whether the spin textures are nontrivial. SBZ: The action of SSG translations on SSG Bloch states might
anticommute, resulting in a noncommuting SBZ with a duplicated band structure. When the SSG translations commute, the SBZ can be
symmorphic or nonsymmorphic, and SSG momentum in the latter is transformed nonsymmorphically under SSG symmetries. We also
identify the SSGs of experimental materials. We list the (blue and italic) number of magnetic materials that are subject to the category at the
bottom of each cell, and in the parentheses is the number of materials constituent of light elements from the first four periods. Finally, it is
notable that some SSGs can be applied to systems with significant SOC, such as symmetry-breaking phases in the Kitaev model.
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the representation theory of SSGs and its application in
electronic states. We demonstrate that SSGs acting as SSG
Bloch states lead to enriched symmetry algebra, necessitat-
ing the introduction of concepts of SSG momentum, SBZ,
and noncommuting and nonsymmorphic SBZs. In addition,
we utilize SSGs to determine the spin texture in the
momentum space (see Sec. III D). Section IV focuses on
experimental magnetic materials. We identify the SSGs of
1595 magnetic materials in the MAGNDATA database.
The statistics are present in Sec. IVA, while the complete
information is provided in Sec. G in Supplemental
Material [36]. We perform first-principle calculations on
material examples exhibiting nonsymmorphic SBZ, extra
degeneracies, and unconventional spin texture in the
momentum space. In Sec. V, we discuss possible electronic
states protected by SSGs and construct three models of
topological phases that are protected by symmetries unique
in SSGs. Section VI is devoted to discussion and summary,
where we also compare our representation-based approach
of classifying SSGs with Litvin’s approach [2,3].

II. CLASSIFICATION OF SPIN SPACE GROUPS

A. General considerations

Without SOC, the many-body electronic Hamiltonian of
a material exhibits an SU(2) spin-rotation symmetry, a
spinful time-reversal symmetry ZT

2 , and a space group Glatt
symmetry of the lattice, where the spatial operations do not
act on the spin. The group SU(2) is a double cover of
SO(3), and two SU(2) operations corresponding to the
same SO(3) rotation differ only by a phase of −1 when
acting on the electronic states. In this work, we use the
SO(3) group to describe the spin-rotation symmetry of
magnetic structures. Additionally, the electron’s spin-1=2
nature manifests itself in the projective representation
theory (Sec. III). The elements in Glatt, the SO(3) rotation
group, and ZT

2 mutually commute. Thus, the full symmetry
group is Glatt × SOð3Þ × ZT

2 . A generic magnetic structure
may individually break Glatt, SO(3), ZT

2 but preserve some
joint operations. An SSG, denoted as G hereafter, is defined
as the symmetry group of the magnetic structure, which is a
continuous or discrete subgroup of Glatt × SOð3Þ × ZT

2 ,
depending on the magnetic order.
To proceed, we consider a magnetic structure, charac-

terized by local spin magnetic moments SðriÞ’s, where ri’s
are the position of magnetic atoms. The spin rotations act
on the magnetic structure as SO(3) matrices. Hence, for
SðriÞ, a generic symmetry operation consists of a spatial
operation fRjvg∈Glatt, a spin rotation U∈SOð3Þ, and a
possible time-reversal operation T. It can be written as
fXUjRjvg with X being identity I or T, and it transforms
the magnetic structure SðriÞ to

S0ðriÞ ¼ sðXÞUSðfRjvg−1riÞ; ð1Þ

where sðXÞ ¼ 1 and −1 for X ¼ I and T, respectively. The
SSG consists of all such composite operations that leave the
magnetic structure unchanged, i.e.,

G ¼ ffXUjRjvgjfXUjRjvgS ¼ Sg; ð2Þ

where fXUjRjvgS is the transformed magnetic structure
defined in Eq. (1).
The spatial operations fRjvg in G form a space group:

P ¼ ffRjvgjfXUjRjvg∈Gg; ð3Þ

which is named the parent space group. It is worth
mentioning that, in general, P is a subgroup of the full
space group Glatt of the lattice. A homomorphism exists
from the SSG G to its parent space group P, and the kernel
of the homomorphism is the pure-spin-operation group S,
where operations are in the form fXUj1j0g. S is uniquely
determined by whether the magnetic structure is collinear,
coplanar, or noncoplanar [2–4]. Without loss of generality,
we always assume that the magnetic moments are confined
to the x, y plane for the coplanar structures and are oriented
along the z direction for the collinear structure. Before
investigating S, let us consider the restrictions of the
spin-operation part XU of a general operation in G for
different arrangements. Noncoplanar structures have
no specific restrictions on XU. However, for coplanar
(collinear) structures, the spin-operation part XU of any
operation in G must preserve the spin moments within
the xy plane (along the z direction). Thus, for these two
kinds of structures, sðXÞU takes a block diagonal form
diagðOxy;OzÞ, whereOxy is an O(2) matrix acting on the x,
y components of the spin moments and Oz is an O(1)
matrix acting on the z components.
For noncoplanar structures, operations in S must leave

all components of spin moments invariant, and

S ¼ ffIj1j0gg; ð4Þ

i.e., there is no nontrivial on-site spin symmetry, or TRS,
left. For coplanar structures, since Sz ¼ 0, only Oxy in the
sðXÞU ¼ diagðOxy;OzÞ affects the transformation of spin
moments, while Oz has no impact. S is given by

S ¼ fffIj1j0g; fTUzðπÞj1j0gg; ð5Þ

where UnðθÞ represents a θ rotation along the direction n
(n ¼ z) and the operation TUzðπÞ transforms a spin
moment ðSx; Sy; SzÞ to ðSx; Sy;−SzÞ. In this work, some-
times we also denote the above S as SZT

2
. For the collinear

structure, only Oz affects the transformation, and

S¼ffUzðθÞj1j0gjθ∈ ½0;2πÞg∪ffTUnθðπÞj1j0gjθ∈ ½0;πÞg;
ð6Þ
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where the first term is a θ rotation along the z direction and
the second term is a π rotation along an in-plane direction
nθ ¼ ðcos θ; sin θ; 0Þ followed by a TRS. The two types
of operations leave S unchanged if Sx ¼ Sy ¼ 0. We can
equivalently write the collinear S as

S ¼ SZT
2
⋉ SUð1Þ; ð7Þ

where SUð1Þ contains the continuous rotation of S [the first
term of Eq. (6)] and is a normal subgroup of S and
SZT

2
¼ f1; TUxðπÞg.

An SSG can be decomposed to cosets with respect to the
pure-spin-operation group S:

G ¼ Sg1 þ Sg2 þ � � � : ð8Þ

As shown in the following paragraphs, we can properly
choose the coset representatives such that they commute
with every element in S and form a discrete normal
subgroup G, which is isomorphic to the quotient group
G=S, of G. Therefore, a generic SSG has the structure

G ¼ S ×G: ð9Þ

We name G the quotient SSG (qSSG). For given S, the
classification problem of SSGs is now reduced to the
classification problem of qSSGs.
For noncoplanar magnetic structures, S is trivial, and

the homomorphism from G ¼ G to P is an isomorphism.
In G, each spatial operation fRjvg is equipped with a
unique spin operation XU. [Suppose both fXUjRjvg and
fX0U0jRjvg belong to the SSG and X0U0 ≠ XU;
then, fXUjRjvg−1fX0U0jRjvg ¼ fX−1X0U−1U0j1j0g is a
nontrivial pure-spin operation, contradicting Eq. (4).]
Therefore, G realizes a mapping from P to XU∈ZT

2 ×
SOð3Þ ≃ Oð3Þ, i.e., a linear O(3) representation of P. Let ρ
and σ be O(3) representations ofP realized by two SSGs. If ρ
and σ are equivalent, an orthogonal matrixO exists such that
DρðpÞ ¼ OTDσðpÞO for any p∈P, which means that
differences between the two representations can be elimi-
nated by a change of the spin axes. These two SSGs are
considered to be the same. All possible noncoplanar SSGs
can be obtained from the set of inequivalent O(3) repre-
sentations, classified by the group cohomologyH1½P;Oð3Þ�.

There are various possible choices of coset representatives
of G=S for coplanar and collinear structures. To provide
a concrete scheme, we adopt the following approach.
For coplanar (collinear) structures, only Oxy (Oz) in a spin
operation influences the transformation of spin moments.
Therefore, we can choose the Oz ¼ detðOxyÞ (for coplanar)
or Oxy ¼ Oz12×2 (for collinear) in the spin operations of the
coset representatives. For a coplanar structure, the only
nontrivial spin operation in S [Eq. (5)] is TUzðπÞ, containing
time-reversal T. Consequently, each spatial operation in a
coplanar SSG corresponds to two spin operations: one with
the time-reversal operator T (antiunitary) and another with-
out it (unitary). The choice Oz ¼ detðOxyÞ implies that
det ½sðXÞU� ¼ 1, leading to all coset representatives being
unitary and forming the unitary subgroup G of the SSG G.
As the corresponding O(3) matrix of TUzðπÞ is
diagð12×2;−1Þ, the spin operations diagðOxy;OzÞ of the
SSG representatives commute with S. For a collinear
structure, the choice Oxy ¼ Oz12×2 implies that the spin
operations of coset representatives are either I or T. These
spin operations constitute a group and commute with all spin
operations. Thus, the coset representatives form a group G
and commute all operations in S. We also note that qSSG G
for a collinear SSG is the same as a magnetic space group of
type I, III, or IV, where each spatial operation is uniquely
accompanied by I or T. Following the same derivation as in
the noncoplanar case, the qSSG G realizes a linear O(2)
[O(1)] representation of P and is classified by H1½P;Oð2Þ�
(for coplanar) or H1½P;Oð1Þ� (for collinear).
In summary, the SSGs for noncoplanar, coplanar, and

collinear magnetic structures can be classified by the O(3),
O(2), and O(1) representations of their parent space group,
respectively. Before presenting our classification scheme of
SSGs based on the representation theory of space groups in
detail, we utilize a flow chart to depict this process (Fig. 2).
In the subsequent section, we outline the initial steps of
the flow chart, which involve obtaining all distinct O(3)
representations of a given space group and obtaining all
O(2) and O(1) representations as by-products.

B. O(3), O(2), and O(1) representations

A generic O(3) representation consists of a nontrivial
OðnÞ (n ¼ 0, 1, 2, 3) representation and (3 − n) identity
representations. Here, n ¼ 0 means that the O(3)

FIG. 2. Flowchart of obtaining all distinct SSGs based on the representation theory of space groups. Here, irrep stands for irreducible
representations.
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representation is an identity representation. The nontrivial
OðnÞ representation is equivalent to an n-dimensional real
representation that is decomposed into a direct sum of
nonidentity real irreducible representation (irrep), conju-
gate pairs of complex irreps (see Sec. A in Supplemental
Material [36] for more details). Therefore, in order to
enumerate all the distinct O(3) representations, we need
only to find all possible combinations of the irreps of the
parent space group P. All irreps of P can be induced from
allowable irreps of the little groups Pk of k vectors in the
irreducible BZ [53]. An irrep ρk of Pk at k is considered
“allowable” if the momentum of the irrep’s basis is k,
requiring that DρkðfIjtgÞ ¼ eik·t1r×r, where Dρkð·Þ is the
representation matrix and r is the dimension of ρk.
Hereafter, the notation ρk always refers to an allowable
irrep of Pk. The construction of ρk is detailed in Sec. A
in Supplemental Material [36], and explicit forms of all
irreps of all space groups can be obtained from the
Representations DSG program [54] on the Bilbao
Crystallographic Server. The induced irrep of P, ρk↑P,
is supported by the basis of ρk and the rotated bases at the
star of k, fRgkjg∈P=Pkg, implying that its dimension is
jPj=jPkj times the dimension of ρk, where j · j denotes the
order of a group. If k is not TRS invariant, ρk↑P must be a
complex irrep, and its complex conjugation ρ�k↑P is
induced from an irrep ρ�k of P−k. If k is a TRS-invariant
momentum, ρk↑P can be a real, complex, or pseudoreal
irrep of P. As O(3) representations are constructed from
irreps with dimensions smaller than or equal to three,
we need only to consider TRS-invariant k’s with jPkj ¼
jPj; 1

2
jPj; 1

3
jPj and non-TRS-invariant k’s with Pk ¼ P.

Notably, the dimension of a pseudoreal irrep must be even
(see Sec. A in Supplemental Material [36]), and, hence,
a pair of pseudoreal irreps has a minimum dimension of
four, and it is unnecessary to consider them when studying
O(3) representations.
A space group has a finite number of high-symmetry

points (HSPs) k in the BZ. Here, k being an HSPmeans that
k is TRS invariant or the little group of k’s neighborhood is
smaller than Pk. Hence, it is direct to enumerate the finite
number of irreps induced from these k’s. On the other hand,
a space group also has high-symmetry lines and planes of
momenta and generic momenta in the irreducible BZ.
Different k in these regions induce different irreps of the
space group. To handle the infinite number of irreps
induced by k in these regions, we regard that an irrep
induced by k1 and that by k2 belong to the same class,
if Pk1 ¼ Pk2 ≡ Pk, k1 and k2 are within the fixed-point
manifold of Pk, and if the two irreps can be continuously
deformed to each other as k1;2 move continuously within
the manifold. SSGs described by O(3) representations
induced from the irreps in the same class are treated as
the same. With these in mind, we need only to consider a
finite number of irreps for each space group. It is worth

noting that this scheme can include the SSGs describing
incommensurate magnetic structures. If an O(3) represen-
tation consists of irreps induced from k’s at high-symmetry
lines, planes, or generic momenta, the corresponding
SSG describes both commensurate and incommensurate
magnetic structures, depending on whether k’s are rational
or not.
We classify the O(3) representations into 16 different

types, as summarized in Table I. The n ¼ 0, 1, 2, 3 blocks
in Table I correspond to the nontrivial OðnÞ representations,
respectively. The nontrivial OðnÞ representations in each
block are further classified into different types based on the
little group irreps ρk from which they are induced. In the
following, we use the notation ½ρk↑P�sd to represent a
d-dimensional real (s ¼ r) or complex (s ¼ c) irrep
of the space group P. First, we have the 3D identity
representation:

(i) Type I: a 3D identity representation.
Second, we have only one type of the n ¼ 1 O(3)
representations:

(i) Type II: a direct sum of two trivial irreps and
a 1D nontrivial real irrep, ½ρk↑P�r1, where Pk ¼ P

TABLE I. Sixteen types of nontrivial OðnÞ (n ¼ 0, 1, 2, 3)
representations, which decompose into nonidentity real irreps and
pairs of complex irreps. n ¼ 0 corresponds to the identity
representation. The classification is based on the nature of
constituent irreps. A nontrivial d-dimensional real (s ¼ r) or
complex (s ¼ c) irrep induced from ρk of the little group Pk is
written as ½ρk↑P�sd. ½ρ�k↑P�cd represents the complex conjugate of
½ρk↑P�cd. A generic OðNÞ (N ¼ 1, 2, 3) representation consists of
a nontrivial OðnÞ (n ¼ 1…N) representation and (N − n) number
of identity representations. The column “jPj=jPkj” specifies the
order of k-star. The columns “TRS” and “HSP” specify whether k
is a TRS-invariant momentum and an HSP, respectively. k being
an HSP means that k is TRS invariant or the fixed-point manifold
of Pk is pointlike. The third row indicates that a type-III nontrivial
O(2) representation consists of two independent type-II nontrivial
O(1) representations. The ninth row indicates that a type-A
(A ¼ IX−XIV) nontrivial O(3) representation consists of a
type-II nontrivial O(1) representation and a type-(A − 6) non-
trivial O(2) representation.

n Type Irreps jPj=jPkj TRS HSP

0 I 1 1 ✓ ✓

1 II ½ρk↑P�r1 1 ✓ ✓

2 III II ⊕ II � � � � � � � � �
IV ½ρk↑P�c1 ⊕ ½ρ�k↑P�c1 1 ✓ or ✗ ✓

V ½ρk↑P�c1 ⊕ ½ρ�k↑P�c1 1 ✗ ✗

VI ½ρk↑P�r2 1 ✓ ✓

VII ½ρk↑P�r2 2 ✓ or ✗ ✓

VIII ½ρk↑P�r2 2 ✗ ✗

3 IX−XIV II ⊕ ðIII−VIIIÞ � � � � � � � � �
XV ½ρk↑P�r3 1 ✓ ✓

XVI ½ρk↑P�r3 3 ✓ ✓
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(otherwise, the dimension is larger than one) and k
must be TRS invariant (otherwise, the irrep cannot
be real).

Third, the n ¼ 2 O(3) representations are divided into
six types:

(i) Type III: a direct sum of one trivial irrep and two
nontrivial 1D real irreps, ½ρk↑P�r1 ⊕ ½ρ0k0↑P�r1, where
both k and k0 are TRS invariant and Pk ¼ Pk0 ¼ P.

(ii) Types IV and V: a direct sum of one trivial irrep and
a pair of 1D complex irreps, ½ρk↑P�c1 ⊕ ½ρ�k↑P�c1,
where k is not necessarily TRS invariant and
Pk ¼ P. The O(3) representation is type IV if k is
an HSP and is type Votherwise. We distinguish the
two types, because the former SSGs describe only
commensurate magnetic structures, whereas the
latter describes both incommensurate and commen-
surate structures. In the latter case, the fixed-point
manifold of Pk can be high-symmetry lines,
planes, or generic momenta in the BZ. SSGs given
by the O(3) representations from irrational (rational)
k in the fixed-point manifold describe incommen-
surate (commensurate) magnetic structures [see
Figs. 4(f)–4(h) for examples for type-V SSGs].

(iii) Type VI: a direct sum of one trivial irrep and a 2D
real irrep, ½ρk↑P�r2, where Pk ¼ P, k is TRS invari-
ant, and ρk is a 2D real irrep.

(iv) Type VII: a direct sum of one trivial irrep and a 2D
real irrep, ½ρk↑P�r2, where jPkj ¼ jPj=2 and k is an
HSP. k is not necessarily TRS invariant. However, if
it is not, the star of kmust include−k. Otherwise, the
induced irrep cannot be real. We distinguish type VII
from type VI, because it involves two propagating
wave vectors.

(v) Type VIII: a direct sum of one trivial irrep and a 2D
real irrep, ½ρk↑P�r2, where jPkj ¼ jPj=2 and k is not
an HSP. The star of k must include its TRS partner
−k. As the wave vector k can move in the fixed-point
manifold of Pk, type VIII can describe both incom-
mensurate and commensurate magnetic structures.

The n ¼ 3 O(3) representations can be divided into eight
types, where the first six are direct sums of 1D irrep and 2D
representations, and the latter two are 3D irreps:

(i) Types IX–XIV: direct sums of a 1D real irrep,
½ρk↑P�r1, and a 2D real representation. The 1D real
irrep has the same form as in type II, and the 2D real
representations in types IX–XIV are the same as the
nontrivial parts in types III–VIII, respectively (see
Table I).

(ii) Type XV: a 3D real irrep, ½ρk↑P�r3, with jPkj ¼ jPj. k
must be TRS invariant; otherwise, the induced irrep
cannot be real.

(iii) TypeXVI: a 3D real irrep, ½ρk↑P�r3,with jPkj ¼ jPj=3.
k must be TRS invariant; otherwise, the induced irrep
cannot be real.

Dividing the O(3) representations into the 16 types
allows us to enumerate all the representations efficiently.
Additionally, it also automatically yields all the O(2)
representations (types I–VIII) and O(1) representations
(types I and II), which, according to Sec. II A, classify
the SSGs with coplanar and collinear magnetic structures,
respectively.
Note that two different complex irreps may induce the

same real representation. Consider a complex irrep ρk at k;
its complex conjugation ρ�k must be an irrep at −k, denoted
as ρ0−k. Hence, there must be ½ρk↑P�c1 ⊕ ½ρ�k↑P�c1 ¼
½ρ0−k↑P�c1 ⊕ ½ρ0�−k↑P�c1. To avoid this redundancy, we limit
k of ρk, from which the OðNÞ representations are induced,
in the irreducible BZ.

C. Example: SSGs in the parent space group P3

To demonstrate how we obtain all OðNÞ (N ¼ 1, 2, 3)
representations of a space group and how they classify
all the collinear, coplanar, and noncoplanar SSGs, we
use magnetic structures with the parent space group P3
(No. 143) as examples. After obtaining these SSGs, we
clarify the SSG and magnetic unit cells in SSGs and
their relationship with the momenta of OðNÞ represen-
tations. The group P3 is generated by a threefold
rotation C3z ¼ f3001j0g and lattice translations. It pos-
sesses a hexagonal prism BZ. As explained at the
beginning of the last subsection, to obtain all OðNÞ
(N ≤ 3) representations, we need only to consider
TRS-invariant k’s with jPkj¼jPj;jPj=2;jPj=3 and non-
TRS-invariant k’s with Pk ¼ P. Such momenta in the
irreducible BZ include Γ (0, 0, 0), A ð0; 0; πÞ, M ðπ; 0; 0Þ,
L ðπ; 0; πÞ, DT ð0; 0; uπÞ, and P ð2π=3; 2π=3; vπÞ, where
the component forms are given on the basis of the
reciprocal lattice vectors of P3. DT and P are high-
symmetry lines parametrized by the continuous variables
u and v, respectively [55].
The little groups of Γ, A, DT, and P equal the space

group, since they are invariant under the C3z rotation. There
are three inequivalent 1D little group irreps on each of
them, labeled by S1, S2, and S3 (S ¼ GM, A, DT, P;
hereafter, GM means Γ). The explicit representation matri-
ces are given as

DS1ðC3zÞ¼1; DS2ðC3zÞ¼eið2π=3Þ; DS3ðC3zÞ¼e−ið2π=3Þ:

ð10Þ

For all the irreps S1, S2, and S3, the representation matrix
for translation f1jm1; m2; m3g is eiðk1m1þk2m2þk3m3Þ, where
ðk1; k2; k3Þ is the momentum of the irrep written on the
basis of the reciprocal lattice and ðm1; m2; m3Þ is an integer-
valued vector written on the basis of lattice vectors. The
little group of M or L is the translation subgroup of P3.
Therefore, jPM;Lj ¼ jPj=3. PM;L has only one 1D irrep
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(M1, L1) on each of them, where the translation
f1jm1; m2; m3g is represented by eiðk1m1þk2m2þk3m3Þ.

1. O(1) representations and collinear SSGs

We construct O(1) representations to classify collinear
SSGs. As discussed in Sec. II B, collinear SSGs are
categorized under the first two of the total 16 SSG types.
The type-I collinear SSG is described by the 1D identity
representation (GM1). Hence, the collinear magnetic
moments SðriÞ’s are invariant under any spatial operation
without spin operations, as exampled in Fig. 3(a). This
SSG is named L143.1.1 GM1, where “L” stands for
collinear, “143” is the parent space group index, the first
“1” represents type I, the second “1” is the index of SSG
for a given parent space group and type, and “GM1”
represents the little group irrep from which the O(1)
representation is induced (refer to Sec. II F for the
detailed naming convention of SSGs). Notably, although

magnetic moments in Fig. 3(a) align collinearly along
the x axis, rotating them simultaneously to a different
direction n does not alter the SSG symmetry. On the
contrary, the MSG of a structure depends on the specific
orientation of SðriÞ’s. In an MSG, a C3z rotation
necessitates 2π=3-spin rotation Uzð2π=3Þ along the z
direction or its combination with time reversal T. The
latter implies the existence of ðC3zTÞ3 ¼ T, which is
impossible in the presence of nonzero magnetic
moments; and the former also does not preserve the
magnetic structure invariant [Fig. 3(b2)]. The type-II
SSGs are described by a nontrivial real irrep ½ρk↑P�r1,
where k is TRS invariant and Pk ¼ P. The space group
P3 has only one nontrivial 1D real irrep—½A1↑P�r1.
Therefore, only one type-II SSG, named L143.2.1 A1,
exists for the space group [Fig. 3(c)]. The 1D real irrep
implies that collinear magnetic moments SðriÞ’s change
sign under the translation fIj0; 0; 1g.

FIG. 3. (a),(c) Collinear and (d)–(k) coplanar magnetic structures for all distinct SSGs whose parent space group is P3 (No. 143). The
notations of SSGs, which consist of one prefix letter, three indices, and O(3) representations of the space group (see Sec. II F), are
labeled at the top of each subfigure. Atoms in different Wyckoff positions are depicted with different colors. The golden atoms occupy
Wyckoff position 1a [ð0; 0; zÞ with z ¼ 0]; the light-blue atoms occupy Wyckoff position 1b [ð1=3; 2=3; zÞ with z ¼ 0]; the dark-purple
atoms occupy Wyckoff position 1c [ð2=3; 1=3; zÞ with z ¼ 0]; the gray atoms occupy Wyckoff position 3d [ðx; y; zÞ; ð−y; x − y; zÞ;
ð−xþ y;−x; zÞ with y ¼ z ¼ 0]. (b) The comparison between 2π=3 rotation in SSG and MSG. (a) Collinear magnetic moments SðriÞ’s
remain invariant under all spatial operations. (c) Collinear SðriÞ’s change sign under f1j001g. (d) Coplanar SðriÞ’s remain invariant
under all spatial operations. (e) The SSG 143.2.1 A1 is given by the O(2) representation ½GM1↑P�r1 ⊕ ½A1↑P�r1, while the trivial irrep
½GM1↑P�r1 is omitted in its notation. Irrep ½GM1↑P�r1 implies that one component (e.g., x) of coplanar SðriÞ’s is invariant under all
operations. Irrep ½A1↑P�r1 implies that the other component (e.g., y) changes sign under fIj001g. (f) Two irreps ½A1↑P�r1’s imply that
both components of coplanar SðriÞ’s change sign under f1j001g. (g) Coplanar SðriÞ’s are rotated by 2π=3 [(g1) and (g2)] or −2π=3 [(g3)
and (g4)] under C3z rotation. (h) Coplanar SðriÞ’s are rotated by 2π=3 under C3z and change sign under f1j001g. (i)–(k) Spiral magnetic
structures. (i) Coplanar SðriÞ’s are invariant under C3z and are rotated by uπ (u ¼ 2=3) under f1j001g. (j) Coplanar SðriÞ’s are rotated by
2π=3 under C3z and are rotated by uπ (u ¼ 2=3) under f1j001g. (k) Coplanar SðriÞ’s are invariant under C3z and are rotated by 2π=3,
2π=3, and vπ (v ¼ 1) under the translations f1j100g, f1j010g, and f1j001g, respectively. These crystal structures and subsequent
structures are illustrated by using the VESTA software [56].
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2. O(2) representations and coplanar SSGs

We consider O(2) representations and coplanar SSGs.
These SSGs are categorized within the first eight types in
Table I. The type-I and type-II O(2) representations are
given by the direct sum of an identity irrep combined with
type-I and type-II O(1) representations, respectively. Thus,
P3 has one type-I coplanar SSG, P143.1.1 GM1 [Fig. 3(d)],
and one type-II coplanar SSG, P143.2.1 A1 [Fig. 3(e)].
Here, “P” represents coplanar, with the rest of the naming
convention similar to that of collinear SSGs. Note that
the O(2) representation A1 ⊕ 1 characterizes the SSG
P143.2.1, but the trivial irrep 1 is omitted in the notation
(also refer to Sec. II F). Type-III SSGs are given by
½ρk↑P�r1 ⊕ ½ρ0k0↑P�r1. Given that P3 possesses only a single
1D nontrivial real irrep, there is only one type-III SSG—
N143.3.1 A1 ⊕ A1 [Fig. 3(f)]—given by the direct sum of
two A1’s. Refer to the caption of Fig. 3 for the descriptions
of these SSG symmetries that are determined by the
corresponding representations.
Type-IV SSGs are described by a direct sum of a complex

irrep ½ρk↑P�c1 and its complex conjugation ½ρ�k↑P�c1, where
Pk ¼ P and k is TRS invariant. Only GM and A satisfy
the requirements of type IV. Irreps GM2 and GM3 form
a complex conjugate pair, giving the SSG P143.4.1
GM2GM3. Irreps A2 and A3 form another complex con-
jugation pair, giving another SSG P143.4.2 A2A3. Let us
first look at P143.4.1 GM2GM3. The representation matrix
of C3z given by GM2 ⊕ GM3 is equivalent to the real
rotation matrix  

cosð2π
3
Þ −ζ sinð2π

3
Þ

ζ sinð2π
3
Þ cosð2π

3
Þ

!
; ð11Þ

where ζ being either 1 or −1 indicates that the coplanar
magnetic moments are rotated by 2π=3 [Fig. 3(g1)] and
−2π=3 [Fig. 3(g3)] under the C3z rotation, respectively. A
magnetic structure satisfying the rotation matrix with ζ ¼ 1
is also (equivalently) described by the conventional magnetic
space group [Fig. 3(g2)], whereas a magnetic structure
satisfying the rotation matrix with ζ ¼ −1 can be described
only by the SSG [Fig. 3(g4)]. The ζ ¼ �1 configurations
belong to the same SSG, because, in the absence of SOC,
we can adopt different spin coordinates irrespective of the
real space coordinate, and the two configurations are
continuously connected to each other under a spin coor-
dinate transformation. For example, consider a continuous
rotation around the x axis e−iθŜx as the spin coordinate
transformation.When θ changes continuously and reaches π,
the anticlockwise structure in the x, y spin plane (ζ ¼ −1)
will be transformed into a clockwise structure (ζ ¼ þ1).
Notably, besides the �2π=3 rotation around the z axis, this
SSG can describe cases with the �2π=3 rotation around a
generic axis n. Figure 3(h) shows the other type-IV SSG
N143.4.2 A2A3 and describes its symmetry.

The type-V SSGs are also constructed from ½ρk↑P�c1 ⊕
½ρ�k↑P�c1 as in type IV, except that k is now not an HSP.
Pk ¼ P is satisfied by those k’s on DT and P. Let us
consider k ¼ ð0; 0; uπÞ on the line DT and its irrep DTi
(i ¼ 1, 2, 3). The complex conjugate of DTi is a complex
irrep with momentum at the other point ð0; 0;−uπÞ on the
line DT. To emphasize that these two irreps have different
momenta on the same line, we follow the convention in
Bilbao Crystallographic Server [54] and denote the com-
plex conjugate of DTi as DUi and the real representation
constructed from DTi and DUi as DTiDUi. Although
DTiDUi from different momenta (different u) on the line
DT represent inequivalent representations, we classify them
as the same SSG, as they describe the same kind of
magnetic structures (see the discussion in Sec. II B).
Similarly, the complex conjugate of irrep Pi (i ¼ 1, 2, 3)
on the P line is denoted as PCi, and their direct sum is
referred to as PiPCi. In the following, we will explain
DTiDUi (i ¼ 1, 2, 3) and PiPCi (i ¼ 1, 2, 3) and
demonstrate that some of these six describe the same SSG;
some are transformed into one another under a change of
the coordinate system. First, let us examine the represen-
tations DTiDUi on the line DT. If the momentum of DTi
(i ¼ 1, 2, 3) is ð0; 0; uπÞ (juj ≤ 1), the representation
matrices of translation fIj0; 0; 1g for DTiDUiðuÞ are the
same for different i and equivalent to the rotation matrix

DDTiDUiðuÞðfIj0;0;1gÞ¼
�

cosðuπÞ −ζsinðuπÞ
ζsinðuπÞ cosðuπÞ

�
; ð12Þ

where ζ ¼ �1. The representation matrices of C3z for
DTiDUiðuÞ with different i are given by

DDT1DU1ðuÞðC3zÞ ¼
�
1 0

0 1

�
;

DDT2DU2ðuÞðC3zÞ ¼
 

cosð2π
3
Þ −ζ sinð2π

3
Þ

ζ sinð2π
3
Þ cosð2π

3
Þ

!
;

DDT3DU3ðuÞðC3zÞ ¼
 

cosð2π
3
Þ ζ sinð2π

3
Þ

−ζ sinð2π
3
Þ cosð2π

3
Þ

!
; ð13Þ

respectively. Notice that, for a given DTiDUi representa-
tion, the ζ’s in Eqs. (12) and (13) must be the same, because
the representation matrices of translation and rotation are
transformed from the two 1D complex irreps by the same
unitary matrix. The first type-V SSG is N143.5.1 DT1DU1
[see the structure and symmetry in Fig. 3(i)]. As discussed
in the type-IV SSG, the two configurations from ζ ¼ �1
should belong to the same SSG. Additionally, it is worth
noting that different u gives only a different spiral angle in
the magnetic structure in Fig. 3(i), and the other features of
the structure are exactly the same for different u. This let us
regard that different u’s on the line DT give the same SSG.
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Next, let us consider DT2DU2 and DT3DU3. For DT2 at
k ¼ ð0; 0; uπÞ and ζ ¼ �1 in Eqs. (12) and (13), DT2DU2
describes a magnetic structure where two components
(e.g., x, y) of the magnetic moments are rotated by
�2π=3 under C3z and rotated by �uπ under f1j0; 0; 1g,
respectively [see Fig. 3(j)]. Meanwhile, for DT3 at
k ¼ ð0; 0;−uπÞ and ζ ¼ ∓1 in Eqs. (12) and (13),
DT3DU3 give the same representation matrices. It seems
that DT2DU2 and DT3DU3 are the same representation.
However, given that we consider only ρk in the irreducible
BZ, DT2DU2 and DT3DU3 are still inequivalent repre-
sentations, because DT2DU2 induced from u∈ ð0; 1Þ
(within the irreducible BZ) is equivalent only to
DT3DU3 induced from u∈ ð−1; 0Þ (outside the irreducible
BZ). Nevertheless, the two representations are continuously
connected as u approaches zero. Physically, if the spin axes
are properly chosen, DT2DU2 (ζ ¼ 1) and DT3DU3
(ζ ¼ −1) describe similar magnetic structures with spiral
angles uπ ∈ ð0; πÞ and uπ ∈ ðπ; 2πÞ, respectively. In this
work, we identify them as in the same class, as the spiral
angles can continuously change. Such equivalences are
systematically addressed in Sec. II D. We name the SSG as
P143.5.2 DT2DU2.
Lastly, we consider irreps Pi (i ¼ 1, 2, 3) from the

momentum k ¼ ð2π=3; 2π=3; vπÞ and their complex con-
jugations PCi. For each PiPCi representation, the coplanar
magnetic moments are rotated by 2π=3, 2π=3, and vπ under
the translations f1j1; 0; 0g, f1j0; 1; 0g, and f1j0; 0; 1g,
respectively. Note that the choice of rotating SðriÞ’s in
either an anticlockwise or clockwise direction is arbitrary,
as discussed around Eqs. (11) and (12). Here, we choose to
rotate them in the anticlockwise direction without loss
of generality. PiPCi (i ¼ 1, 2, 3) also requires that SðriÞ’s
are rotated by ði − 1Þ2π=3 under the C3z rotation around
the origin. Although the rotation angles are different for
different i, magnetic structures for PiPCi (i ¼ 1, 2, 3) are
indeed equivalent; they are transformed to each other by
shifts of the origin. To be concrete, let us begin with a
magnetic structure for P1PC1 [Fig. 3(k)], where the
magnetic moments are invariant under C3z around the
golden point in Fig. 3(k). By shifting the origin to the blue
(black) point in Fig. 3(k), one can see that the magnetic
moments in the same magnetic structure are rotated by
2π=3 (−2π=3) under C3z around the new origin. Therefore,
all PiPCi representations (i ¼ 1, 2, 3) describe the same
SSG, and we name it N143.5.3 P1PC1. The equivalence
among PiPCi representations can be shown by trans-
formations of representations associated with the lattice
coordinate transformation, which are systematically
discussed in Sec. II D. For P3, the type-VI SSG does
not exist; Pk ¼ P at TRS-invariant k requires that k must
be Γ or A, while these two points do not have 2D irreps.
Type-VII and -VIII SSGs do not exist for the parent
space group P3 either, because there is no k with
jPkj ¼ jPj=2.

3. O(3) representations and noncoplanar SSGs

We construct O(3) representations that classify non-
coplanar SSGs. An O(3) representation of types I–VIII
consists of an O(2) representation in the same type and a
trivial irrep. Figures 4(a)–4(h) show magnetic structures
conforming to these SSGs, sharing the same number of
coplanar SSGs. The O(2) representation indicates that two
components (e.g., x and y) of the magnetic moments
transform as those in coplanar SSGs, while the trivial irrep
indicates that the remaining component (e.g., z) is invariant
under all spatial operations. Type IX–XIV SSGs are
described by direct sums of a nontrivial 1D real irrep and
a 2D nontrivial real representation. Here, the 1D real irreps
are the same as those in type II, and the 2D real representa-
tions are the same as those in types III–VIII, respectively.
Having only type III–V SSGs, P3 has only type IX, X, and
XI SSGs. Since P3 possesses only one nontrivial 1D real
irrep A1, there exists a one-to-one correspondence between
SSGs of types IX–XI [Figs. 4(i)–4(n)] and SSGs of types
III–V [Figs. 4(c)–4(h)]. The additional A1 representation in
type IX–XI SSGs makes one component (e.g., z) of the
magnetic moments change sign under a lattice translation
along the z axis, whereas the other two components (e.g., x
and y) transform identically as those in type III–V SSGs
discussed so far.
Type-XV SSGs, characterized by ½ρk↑P�r3 with jPkj ¼

jPj and k being TRS invariant, do not exist for P3. Two
TRS-invariant k points, A and Γ, satisfy jPkj ¼ jPj, but
neither of them possesses a 3D irrep.
Type-XVI SSGs are characterized by a 3D real irrep

½ρk↑P�r3 with jPkj ¼ jPj=3 and TRS-invariant k. M and L
satisfy the requirements, and each possesses only one irrep.
Hence, P3 has only two type-XVI SSGs, namely,
N143.16.1 M1 [Fig. 4(o)] and N143.16.2 L1 [Fig. 4(p)].
For the SSGs N143.16.1 M1 and N143.16.2 L1, the
O(3) representation matrices of the lattice translation
f1jm1; m2; m3g are given by

diagðð−1Þm1 ; ð−1Þm2 ; ð−1Þm1þm2Þ ð14Þ
and

diagðð−1Þm1þm3 ; ð−1Þm2þm3 ; ð−1Þm1þm2þm3Þ; ð15Þ
respectively. Here, the basis of the O(3) matrices is
composed of three inequivalent TRS-invariant points.
For N143.16.1 M1, the points are ðπ; 0; 0Þ, ð0; π; 0Þ, and
ðπ; π; 0Þ, while for N143.16.2 L1, they are ðπ; 0; πÞ,
ð0; π; πÞ, and ðπ; π; πÞ. The O(3) representation matrix of
the C3z rotation is given by the same matrix for N143.16.1
M1 and N143.16.2 L1:0B@ 0 1 0

0 0 1

1 0 0

1CA: ð16Þ

XIAO, ZHAO, LI, SHINDOU, and SONG PHYS. REV. X 14, 031037 (2024)

031037-10



For the magnetic structure with SSG N143.16.1 M1, the
magnetic moments are rotated by 2π=3 along the 111
direction [Eq. (16)] under the C3z rotation and are rotated
by π along the y and x directions [Eq. (14)] under
f1j1; 0; 0g and f1j0; 1; 0g, respectively. Therefore, the
spin operations in this SSG constitute the chiral tetrahedral
group T. Required by the symmetries, the magnetic
moment at the C3z-invariant origin aligns with the rotation
axes of 2π=3-spin rotation (i.e., 111 direction). Under
f1j1; 0; 0g, f1j0; 1; 0g, and f1j1; 1; 0g, this magnetic
moment is transformed into different directions. Thus, in
the magnetic unit cell, four distinct magnetic moments
exist, presented by different colors in Fig. 4(o). Notably, the
magnetic moments point to the four vertexes of a tetrahe-
dron [Fig. 4(o)], manifesting the tetrahedral group structure
of spin operations. For SSG N143.16.2 L1, the magnetic
structure on the z ¼ 0 plane is identical to those for SSG

N143.16.1 M1 [Fig. 4(p)]. However, these magnetic
moments are reversed under f1j0; 0; 1g. Thus, the spin
operations in this SSG constitute the achiral tetrahedral
group Td. We also note that SSG N143.16.1 M1 possesses
an interesting property: There exist two anticommuting
translation operations for the electronic Hamiltonian
described by this SSG (see Sec. III C).
Magnetic structures presented in Figs. 3 and 4 are merely

examples illustrating the SSGs. For collinear magnetic
structures [Figs. 3(a) and 3(c)], we choose magnetic
moments SðriÞ’s aligned along the x direction. For coplanar
magnetic structures [Figs. 3(d)–3(k)], we choose SðriÞ’s
aligned within the x, y plane. For noncoplanar magnetic
structures in Figs. 4(a)–4(h), we choose the z component of
SðriÞ’s to be transformed according to the 1D identity irrep;
for those in Figs. 4(i)–4(n), we choose the z component
to be transformed according to the 1D nontrivial real irrep.

FIG. 4. Noncoplanar magnetic structures for all distinct SSGs whose parent space group is P3 (No. 143). The notations of SSGs,
which consist of one prefix letter, three indices, and O(3) representations of the space group (see Sec. II F), are labeled at the top of
each subfigure. Atoms in different Wyckoff positions are depicted with different colors, with the same rule as Fig. 3. (f)–(h) and
(l)–(n) display spiral magnetic structures, with (f) and (g) having k on line DT chosen as ð0; 0; 2π=3Þ, (l) and (m) having k on line DT
chosen as ð0; 0; π=2Þ, and (h) and (n) having k on line P chosen as ð2π=3; 2π=3; πÞ. (h),(n) The coordinates of the black and blue points
are ð2=3; 1=3; 0Þ and ð1=3; 2=3; 0Þ, respectively.
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The particular choice of the spin orientation and the spin
coordinate system is only for the sake of clarity in the
illustration. The same SSGs still apply if all the magnetic
moments are simultaneously rotated by an arbitrary O(3)
matrix O, as we discuss for the SSG N143.4.1 GM2GM3.

4. SSG unit cell and magnetic unit cell

The SSG unit cell of an SSG G refers to the unit cell of its
parent space group P and is associated with the translation
subgroup T ¼ ff1jvggjRg ¼ 1; g∈Gg of P. In Figs. 3
and 4, the smaller cells enclosed by the solid black line
are the SSG unit cells. The magnetic unit cell, also known
as magnetic supercell, is associated with the pure trans-
lation subgroup TM, given as

TM ¼ ffIj1jvgjfIj1jvg∈Gg: ð17Þ

Here, the subscript “M” denotes MSG, because TM is also a
subgroup of an MSG.
The magnetic unit cell and TM are uniquely determined

by the momenta of the OðNÞ representation. For a
noncoplanar SSG, the O(3) representation matrix of the
translation f1jvg∈T is equivalent to the matrix Ov ¼
diagðeik1·v; eik2·v; eik3·vÞ up to a unitary transformation,
where ki’s (i ¼ 1, 2, 3) are the momenta of the O(3)
representation. Note that eiki·v’s either are all real or consist
of a conjugate pair and a real number, required by Ov

being equivalent to an O(3) matrix. All f1jvg∈T such that
Ov ¼ I constitute TM.
Let us consider the SSG N143.5.1 DT1DU1 [see

Fig. 4(f)] as an example. The SSG is given by the direct
sum of a complex irrep DT1, its complex conjugate DU1,
and an identity irrep, the momenta of which are ð0; 0; uπÞ
with u ∉ Z, ð0; 0;−uπÞ, and 0, respectively. Thus, the
representation matrix Ov for f1jvg with v ¼P3

i¼1miai
(mi ∈Z) is equivalent to diagðeiuπm3 ; e−iuπm3 ; 1Þ. The con-
dition Ov ¼ I requires that 1

2
um3 ∈Z and have no con-

straints on m1 and m2. For the structure in Fig. 4(f),
u ¼ 2=3, and, hence, m3 is required to be a multiple of 3.
The lattice vectors of the magnetic unit cell are a1, a2, and
3a2, which is 3 times as large as the SSG unit cell. For more
generic u, if 1

2
u is a rational number p=q with p and q

coprime integers, the magnetic unit cell is q times as large
as the SSG unit cell. If 1

2
u is irrational, only m3 ¼ 0 satisfy

the requirement. An irrational u corresponds to the incom-
mensurate magnetic structure, where the size of the
magnetic unit cell is infinite. As also discussed earlier in
this section, although the size of a magnetic unit cell
depends on u, DT1DU1 with different u corresponds to the
same SSG in our classification. The magnetic unit cell in
generic noncoplanar SSGs can be determined similarly,
and, for coplanar and collinear SSGs, Ov should be a 2 × 2
or 1 × 1 identity matrix, respectively.

The magnetic moments in the equivalent positions of
two different SSG unit cells are not necessarily identical.
The magnetic moment Sðri þ vÞ at position ri þ v

(f1jvg∈TM) satisfies that Sðri þ vÞ ¼ UOvU−1SðriÞ,
where U is a unitary matrix transforming the diagonal
matrix Ov to an O(3) matrix. Thus, the momenta of OðNÞ
representations give the magnetic propagation vectors.
The OðNÞ representations with multiple nonzero momenta
correspond to SSGs describing the multiple-Q structure.
For example, the SSG N143.5.1 DT1DU1 has two opposite
propagation vectors ð0; 0;�uπÞ. Besides these two vectors,
the third propagation vector of the SSG N143.11.1 A1 ⊕
DT1DU1 is ð0; 0; πÞ.

D. Equivalence in spin space groups

In the last subsection, we have often seen that some
inequivalent OðNÞ (N ¼ 3, 2, 1) representations corre-
spond to the physically same SSG. In this subsection, we
introduce the concept of OðNÞ representation class, which
defines the physically distinct SSGs uniquely and in a
mutually exclusive way. Two OðNÞ representations are
categorized into the same class if and only if they satisfy
one of the following three conditions: (i) They are equiv-
alent representations; (ii) they change into each other upon
a coordinate transformation in real space; (iii) they are
induced from momenta that share the same little group, and
they are continuously connected. In the following, we
explain these conditions in detail.

(i) Coordinate transformation in spin space.—Equiv-
alent OðNÞ representations are in the same class.
This equivalence arises from the freedom of the spin
coordinates; in the SSG, spin rotation and rotation in
real space are decoupled. To be more specific, two
OðNÞ representations, ρ and σ, of the parent space
group P are equivalent, if the representation matrices
of ρ and σ, DρðpÞ and DσðpÞ, are transformed to
each other by an orthogonal matrix O for any
elements p in the parent space group; DσðpÞ ¼
OTDρðpÞO, ∀ p∈P. This means that ρ and σ
correspond to the same spin operations in different
coordination of the spin axes.

(ii) Coordinate transformation in real space.—If an
OðNÞ representation ρ is transformed into another
σ upon allowable coordinate transformation in real
space, ρ and σ belong to the same OðNÞ represen-
tation class. A coordinate transformation fVjtg for a
space group P involves a change of the axes by a
matrix V and a shift of the origin by a vector t. An
allowable fVjtg generates an automorphism in the
space group P:

fRjvg → fVjtg−1fRjvgfVjtg∈P; ∀ fRjvg∈P:

ð18Þ
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The group structure is invariant under the allowable
transformation fVjtg. Especially, for R ¼ 1,
fVjtg−1f1jvgfVjtg ¼ f1jV−1vg∈P requires that
the Bravais lattice is invariant by fVjtg. The invari-
ance implies that, for lattice basis ai (i ¼ 1, 2, 3),
Vai can be expanded in terms of the lattice
basis with integer coefficients, Vai ¼

P
3
j¼1 ajMji

with a unimodular integer matrix M (Mij ∈Z and
detM ¼ �1). Here, M is the representation matrix
of V on the basis ai. We require that the chirality of
the unit cell is preserved by fVjtg, resulting in
detV ¼ 1. Thanks to the automorphism, an allow-
able fVjtg transforms an irrep ρ into another irrep σ
according to

DσðfRjvgÞ ¼ DρðfVjtgfRjvgfVjtg−1Þ: ð19Þ

The transformation of an OðNÞ representation
under fVjtg is fully determined by the transforma-
tions of each irrep that constitutes the OðNÞ repre-
sentation. Notably, the type of an OðNÞ
representation listed in Sec. II B is invariant under
an allowable transformation fVjtg. This is because
the type of the OðNÞ representation is determined
only by the order and fixed points of Pk and the TRS
invariance of k, all of which remain invariant under
an allowable transformation. Under the transforma-
tion fVjtg, the original little group Pk is transformed
into PV−1k ¼ fVjtg−1PkfVjtg, which is isomorphic
to Pk, and, hence, it has the same order and same
type of fixed-point region (pointlike, linelike, etc.).
Note also that if k is TRS invariant, V−1k must also
be TRS invariant. This is because V is represented
by a unimodular integer matrix on the basis of the
reciprocal lattice vectors as well as the lattice
vectors. Therefore, the transformed OðNÞ represen-
tation must have the same type as the original one.
Every space group generally has an infinite

number of allowable transformations, and the al-
lowable transformations form a group. Therefore,
we have only to consider the transformations of the
constituent irreps under the generators of the group.
For example, consider the parent space group P3. To
keep the hexagonal lattice of P3 unchanged, V must
be an element of the point group of the hexagonal
lattice,D6h. Given that V must be a proper operation
(detM ¼ 1), allowable V’s form the point groupD6.
The shift vector t is also subject to symmetry
constraints. For P3, the shifted origin must be C3z
invariant; allowable t must have the form of
ðm1; m2; zÞ, ðm1þ1=3;m2þ2=3;zÞ, or ðm1 þ 2=3;
m2 þ 1=3; zÞ with m1; m2 ∈Z and z∈R. In sum-
mary, the group formed by the allowable trans-
formations for P3 is generated by f6001j0g, f2100j0g,

f1j1=3; 2=3; 0g, f1j2=3; 1=3; 0g, and f1j0; 0; zg,
where rotations 6001 and 2100 are the generators of
the D6 group.

Let us next explain how all type-V O(3) repre-
sentations of P3, DTiDUi and PiPCi for i ¼ 1, 2, 3,
are transformed under the generators of allowable
coordinate transformations for P3. According to
Eq. (19), the momentum k of an irrep is transformed
to V−1k under fVjtg, while any V in the group
cannot transform the line DT to P or vice versa. This
shows that DTiDUi and PjPCj lead to distinct
representation classes, respectively. Section B in
Supplemental Material [36] shows that all coordi-
nate transformations leave DT1 invariant; f2100j0g
transforms C3z to C−1

3z and, hence, transforms irrep
DT2 into DT3 [Eq. (13)]. The transformation be-
tween DT2 and DT3 is consistent with the previous
discussion in Sec. II C; DT2DU2 and DT3DU3
represent the same magnetic structure under a
coordinate transformation and, hence, belong
to the same class (Sec. II C). (One should notice
that DT2DU2 and DT3DU3 are also subject to the
equivalence (iii), as explained in the second para-
graph below.) Section B in Supplemental Material
[36] also demonstrates that, under the action of
f1j2=3; 1=3; 0g ðf1j1=3; 2=3; 0gÞ, the irrep P1 is
transformed into P2 (P3). The transformation sug-
gests that P1PC1, P2PC2, and P3PC3 all lead to the
same SSG N143.5.3 P1PC1. In fact, the equivalence
among P1, P2, and P3 is also consistent with the
observation in the real space (Sec. II C).

(iii) Continuously connected wave vector.—The third
equivalence relation for the OðNÞ representation
classification applies to representations induced
from non-HSP k’s. Such OðNÞ representations in-
clude type-V O(3) and O(2) (½ρk↑P�c1 ⊕ ½ρ�k↑P�c1),
type-VIII O(3) and O(2) (½ρk↑G�r2), type-XI O(3)
(½ρk↑P�c1 ⊕ ½ρ�k↑P�c1 ⊕ ½ρ0p↑P�r1), and type-XIVO(3)
(½ρk↑G�r2 ⊕ ½ρ0p↑P�r1) representations. As k is not an
HSP, the fixed-point manifold of Pk has a dimension
larger than 0, and k is not TRS invariant. Consider
another momentum k0 within the same fixed-point
manifold and compare two OðNÞ representations
induced from k and k0. The third equivalence claims
that the two representations belong to the same
representation class if they can be continuously
deformed to each other by a continuous change of
the momentum between k and k0 in the manifold.
Notice that any O(1) representation is free from this
equivalence relation, because an O(1) representation
must always be induced from a TRS-invariant
momentum (an HSP). Without this equivalence
relation, the number of distinct SSGs (representation
classes) would be infinite; different momenta in the
BZ could define different SSGs. The equivalence
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relation is crucial for a complete classification
of SSGs.

We have seen two examples of the third equivalence
relation in Sec. II C, N143.5.1 DT1DU1 and N143.5.2
DT2DU2. Thereby, we considered that DT1DU1 induced
from different momenta on the line DT belong to the same
class and showed that all of them describe the same
magnetic spiral structure with different spiral angles. For
N143.5.2 DT2DU2, we found two different 2D real
representations—i.e., DT2DU2 and DT3DU3 defined after
Eq. (13)—and showed that they can be continuously
connected to each other, describing the same kind of
magnetic structure. (One should notice that DT2DU2
and DT3DU3 are also subject to the equivalence (ii), as
explained in the second paragraph above.) These observa-
tions justify the third equivalence relation.
The third equivalence becomes more intricate when

the parent space group is nonsymmorphic. To illustrate
this point, let us consider the parent space group P21
(No. 4), which is generated by lattice translations
f1j1; 0; 0g, f1j0; 1; 0g, f1j0; 0; 1g, and the screw rotation
f2010j0; 1=2; 0g. We consider irreps on the high-symmetry
line LD ð0; uπ; 0Þ ðu ∉ ZÞ. At every k ¼ ð0; uπ; 0Þ,
there exist two complex irreps LD1ðuÞ and LD2ðuÞ. The
representation matrices of translations and the screw are
DLD1ðuÞðf1jvgÞ ¼ DLD2ðuÞðfIjvgÞ ¼ eiπum2 and

DLD1ðuÞðf2010j0; 1=2; 0gÞ ¼ eiðπ=2Þu;

DLD2ðuÞðf2010j0; 1=2; 0gÞ ¼ eiðπ=2Þðuþ2Þ; ð20Þ

respectively. Here, v ¼ ðm1; m2; m3Þ∈Z3 is the translation
vector. Note that LD1ðuÞ and LD2ðuÞ are deformed to
each other as u increases by 2, so they are in the same
representation class according to the third equivalence
relation. Physically, this equivalence means that two
magnetic structures described by the two irreps (plus their
complex conjugations) can be deformed to each other by a
continuous change of the spiral wave vector. Section B in
Supplemental Material [36] provides more technical details
regarding the application of the third equivalence relation.

E. Summary of the full classification

As detailed in Sec. II B, for each parent space group, we
can construct all the OðNÞ (N ¼ 3, 2, 1) representations
from the irreps ρk, where the irreps ρk have been exhaus-
tively tabulated on the Bilbao Crystallographic Server [54].
Thanks to the third equivalence relation in Sec. II D, each
connected region in the BZ that shares the same little group
Pk, e.g., high-symmetry lines, planes, or the asymmetric
unit, is represented by one k in the region. Under the
modulo of the three types of equivalence relations in
Sec. II D, we obtain all the distinct SSGs. As summarized
in Table II, for N ¼ 3 (noncoplanar), 2 (coplanar), and 1
(collinear), we obtain 56 512, 9542, and 1421 SSGs,

respectively. We explicitly tabulate all the SSGs in
Sec. F in Supplemental Material [36].
It is worth noting that the number of collinear SSGs

(1421) equals the number of MSGs of types I, III, and IV.
As established in Sec. II A, we require the spin operations
in a qSSG G to be either time-reversal (T) or identity (I),
and, hence,G is exactly the same as a magnetic space group
of type I, III, or IV. The consistency in the number of
groups confirms the validity of our method based on the
representation theory.

F. Nomenclature of SSGs

We label an SSG with one letter and three indices:
αI :J :K. The prefix letter α ¼ L, P, N refers to collinear,
coplanar, and noncoplanar magnetic structures, respec-
tively, for the SSG. The SSG with these three kinds of
magnetic structures are defined by O(1), O(2), and O(3)
representations, respectively. The first index I , ranging
from 1 to 230, specifies the parent space group. The second
index J specifies the type of OðNÞ representations
(Table I). For N ¼ 1, 2, 3, J ranges from 1 to 2, 8, and
16, respectively. For a given parent space group and a given
OðNÞ type, the third index K specifies distinct OðNÞ
representation classes. For clarity, we always indicate the
constituent irreps of the OðNÞ representation after the third
index K. For examples, the type-I noncoplanar SSG given
by the identity representation [Fig. 4(a)] with the parent
space group P3 (No. 143) is named N143.1.1 GM1, where
GM1 refers to the identity representation; the type-III
noncoplanar SSG given by the O(3) representation A1 ⊕
A1 ⊕ 1 [Fig. 4(c)] is named N143.3.1 A1 ⊕ A1, where the
identity irrep (⊕ 1) is omitted for simplicity. In the
nomenclature, the identity irrep is always omitted except
for the type-I SSGs. To avoid ambiguity, if several
inequivalent OðNÞ representations correspond to the same

TABLE II. The numbers of SSGs for collinear, coplanar, and
noncoplanar magnetic structures. The table also shows the statistics
of SSGs according to the type of momenta k whose irreps ρk
constitute the OðNÞ representations (N¼1, 2, 3). “(0, 0, 0)”means
that the representations are induced from irreps at the origin of the
BZ. In the corresponding SSGs, translation operations are always
accompanied with the identity spin operation. “HSP” means that
the representations are induced by high-symmetry points (HSPs),
some of which are not the origin of the BZ. The corresponding
SSGs describe commensurate magnetic structures. “Non-HSP”
means that the representations consist of irreps induced by non-
HSP momenta. The corresponding SSGs can describe incommen-
surate magnetic structures.

Type of momenta k Collinear Coplanar Noncoplanar

(0, 0, 0) 904 3019 8505
HSP 517 5748 40262
Non-HSP � � � 775 7745

Total 1421 9542 56512
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SSG, we consistently choose one of them, where the
explicit choice for each SSG can be found in Sec. F in
Supplemental Material [36]. For example, the type-V SSG
shown in Fig. 4(h) is always named as N143.5.3 P1PC1 but
not N143.5.3 PiPCi (i ¼ 2, 3), though these representa-
tions can be transformed into each other under a coordinate
transformation in real space.
It should be emphasized that SSGs with the same indices

I :J :K but different prefixes α are different. For instance,
the SSG N143.2.1 A1 characterizes noncoplanar magnetic
structures [Fig. 4(b)], where the spin rotations assigned to
the spatial operations are given by the O(3) representation
A1 ⊕ 1 ⊕ 1. On the contrary, the SSG P143.2.1 A1,
referred to as G, characterizes coplanar magnetic structures
[Fig. 3(e)] and has a nontrivial pure-spin-operation sub-
group S [Eq. (5)]. In its qSSG G ≃ G=S [Eq. (9)], spin
rotations assigned to the spatial operations are given by the
O(2) representation A1 ⊕ 1 that acts only in the x, y
subspace of the spin space.

III. ELECTRONIC BAND THEORY IN SSGs

In this section, we explore SSG applications to electronic
Hamiltonians. We demonstrate how symmetry algebra,
characterized by projective representations, impacts the
Bloch states. A generic mean-field electronic Hamiltonian
in a magnetic material with negligible SOC is given by

H ¼ p̂2

2m
σ0 þ VðrÞσ0 þ JSðrÞ · σ; ð21Þ

where SðrÞ is the magnetic moment density at r; σ ¼
ðσx; σy; σzÞ is the Pauli matrices for the spin-1=2 operator; J
is the coupling strength between them. The HamiltonianH
respects the symmetry of the SSG G, if VðrÞ and SðrÞ are
invariant under the SSG operations, i.e.,

VðrÞ¼VðfRjvg−1rÞ; SðrÞ¼ sðXÞUSðfRjvg−1rÞ; ð22Þ

for any fXUjRjvg∈G.

A. Projective representation

The symmetry operators acting on electronic states form
a projective representation of SSG. The adjoint represen-
tation of SU(2) group are given by SO(3) matrices:
Ûðd · σÞÛ−1 ¼ ðUdÞ · σ, where Û is the SU(2) matrix
corresponding to U. For a θ-rotation U along a direction
n, Û can be given by either e−iðθ=2Þn·σ or −e−iðθ=2Þn·σ. This
can be regarded as a one-to-two mapping betweenU and Û.
Similarly, one also has a mapping for the time-reversal
operation, X̂σX̂−1 ¼ sðXÞσ. Here, X̂ ¼ iσyK with K being
complex conjugate if X ¼ T and X̂ ¼ σ0 if X ¼ I. In terms
of Û and X̂ thus defined, a two-component fermion wave
function ψðrÞ ¼ ½ψ↑ðrÞ;ψ↓ðrÞ�T is transformed under
generic g ¼ fXgUgjRgjtgg∈G as

ðĝψÞðrÞ≡ X̂gÛgψðr0Þ; ð23Þ

where r0 ¼ R−1
g ðr − tgÞ and X̂g and Ûg are obtained from Xg

and Ug by the mapping, respectively. This action on the
wave functions verifies that ĝHĝ−1 is transformed accord-
ing to the right-hand sides of Eq. (22). As the mapping from
U to Û is one to two, we should specify an (arbitrarily
chosen) sign of ĝ≡ X̂gÛg for every g. One can verify that,
for g1g2 ¼ g3, we have

ĝ1ĝ2 ¼ ω2ðg1; g2Þĝ3; ð24Þ

where ω2ðg1; g2Þ is referred to as the factor system
of the projective representation. For example, if we
choose Ûgi ¼ e−iðθi=2Þni·σ for all g1;2;3, where ni and θi
are the rotation axis and angle of Ugi , respectively,
then ω2ðg1; g2Þ can be determined as
e−iðθ3=2Þn3·σeiðθ2=2Þn2·σeiðθ1=2Þn1·σX̂g3X̂

−1
g2 X̂

−1
g1 ¼ �1.

A different choice of the signs of Ûg yields an equivalent
factor system. In general, we can further assign an addi-
tional U(1) factor for each ĝ without changing the algebra
of the symmetry group. By a change of ĝi in Eq. (24) into
eiαi ĝi, the factor system transforms to

ω2ðg1; g2Þ → eiðα1þζα2−α3Þω2ðg1; g2Þ; ð25Þ

where ζ ¼ 1 (−1) if g1 is unitary (antiunitary). Two factor
systems related by such a U(1) gauge transformation
are considered to be equivalent. For each SSG, we can
determine its unique factor system based on the spin
operations ĝ≡ X̂gÛg and study the electronic band theory
under the determined factor system. On the other
hand, noncollinear SSGs are isomorphic to MSGs (see
Sec. III C), and two distinct SSGs isomorphic to the same
MSG M might realize its inequivalent factor systems.
In a conventional MSG, the SOC term being invariant

requires that Ug ≡ detðRgÞRg. Thus, ĝ’s also form a
projective representation of the parent space group, which
is usually referred to as the double magnetic space group.
A crucial feature of SSG is that the factor system can be
inequivalent to those of MSGs, because, in the absence of
SOC, Ug can be different from detðRgÞRg and, hence, give
different signs to ω2. In the following, we present an
example of ω2 that cannot be realized in MSGs.
Let us consider the SSG N143.16.1 M1 [Fig. 4(o)].

The transformation of the magnetic moments under
lattice translation f1jm1; m2; m3g is given by Eq. (14).
Specifically, the lattice translation t3 ¼ f1j0; 0; 1g is asso-
ciated with an identity spin operation, while t1 ¼
f1j1; 0; 0g, t2 ¼ f1j0; 1; 0g, and t12 ¼ f1j1; 1; 0g should
be accompanied by π spin rotation along the y, x, and z
directions, respectively. We can choose the corresponding
SU(2) spin rotation matrices of t1, t2, and t12 as Ût1 ¼ iσy,
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Ût2 ¼ iσx, and Ût12 ¼ iσz, respectively. Then, it is direct to
verify that

t̂1 t̂2 ¼ −t̂2t̂1 ¼ t̂12: ð26Þ

The translation operators t̂1;2 anticommute with each other
as if they were magnetic translations encompassing a
plaquette with π flux. As discussed in the next subsection,
such translation operators lead to a noncommuting BZ.
This feature is unique to SSG and can never be realized in
conventional space groups or MSGs.

B. Collinear SSGs

The representation theory of Bloch states in collinear
SSGs is simpler than that in generic noncollinear SSGs. We
show in this subsection that they are effectively described
by single-valued gray space groups. In our construction,
the spin operations in a collinear qSSG G are either I or T,
and operations with identity spin operation (I) form a
subgroup G0. For type-I SSGs that are described by the
identity representation of the parent space group P,
G ¼ G0, and a collinear SSG G satisfies that [Eq. (7)]

G ¼ G0 × ½SZT
2
⋉ SUð1Þ�: ð27Þ

For type-II SSGs that are described by nontrivial O(1)
representations of P, jG0j ¼ 1=2jGj, and G can be decom-
posed as [Eq. (7)]

G ¼ ðG0 þ hG0Þ × ½SZT
2
⋉ SUð1Þ�; ð28Þ

where h∈ ðG − G0Þ is a spatial operation accompanied by
T; SZT

2
is a Z2 group generated by TUxðπÞ; and SUð1Þ is the

continuous spin-rotation (along the z direction) group.
SUð1Þ allows the block diagonalization of the electronic
Hamiltonian H into spin-up (H↑) and spin-down (H↓)
sectors. In both types of collinear SSGs, the little group of
bothH↑ andH↓ is G0 × ½SZT

2
⋉ SUð1Þ�. The band structure

ofH↑ orH↓ is fully characterized by the discrete subgroup
G0 × SZT

2
, because the action of SUð1Þ on different states in

a given spin sector is the same and proportional to an
identity matrix. As G0 consists of only spatial operations
with identity spin operation, the factor system of G0 is
trivial, i.e., ω2ðg1; g2Þ ¼ 1 (∀ g1;2 ∈G0). SZT

2
is generated

by −iσxiσyK ¼ iσzK—a time-reversal operator (acting on
fermions) that squares to 1, and operations in G0 and SZT

2

commute. These imply that electronic bands in each spin
sector respect a single-valued gray groupG0 × SZT

2
as ifH↑

and H↓ were in a nonmagnetic material belonging to the
space group G0.
The SSG of a material uniquely determines whether its

electronic bands are spin split. In a type-I collinear SSG
[Eq. (27)], net spin polarization is allowed, and the spin

splitting is generally nonzero. In a type-II collinear SSG
[Eq. (28)], operations in hG0 × SZT

2
flip the spin. If hG0

contains an inversion operation combined with time reversal
(PT operation), this spin-flipping and momentum-preserv-
ing operation implies En↑ðkÞ ¼ En↓ðkÞ. Here, EnsðkÞ is the
nth energy band in the s-spin sector. If hG0 contains a
translation followed by time reversal, this spin-flipping and
momentum-flipping operation implies En↑ðkÞ¼En↓ð−kÞ¼
En↓ðkÞ, where the second equation is due to the SZT

2

symmetry. Therefore, spin splitting is forbidden at every
momentum for materials where the spin-up and spin-down
atoms are related by inversion or translation [25]. Other
types of spin-flipping operations—i.e., rotation, mirror,
screw, and glide—allow spin splittings at a generic momen-
tum. In Sec. III D, we discuss the symmetry of the spin
texture of electronic bands in more detail.

C. Noncollinear SSGs

Coplanar or noncoplanar SSGs do not have spin U(1)
symmetry, and, hence, it is necessary to analyze the
symmetries of the total Hamiltonian H. A coplanar SSG
G ¼ G × SZT

2
[Eq. (9)] is a discrete group. Here, G is the

unitary qSSG that is isomorphic to a space group, and SZT
2

[Eq. (5)] is a Z2 group generated by TUzðπÞ. Thus, it is
isomorphic to a gray space group (or type-II MSG). In a
noncoplanar SSG, each spatial operation corresponds to a
unique spin operation. Consequently, a noncoplanar SSG is
a discrete group and is isomorphic to a type-I, -III, or -IV
MSG, where antiunitary (unitary) operations in an SSG are
mapped to antiunitary (unitary) ones in the MSG. As
explained in Sec. III A, when the symmetry operations
g∈G act on the fermionic degrees of freedom, they form a
projective representation of G or, isomorphically, a projec-
tive representation of M. Thus, the algebra of the sym-
metry operators ĝ in a noncollinear SSG is fully
characterized by the factor system ω2 that belongs to the
second cohomology group

ω2 ∈H2½M;Uð1Þ�: ð29Þ

Enumerating all irreps ofMwith inequivalentω2’s that can
be realized by SSGs completes the representation theory of
SSGs, which is beyond the scope of the current work, and
we leave it for future studies.
In the following, we investigate a generalization of Bloch

states in noncollinear SSGs. Let us consider the unitary
translation subgroup TU of the SSG G:

TU ¼ ffUj1jvgjfUj1jvg∈G; detU ¼ 1g: ð30Þ

The generators of TU are joint operations of spin rotations
and translations:

ti ¼ fUti j1jaig ði ¼ 1; 2; 3Þ; ð31Þ
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where ai are primitive lattice vectors and Ui ∈SOð3Þ. It is
noteworthy that UtiUtj ¼ UtjUti , since both must equal
the spin rotation associated with the spatial translation
f1jai þ ajg, which is unique by definition. The corre-
sponding translation operators acting on fermion wave
functions can be written as

t̂i ¼ fÛti j1jaig ði ¼ 1; 2; 3Þ ð32Þ
with Ûti being the SU(2) representation matrix (with
an arbitrarily chosen sign as explained in Sec. III A)
of the SO(3) rotation Ui. As SU(2) is a double covering
of SO(3), even though Ûti Ûtj and Ûtj Ûti correspond to the
same SO(3) rotation, they may differ by a minus sign,
i.e., Ûti Ûtj ¼ ζÛtj Ûti with ζ ¼ �1. Therefore, in contrast
to ordinary MSGs, the translation generators t̂i in a
noncollinear SSG—when acting on fermions—do not
necessarily commute with each other. In general, there is
t̂it̂j ¼ ζt̂jt̂i, with ζ ¼ Ûti Ûtj Û

†
ti Û

†
tj .

1. Symmorphic and nonsymmorphic SBZ

When ½t̂i; t̂j� ¼ 0 (i, j ¼ 1, 2, 3), eigenstates ofH follow
the Bloch theorem—they are common eigenstates of H
and t̂1;2;3. To be specific, a common eigenstate jψðk̃Þi with
wave vector k̃ satisfies

t̂ijψðk̃Þi ¼ eik̃i jψðk̃Þi ði ¼ 1; 2; 3Þ; ð33Þ
where k̃ ¼ ð1=2πÞPi k̃ibi, k̃i ¼ k̃ · ai ∈ ½0; 2πÞ, and bi’s
are the reciprocal lattice vectors, with ai · bj ¼ 2πδij.
Hereafter, we refer to k̃ as the SSG momentum and refer
to jψðk̃Þi as the SSG Bloch state. The SSG momentum k̃
and SSG Bloch state jψðk̃Þi are different from crystal
momentum k and traditional Bloch state jψðkÞi. The latter
pair is defined as the common eigenstate and eigenvalues of
pure spatial translations [Eq. (17)]. Note that, to distinguish
SSG momentum k̃ from crystal momentum k, we adopt
different notations. If all t̂i’s are pure translations, SSG and
crystal momenta coincide; we use k to denote both. We
refer to the reciprocal space formed by the SSGmomenta as
the SSG Brillouin zone (SBZ) to distinguish it from the
magnetic BZ formed by the crystal momenta. SBZ is
expanded by bi (i ¼ 1, 2, 3), while the magnetic BZ is a
fraction of SBZ (see an example in the last of this
subsection) unless all t̂i’s are pure translations.
An SSG momentum k̃ may transform nonsymmorphi-

cally under SSG symmetry operations, i.e., ∄k̃∈SBZ that
is invariant under all the SSG symmetries, which is
crucially different from a crystal momentum k. To see
this, we consider the conjugate operation of t̂i ¼ fÛti j1jaig
under a generic SSG operation ĝ ¼ fX̂gÛgjRgjvgg:

ĝ−1 t̂iĝ ¼ ei2πq̃iðgÞ dg−1tig; ð34Þ

where q̃iðgÞ is determined by

Û−1
g X̂−1

g Ûti X̂gÛg ¼ ei2πq̃iðgÞÛR−1
g ai : ð35Þ

Here, ÛR−1
g ai denotes the SU(2) spin rotation matrix for

f1jR−1
g aig and should be chosen consistently with Ûti :

ÛR−1
g ai ¼

Q
3
i¼1 Û

mi
ti if R−1

g ai ¼
P

3
i miai. One can directly

verify that ĝjψðk̃Þi is an eigenstate of t̂i with the eigenvalue
eisg½Rgk̃·aiþq̃iðgÞ�, where sg ¼ 1 (−1) for unitary (antiunitary)
g. Hence, the SSG momentum k̃ is transformed into
sgðRgk̃þ q̃gÞ by ĝ, with q̃g ¼

P
i q̃iðgÞbi. In a generic

SSG with a nontrivial factor system, q̃g is not necessarily a
reciprocal lattice vector, where ĝ acts as a screw or glide
on the SSG momentum. On the other hand, 2q̃ must be a
reciprocal lattice vector, because Ûg are SU(2) matrices,
requiring ei2πq̃iðgÞ ¼ �1.
Because of an arbitrary choice of the origin of the SBZ, a

fractional q̃g does not necessarily mean the nonsymmorphic
action of g in the SBZ. Some fractional q̃g’s can be made to
zero or the reciprocal lattice vectors by a gauge trans-
formation of t̂i. Let us consider the gauge transformation
t̂i → ei2πθi t̂i that shifts the SSGmomentum k̃ to k̃0 ¼ k̃þ θ,
where θ ¼P3

i¼1 θibi. Owing to the flexibility in selecting
the origin, ei2πθi is not limited to �1 but can be a
generic U(1)-valued complex number. This extension
also facilitates the transformation process between SSG
momentum and crystal momentum (see the discussions
in the context of the band of CoSO4 in Sec. IV B).
The shifted SSG momentum k̃0 is transformed by ĝ into
sgRgðk̃0 − θÞ þ sgq̃g þ θ. Hence, the fractional momentum
transfer q̃g becomes q̃g þ sgθ − Rgθ in the shifted SBZ. If
there exists such a gauge θ satisfying

−sgθþ Rgθ≡ q̃g ∀ g∈G; ð36Þ

for all g∈G, all the transfer q̃g can be eliminated by the
gauge transformation. Here, the symbol “≡” means that
SSG momenta on the left-hand and right-hand sides differ
only by a reciprocal lattice vector. If there exists no such θ
that satisfies Eq. (36) for all g, the SBZ is nonsymmorphic.
For each SSG listed in Tables S1–S690 in Supplemental
Material [36], we identify whether its SBZ is symmorphic
or nonsymmorphic, using an automatic algorithm detailed
in Sec. C in Supplemental Material [36].
Here, we use two SSGs with the same parent space group

P1 (No. 2) to illustrate the symmorphic and nonsymmor-
phic SBZs, respectively. P1̄ is generated by translations
f1jaig (i ¼ 1, 2, 3), with ai being lattice vectors, and the
inversion f1̄j0g. Let us first consider a coplanar SSG,
P2.3.4 R1þ ⊕ R1−, which is induced from the even (R1þ)
and odd (R1−) irreps at the TRS-invariant momentum
R ðπ; π; πÞ. Following the argument in Sec. II C, we can

SPIN SPACE GROUPS: FULL CLASSIFICATION … PHYS. REV. X 14, 031037 (2024)

031037-17



obtain the generators of this SSG: translations
ti ¼ fUzðπÞj1jaig, the inversion P ¼ fUyðπÞj1̄j0g, and
an effective time reversal T ¼ fTUzðπÞjIj0g, which is
the generator of the pure-spin-operation group SZT

2
for

coplanar structures [Eq. (5)]. We can choose Ûti ¼ iσz,
X̂T ÛT ¼ iσxK, and ÛP ¼ iσy. Using Eq. (35), we find that
q̃T ¼ q̃P ¼ q̃PT ¼ 0, and, hence, its SBZ is symmorphic.
On the other hand, another coplanar SSG with P1̄,
P2.3.2GM1− ⊕ R1þ, gives an example of nonsymmorphic
SBZ. It is generated by ti ¼ fUxðπÞj1jaig, and the same P
and T as in P2.3.4 R1þ ⊕ R1−. We choose Ûti ¼ iσx,
X̂T ÛT ¼ iσxK, and ÛP ¼ iσy and find that q̃P ¼ 0 and
q̃T ¼ q̃PT ¼ 1

2
ðb1 þ b2 þ b3Þ in P2.3.2 GM1− ⊕ R1þ.

Although we can gauge eliminate q̃T by shifting the origin
of SBZ, the action of P̂ T̂ on SSGmomenta always induces
the fractional translation, irrespective of the choice of
origin. The SBZ of P2.3.2 GM1− ⊕ R1þ is, hence, non-
symmorphic. We compare the SBZs of the two SSGs in
Figs. 5(a) and 5(b). As shown in Fig. 5(b), in the non-
symmorphic SBZ, TRS-invariant and inversion-invariant
momenta do not coincide, and no momenta have the P̂ T̂
symmetry.
A nonsymmorphic SBZ generally leads to extra degen-

eracy of energy bands in the magnetic BZ. In the following,
we compare a description of electron bands by the SSG

momentum with the traditional description by the crystal
momentum. Crystal momentum is related to the pure-
translation subgroup TM of the SSG G [Eq. (17)]. TM is an
invariant subgroup of the SSG G and a subgroup of TU
[Eq. (30)]. Therefore, an SSG Bloch state defined in
Eq. (33) is also a common eigenstate of operations in
TM. In SSGs with nonsymmorphic SBZ, jTMj is a fraction
of jTUj. This implies that the first BZ for the crystal
momentum is smaller than that for the SSG momentum
(SBZ). The energy bands in the first BZ can be obtained by
folding those in the SBZ. To be concrete, let us consider the
example of P2.3.2GM1− ⊕ R1þ. TM of this SSG can be
generated by fIj1jaMig (i ¼ 1, 2, 3) with aM1 ¼ a1 − a2,
aM2 ¼ a1 þ a2, and aM3 ¼ a2 þ a3, because ½UxðπÞ�2 ¼ 1.
Their reciprocal lattice vectors are given as bM1 ¼
1
2
ðb1 − b2 þ b3Þ, bM2 ¼ 1

2
ðb1 þ b2 − b3Þ, and bM3 ¼ b3.

The volume enclosed by bMi’s is half of that enclosed
by bi’s. As shown before, P̂ T̂ in this SSG transforms an
SSG momentum k̃ to k̃þ q̃PT , indicating that the two
corresponding SSG Bloch states share the same energy.
Meanwhile, q̃PT ¼ bM2 þ bM3. Thus, if we fold the SBZ to
the first BZ, these two SSG momenta are considered
equivalent [Fig. 5(c)], and the energy bands shown in
the magnetic BZ are at least double degenerate at
every momentum. A similar analysis can be successfully
applied to explanations of extra degeneracy in the energy
bands of CuSO4 obtained from the first-principle calcu-
lation (see Sec. IV B).

2. Noncommuting SBZ

Suppose that the electronic Hamiltonian H respects
both t̂1;2, while t̂1 and t̂2 anticommute: ft̂1; t̂2g ¼ 0.
Then, eigenstates of H cannot be labeled by eigenvalues
of t̂1;2 simultaneously, because t̂1 and t̂2 do not share a
common set of eigenstates. In this case, the SBZ possesses
a noncommuting nature (noncommuting SBZ). In this
section, we use SSG N143.16.1 M1 [Fig. 4(o)] as an
example to demonstrate several exotic features of the
noncommuting SBZ.
As discussed in Sec. III A, in SSG N143.16.1 M1,

ft̂1; t̂2g ¼ 0 and ½t̂1;2; t̂3� ¼ 0. We can define SSG Bloch
states in terms of the eigenvalues of the commuting
operators t̂1, t̂22, and t̂3 and introduce a folded SBZ spanned
by b1, 1

2
b2, and b3. The SSG Bloch state satisfies

t̂1;3jψðk̃Þi ¼ eik̃1;3 jψðk̃Þi; t̂22jψðk̃Þi ¼ eik̃2 jψðk̃Þi; ð37Þ

where k̃¼ 1
2πðk̃1b1þ k̃2 12b2þ k̃3b3Þ, with k̃1;3 ¼ k̃ · a1;3 ∈

½0; 2πÞ and k̃2 ¼ 2k̃ · a2 ∈ ½0; 2πÞ. The anticommutation
ft̂1; t̂2g ¼ 0 implies extra degeneracy in the folded SBZ.
Suppose jψðk̃Þi is an eigenstate with an energy Eðk̃Þ.
We construct the state t̂2jψðk̃Þi. As t̂2 commutes with H,
t̂2jψðk̃Þi has the same energy. As ft̂1; t̂2g ¼ 0, there is

FIG. 5. SSG Brillouin zone (SBZ) subtended by the reciprocal
basis bi (i ¼ 1, 2, 3). For the clarity of demonstration, the 3D
SBZ is projected into b1, b2 plane. (a) SBZ of SSG P2.3.3 R1þ ⊕
R1þ is symmorphic, and (b) SBZ P2.3.2GM1− ⊕ R1þ is non-
symmorphic. Symmetries of SSG momenta are demonstrated by
P- and T -invariant SSG momentum points in the SBZs. (c) The
SBZ (region enclosed by black vectors) and magnetic BZ (region
enclosed by blue vectors) of SSG P2.3.2GM1− ⊕ R1þ. Two grey
regions that are related by P̂ T̂ symmetry are inequivalent in the
SBZ but are equivalent in the magnetic BZ.
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t̂1 t̂2jψðk̃Þi¼−t̂2 t̂1jψðk̃Þi¼ei½k̃þð1=2Þb1Þ·a1 t̂2jψðk̃Þi. In other
words, t̂2jψðk̃Þi is an eigenstate with energy Eðk̃Þ and the
SSG momentum k̃þ 1

2
b1. Therefore, the energy bands at k̃

are always identical to those at k̃þ 1
2
b1. This degeneracy

is well known in π-flux models. Unlike the π-flux models,
the electron Hamiltonian [Eq. (21)] has no external mag-
netic field, and the degeneracy emerges from the noncol-
linear magnetism. Since t̂2 rotates spin along the x
direction, the degenerate states at k̃ and k̃þ 1

2
b1 have

opposite spin expectation values in the y, z plane.
The shape of the SBZ is C3z asymmetric: 1

2
b2 is a

reciprocal lattice vector in the reduced SBZ, but
Rzð2π=3Þ 12 b1 ¼ − 1

2
ðb1 þ b2Þ is not, where Rzð2π=3Þ

denotes 2π=3 rotation along the z axis. However, counter-
intuitively, the C3z symmetry is preserved, leading to extra
degeneracies. We find that while Ĉ3zjψðk̃Þi is not an
SSG Bloch state, Ĉ3zjϕþi ðĈ3zjϕ−iÞ is an SSG Bloch
state with energy Eðk̃Þ and SSG momentum Rzð2π=3Þk̃
ðRzð2π=3Þk̃þ 1

2
b1Þ, where jϕ�i’s are properly chosen

linear combinations of jψðk̃Þi and t̂2jψðk̃Þi. Note that
Ĉ3zjϕ�i are also related by t̂2. The details of derivation
can be found in Sec. C in Supplemental Material [36], and
a gauge transformation on t̂1;2 is applied to simplify the
expression of the transformation. Simply speaking, Ĉ3z
does not transform a single SSG momentum to another one
but transforms a pair to another, requiring bands at these
C3z-related pairs to share the same energy.

D. Spin texture in the momentum space

In this subsection, we study symmetries of spin texture
S̃ðk̃Þ in a certain equal-energy surface (e.g., Fermi surface)
in the SBZ. Here, S̃ðk̃Þ is an expectation value of the spin
operator with respect to an SSG Bloch state at k̃. In the
presence of energy degeneracy at k̃, S̃ðk̃Þ is a sum of the
spin expectation values of the degenerate SSG Bloch states.
SSGs completely determine whether a nonzero spin texture
S̃ðk̃Þ is allowed and how it transforms under symmetries.
We first consider S̃ðk̃Þ in those SSGs where unitary
translation generators t̂1;2;3 all commute with each other.
An SSG momentum k̃ transforms into sgðRgk̃þ q̃gÞ under
an SSG operation g ¼ fXgUgjRgjvgg, where sg ¼ 1 (−1)
for Xg ¼ I (T). Meanwhile, the spin expectation transforms
according to XgUg. Hence, S̃ðk̃Þ satisfies the symmetry
constraint

S̃
�
sgðRgk̃þ q̃gÞ

�
¼ sgUgS̃ðk̃Þ: ð38Þ

We use symmetries that leave generic k̃∈SBZ invariant
to determine the dimension dSBZ of the symmetry-allowed
span of S̃ðk̃Þ in the momentum space. dSBZ represents

noncoplanar (dSBZ ¼ 3), coplanar (dSBZ ¼ 2), or collinear
(dSBZ ¼ 1) distribution of S̃ðk̃Þ in the SSG momentum
space; dSBZ ¼ 0 means S̃ðk̃Þ≡ 0. The relevant symmetries
are the spin-U(1) rotation (in collinear SSGs), spin-rotation
translations, and space-time inversion (PT ) with spin
rotation. For collinear SSGs, dSBZ ≤ 1 due to the spin-U(1)
symmetry. As discussed in Sec. III B, dSBZ ¼ 0 if the spin-
up and spin-down atoms in real space are related by PT
operation or translation followed by time reversal, and
dSBZ ¼ 1 otherwise (ferromagnetism or altermagnetism).
For noncollinear SSGs, symmetries leaving each k̃ invari-
ant can be only unitary translations, generated by t̂1;2;3, and
spin-rotation PT operation, denoted as P̂ T̂ . If P̂ T̂ is
present and q̃PT ¼ 0, dSBZ is given by the dimension of a
subspace in the spin space satisfying Eq. (38), i.e.,
dSBZ¼dim½∩3

i¼1 kerðUti −IÞ∩kerðUPT þIÞ�. Otherwise,
dSBZ ¼ dim½∩3

i¼1 kerðUti − IÞ�.
The group structure of the little group of generic SSG

momenta gives certain constraints on the forms of Uti ,
UPT , and their relationship, which allows us to obtain dSBZ
with a simple rule as summarized in Table III. First,
we consider cases without PT symmetry. If all Uti’s equal
the identity I, no constraint exists and dSBZ ¼ 3. If some
of them do not equal I, to satisfy ½t̂i; t̂j� ¼ 0, they must
share a same rotation axis, leading to dSBZ ¼ 1, S̃ðk̃Þ is
nonzero along the rotation axis (see Sec. C in Supplemental
Material [36]). Next, we consider the case with PT
symmetry and Uti ¼ I (i ¼ 1, 2, 3), implying that
q̃PT ¼ 0. Since the square of PT operation should be
the identity, U2

PT ¼ I, and UPT can be either I or a π
rotationUmðπÞ, which lead to dSBZ ¼ 0 and 2, respectively.
When both PT symmetry and a nontrivial Uti are present,
dSBZ apparently depends on whether q̃PT is zero or not.
Interestingly, in Sec. C in Supplemental Material [36],
we find that dSBZ is always 1 if there exists a Uti ≠ I
independent of the form of PT .
Notably, dSBZ does not necessarily coincide with the

dimension N of the span of magnetic moments SðrÞ in

TABLE III. The dimensions dSBZ (dBZ) of the span of spin
texture S̃ðk̃Þ [S⃗ðkÞ] in the SBZ (BZ) of noncollinear SSGs.
Columns and rows specify spin rotations that accompany trans-
lations (ti) and space-time reversion PT , respectively. fUtig ¼
fUnðθiÞg means that all the translations are accompanied by spin
rotations along the same axis n by θi (i ¼ 1, 2, 3), and at least one
θi is nonzero.

fUtig
UPT Identity fUnðθiÞg Noncommuting

Absent 3=3 1=1 1=0
Identity 0=0 1=0 1=0
UmðπÞ 2=2 1=1 (m ⊥ n) 1=0

1=0 (m k n)
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the real space. In fact, in either noncoplanar or coplanar
SSGs, dSBZ can be 0, 1, 2, or 3. As discussed before, in the
absence of PT operation and with Uti ¼ I in a coplanar
SSG, dSBZ can indeed be 3, due to the lack of local
constraints on S̃ðk̃Þ. To substantiate this somewhat counter-
intuitive scenario, we present an electronic model with
SSG P143.1.1 GM1, exhibiting dSBZ ¼ 3 in Supplemental
Material [36]. In contrast, in some noncoplanar magnetic
structures, dSBZ can be 1. For example, in the SSG
N143.3.1 A1 ⊕ A1 [Fig. 4(c)], the translation along a3
is accompanied by spin rotation Ut3 ¼ UzðπÞ. Thus, S̃ðk̃Þ
of an SSG Bloch state at generic k̃, which is an eigenstate of
t̂3 ¼ fiσzj1ja3g, can have a nonzero component only along
the z direction, leading to dSBZ ¼ 1.
If the SBZ is symmorphic, i.e., q̃g in Eq. (38) can be

eliminated by a certain gauge [Eq. (36)], the symmetry of
S̃ðk̃Þ can be characterized by a dSBZ-dimensional repre-
sentation ρ̃ of a point group P̃ ¼ fsgRgjg∈Gg. Nonidentity
representation ρ̃ implies the spin texture on the Fermi
surface forming a nontrivial pattern, as exampled in Sec. IV.
In Sec. G in Supplemental Material [36], we tabulate the ρ̃
and P̃ for all the SSGs.
We define the spin texture S⃗ðkÞ in the magnetic BZ

(k denotes crystal momentum), following the same
approach as for S̃ðk̃Þ. Note that we use different notations
to distinguish spin textures in the magnetic BZ and SBZ.
In cases where BZ is identical to SBZ, we use the notation
S⃗ðkÞ. S⃗ðkÞ is potentially more feasible for experimental
measurement and is relevant to first-principle calculations,
which are generally performed in the magnetic BZ. We now
investigate the dimension dBZ of the span of S⃗ðkÞ. If
t̂i ¼ fσ0j1jaig, the magnetic BZ is identical to SBZ, and
dBZ ¼ dSBZ. If t̂i ¼ fÛnðθiÞj1jaig, the magnetic BZ is
given by the folded commuting BZ. As dSBZ ¼ 1 in this
case, dBZ equals 0 if the S⃗ðk̃Þ’s at momenta folded to the
same k always cancel each other and 1 otherwise. The only
symmetry that leads to the cancellation at every k is PT .
One can verify that UPT ¼ I or UmðπÞ with m k n result
in the cancellation. We summarize dBZ in Table III.
Additionally, it is important to note that crystal momentum
k always transforms symmorphically. In SSGs with sym-
morphic SBZs but some of Uti ≠ I, S⃗ðkÞ does not equal
S̃ðk̃Þ. However, SSG operations impose the same forms of
constraints [Eq. (38) with q̃g ≡ 0] on them. It implies that

dBZ ¼ dSBZ, and S⃗ðkÞ realizes the same representation ρ̃ of
the point group P̃ ¼ fsgRgjg∈Gg as S̃ðkÞ.
Finally, we comment on some universal properties of

spin textures of SSGs with the noncommuting SBZ. In the
reduced SBZ, all translation operations commute with each
other, while some of them are still accompanied by non-
trivial spin rotations (see Sec. III C 2 for an example).
A similar analysis as in the commuting SBZ (see Sec. C in

Supplemental Material [36]) shows that dSBZ is always 1.
On the other hand, dBZ ≡ 0, because ft̂i; t̂jg ¼ 0 requires
that Uti and Utj must be π rotation along two perpendicular
directions.

IV. MATERIALS WITH SSG SYMMETRIES

A. Identifying SSGs for 1595 magnetic materials

We identify the SSGs for all the 1595 published exper-
imental magnetic structures (materials with noninteger site
occupation numbers are excluded) in the MAGNDATA
database [42,43] on the Bilbao Crystallographic Server.
The identification algorithm and the SSGs of all these
materials are provided in Secs. D and G in Supplemental
Material [36], respectively. Out of the 1595 structures, we
find 242 distinct collinear SSGs, 183 distinct coplanar SSGs,
and 106 distinct noncoplanar SSGs. Among these SSGs, the
most frequently occurring types are type II (815 structures)
for collinear structures, type III (211 structures) for coplanar
structures, and type IX (69 structures) for noncoplanar
structures. A collinear (coplanar) [noncoplanar] SSG of
type II (III) [IX] indicates that the transformation of each
component of the spin moments is described by an inde-
pendent real 1D irrep. Table IV shows the statistics of
the features of these materials determined by SSGs.
Additionally, for reference, we provide statistics limited to
materials with light elements (shown in parentheses), where
all constituent elements are from the first four periods of the
periodic table, and SOC is generally weak. Remarkably, all
the exotic features of SSGs that we have studied, such as
noncommuting SBZ, nonsymmorphic SBZ, and nontrivial
spin textures, occur in these published experimental materi-
als. In the subsequent sections, we present the results from
first-principle calculations performed on selected materials
as illustrative examples.

B. Material examples

This subsection is devoted to four material examples—
i.e., coplanar CoSO4, collinear FeGe2, coplanar Mn3Ge,

TABLE IV. The statistics of published magnetic materials in the
MAGNDATAdatabase. Each cell contains the number ofmagnetic
materials possessing specific features. The number in parentheses
is the statistics limited tomaterialswith light elements from the first
four periods of the periodic table. The statistics of spin textures are
limited to the materials with SSGs processing symmorphic SBZ,
and the “nontrivial S̃ðk̃Þ” means that the transformation of S̃ðk̃Þ
realizes a nontrivial representation of the SSG.

Collinear Coplanar Noncoplanar

Total 954 (234) 436 (84) 205 (66)
Noncommuting SBZ � � � 23 (1) 10 (2)
Nonsymmorphic SBZ � � � 148 (31) 5 (1)
Symmorphic SBZ 954 (234) 265 (52) 190 (63)
Nontrivial S̃ðk̃Þ 139 (41) 181(43) 140 (39)
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and noncoplanar Mn3GaN—that exhibit novel electronic
states or spin textures protected by SSGs. Three other
material examples, including coplanar InMnO3, noncopla-
nar Mn3Ge, and coplanar FePO4, are discussed in Sec. D in
Supplemental Material [36]. These materials are calculated
using the density functional theory (DFT), as implemented
in the Vienna Ab Initio Simulation Package [57,58]. The
projector augmented wave pseudopotentials are adopted in
the calculation [59,60]. The generalized gradient approxi-
mation with the Perdew-Burke-Ernzerhof realization [61] is
used for the exchange correlation functional. The kinetic
energy cutoff is fixed to 450 eV, which is larger than
the ENMAX in the pseudopotential files of all elements.
The energy convergence criteria are set to be 10−6 eV. The
k-point mesh for the Brillouin zone integration is
10 000/(number of atoms) [62].
We first perform fully noncollinear magnetic structure

calculations without considering the SOC effect.
Remarkably, for three of the four materials—i.e., collinear
FeGe2, coplanar Mn3Ge, and noncoplanar Mn3GaN—the
directions of magnetic moments converge to the exper-
imental results (up to a global spin rotation). The remaining
material, coplanar CoSO4, also converges to a magnetic
structure that is close to the experimental structure but
exhibits a slightly smaller canting angle. To match the
experimental data for CoSO4, we introduce a penalty
contribution to the total energy (see Sec. D in
Supplemental Material [36] for more details). The good
agreement between DFT results without SOC and exper-
imental structures suggests that SOC, except for choosing a
global spin coordinate, does not play a major role in
determining the collinear or noncollinear magnetic struc-
tures of these materials.
To demonstrate the perturbative nature of SOC, we

compare the band structures with and without SOC of
all these materials in Sec. D in Supplemental Material [36].
We observe that SOC leads to small splittings of the band
degeneracy predicted by SSG. Specifically, the typical
splitting along high-symmetry paths is less than 5 meV,
which is considerably smaller than the typical distance
between two adjacent nondegenerate energy bands in the
absence of SOC. These quasidegeneracies could not be
understood without SSGs. We claim that SSGs provide
accurate descriptions for these systems when the energy
scale of interest is larger than the splittings.

1. Nonsymmorphic SBZ in CoSO4

The compound CoSO4 (No. 1.519 in the MAGNDATA
database) has a base-centered orthorhombic lattice struc-
ture. The spin moments of CoSO4 in the antiferromagnetic
phase are determined from a neutron diffraction study [63].
The moments lie in the y, z plane and have around �25°
canting angles concerning the y axis, and the body-centered
translation relates spin moments with opposite directions
[Fig. 6(a)]. This magnetic structure is described by the

MSG CPm0cm0 (No. 63.16.526 in the Opechowski-
Guccione setting [64]). Figure 6(c) shows the energy bands
obtained from the first-principle calculation. These bands
are plotted in the BZ of the MSG and exhibit the following
two features: (i) The bands are at least twofold degenerate
in the whole MSG BZ. This degeneracy is protected by
the MSG PT symmetry fiσyKj1j1=2ðaM1 þ aM2Þg which
squares to −1. Here, aMi’s (i ¼ 1, 2, 3) denote the lattice
vectors of the pure translation subgroup given by the
conventional lattice vectors of the orthorhombic lattice
(see discussion of TM in Sec. III C 1). (ii) The degree of
degeneracy becomes four along Z-U-R-T-Z [the high-
symmetry points are denoted in Fig. 6(b)]. And we verify
this fourfold degeneracy exists in the whole kz ¼ π
plane. MSG explains the fourfold degeneracy along the
high-symmetry lines R-T and T-Z, which form a projective
representation of the little cogroup m0mm. However, MSG
can protect only twofold degeneracy and, hence, cannot
explain the extra degeneracy at the remaining momenta in
the kz ¼ π plane. We find that the hidden SSG symmetry
explains the fourfold degeneracy, as discussed below.
The SSG P63.3.89 Y1þ ⊕ Y3þ with parent space group

Cmcm (No. 63) characterizes this magnetic structure.
Table V shows the generators of the SSG, where ai are
lattice vectors of the unitary translation subgroup TU of
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FIG. 6. (a) The magnetic structure of CoSO4 showing only the
magnetic atoms (Co). (b) Bottom: the first BZ in the SSG
reciprocal lattice bi’s (black lines) and MSG reciprocal lattice
bMi’s (green region). Top: the folding process of the SSG BZ (the
large hexagon) into the MSG BZ (the smaller rectangle), viewed
from the z-axis perspective. (c) The energy bands obtained from
the first-principle calculation. At every k, EðkÞ is at least twofold
degenerate. The light red and blue lines represent the twofold and
fourfold degeneracy, respectively.
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SSGs. a1;2 are the base-centered translation vectors, and
ai’s are

a1¼
1

2
ðaM1þaM2Þ; a2¼

1

2
ðaM1−aM2Þ; a3¼aM3: ð39Þ

Thus, the size of the SBZ spanned by bi is twice that of
the magnetic BZ spanned by bMi [see Fig. 6(b)]. With the
spin operations acting on electrons given in Table V,
we determine the transformation of SSG momentum (see
the last column). The SSG operation P̂ T̂ ¼ fσzKj1̄j0g
acts on SSG momentum k̃ as a fractional translation
(k̃ → k̃þ q̃PT ) with q̃PT ¼ 1

2
ðb1 þ b2Þ, and the mirror

operation Mz ¼ fUyðπÞjm001j 12 a3g acts on k̃ as a glide
operation with q̃Mz

¼ 1
2
ðb1 þ b2Þ, which indicate a non-

symmorphic SBZ. We first study the electronic bands in the
SBZ. No SSG momentum is invariant under P̂ T̂ operation,
and P̂ T̂ requires that Enðk̃Þ ¼ Enðk̃þ q̃PT Þ for all
k̃∈SBZ. In addition, the k̃z ¼ π plane has the symmetry
Ĉ2zT̂ ¼ fiσxKj2001j 12 a3g, and ðĈ2zT̂ Þ2jψðk̃x; k̃y; πÞi ¼
−jψðk̃x; k̃y; πÞi. It results in Kramer’s degeneracy on that
plane. Then, we fold the SBZ to the magnetic BZ. We
introduce a phase factor of i to the spin rotation associated
with the translations fUxðπÞj1ja1;2g, altering the accom-
panying spin rotation from −iσx to σx (see Table V). Under
this gauge for SSG, the translations along the lattice vectors
of MSG are always accompanied by σ0 spin rotation
without an extra phase. Thus, the crystal momentum k
equals the SSGmomentum k̃ after modulo reciprocal lattice
bMi’s. On the other hand, q̃PT ¼ bM1 is a reciprocal lattice
vector in the magnetic BZ. Thus, the energy bands at a
momentum k in the magnetic BZ consist of Enðk̃Þ and
Enðk̃þ q̃PT Þ in the SSG BZ. This implies that the degrees
of degeneracy at k in the MSG BZ should be twice as Enðk̃Þ
in the SSG BZ. After folding, every band in the kz ¼ π
plane is fourfold degenerate.

2. Extra band degeneracies in FeGe2
The antiferromagnetic material FeGe2 (No. 1.557) has a

body-centered orthorhombic lattice structure. A neutron
diffraction experiment [65] found that the spin moments
are along the x direction, and moments with opposite signs
are related by a body-centered translation vector [Fig. 7(a)].
The structure is described by the MSG IPb0am0
(No. 72.12.641) [66]. Figure 7(c) shows the energy bands
from the first-principle calculation. The energy bands are
always double degenerate, which can be explained by the
MSG’sPT symmetry. However, the fourfold degeneracy at
Γ point and path Z-R-A-Z [see their positions in Fig. 7(b)]
cannot be explained by the MSG, because the little
MSG cogroups on them have only 2D coirreps (see explicit
representation matrices in the Corepresentations tools
[50,51]). We can use the representation theory of collinear
SSG (Sec. III B) to explain these degeneracies.
This antiferromagnetic structure is described by the

type-II collinear SSG L140.2.8 M1þ with parent space
group I4=mcm (No. 140). Besides the pure-spin-operation
group S¼SUð1Þ×SZT

2
, this SSG G is generated by fIj1jaig

(i ¼ 1, 2, 3), fIj4þ001j0g, fIj2010j0; 0; 1=2g, fIj1̄j0g, and
fTj1j1=2; 1=2; 1=2g. Here, ai’s denote the lattice vectors of
the conventional unit cell, and the translation parts of
spatial operations are written on the basis of ai ’s. Also note
that here SZT

2
is generated by fe−iðπ=2Þσy iσyKj1j0g ¼

fKj1j0g, since spins are along the x direction. As discussed

TABLE V. The generators of the SSG P63.3.89 Y1þ ⊕ Y3þ of
coplanar magnetic material CoSO4. Here, a1;2 are body-centered
translation vectors. The last row is for the pure-spin-operation
group S. The last column shows how the SSG momentum is
transformed under the SSG operations.

SSG operation
Spin operations
on electrons

Transformation of
SSG momentum k̃

fUxðπÞj1ja1;2g σx k̃
fIj1ja3g σ0 k̃
fIj1̄j0g σ0 −k̃
fUyðπÞjm001j1=2a3g σy −RzðπÞk̃þ 1=2ðb1 þ b2Þ
fIjm100j0g σ0 −RxðπÞk̃
fTUxðπÞj1j0g σzK −k̃þ 1=2ðb1 þ b2Þ
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FIG. 7. (a) The magnetic structure of FeGe2 showing only the
magnetic atoms (Fe). (b) The first BZ in the SSG reciprocal lattice
bi’s, which coincides with MSG reciprocal lattice. (c) The energy
bands obtained from the first-principle calculation. Every single
line is at least twofold degenerate. The light red and blue lines
represent the twofold and fourfold degeneracy, respectively.
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in Sec. III B, the Hamiltonian for the collinear magnetism
can be block diagonalized into spin-up and spin-down
parts. Because of the existence of a spin-flipping unitary
translation f−iσzj1j1=2; 1=2; 1=2g, En↑ðkÞ ¼ En↓ðkÞ.
Thus, we need only to study spin-up (or spin-down) energy
bands, whose symmetry is effectively described by single-
valued gray group G0 × SZT

2
. Here, G0 is the operations in

G with identity spin operations, and G0 × ZT
2 is identical to

the gray group P4=mcc10 (No. 124.2.1019). The little
cogroup of P4=mcc10 at the Γ point is magnetic point
group 4=mmm10, which has eight 1D coirreps and two 2D
coirreps (refer to Bilbao Crystallographic Server for the
character table). Thus, En↑ðkÞ can be either twofold
degenerate or nondegenerate at Γ. The Z-R line has a joint
symmetry of mirror and time reversal, given as M̂zT̂ ¼
fKjm100j0; 0; 1=2g, and the action ðM̂zT̂ Þ2 on jψðkx; 0; πÞi
equals −1, leading to Kramer’s degeneracy of En↑ðkÞ.
Similarly, on lines R-A and A-Z, fKjm010j0; 0; 1=2g and
fKjm110j0; 0; 1=2g lead to Kramer’s degeneracy, respec-
tively. The total degrees of the degeneracy of energy bands
are twice as En↑ðkÞ, which can be either two or four at Γ
and always four along Z-R-A-Z.
The specific irreps constituted by the Bloch states at a

given momentum, along with their degrees of degeneracy,
are contingent upon the symmetry of the local orbitals of
the atoms and the representation they form. The Fe atoms
of FeGe2 are situated at the coordinates ð0; 0; 1

4
Þ, ð0; 0; 3

4
Þ,

ð1
2
; 1
2
; 1
4
Þ, and ð1

2
; 1
2
; 3
4
Þ. Let us first consider the site-

symmetry group of the spin-up (or spin-down) orbitals
at ð0; 0; 1

4
Þ. In addition to the operations in the group

SZT
2
, the symmetry group is generated by fIj4þ001j0g,

fIj2010j0; 0;−1=2g, isomorphic to the magnetic point
group 42210. Specifically, the orbitals corresponding to
A1;2 or B1;2, in conjunction with the orbitals at ð0; 0; 3

4
Þ

linked via SSG symmetry, contribute to the 1D coirreps at Γ
(see the details of the induction process, for example, in
Ref. [51]). In contrast, the E orbitals contribute to the 2D
coirreps at Γ. We note that states j↑; pxi and j↑; pyi, which
remain invariant under the effective time reversal in the
SZT

2
, form the coirrep E of 42210. The site-symmetry group

in the other positions of Fe atoms is also isomorphic to
42210, where the orbitals contribute to the coirreps in the
momentum space in a similar manner. For generic collinear
magnetic structures, the effective symmetry group of spin-
up (or spin-down) energy bands is always isomorphic to a
gray group, and the effective site-symmetry group of local
spin-up orbitals is isomorphic to a gray point group. Hence,
the techniques of band representation of magnetic topo-
logical quantum chemistry [44,51] can be directly applied
in the context of collinear SSGs.
It is notable that applying a global spin rotation on the

magnetic structure does not affect the SSG, as discussed in
Sec. II C, but it might enhance the MSG symmetry. For

example, consider rotating all the magnetic moments of
FeGe2 [see Fig. 7(a)] by Uyðπ=2Þ. After this rotation, the
magnetic moments align along the c axis, the fourfold
rotation axis of the crystal, thereby enhancing the MSG to
IP4=m0cm (No. 140.11.1206). The enhanced MSG shares
the same parent space group as the SSG L140.2.8 M1þ but
remains smaller than the SSG. The mapping from the
parent space group to the enhanced MSG is one to one,
whereas that to the SSG is one to many due to the pure-
spin-operation group S [Eq. (9)]. By examining the
coirreps of the magnetic little cogroup of the enhanced
MSG, we find that it can explain the fourfold degeneracies
on the line R-A but fails to explain the degeneracies at Γ or
line R-Z-A.

3. E2g spin texture in Mn3Ge

The compound Mn3Ge (No. 0.377) has a hexagonal
lattice structure. It has a coplanar (x, y plane) triangular
antiferromagnetic structure in the magnetic phase
[Fig. 8(a)] [67–70]. Its MSG is Cm0cm0 (No. 63.8.518),
and its SSG is P194.6.1 GM5þ with parent space group
P63=mmc. Besides SZT

2
, the SSG is generated by P ¼

fIj1̄j0; 0; 0g, C6z ¼ fUzð2π=3Þj6þ001j0; 0; 1=2g, C2;11̄0 ¼
fU11̄0ðπÞj211̄0j0; 0; 1=2g, and pure translations fIj1jaig
of the hexagon lattice. Here, 11̄0 represents the direction
of a1 − a2 equivalent to the direction of −

ffiffiffi
3

p
=2ex þ 1=2ey.

Note that, in this SSG, the sixfold screw rotation in real
space is accompanied by the threefold rotation in the spin
space. Consequently, the 2π=3 rotation in real space is
accompanied by −2π=3 rotation in spin space, and this
symmetry was noticed and studied in a 2D model of
Mn3Ge [4].

ab
c

(a) (c)

(b)

n110

n110

FIG. 8. (a) The magnetic structure of Mn3Ge showing only the
magnetic atoms (Mn). (b) The Fermi surface of Mn3Ge, which is
centered at the A ½k ¼ ð0; 0; πÞ� point. Only the lower half is
shown, and the full Fermi surface is symmetric with respect to
kz ¼ π. Different colors represent equal-kz lines. (c) The spin
texture S⃗ðkÞ on equal-kz lines labeled in (b). Arrows represent the
directions of S⃗ðkÞ.
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The SSG completely determines the symmetry of S⃗ðkÞ.
The PT operation fTUzðπÞj1̄j0g (T is from SZT

2
) requires

that S⃗ðkÞ lies in the x, y plane, as the spin moments in
real space. The operations P, C6z, and C2;11̄0 lead to a
6=mmm point group symmetry in the momentum space.
Because of the Uzð2π=3Þ spin rotation in C6z, S⃗ðkÞ is
rotated by 2π=3 rather than π=3 under C6z. Because of
fIjm001j0; 0; 1=2g, which is generated by C3

6zP up to a

lattice translation, S⃗ðkÞ is invariant under the mirror with
respect to the kz ¼ 0 plane. Because of C2;11̄0, which is also

a MSG symmetry, S⃗ðkÞ is rotated by U11̄0ðπÞ under 211̄0.
S⃗ðkÞ subject to these constraints form the 2D real irrep E2g

of 6=mmm.
Mn3Ge with the coplanar magnetic structure has three

Fermi surfaces. Here, we focus on the Fermi surface around
kz ¼ π and leave discussions on the other two to Sec. D in
Supplemental Material [36]. First, we verify that SzðkÞ
vanishes at every k and S⃗ðkÞ is symmetric with respect to
kz ¼ 0. Figure 8(c) shows the spin texture on the Fermi
surface viewed from the z axis, where different colors
represent equal energy contours in different kz planes.
One can verify that S⃗ðkÞ satisfies all the symmetry con-
straints derived in the last paragraph. The two-component
vector S⃗ðkÞ has a nontrivial vortex configuration: As k
completes an anticlockwise path that circles the z axis,
S⃗ðkÞ is rotated by 4π. This implies the existence of a
single vortex with charge SV ¼ 2 on the north pole of the
Fermi surface, as indicated by the yellow arrows on the
small circle around kx ¼ ky ¼ 0. The nontrivial SV arises

from S⃗ðkÞ forming the E2g representation of 6=mmm.
Let us consider a closed path in the k space, e.g.,
½k0 cosðθÞ; k0 sinðθÞ; kz0� with k0 > 0 and θ∈ ½0; 2πÞ. The
vortex charge is defined as SV ¼ ð1=2πÞ R 2π0 dθðd=dθÞ
arctan½SyðθÞ=SxðθÞ�, where SμðθÞ≡Sμðk0cosðθÞ;k0 sinðθÞ;
kz0Þ (μ ¼ x, y). The expression can be decomposed as
SV ¼P6

i¼1 SVi, with each SVi representing the integral’s
contribution over the interval θ∈ ½2πði − 1Þ=6; 2πi=6Þ.
The SSG operation C6z requires that SVi ¼ SVj for any
i; j ¼ 1;…; 6. Given the spin operation inC6z asUzð2π=3Þ,
arctan½Syðπ=3Þ=Sxðπ=3Þ� ¼ arctan½Syð0Þ=Sxð0Þ� þ 2π=3,
which is also equivalently required by the E2g representa-
tion. Consequently, SV1 ¼ ð2π=3þ 2nπÞ=2πðn∈ZÞ, lead-
ing to SV ¼ 6SV1 ¼ 6nþ 2. Note that this vortex differs
from previously studied ones in systems where SOC
plays a major role in band splitting, such as the Rashba
model [71], because the charge SV of the latter one
generally can be only 1. We also verify this vortex is
stable under SOC (see Fig. S.8 in Supplemental Material
[36]). The stability of the vortex originates from its
topological nature, which is characterized by the homo-
topy group π1ðS1Þ and remains immune under generic
weak perturbation including SOC.

4. Eg spin texture in Mn3GaN

The compound Mn3GaN (No. 0.177) has an antiper-
ovskite crystal structure with crystalline symmetry Pm3̄m
(No. 221). In the magnetic phase, the magnetic moments
(Mn atoms) lie in the 111 plane, forming a triangular
antiferromagnetic structure in each 111 cross section [72].
This structure’s MSG R3̄m (No. 166.1.1327) is much lower
than the crystalline symmetry, but its SSG P221.6.1 GM3þ
still enjoys the full crystalline symmetry. This coplanar
SSG is generated by fIj1jaig (i ¼ 1, 2, 3), P ¼ fIj1̄j0g,
C3;111 ¼ fU111ð2π=3Þj3þ111j0g, C4z ¼ fU11̄0ðπÞj4þ001j0g,
and T ¼ fTU111ðπÞj1j0g (the generator for SZT

2
). One

can derive C2x ¼ fIj2100j0g and C2;11̄0 ¼ fU11̄0j211̄0j0g
from the generators. Here, 111 and 11̄0 correspond to the
directions ex þ ey þ ez and ex − ey, respectively. Because

of the PT symmetry, S⃗ðkÞ is within the 111 plane.
Following a similar analysis as in the previous sections,
we find that the S⃗ðkÞ lying in the 111 plane forms the Eg

representation of the point group Oh: It is parity even, is
rotated by 2π=3 underC3;111, and undergoes a 2D reflection
U11̄0ðπÞ under C4z.
Figure 9(b) shows the Fermi surfaces of Mn3GaN

obtained by the first-principle calculation. We verify that
the 111 component of S⃗ðkÞ at any k is always zero,
consistent with the PT symmetry constraint. For the clarity
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FIG. 9. (a) Magnetic structure of Mn3GaN showing only the
magnetic atoms (Mn). (b) The Fermi surfaces of Mn3GaN. (c),
(d) The spin texture S⃗ðkÞ on the 111 plane (kx þ ky þ kz ¼ 0)
and 001 plane (kz ¼ 0) in the momentum space. The back-
ground colors denote the values of EðkÞ (see the left color bar).
The outer hexagon in (c) and the square in (d) denoted the
boundary of the first BZ projected to these planes. In (c), S⃗ðkÞ’s
are coplanar on the 111 plane. In (d), S⃗ðkÞ’s are not confined to
the 001 plane, and the red or blue color (the right color bar)
represents the value of SzðkÞ.
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of demonstration, we do not show S⃗ðkÞ on the complicated
3D Fermi surfaces but plot S⃗ðkÞ of the band, which
contributes to the second innermost Fermi surface shown
in Fig. 9(b), on the high-symmetry planes containing the Γ
point. The 111 plane has the symmetry ofD3d generated by
P, C3;111, and fR11̄0ðπÞj211̄0j0g. Thus, S⃗ðkÞ on this plane
form the reduced representation Eg↓D3d ¼ Eg, which is
even parity, is rotated by 2π=3 under C3;111, and undergoes
a 2D reflection under 211̄0 [11̄0 is the vertical direction in
Fig. 9(c)]. The spin texture on the 111 plane can also be
explained by the MSG R3̄m, since, in these aforementioned
operations, spin rotations equal the spatial rotations. On the
other hand, the pattern of S⃗ðkÞ on the 001 plane can be
understood only using SSG. The 001 plane has the
symmetry of D4h, and, hence, S⃗ðkÞ on the 001 plane forms
the reduced representation Eg↓D4h ¼ A1g þ B1g. As
ðSx; Sy; SzÞ transforms into ð−Sy;−Sx;−SzÞ under C4z

and is invariant under P and C2x, one can show that
Sx − Sy forms the A1g representation of D4h and Sx þ Sy,
Sz from the B1g representation. The spin texture from first-
principle calculation shown in Fig. 9(d) demonstrates this
unconventional feature, where the SxðkÞ; SyðkÞ are repre-
sented by vectors and SzðkÞ is represented by the colors of
the vectors.

V. TOPOLOGICAL PHASES PROTECTED BY SSG

As spatial operations in SSGs are associated with spin
rotations, the algebras of SSG symmetry operations,
described by projective representation (Sec. III), can be
different from those in the MSGs. The enriched symmetry
algebra enables novel topological states in the absence of
SOC and TRS. Here, we comment on possible topological
states in SSGs. For collinear SSGs, as the symmetry
operators form a linear representation of gray groups, no
stable TI state could be stabilized [44,45]. However, various
topological semimetals can be protected as in space groups
in class AI. For coplanar SSGs, the effective TRS
T̂ eff ¼ Ûx̂ðπÞT̂ , which squares to 1, forbids Chern insula-
tors. Mirror Chern insulators can appear in coplanar SSGs
where a mirror operator M̂ satisfies M̂2¼1 and fM̂;T̂ g¼0.
Chern numbers in the mirror-even and mirror-odd sectors
must be opposite due to T̂ eff . 3D derivatives of the mirror
Chern insulator can be constructed using the topological
crystal approach [73,74]. In noncoplanar SSGs, both Chern
insulator [75] and Z2 TI [4], which is protected by T̂ eff ¼
M̂ T̂ (T̂ 2

eff ¼ −1), as well as their 3D derivatives [73,74], can
be stabilized.We present three examples of topological states
in noncoplanar SSGs in the following subsections.

A. 2D Z2 TI in the absence of SOC and TRS

It is widely known that the Z2 TI is protected by the
spinful TRS whose square equals −1, which exists only in

nonmagnetic materials with SOC. However, in 2D systems
with noncollinear magnetism and negligible SOC, which
seem to completely violate the conditions of the existence
of TI, the SSG operation M̂zT̂ ¼ fiσyKjm001j0g can serve
as an effective TRS that squares to −1 and can give rise to a
2D magnetic Z2 TI [4]. Note that its counterpart
fiσyKeiπσz jm001j0g in MSG, which contains π-spin rota-
tion along the z direction, squares to 1 and cannot protect
a TI.
Here, we provide a concrete model with real hoppings

and noncoplanar magnetism to realize the 2D magnetic Z2

TI. We consider an A-A stacked bilayer kagome lattice
[Figs. 10(a) and 10(b)]. The 2D crystal structure can be
described by the space group P6=mmm (No. 191) with
lattice constant c → ∞. In each layer, local magnetic
moments SðriÞ have a canting angle θ (cos θ ¼ jSzj=jSj),
and in-plane components form an all-in–all-out spin-ice
structure. The magnetic structure on a single-layer kagome
lattice has nonzero spin chirality and is identical to the
one studied in previous work on metallic pyrochlore
ferromagnets [75], in which a Chern insulator phase
without SOC can occur. The mirror operation m001 trans-
forms two layers into each other, and the moments of
two neighboring sites in two layers are opposite to each
other. The SSG of this magnetic structure, named
N191.12.2GM1− ⊕ GM5−, is generated by the symmetry
operators (acting on fermions) Ĉ3z ¼ fe−iðπ=3Þσz j3þ001j0g,
Ĉ2z ¼ fσ0j2001j0g, M̂zT̂ ¼ fiσyKjm001j0g, Ĉ2x ¼
f−iσxj2100j0g, and lattice translations without spin
operations.

FIG. 10. Noncoplanar magnetic structure on the (a) upper
layer and (b) bilayer of the kagome lattice. (c) Energy band of
Hamiltonian HZ2

[Eq. (40)] in the periodic boundary condition
(PBC). Energy is double degenerate in the whole Brillouin
zone. (d) Energy band of HZ2

under PBC along the x direction
and open boundary condition (OBC) along the y direction with
Ny ¼ 50. The blue (red) line represents the helical edge mode
around y ¼ 0 (y ¼ Ny).
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We consider the electronic Hamiltonian with such a
magnetic structure:

HZ2
¼
X
i¼1;2

�
tk

X
hR;α;R0;α0i

ðc†R;α;iσ0cR0;α0;iÞ þ J
X
R;α

SR;α;i · sR;α;i

�
þ t⊥

X
R;α

ðc†R;α;1σ0cR;α;2 þ H:c:Þ; ð40Þ

with

sμR;α;i ¼
1

2
c†R;α;iσμcR;α;i ðμ ¼ x; y; zÞ

being the spin operator of the electrons. Here, c†R;α;i ¼
ðc†R;α;i;↑; c†R;α;i;↓Þ (α ¼ A, B, C, i ¼ 1, 2) is a two-
component spin-1=2 electron creation operator in the unit
cell R, sublattice α, of the ith layer. The first and third terms
of the Hamiltonian are intralayer and interlayer nearest-
neighboring hopping, respectively. The hopping matrix is
proportional to σ0, because the SOC is considered negli-
gible. The second term describes the on-site interaction
between the conduction electron and localized magnetic
moments SR;α;i [Figs. 10(a) and 10(b)]. In the following,
we choose tk ¼ 1, t⊥ ¼ 0.5, J ¼ 2, and jSR;α;ij ¼ 1 with
canting angle θ ¼ π=3. The band structure is shown in
Fig. 10(c), where every band is double degenerate, as
explained in the next paragraph.
We can evaluate the Z2 topological invariant ν of the

model by the Fu-Kane formula [76]. In this system, M̂zT̂
plays the role of TRS, and Ĉ2z, which does not contain spin
rotation, plays the role of inversion symmetry because it
squares to 1 and commutes with M̂zT̂ [77]. The topological
invariant ν is then determined by ð−1Þν ¼Qi ξðkiÞ, where
ki are TRS-invariant momenta and ξðkiÞ is the product
of the Ĉ2z eigenvalues of occupied Kramers pairs at ki.
(Notice that the joint symmetry Ĉ2zM̂zT̂ preserves momen-
tum and squares to −1; hence, it protects double degen-
eracy of the energy bands.)
When the filling is 2 per unit cell, only the lowest

double-degenerate band is occupied, with ξðkÞ ¼ 1;−1 at Γ
and (three)M points, respectively, implying that the system
is topological. We also observe the topological helical
edge states on the open boundary of a cylinder geometry
[Fig. 10(d)]. The noncoplanar magnetism is essential in
realizing a nontrivial Z2 topological invariant. In coplanar
magnetism, we can align the magnetic moments within the
x, z plane through a global spin rotation. In such a case,
both the hoppings and on-site terms of the Hamiltonian
become real, inevitably leading to a Z2-trivial state. It is
the y component of SR;α;i ’s in our model that makes the
Hamiltonian pseudoreal (i.e., respecting TRS with sign −1)
and allows a possible nontrivial Z2 index.

B. 3D Z2 TI with fourfold Dirac point on surface

We show that an unavoidable fourfold Dirac point can
be protected on the surface of a 3D Z2 TI protected by
SSG symmetries. It provides an exception to the fermion-
doubling theorem of 2D systems [78,79].
As shown in Fig. 11(a), the 3D state is constructed by

stacking the 2D Z2 TI layers protected by M̂zT̂ ¼
fiσyKjm001j0g (Sec. VA). We first decorate the integer
planes, z ¼ 0;�1;�2…, with the 2D Hamiltonian
HZ2

ðkx; kyÞ [Eq. (40)]. Different layers are related by the
translation t̂3 ¼ fIj1j0; 0; 1g along the z direction, and the
Z2 topology of the layer at z ¼ n is protected by t̂2n3 M̂z T̂ .
We then decorate the half-integer planes, z ¼ � 1

2
;� 3

2
…,

with the mirror reflection of HZ2
ðkx; kyÞ, i.e.,

D†ðm100ÞHZ2
ð−kx; kyÞDðm100Þ, where Dαis;α0i0s0 ðm100Þ ¼

Mα;α0δii0δss0 is the mirror representation matrix on the local
orbitals. Here, α; α0 ¼ A, B, C represent the sublattice,
i; i0 ¼ 1, 2 represent top and bottom sublayers, and s; s0 ¼
↑;↓ represent the spin.M exchanges A, B sublattice, and its
nonzero components are given as MAB¼MBA¼MCC¼1.
The Z2 topology of the layer at the half-integer position
z ¼ nþ 1

2
is protected by t̂2nþ1

3 M̂z T̂ . The symmetry of the
3D system is determined by its constructing layers. The layer
at z¼n respects Ĉ3z¼fe−iπ=3σz j3þ001j0g (see Sec. VA),
while the layer at z ¼ nþ 1

2
respects a modified Ĉ3z, given

as fe−iπ=3σz jm−1
1003

þ
001m

−1
100j0g ¼ fe−iπ=3σz j3−001j0g. The spa-

tial rotations 3þ001 in these two layers involve opposing spin
rotations, leading to the elimination of threefold rotation
symmetry in the entire 3D system. In contrast, the Ĉ2z, M̂zT̂ ,
and Ĉ2x symmetries are preserved in the 3D structure.
In addition, the system respects the glide symmetry
Ĝx ¼ fσ0jm100j0; 0; 1=2g, due to our construction. The
combination of these symmetries yields a half-lattice
translation, given as fσzKj1j0; 0; 1=2g. Considering all
the symmetries, the 3D structure is described by the SSG
N47.9.392GM2− ⊕ GM2− ⊕ Z1−. Note that the half-
lattice translation in this SSG is antiunitary and, hence,
not relevant to the definition of SSG Bloch states.
In the end, we introduce a coupling V between nearby

layers and write the entire 3D Bloch Hamiltonian as

H3DðkÞ¼
�HZ2

ðkx;kyÞ VðkzÞ
V†ðkzÞ D†ðm100ÞHZ2

ð−kx;kyÞDðm100Þ

�
:

ð41Þ
For simplicity, we assume that V couples the first (second)
sublayer of the layer at z to the second (first) sublayer of the
layer at zþ 1

2
(z − 1

2
), and it is diagonal in the spin and

sublattice. Then, the V term can be written as

Vαis;α0i0s0 ðkzÞ ¼
�

0 t0⊥eikz
t0⊥ 0

�
ii0
δαα0δss0 : ð42Þ
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We choose the parameters tk ¼ 1, t⊥ ¼ 0.3, J ¼ 2,
jSR;α;ij ¼ 1, θ ¼ 0.4π, and t0⊥ ¼ 0.15. The filling is chosen
as four per unit cell such that each layer is filled up to the
topological gap. We diagonalize a slab sample with PBC
along the x, z directions and OBC along the y direction with
Ny (Ny ¼ 50) sites to study the states on the 010 surface,

which preserves Ĝx and M̂zT̂ symmetry. Note that the
detailed dispersion of edge states depends on whether the
interfacial atoms belong to A or B sublattices (flat edge)
or C sublattice (sawtooth-shape edge) [Fig. 10(a)] [80].
For the clarity of demonstration, we focus on the right
sawtooth-shape surface y ¼ Ny. The surface wave vector
ðkx; kzÞ is invariant under the antiunitary operation

Ĉ2yT ¼ ĜxM̂zT̂ ¼ fiσyKj2010j0; 0; 1=2g: ð43Þ

As ðĈ2yT̂ Þ2 ¼ −1, the surface band at every k is at least
double degenerate due to the Kramers’ theorem. The twofold
bands form a single fourfold Dirac point around the high-
symmetry point U, as shown in Figs. 11(c) and 11(e).
The surface state manifests a Z2 topology of the 3D TI.

To show this, we prove that two distinct connection
scenarios exist of the surface bands; one must have an
odd number of fourfold Dirac points between every two

(degenerate) bands, whereas the other can be gapped. We
first consider the bands along the kx ¼ 0 line, which can be
labeled by eigenvalues of Ĝx. As Ĝ

2
x ¼ fIj1j0; 0; 1g, the Ĝx

eigenvalue of a state jψð0; kzÞi can be either eikz=2 or
−eikz=2. Using the relation ĜxĈ2yT̂ ¼fIj1j0;0;1gĈ2yT̂ Ĝx,

one can show that Ĉ2yT̂ jψð0; kzÞi is another state
(Kramers’ theorem) that has the same Ĝx eigenvalue.
Thus, every band with kx ¼ 0 is twofold degenerate and
has a definite Ĝx eigenvalue. Because �eikz=2 changes into
each other as kz moves from 0 to 2π, a pair of nearby bands
with opposite Ĝx eigenvalues must evolve into each other
along this path and form an odd number of crossings
[Figs. 11(f) and 11(g)]. The same argument applies to the
high-symmetry line at kx ¼ π. Now we consider the closed
path Γ-Z-Γ0-X0-U-X-Γ shown in Fig. 11(b). There are two
possible connections between ΓX: (i) The surface bands
form a zigzag flow along the closed path [Fig. 11(f)],
and (ii) the surface bands have direct gaps [Fig. 11(g)].
Bands in scenario (i) cannot be gapped without breaking
the symmetries.
One can also define a Z2 topological invariant for the

3D bulk state using the Wilson loop operator Wðkx; kzÞ
integrated along the y direction. Its spectrum satisfies the
same Ĝx and Ĉ2yT̂ symmetry constraints as the surface

Γ 
Γ Γ

Γ

(a)

(c) (e) (g)

(b) (d) (f)

Γ

FIG. 11. (a) Layer construction of the 3D Z2 TI protected by M̂zT̂ ¼ fiσyKjm001j0g and Ĝx ¼ fσ0jm100j0; 0; 1=2g. On each pink
plane and cyan plane, aZ2 TI protected by M̂zT̂ is placed. (b) The 010-surface BZ of the TI. (c) Energy bands of the 3DZ2 TI [Eq. (41)]
under PBC along the x, z directions and OBC along the y direction withNy ¼ 50. The red (blue) lines represent the surface mode around
y ¼ Ny (y ¼ 0). The glide eigenvalues of the surface states on kx ¼ π are labeled. Eðkx; kzÞ is at least double degenerate for any ðkx; kzÞ.
The position of high-symmetry points can be found in (b). (d) The phases θi ¼ −Im lnðλiÞ of the eigenvalues λiðkx; kzÞ of the Wilson
loop operatorWðkx; kzÞ along the high-symmetry path. Note that θi are always double degenerate. Inset: enlargement of θiðkx; kyÞ along
the X0-U-X. (e) Enlargement of the surface Dirac point in (c). (f),(g) Two distinct connection scenarios of the surface bands: zigzag flow
(f) and direct gaps (g).
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states and, hence, can form a zigzag flow that indicates a
nontrivial topology [Fig. 11(d)]. The existence and robust-
ness of the surface fourfold degenerate Dirac cone can
also be understood by a Dirac theory, and we leave this
discussion to Sec. E in Supplemental Material [36].
It has been shown that, at specific fillings, fourfold Dirac

point could exist in 2D magnetic systems with the MSG
CP2

0=m (No. 12.9.74) [81] or on surface of 3D topological
states with the gray MSG Pba210 (No. 32.2.220) [79].
However, bands in these systems will become gapped [81]
or exhibit two double-degenerate Dirac points [79,82] if
the surface band filling (for the 3D TI) or the filling (for the
2D system) is changed by two. Instead, the fourfold Dirac
point protected by SSG is unavoidable at arbitrary even
fillings [Fig. 11(f)].

C. Z2 helical mode on magnetic domain wall

Anomalous edge states are known to occur at boundaries
between topologically distinct systems. Here, we demon-
strate a new situation where an anomalous helical state
appears at a domain wall between two magnetic domains
with the same Chern number. The helical state is protected
by an SSG symmetry that relates the two domains as well as
the nonzero but the same Chern number of the two
domains. One would expect a gapped domain wall without
knowing the SSG symmetry.
We consider a single-layer kagome lattice with two

magnetic domains [Fig. 12(a)]. The Hamiltonian has the
form

H2D ¼ tk
X

hR;α;R0;α0i
ðc†R;ασ0cR0;α0 Þ þ J

X
R;α

SR;α · sR;α: ð44Þ

In the lower plane (y < 0), SR;α are identical to those in the
i ¼ 1 subsystem of Eq. (40), which exhibits an out-of-plane
canting along the þz direction and forms out-in–out-out
structure for the in-plane components. The magnetic

structure in the upper plane (y > 0), on the other hand,
is related to that of the lower plane through the SSG
operation M̂yT̂ ¼ fiσyKjm010j0g. The magnetic moments

on the domain wall (y ¼ 0), which is the M̂yT̂ -invariant
line, equal zero.
By calculating Berry curvature, we find that the

Hamiltonians in both the lower and upper domains have
C ¼ −1 (at the filling of one electron per unit cell). Note
that the M̂yT̂ symmetry promises the same Chern number
of the two domains. We diagonalize a sample H2D with
OBC along the y direction and PBC along the x direction,
in which two domains occupy the same area. In addition
to the chiral edge modes in the upper and lower boundaries,
a helical edge mode appears around the domain wall
[Fig. 12(b)].
The existence and robustness of the helical edge mode

can be understood through a Dirac theory. First, consider an
infinite barrier at the domain wall. The lower and upper
domains give rise to a chiral and an antichiral edge mode
around the domain wall, respectively. They do not couple
with each other because of the infinite barrier. The effective
Hamiltonian can be written as HðkxÞ ¼ vFkxσz, where vF
is the Fermi velocity, and the M̂yT̂ symmetry is represented
by iσyK, which serves as an effective spinful TRS on the
domain wall. Then, we consider softening the barrier. One
may expect a mass generation of the form σy or σx.

However, these mass terms are forbidden by the M̂yT̂
symmetry. As a result, the helical edge mode remains
robust.
Applying a generic O(3) matrix rotation to only the

magnetic moments in the upper (or lower) domain would
disrupt the MyT symmetry, resulting in the opening of
the gap of the helical mode. However, such a configuration
might be less stable than the original one. According to
the Landau-Ginzburg theory, the free energy F associated
with a domain is a function of the relative angle θ between
the order parameters on the two sides. For the MyT -
symmetric domain wall, the order parameters on two sides
are opposite, and, hence, θ ¼ π. Let us expand F around
θ ¼ π. As required by the symmetry, F should be an
even function of (θ − π), and, at the lowest order,
F ¼ F0 þ bðθ − πÞ2. In the case that b > 0, θ ¼ π is the
local minimum of the free energy.

VI. SUMMARY AND DISCUSSION

In this work, we completed the full classification of
SSGs for the first time. These SSGs provide a complete
mathematical description for the symmetries of all types of
magnetic materials, including collinear, noncollinear, com-
mensurate, and incommensurate spiral configurations, etc.,
when the strength of SOC is weaker than the relevant
energy scale. Remarkably, we find that the classification
problem can be mapped to a representation problem.

FIG. 12. (a) Noncoplanar magnetic structure with two magnetic
domains on the kagome lattice. Two magnetic domains are
related by fiσyKjm010j0g, and out-of-plane canting on the upper
(lower) plane is toward the z (−z) direction. (b) Energy band of
H2D under PBC along the x direction and OBC along the
y direction. Ny of the upper and lower domains both equal 50.
Red dots represent helical edge modes on the domain wall. The
blue and cyan dots represent chiral edge modes around the upper
and lower boundaries.
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The SSGs (G) for collinear, coplanar, and noncoplanar
magnetic structures can be represented by O(1), O(2),
and O(3) representations of the parent space groups (P),
respectively. In summary, the OðNÞ representation matrix
DðpÞ of a spatial operation p∈P indicates how the
magnetic moments, confined within an N-dimensional
subspace, undergo transformation after the spatial opera-
tion p in such a manner that the magnetic structure remains
unchanged. We enumerate all the inequivalent OðNÞ
representations by exhausting all distinct combinations
of real irreps of space groups. Depending on their con-
stituent irreps, the OðNÞ representations are categorized
into two (I and II), eight (I–VIII), and 16 (I–VXI) types for
N ¼ 1, 2, 3, respectively. It is worth mentioning that O(2)
representations of types V and VIII and O(3) representa-
tions of types V, VIII, XI, and XIV allow both incom-
mensurate and commensurate spiral magnetism due to their
inclusion of irreps induced from non-HSP momenta.
Thereby, the momenta determine the spiral angles, allowing
for continuous changes. By organizing all the representa-
tions by equivalence relations associated with coordinate
transformations and continuous change of the non-HSP
momenta, we obtain 1421, 9542, and 56 512 distinct SSGs
for collinear, coplanar, and noncoplanar magnetic struc-
tures, respectively. For clarity and ease of reference,
we have introduced a name convention αI :J :K ρ for
the SSGs, where α indicates collinear (α ¼ L), coplanar
(α ¼ P), or noncoplanar magnetism (α ¼ N), I ¼ 1…230
is the index of the parent space group P, J ¼ 1…16 is the
type of the representation, K is the additional numbering of
the SSG for given αI :J , and ρ specifies the constituent
irreps forming the OðNÞ representation (see Sec. II F,
and see Figs. 3 and 4 as examples). A complete list of
all SSGs is given in Sec. F in Supplemental Material [36].
Additionally, to facilitate future studies, we identify
the SSGs of the 1595 published magnetic materials in
the MAGNDATA database [42,43] on the Bilbao
Crystallographic Server. Detailed information on these
materials is given in Sec. G in Supplemental Material [36].
We have discussed various applications of SSGs and

introduced several key concepts, such as SSG momentum,
SSG Brillouin zone, symmorphic and nonsymmorphic
SBZ, and noncommuting SBZ, in electronic band theory.
In a collinear SSG, the electronic bands decouple to spin-up
and spin-down sectors. The bands within each spin sector
form a linear representation of a single-valued gray MSG
G0 × SZT

2
, whereG0 ⊂ P consists of pure spatial operations

preserving the magnetic structure. In antiferromagnetic or
altermagnetic SSGs, which are given by nonidentity O(1)
representations of P, the two spin sectors are related to each
other. In a noncollinear SSG, the electronic bands form a
projective representation, characterized by factor system
ω2 ∈H2½M;Uð1Þ� of an MSG M that is isomorphic to
the SSG G. M’s are type-II and type-I, -III, and -IV MSGs
for coplanar and noncoplanar structures, respectively.

The projective representation allows for exotic electronic
features that do not exist in conventional MSGs. One such
example is the nonsymmorphic SBZ, where an SSG
operation g ¼ fXgUgjRgjvgg transforms an SSG momen-
tum k̃ to sgðRgk̃þ q̃gÞ with a fractional reciprocal lattice q̃g
and sg ¼ 1 (−1) for unitary (antiunitary) operation. In other
words, a real space rotation (screw) or mirror (glide) g may
behave as a screw or glide in the SSG momentum space.
This feature is reflected in extra degeneracy, not explained by
MSG, of electronic bands in the magnetic (reduced) BZ
corresponding to the expanded magnetic unit cell. With first-
principle calculations, we demonstrate that the antiferro-
magnetic material CoSO4 exhibits this novel feature, and
other materials with nonsymmorphic SBZs are summarized
in Sec. G in Supplemental Material [36]. Another
exotic electronic feature is the effective π flux induced by
noncollinear magnetism, where the translation operators
t̂i (i ¼ 1, 2, 3) do not commute with each other, yielding
the noncommuting SBZ. We construct SSG Bloch states and
explore band theory in the folded SBZ, revealing that a
single SSG Bloch state can transform into a non-Bloch state
under an SSG operation, leading to additional degeneracies.
Furthermore, SSGs enable a comprehensive characterization
of the spin texture in the momentum space. The theory of
collinear SSGs fully classifies the possible types of alter-
magnetism, and coplanar and noncoplanar SSGs generalize
the altermagnetism to a much broader scope of noncollinear
magnetic materials. Our generalizations and the identifica-
tion of material candidates may boost the development of
this flourishing field.
Given the enriched symmetry algebra, SSGs can protect

novel topological phases. We construct a Z2 TI without
TRS and SOC. Different from previous ones [4,83], this
model does not require an external magnetic flux and,
hence, is an intrinsic magnetic Z2 TI. Moreover, we
demonstrate that SSG can protect a fourfold band crossing
on the surface of a 3D Z2 TI and a helical edge mode
between two domains with the same topological index.
These unique features have no counterparts in the conven-
tional magnetic topological phases.
Our systematic investigations on SSGs may intrigue

further research interests in topological states. For example,
the complete classification of SSGs can lead to the
development of the complete representation theory of
SSGs, as well as the topological quantum chemistry
(TQC) [44] that can be used to diagnose topological
insulators and topological semimetals. Additionally, SSGs
offer potential applications in magnon spectrum and
magnon topological states. Since magnons are spin-1
particles, their investigations do not require projective
representations. Thus, we can directly use the linear
representation of the isomorphic MSG M of an SSG G
to describe the magnon bands. This comprehensive under-
standing of SSGs paves the way for generalizing the
previous theory into magnon TQC [84,85].
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We compare our method of classifying SSGs to Litvin’s
approach introduced in Refs. [2,3]. While these two
methods appear different at first glance, they are equivalent
for commensurate magnetic structures, except that we
consider an additional equivalence relation between
SSGs with different spiral angles that are continuously
connected (Sec. II D). This equivalence relation enables our
theory to be applicable in incommensurate magnetic
structures. Litvin’s approach involves the introduction of
a normal subgroupP0 ¼ ffRgjvggjXgUg ¼ I; g∈Gg of the
parent space group P, consisting of pure spatial operations
that leave the magnetic structure unchanged. Additionally,
a supergroup B ¼ fXgUgjg∈Gg of the pure-spin-operation
group S is introduced, containing the spin operation
parts of all SSG operations. P can be decomposed as
cosets of P0:

P ¼ p1P0 þ p2P0 þ � � � þ pnP0: ð45Þ

The authors of Refs. [2,3] proved the isomorphism
P=P0 ≃ B=S. Distinct SSGs within the same family pos-
sess the same P and B but differ in terms of P0 and the
isomorphisms between P=P0 and B=S. We can show that
the chosen P0 and the isomorphisms can be interpreted as
OðNÞ representations of P, where N ¼ 3, 2, 1 for non-
coplanar, coplanar, and collinear magnetic structures,
respectively. For noncoplanar magnetic structures, S is
trivial, and, hence, B ¼ fX1U1; X2U2…XnUng, as a dis-
crete subgroup of O(3), is a point group (not necessarily a
crystalline point group) represented by O(3) matrices.
Therefore, an isomorphism between P=P0 and B associates
each coset representative pi with an O(3) matrix XiUi,
defining an O(3) representation of P, where DðpÞ ¼ XiUi
for p∈piP0. For the coplanar magnetic structures, any spin
operation that leaves the moments in plane is an O(2)
rotation followed by an element in S ¼ SZT

2
[Eq. (5)],

implying that B=S is a 2D point group represented by O(2)
matrices. Similarly, for the collinear magnetic structures,
B=S is a subgroup of O(1). Therefore, each isomorphism
P=P0 ≃ B=S defines an OðNÞ representation of the parent
space group P. The equivalence relations defined in
Refs. [2,3] are identical to the first two equivalence
relations among SSGs in this work (Sec. II D). If two
SSGs are related by a coordinate transformation in spin or
real space, they are identified as equivalent. However, our
third equivalence relation—i.e., the equivalence between
SSGs that can be deformed to each other by a continuous
change of non-HSP momenta (spiral angle)—is not con-
sidered in Litvin’s approach. It is because, for commensu-
rate magnetic structures, different spiral angles imply
different magnetic unit cells and, hence, different P0,
resulting in different SSGs that are not naturally related
in the language of Litvin’s approach. Considering the
rational-number-valued spiral angles, Litvin’s approach

would give an infinite number of SSGs for commensurate
magnetic structures. Furthermore, Litvin’s approach does
not apply to incommensurate magnetic structures.
In the end, it is worth noting that the theory of SSG also

applies to some magnetic systems with significant SOC,
and the idea of SSG can be generalized to other types of
symmetry breaking, such as pair-density wave states in
superconductors and high-spin states in cold atom systems.
Many intriguing physical systems have their symmetries in
the form of the product between space group Glatt and
internal symmetry group Gint; Glatt ×Gint. Here, the inter-
nal symmetry group Gint can be either a discrete or a
continuous group. For instance, the Kitaev spin model [86]
and its generalizations [87–91] have the symmetry of
Glatt ×Gint with Gint ¼ D2 × ZT

2 ≃ Z3
2, due to their bond-

dependent Ising couplings. Note that the spin-spin inter-
action being intensively stronger along easy axes suggests a
significant SOC. A nontrivial subgroup of Glatt ×Gint
might characterize their symmetry-broken phases. A sim-
ilar analysis as for SSGs enables the classification of these
symmetry groups byH1ðP; Z3

2Þ, where P is the parent space
(plane) group in this case and is generally a subgroup of
Glatt. H1ðP; Z3

2Þ is characterized by three independent real
irreps of the group P. Hence, symmetry groups given by
H1ðP; Z3

2Þ form a subset of the SSGs with the same parent
space group P, i.e., type-I, -II, -III, and -IX SSGs where
only 1D real irreps are involved. The knowledge of SSGs
can be directly applied to studies of the spectral and
dynamical properties in their symmetry-broken phases.
From this illustrative example, we conclude that, in general,
a subset of SSGs given by H1½P;Oð3Þ� are still valid even
in the presence of significant SOC—as long as the many-
body Hamiltonian respects a nontrivial Gint ⊊ Oð3Þ.
In pair-density wave states [92] and spin-3

2
cold atom

systems [93], Gint ¼ Uð1Þ and SO(5), respectively, and
systematic understandings of symmetries of order param-
eters can be achieved by a similar scheme.

Note added. Recently, we learned that related works were
carried out by Fang’s [94] and Liu’s [95] groups, employ-
ing a method similar to Litvin’s approach.
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