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We present a deterministic algorithm for the efficient evaluation of imaginary-time diagrams based on
the recently introduced discrete Lehmann representation (DLR) of imaginary-time Green’s functions. In
addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties,
the DLR basis is separable in imaginary-time, allowing us to decompose diagrams into linear combinations
of nested sequences of one-dimensional products and convolutions. Focusing on the strong-coupling bold-
line expansion of generalized Anderson impurity models, we show that our strategy reduces the
computational complexity of evaluating an Mth-order diagram at inverse temperature β and spectral
width ωmax from O(ðβωmaxÞ2M−1) for a direct quadrature to O(MðlogðβωmaxÞÞMþ1), with controllable
high-order accuracy. We benchmark our algorithm using third-order expansions for multiband impurity
problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact
diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent
dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling
representing a minimal model of Ca2RuO4, demonstrating the promise of the method for modeling realistic
strongly correlated multiband materials. For both strong and weak coupling expansions of low and
intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightfor-
ward, and robust blackbox evaluation procedure. In this sense, it fills a gap between diagrammatic
approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on
Monte Carlo sampling of high-order diagrams.
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I. INTRODUCTION

Feynman diagram expansions are a standard computa-
tional tool in quantum many-body physics, both in con-
densed matter and quantum chemistry [1–4]. Given a
Hamiltonian, one expands around an exactly solvable limit,
such as the noninteracting (or atomic) limit, and interaction
(or atom-atom coupling) corrections are captured by
summing diagrams up to some order. Directly evaluated

low-order expansions, like Hartree-Fock and Hedin’s
GW method [5], are routinely used in chemistry and
solid-state physics first-principles calculations [4,6,7].
Similarly, the first-order bold expansion about the atomic
limit, also called the noncrossing approximation (NCA), is
widely used for quantum impurity problems [8–13]. While
such low-order expansions are simple, inexpensive, and
reliable for systems close to the exactly solvable limit, they
are inadequate in the nonperturbative regime. In certain
cases, such as the description of Kondo resonances in
impurity problems, including diagrams of even slightly
higher order is required for the correct recovery of
physical observables [13–16]. However, direct evaluation
of high-order expansions requires high-dimensional quad-
rature, rendering it impractical beyond even the first few
orders.
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We illustrate the state of the field for the example of the
bold hybridization expansions of the Anderson impurity
model, which we focus on in this work. Here, the first-order
NCA, which requires no integration, is used routinely
[1,12,17–19], as is the second-order one-crossing approxi-
mation (OCA), which requires only two-dimensional inte-
gration [12,14,20–24]. At third order and beyond, we are
aware of only a few studies because of the rapidly growing
cost of direct quadrature [12,16,25], though expansions at
this order describe the physics around the Mott transition
remarkably well. A notable recent exception involves a
combination of a three-point vertex computed by direct
quadrature and Monte Carlo sampling of the four-point
vertex [26,27]. Thus, although direct evaluationmethods are
simple, robust, and can be made high-order accurate with
respect to quadrature error (see Sec. III C), they have thus far
been almost entirely restricted to the lowest-order diagram-
matic expansions, limiting their usefulness in addressing
challenging, material-realistic models.
In the opposite regime of very high-order expansions,

diagrammatic Monte Carlo methods for sampling over
diagram orders, topologies, and integrals have led to
enormous success in producing accurate results for sophis-
ticated, strongly correlated systems, including quantum
impurity problems [2,28–31] in combination with dynami-
cal mean-field theory (DMFT) [1,32], polaron problems
[33–35], and lattice Hubbard problems [36–39]. However,
such approaches are computationally intensive, slowly
converging (at the half-order Monte Carlo or first-order
quasi-Monte Carlo [40,41] rate), and, in many cases, lack
robustness due to the sign problem [2]. In DMFT applica-
tions, the sign problem has prevented the application of
Monte Carlo-based methods to a large class of materials,
such as multiband systems with off-diagonal hybridization
[42], e.g., spin-orbit coupled 4d and 5d electron systems. For
several prominent correlatedmaterials, the sign problem has
been mitigated by employing a basis transformation within
the interaction expansion [43,44], but this approach is
limited to rather high temperatures. Another approach,
the inchworm Monte Carlo formulation of the strong-
coupling expansion [42,45], has been shown to mitigate
the sign problem in minimal impurity models, and its range
of applicability is being actively explored. A promising
recent development, the tensor train diagrammatics method,
uses tensor cross interpolation (TCI) rather than
Monte Carlo sampling, and it was used to compute high-
order bare expansions of the Anderson impurity problem,
both for the interaction [46] and hybridization [47] expan-
sions, without a sign problem and with convergence rates
significantly faster than Monte Carlo methods. This tech-
nique is related in several ways to the algorithm presented
here; however, at present, it has been used primarily for high-
order bare expansion diagrams, and since it relies on a
specific underlying compressibility structure of the inte-
grand, its range of applicability is not yet well understood.

An opportunity therefore exists for the development of
diagram evaluation techniques which maintain the simplic-
ity and robustness of direct methods at the lowest orders
while extending their range of applicability at least to
intermediate orders. Indeed, practitioners typically switch
to diagrammatic Monte Carlo methods even when the
required expansion order is only slightly beyond the reach
of direct methods, due to the lack of practical alternatives
[15,27]. By exploiting the specific structure of imaginary-
time diagrams, we obtain a method which aims to make
such calculations routine, deterministic, and high-order
accurate. It relies on the recently introduced discrete
Lehmann representation (DLR), which provides a compact
basis of exponentials in which to expand arbitrary single-
particle imaginary-time Green’s functions, and related
quantities, with high-order accuracy [48]. Beyond the
favorable discretization properties of the DLR, we show
that the separability of the DLR basis functions in their
imaginary-time argument can be used to decompose dia-
grams into linear combinations of nested sequences of
products and convolutions. These products and convolu-
tions are then computed efficiently in the DLR basis.
Whereas the cost of direct evaluation of an Mth-order
diagram scales with the inverse temperature β and spectral
width ωmax as O(ðβωmaxÞ2M−1), our proposed method
scales as O(MðlogðβωmaxÞÞMþ1). The method is trivially
parallelizable over the large number of diagrams appearing
in typical diagrammatic calculations.
We implement our algorithm for the strong-coupling

expansion up to third order and benchmark it on several
challenging Anderson impurity problems.We observe rapid
order-by-order convergence within the Mott insulating
regime for systems with off-diagonal hybridization and/or
strong local spin-orbit coupling. We also solve a minimal
model for the strongly correlated calcium ruthenate
Ca2RuO4 within DMFT [49–53]. The significant spin-orbit
coupling in this material makes it a challenging problem for
MonteCarlo-basedmethods [43], butwe show that the third-
order solution is highly accurate. A general implementation
of our approach beyond third-order diagrams and to weak
coupling expansions is straightforward, requiring only
technical effort, and our formalism indicates a clear path
towards extension to systems beyond impurity problems,
like molecular or extended systems. The main idea of our
algorithm—separation of variables using sum-of-exponen-
tials approximations—may be applicable to higher-order
quantum many-body expansions comprising higher-dimen-
sional correlators and kernels, such as the triangular vertex
functions in the Hedin equations [5,26,27,54] and the two-
particle objects appearing in the Bethe-Salpeter equation
[1,55]. Furthermore, our approach is likely complementary
to other methods, such as TCI, which aim to address the
exponential-scaling bottleneck of high-order diagrammatic
calculations, providing a new ingredient in the design
of algorithms based on these tools. This work therefore
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represents a promising proof of concept, demonstrated on
several challenging calculations, for a fundamental new tool
in diagrammatic calculations.

II. OVERVIEW OF THE METHOD

The main idea of our algorithm can be demonstrated with
a simple example whose structure is typical of imaginary-
time Feynman diagrams. Consider the integral

IðτÞ ¼
Z

τ

0

dτ0
Z

τ0

0

dτ00G1ðτ − τ00ÞG2ðτ − τ0ÞG3ðτ0 − τ00Þ;

for scalar or matrix-valued Gi and τ∈ ½0; β�. Since the
factor G1 couples the τ and τ00 variables, IðτÞ must be
calculated as a double integral. However, if we can make a
low-rank approximation

G1ðτ − τ00Þ ≈
Xr
l¼1

G1lφlðτÞψ lðτ00Þ ð1Þ

with r small, for some scalar-valued φl and ψ l, then we can
separate variables:

IðτÞ ≈
Xr

l¼1

G1lφlðτÞ
Z

τ

0

dτ0G2ðτ − τ0Þ

×
Z

τ0

0

dτ00G3ðτ0 − τ00Þψ lðτ00Þ:

Then, IðτÞ can be computed from r sequences of products
and nested convolutions, which may be less expensive than
computing a full double integral for each τ, particularly if the
Gi and the product and convolution operations can be
discretized efficiently. In the case of imaginary-time quan-
tities, the DLR basis [48] provides an efficient discretization
with the separability property (1). The number of basis
functions scales as r ¼ O(logðβωmaxÞ logð1=εÞ), with ε a
user-specified accuracy, for anyG1.We apply this separation-
of-variables approach to certain hybridization functions
appearing in the strong-coupling expansion and compute
the resulting products and convolutions in the DLR basis.
We also demonstrate its application to the weak coupling
expansion in Appendix C.
Remark 1. In the applied and computational mathematics

literature, separability in sum-of-exponentials approxima-
tions has been used to obtain fast algorithms for applying
nonlocal integral operators in a variety of settings [56–59],
including fast history integration and compression in
Volterra integral equations [60–62] and nonlocal trans-
parent boundary conditions [63–65], diagonal translation
operators in the fast multipole method [66–68], the fast
Gauss transform [69], the periodic fast multipole method
[70], and others [71,72]. In these applications, one typically
considers an integral transform IðxÞ ¼ R

dx0Kðx − x0Þfðx0Þ
for a kernel K, which is known a priori, and uses a sum-of-
exponentials approximation of K to separate “source”

(internal or integration) variables x0 from “target” (external)
variables x. By contrast, Feynman diagrams involve higher-
dimensional integrals connecting a priori unknown func-
tions entangled via many internal and external variables.

III. BACKGROUND: DIAGRAMMATIC
METHODS AND NUMERICAL TOOLS

A. Strong-coupling hybridization expansion

Quantum impurity problems are zero-dimensional inter-
acting quantum many-body systems in contact with a
general bath environment. The local part of the impurity
HamiltonianHloc can have arbitrary quadratic terms ϵκλ and
quartic terms Uκλμν:

Hloc ¼
Xn
κ;λ¼1

ϵκλc
†
κcλ þ

Xn
κ;λ;μ;ν¼1

Uκλμνc
†
κc

†
λcμcν: ð2Þ

Here, c†λ is the creation operator for a fermion in the
impurity state λ and n is the number of impurity states. The
full quantum impurity problem, including the coupling to
the bath, can be described in terms of the action

S ¼
Z

β

0

dτHloc½c; c†�

þ
Xn
κ;λ¼1

Z
β

0

dτ
Z

β

0

dτ0c†λðτÞΔλκðτ − τ0Þcκðτ0Þ: ð3Þ

The hybridization function Δλκðτ − τ0Þ describes the propa-
gation of a fermion in impurity state κ entering the bath at
time τ0 and returning to the impurity state λ at time τ. Note
that Δλκ is a scalar-valued function for each fixed κ and λ.
The properties of the impurity problem can be charac-

terized in terms of static expectation values and dynamical
response functions. We focus here on the single-particle
Green’s function Gλκðτ − τ0Þ ¼ −hT cλðτÞc†κðτ0Þi, which
describes the temporal correlation between the addition of
a fermion to the impurity in state κ and the removal of a
fermion in state λ. In the noninteracting limit Uκλμν ¼ 0, the
Green’s function can be determined analytically, and for
nonzero interactions, one can carry out an expansion in the
interaction parameter, called the interaction expansion.
However, formany strongly correlated systems, this becomes
infeasible, requiring high expansion orders [73,74]. For
sufficiently strong interactions, the series diverges with
perturbation order, requiring tailored resummations derived
from conformal transformations [75].
In the limit of an impurity decoupled from the bath (zero

hybridization Δλκ ¼ 0), we can directly diagonalize Hloc
since there are a finite number of local many-body states.
This is the starting point of the strong-coupling expansion,
which is, in essence, a perturbative expansion in the
hybridization function. We refer to Ref. [12] for a detailed
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description of this approach and briefly summarize its main
characteristics here.
To enable the hybridization expansion, the impurity

action S is rewritten by introducing a pseudoparticle
p†
kj0i for each impurity many-body state jki, making the

local Hamiltonian quadratic and the hybridization quartic in
the pseudoparticle space. The resulting action is given by

S ¼
XN
j;k¼1

Z
β

0

dτp†
jðτÞhjjHlocjkipkðτÞ

þ
XN

j;k;j0;k0¼1

Xn
κ;λ¼1

Z
β

0

dτ
Z

β

0

dτ0p†
jðτÞpkðτÞF†

λjk

× Δλκðτ − τ0ÞFκk0j0p
†
k0 ðτ0Þpj0 ðτ0Þ; ð4Þ

where N ¼ 2n is the number of local many-body states and
Fκjk ¼ hjjcκjki. This action can be expanded in the quartic
hybridization term. The pseudoparticle Green’s function
Gjkðτ−τ0Þ¼−hT pjðτÞp†

kðτ0Þi satisfies the Dyson equation

G ¼ gþ g � Σ � G; ð5Þ

where Σ is the pseudoparticle self-energy, gjkðτ − τ0Þ ¼
−hT pjðτÞp†

kðτ0ÞiΔ¼0 is the noninteracting (Δ ¼ 0) pseu-
doparticle Green’s function, and � denotes the time-ordered
convolution

ða � bÞjkðτÞ ¼
XN
l¼1

Z
τ

0

dτ0ajlðτ − τ0Þblkðτ0Þ:

The pseudoparticle self-energy Σ contains the following
sequence of diagrams:

ð6Þ

Solid lines correspond to the pseudoparticle Green’s
function:

Each undirected dotted line,

ð7Þ

corresponds to a sum over forward and backward propa-
gation of the hybridization function interaction. A forward
hybridization function interaction is represented by

ð8Þ

which, in turn, contains a sum over hybridization functions
Δλκ. Here, Fκ, represented by a red triangle, is an N × N
matrix with entries Fκmn, and similarly for F†

λ, which is
represented by a green triangle [see Eqs. (7) and (8)]. A
backward interaction is given by

ð9Þ

The orderM of each self-energy diagram in Eq. (6) is given
by the number of hybridization interactions (dotted lines)
propagating either forward or backward. Each diagram is
composed of a backbone of forward-propagating pseudo-
particle Green’s functions G (solid lines) connected by
vertices associated with one end of a hybridization line.
Each vertex represents an insertion of a matrix F†

λ or Fκ at a
given time τi. The internal times τ1;…; τ2M−2 are integrated
over in the domain τ1 ≤ � � � ≤ τ2M−2 ≤ τ. The prefactor of
each diagram is ð−1ÞsþfþM, where s is the number of
crossing hybridization lines and f is the number of back-
ward-propagating hybridization lines. We give specific
examples with mathematical expressions in the next
subsection.
The single-particle Green’s function GðτÞ can be recov-

ered from the pseudoparticle Green’s function G using the
circular diagram series

ð10Þ

We again describe the construction of these diagrams
and give examples in the next subsection. In this case,
the diagram order M is one more than the number of
hybridization interactions (dotted lines). Each diagram
consists of a closed loop of pseudoparticle propagators G
with two extra operator vertices Fλ and F†

κ inserted at the
times τ and 0 (red and green triangles, respectively). Here,
λ and κ are the single-particle state indices of the single-
particle Green’s function Gλκðτ − 0Þ. The hybridization
interactions and associated vertices have the same struc-
ture as in the self-energy diagrams. For M > 1, the
internal times τ1;…; τ2M−2 are integrated over in the
domain 0 ≤ τ1 ≤ � � � ≤ τ ≤ � � � ≤ τ2M−2 ≤ β. The number
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of internal times on the intervals ½0; τ� and ½τ; β�, respec-
tively, varies from one diagram to another. A trace is taken
over the N-dimensional pseudoparticle state indices. The
sign of a diagram is determined by first inserting a
hybridization line between the two external times τ and
0 and then cutting an arbitrary pseudoparticle propagator.
The prefactor is obtained from the modified diagram
as ð−1ÞsþfþM.
The steps required to compute the single-particle Green’s

function G can be summarized as follows: (i) The pseu-
doparticle Green’s function G and self-energy Σ are
determined self-consistently by solving the Dyson equa-
tion (5), using the self-energy expansion (6); (ii) G is then
obtained by evaluating the diagrams in Eq. (10).

B. Examples of diagrams

Both the self-energy diagrams and the circular diagrams
for the single-particle Green’s function beyond first order
take the form of multidimensional integrals in imaginary-
time. We present typical examples for each case to elucidate
their common structure.

1. Pseudoparticle self-energy diagrams

The approximation of the pseudoparticle self-energy that
includes only first-order diagrams, called the NCA, requires
multiplication of N × N matrices but no integration:

ð11Þ

The complete first-order contribution to Eq. (6) is given by

ð12Þ

i.e., the sumover all hybridization directions [seeEq. (7)] and
hybridization insertions Δλκ [see Eqs. (8) and (9)].
The second-order approximation to the self-energy is

called the one-crossing approximation (OCA), and con-
tributing diagrams are given by double integrals:

ð13Þ

The complete second-order contribution to Eq. (6) is
obtained in a manner analogous to Eq. (12). We note that
the factors corresponding to the forward-propagating back-
bone of impurity propagators have a repeated convolutional
structure in the imaginary-time variables. This structure is
broken by the hybridization functions, which couple non-
adjacent time variables. All higher-order self-energy dia-
grams share this pattern. For example, the diagrams
comprising the first third-order contribution in Eq. (6)
are given by

ð14Þ

Our strategy will be to reinstate the convolutional
structure of the backbone by separating variables in the
hybridization functions.

2. Single-particle Green’s function diagrams

The diagrams for the single-particle Green’s function
GλκðτÞ ¼ −hT cλðτÞc†κð0Þi contain two additional operators
compared with the self-energy diagrams: cλ is inserted at
time τ, and c†κ is inserted at time 0. The first-order (NCA)
diagrams in Eq. (10) take the simple form

ð15Þ

Since no hybridization function connects the times 0 and τ in
these diagrams, the indices κ and λ are included in the
notation. The second-order (OCA) diagrams contain a single
hybridization insertion and two internal time integrals:
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ð16Þ

The third-order diagrams contain two hybridization insertions and four internal time integrals, e.g.,

ð17Þ

The backbone propagators again have a simple convolu-
tional structure, now split into the two separable intervals
½0; τ� and ½τ; β�, but the hybridization insertions again break
this structure.

C. Evaluation by direct quadrature

In order to establish a baseline for comparison with our
approach, we describe a simple integration strategy, based
on equispaced quadrature rules, which has been employed
in the literature [12,25,76]. Since we focus on the evalu-
ation of individual diagrams, for the remaining discussion,
we simplify notation by fixing the hybridization indices
and absorbing the matrices F, F† into the Green’s func-
tions. For example, we can write each OCA self-energy
diagram (13) in the common form

ΣðτÞ ¼
Z

τ

0

dτ2

Z
τ2

0

dτ1Δ2ðτ − τ1ÞΔ1ðτ2Þ

× G3ðτ − τ2ÞG2ðτ2 − τ1ÞG1ðτ1Þ; ð18Þ
where Σ and Gi are N × N matrix-valued and Δi are scalar
valued.
A simple approach is to preevaluate all functions on an

equispaced grid τj in imaginary-time and discretize the
integrals by the second-order accurate trapezoidal rule. This
approach reduces the double integral to

ΣðτjÞ ≈
X0
j

k2¼0

X0
k2

k1¼0

Δ2;j−k1Δ1;k2G3;j−k2G2;k2−k1G1;k1 ;

where we have used the notation Δi;j ¼ ΔiðτjÞ. The prime
on the sum indicates that its first and last terms are
multiplied by the trapezoidal rule weight 1=2, unless the
sum contains only one term, in which case it is set to zero.

If nτ grid points are used in each dimension, then this
method scales asOðn2M−1

τ Þ (2M − 2 internal time variables
are integrated over for each τ). Furthermore, achieving
convergence, in general, requires taking nτ ¼ OðβωmaxÞ,
with ωmax the maximum spectral width of all quantities
appearing in the integrand [48]. Defining the dimension-
less constant Λ ¼ βωmax, the scaling of this method
is OðΛ2M−1Þ.
Remark 2. Although it does not improve the scaling with

respect toM orΛ, the order of accuracy p—that is, the error
convergence rate n−pτ , given by p ¼ 2 for the trapezoidal
rule—can be substantially improved at negligible addi-
tional cost using endpoint-corrected equispaced quadra-
tures. For example, Gregory quadratures (yielding roughly
p ≤ 10), and more stable variants (yielding larger p)
[77,78], increase the order of accuracy by reweighting a
few endpoint values. For stability at very high-order
accuracy, endpoint node locations must be modified, as
in Alpert quadrature [79], requiring high-order accurate on-
the-fly evaluation of the integrand for a small subset of
terms. To our knowledge, such approaches have not yet
been used in the literature for diagram evaluation, though
Gregory quadratures up to order p ¼ 6 have been used in
nonequilibrium Green’s function calculations for real and
imaginary time integrals [76]. Other possibilities include
spectral methods like Gauss quadrature, yielding spectral
accuracy, or composite spectral methods, yielding arbitrar-
ily high-order accuracy, but these rules are not based on an
underlying equispaced grid and therefore require on-the-fly
evaluation of the integrand on irregular grids.

D. Discrete Lehmann representation

We give a short summary of the main properties of the
DLR used by our algorithm. For a detailed description of
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the DLR, we refer to Ref. [48], and to Ref. [80] for another
brief overview. The DLR, like the closely related inter-
mediate representation (IR) [81,82], is based on the spectral
Lehmann representation

GðτÞ ¼ −
Z

∞

−∞
dωKðτ;ωÞρðωÞ ð19Þ

of imaginary-time Green’s functions. Here,G is the Green’s
function, ρ is its integrable spectral function, and

Kðτ;ωÞ ¼ e−τω

1þ e−βω
ð20Þ

is called the analytic continuation kernel. Given the support
constraint ρðωÞ ¼ 0 for ω outside ½−ωmax;ωmax� and
defining Λ ¼ βωmax as above, one observes that the
singular values of the integral operator defining the
representation (19) decay superexponentially. In particular,
the ε-rank r—the number of singular values larger than ε—
is O(logðΛÞ logð1=εÞ). This finding implies that the image
of the operator, which contains all imaginary-time Green’s
functions, can be characterized to accuracy ε by a basis of
only r ¼ O(logðΛÞ logð1=εÞ) functions.
Taking these functions to be the left singular vectors of

the operator yields the orthogonal IR basis. Alternatively,
taking the functions to be Kðτ;ωlÞ for r carefully chosen ωl
yields the nonorthogonal but explicit DLR basis. In
particular, it is shown in Ref. [48] that the DLR frequencies
ωl can be selected, using rank-revealing pivoted Gram-
Schmidt orthogonalization, to give the DLR expansion

GðτÞ ≈
Xr

l¼1

Kðτ;ωlÞĝl ð21Þ

accurate to ε, with r possibly slightly larger than the ε rank
of the operator, or the number of its singular values greater
than ε. We emphasize that r and the DLR frequencies
depend only on Λ and ε, and not on GðτÞ itself; to ε
accuracy, the span of the DLR basis contains all imaginary-
time Green’s functions satisfying the user-specified cut-
off Λ.
Using a similar pivoted Gram-Schmidt procedure, one

can construct a set of r DLR interpolation nodes τk such
that the DLR coefficient ĝl can be stably recovered from
samples GðτkÞ by solving the r × r linear system

GðτkÞ ¼
Xr

l¼1

Kðτk;ωlÞĝl:

This process is similar to the sparse sampling method [83],
typically used in conjunction with the IR basis, which
obtains stable interpolation grids from the extrema of the

highest-degree IR basis function. Green’s functions can
then be represented by their values on this DLR grid,
and operations can be carried out using this representation.
For example, given Green’s functions FðτÞ and GðτÞ
represented by their DLR grid samples FðτkÞ and GðτkÞ,
we can evaluate their product H ¼ FG on the DLR grid,
HðτkÞ ¼ FðτkÞGðτkÞ. Then, the DLR expansion of H can
be obtained as described above. An efficient algorithm to
compute the convolution HðτÞ ¼ R β

0 dτ0Fðτ − τ0ÞGðτ0Þ or
time-ordered convolution HðτÞ ¼ R

τ
0 dτ

0Fðτ − τ0ÞGðτ0Þ is
described in Appendix A. We note that our method assumes
self-energies and hybridization functions, as well as products
and convolutions of DLR expansions, can be represented
accurately in the DLR basis, which has been observed to be
the case in many previous works [48,83–89].

IV. EFFICIENT EVALUATION
OF IMAGINARY-TIME DIAGRAMS

Our algorithm improves the OðΛ2M−1Þ scaling of the
standard equispaced integration method described in
Sec. III C to O(ð2M−2ÞrMþ1)¼O(ð2M−2ÞðlogΛÞMþ1).
It exploits the separability of the analytic continuation
kernel and therefore the DLR basis functions:

Kðτ − τ0;ωÞ ¼ Kðτ;ωÞKðτ0;−ωÞ
Kð0;−ωÞ : ð22Þ

Using Eq. (22), we can separate variables in the hybridi-
zation functions which break the convolutional structure of
the backbone, reducing diagrams to sums over nested
products and convolutions. Each such operation can then
be evaluated efficiently in the DLR basis, as described
above.
We first demonstrate the technique using the

OCA-type self-energy diagram (18). Replacing Δ2 by its
DLR expansion Δ2ðτÞ ¼

P
r
l¼1Kðτ;ωlÞΔ̂2l and separating

variables gives

Δ2ðτ − τ1Þ ¼
Xr

l¼1

Kðτ;ωlÞKðτ1;−ωlÞ
Kð0;−ωlÞ

Δ̂2l; ð23Þ

and inserting this expression into Eq. (18) gives

ΣðτÞ ¼
Xr

l¼1

Δ̂2l

Kð0;−ωlÞ
Kðτ;ωlÞ

Z
τ

0

dτ2G3ðτ − τ2ÞΔ1ðτ2Þ

×
Z

τ2

0

dτ1G2ðτ2 − τ1ÞG1ðτ1ÞKðτ1;−ωlÞ: ð24Þ

Each term of the sum now consists of a nested
sequence of one-dimensional products and convolutions,
which can be evaluated by the following procedure:
(1) Multiply G1 and Kð·;−ωlÞ, (2) convolve by G2,
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(3) multiply by Δ1, (4) convolve by G3, and (5) multiply by
½Δ̂2l=Kð0;−ωlÞ�Kð·;ωlÞ. Here, products can be taken
pointwise on the DLR grid of r nodes, and convolutions
can be computed at an Oðr2Þ cost using the method
described in Appendix A.
A final technical point on numerical stability must be

addressed. Since 1=Kð0;−ωlÞ ¼ 1þ eβωl , Eq. (24) is
vulnerable to overflow if ωl > 0. In this case, we can
rewrite Eq. (23) using

Kðτ − τ0;ωÞ ¼ Kðτ − τ00;ωÞKðτ00 − τ0;ωÞ
Kð0;ωÞ ð25Þ

in place of Eq. (22) to obtain

Δ2ðτ − τ1Þ ¼
X
ωl≤0

Kðτ;ωlÞKðτ1;−ωlÞ
Kð0;−ωlÞ

Δ̂2l

þ
X
ωl>0

Kðτ − τ2;ωlÞKðτ2 − τ1;ωlÞ
Kð0;ωlÞ

Δ̂2l: ð26Þ

This process gives a numerically stable replacement of
Eq. (24):

ΣðτÞ ¼
X
ωl≤0

Δ̂2l

K−
l ð0Þ

Kþ
l ðτÞ

Z
τ

0

dτ2G3ðτ − τ2ÞΔ1ðτ2Þ

×
Z

τ2

0

dτ1G2ðτ2 − τ1ÞðG1K−
l Þðτ1Þ

þ
X
ωl>0

Δ̂2l

Kþ
l ð0Þ

Z
τ

0

dτ2ðG3K
þ
l Þðτ − τ2ÞΔ1ðτ2Þ

×
Z

τ2

0

dτ1ðG2K
þ
l Þðτ2 − τ1ÞG1ðτ1Þ: ð27Þ

Here, we have introduced the notation

K�
l ðτÞ≡ Kðτ;�ωlÞ ð28Þ

and

ðGiK�
l ÞðτÞ≡ GiðτÞKðτ;�ωlÞ: ð29Þ

The procedure to evaluate the terms with ωl ≤ 0 is the
same as above, but for those with ωl > 0, it is slightly
modified: (1) Multiply G2 and Kþ

l , (2) convolve the result
with G1, (3) multiply by Δ1, (4) multiply G3 and Kþ

l ,
(5) convolve with the previous result, and (6) multiply
by Δ̂2l=K

þ
l ð0Þ.

A. General procedure

This idea may be generalized to arbitrary Mth-order
pseudoparticle self-energy and single-particle Green’s
function diagrams, containing internal time integration
variables τ1;…; τ2M−2, using the following procedure.
Let Δ correspond to a hybridization line which does not
connect to time zero, with DLR coefficients Δ̂l. Order all
imaginary-time variables, including the variable τ, as
τ01 ≤ τ02 ≤ � � � ≤ τ02M−1. Thus, for the self-energy diagrams,
we have τi ¼ τ0i for i ¼ 1;…; 2M − 2, and τ02M−1 ¼ τ. For
the Green’s function diagrams, we have some k < 2M − 1
such that τ0i ¼ τi for i ¼ 1;…; k − 1, τ0k ¼ τ, and τ0i ¼ τi−1
for i ¼ kþ 1;…; 2M − 1. Replace Δðτ0i − τ0jÞ with

Δðτ0i−τ0jÞ¼
X
ωl≤0

Δ̂l

K−
l ð0Þ

Kþ
l ðτ0iÞK−

l ðτ0jÞ

þ
X
ωl>0

Δ̂l

(Kþ
l ð0Þ)i−j−1

Kþ
l ðτ0i−τ0i−1ÞKþ

l ðτ0i−1−τ0i−2Þ

���Kþ
l ðτ0jþ1−τ0jÞ: ð30Þ

If this procedure is followed for all such hybridization lines,
the resulting expression can be rearranged into sums over
nested sequences of products and convolutions. The
hybridization line connecting to time zero (e.g., Δ1 in
the example above) is excluded because the corresponding
hybridization function only depends on a single time
variable and therefore does not break the convolutional
structure of the backbone.
Let us analyze the cost of this procedure. We ignore

the OðrÞ cost of products since the Oðr2Þ cost of con-
volutions dominates. Each hybridization line that is decom-
posed yields a sum over r frequencies ωl, so we obtain a
sum over rM−1 terms. Each such term contains one
convolution for each of the 2M − 2 internal time variables,
yielding an O(ð2M − 2Þr2) complexity per term or an
O(ð2M − 2ÞrMþ1) ¼ O(ð2M − 2ÞðlogðΛÞ logð1=εÞÞMþ1)
complexity in total.
We note that a similar procedure can be applied to the

weak coupling expansion, with minor modifications. This
procedure is described in detail in Appendix C.
Remark 3. Although we use the DLR expansion to

decompose the hybridization functions, this is not strictly
necessary. Rather, one could expand each hybridization
function as an arbitrary sum of exponentials, ΔðτÞ≈Pp

l¼1Kðτ;ωΔ
l ÞΔ̂l, tailored to Δ so that p < r, and apply

the same scheme. This process would yield the improved
complexity O(ð2M − 2Þr2pM−1). Formulated in the
Matsubara frequency domain, this gives a rational approxi-
mation problem that has been studied for a variety of
applications in many-body physics, and several approaches
have been proposed [1,90–92]. We use the DLR expansion
in the present work for simplicity and will revisit the
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problem of a more optimal sum-of-exponentials expansion
in future work.

B. Example: OCA diagram for single-particle
Green’s function

To further illustrate the general procedure, we consider
the OCA diagram for the single-particle Green’s function,
which takes the form

GðτÞ ¼
Z

β

τ
dτ2Δðτ2 − τ1ÞG4ðβ − τ2ÞG3ðτ2 − τÞ

×
Z

τ

0

dτ1G2ðτ − τ1ÞG1ðτ1Þ: ð31Þ

For simplicity, we suppress the trace appearing in the
single-particle Green’s function diagrams, e.g., in Eq. (16).
In the notation of Eq. (30), we have τ01 ¼ τ1, τ02 ¼ τ, and
τ03 ¼ τ2. Separating variables in Δðτ2 − τ1Þ and using the
identity Kðτ;ωÞ ¼ Kðβ − τ;−ωÞ, we obtain

GðτÞ ¼
X
ωl≤0

Δ̂l

K−
l ð0Þ

Z
β

τ
dτ2ðG4K−

l Þðβ − τ2ÞG3ðτ2 − τÞ

×
Z

τ

0

dτ1G2ðτ − τ1ÞðG1K−
l Þðτ1Þ

þ
X
ωl>0

Δ̂l

Kþ
l ð0Þ

Z
β

τ
dτ2G4ðβ − τ2ÞðG3K

þ
l Þðτ2 − τÞ

×
Z

τ

0

dτ1ðG2K
þ
l Þðτ − τ1ÞG1ðτ1Þ: ð32Þ

Time-ordered convolutions of the form
R
β
τ dτ0fðβ −

τ0Þgðτ0 − τÞ can be reduced to the standard form introduced
above by a change of variables and a reflection operation,
as described in Appendix A.
A final example for a third-order pseudoparticle self-

energy diagram is given in Appendix B.

V. DIAGRAMMATIC FORMULATION
OF THE ALGORITHM

Our procedure can be expressed diagrammatically,
which significantly simplifies its implementation. From
Eq. (30), we see that the terms ωl ≤ 0 can be expressed by
replacing each hybridization line by a line connecting τ ¼
τi and τ ¼ 0, labeled by Kþ

l , and a line connecting τ ¼ 0

and τ ¼ τj, labeled by K−
l . The terms ωl > 0 can be

expressed by replacing each hybridization line by a chain
of lines: one connecting τ ¼ τi to τ ¼ τi−1, one connecting
τ ¼ τi−1 to τ ¼ τi−2, and so on, all labeled by Kþ

l . For the
OCA diagram (18), for example, we obtain

ð33Þ

which reproduces Eq. (27).
This diagrammatic notation can be simplified by observ-

ing that lines connecting to τ ¼ 0 represent a multiplication
rather than a convolution, and that all lines connecting
adjacent time variables can be absorbed into the backbone
line connecting those time variables. The above can there-
fore be replaced by the shorthand

ð34Þ

wherevertical lines centered at a given timevariable represent
multiplication by the indicated function, and the functions
attached to backbone lines have been suitably modified. This
shorthand notation emphasizes the central idea of our
algorithm: that diagrams can be reduced to sums over
backbone diagrams with a simple convolutional structure.
Using this shorthand, the single-particle Green’s func-

tion OCA diagram (31) is decomposed as

ð35Þ
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which reproduces Eq. (32) upon use of the identity
Kðτ;ωÞ ¼ Kðβ − τ;−ωÞ.
The diagrammatic procedure is illustrated for a third-

order self-energy diagram in Appendix B.

VI. NUMERICAL EXAMPLES

We demonstrate an implementation of our algorithm in a
strong-coupling expansion solver including all self-energy
and single-particle Green’s function diagrams up to third
order. While our procedure can be applied to diagrams of
arbitrary order, in our calculations we have constructed all
decompositions by hand, limiting the order in practice.
However, this is a technical limitation, which can be
overcome by a code implementing the procedure described
in Secs. IV and V in an automated manner. All calculations
used libdlr for the implementation of the DLR [80,93].
We apply our solver to benchmark systems for which the

continuous time hybridization expansion quantum
Monte Carlo method (CT-HYB) [2,29–31] exhibits a severe
sign problem [42–44] due to nonzero off-diagonal hybridi-
zation or off-diagonal local hopping in the impurity model.

A. Fermion dimer

To establish the correctness and order-by-order conver-
gence of our strong-coupling solver, we begin by solving
impurity models with discrete, finite baths. These systems
can be diagonalized exactly, yielding a numerically exact
reference for the single-particle Green’s function. We first
consider a two-orbital spinless model with interorbital
hopping, coupled to a discrete bath with off-diagonal
hybridization. This minimal model was also used as a
benchmark in Ref. [42]. Its Hamiltonian has the form

H ¼ Uc†0c0c
†
1c1 − vðc†0c1 þ c†1c0Þ

− t
X1
k¼0

X1
i¼0

ðc†i bik þ H:c:Þ − t0
X1
k¼0

ðb†0kb1k þ H:c:Þ;

ð36Þ

where ci is the annihilation operator for the impurity states
(i∈ f0; 1g) and bik is the annihilation operator for the bath
states k∈ f0; 1g coupled to the ith impurity state. Note that
U is the impurity interaction parameter, v is the interorbital
hopping parameter, t is the parameter for the direct hopping
between the impurity and bath orbitals, and t0 is the
parameter for the interbath hopping, which generates an
off-diagonal hybridization.
Following Ref. [42], we use the parameters t ¼ 1,

U ¼ 4t, v ¼ 3t=2, and t0 ¼ 3t=2. In Fig. 1, we compare
our strong-coupling expansion results for the diagonal
(G00) and off-diagonal (G01) single-particle Green’s func-
tion at first, second, and third order to the exact solution, for
β ¼ 2, 16, 128, and 1024. We use the DLR parameters
Λ ¼ 20β and ε ¼ 10−12, yielding 26, 47, 71, and 93 basis

functions, respectively. The pseudoparticle self-consistency
is iterated until the maximum absolute change in GðτÞ is
less than 10−9, requiring fewer than 12 iterations (with
higher temperatures exhibiting slower convergence). At
second order, there are 64 pseudoparticle self-energy and
32 single-particle Green’s function diagrams. At third
order, there are 2048 pseudoparticle self-energy diagrams
(of which 896 are nonzero) and 1024 single-particle
Green’s function diagrams (of which 448 are nonzero).
These numbers account for diagram topologies, hybridi-
zation insertions, and forward or backward propagation.
The diagram evaluations are independent, enabling perfect
parallel scaling.
The error shows an order-by-order convergence and a

rapid decrease as the temperature is lowered. The decrease
in the error with temperature is a consequence of the
“freezing-out” of the discrete bath degrees of freedom.
These results demonstrate that a direct diagram evaluation
approach is useful for systems in the strong-coupling limit
even when limited to third order. At β ¼ 2 with r ¼ 26, our
third-order calculations require fewer than 0.2 core hours
(for nine self-consistent iterations), and at β ¼ 1024 with

FIG. 1. Single-particle Green’s function for the spinless fermion
dimer model (36), at inverse temperatures βt ¼ 2, 16, 128, 1024
(columns), and increasing expansion orders. The exact diagonal
(first row) and off-diagonal (second row) Green’s functions
obtained from exact diagonalization (ED) are quantitatively de-
scribed by the first-order approximation (O1). The diagonal (third
row) and off-diagonal (last row) Green’s function error decreases
when increasing to second (O2) and third (O3) order.
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r ¼ 93, the same calculation takes 4.4 core hours (for two
iterations). These timings can be compared with the 500
core hours reported for the inchworm Monte Carlo method
in Ref. [42] for the same system (for β ¼ 4–64), though the
errors in our third-order calculations are smaller than the
stochastic noise shown there in Fig. 1.

B. Two-band Anderson impurity model

The two-band Anderson impurity model is relevant for
the description of correlated eg bands in transition metal
systems. The local Coulomb interaction has the Kanamori
form [94]

Hloc ¼ U
X

κ∈ f0;1g
nκ↓nκ↑ þ

X
κ<λ;σσ0

ðU0 − JHδσσ0 Þnκσnλσ0

þ JH
X
κ≠λ

�
c†κ↑c

†
κ↓cλ↓cλ↑ þ c†κ↑c

†
λ↓cκ↓cλ↑

�
; ð37Þ

with Hubbard interaction U, U0 ¼ U − 2JH, and Hund’s
coupling JH. The Hund’s coupling favors high-spin states
and has an important effect on the ordered phases [95] and
the dynamics of orbital and spin moments [96]. To enable
comparison with exact results, we follow Ref. [42] and
consider the two-band impurity model coupled to a bath
with an off-diagonal hybridization given by ΔκλðωÞ ¼
½δκλ þ sð1 − δκλÞ�t2G̃ðωÞ, where s controls the off-diagonal
coupling. We consider two cases: a discrete bath, and a bath
with a continuous semicircular spectral function.
In the first case, we use a single bath site per orbital. The

hybridization function is given by G̃ðωÞ ¼ P
k δðω − ϵkÞ

with ϵk ∈ f�2.3tg, and we use a strong off-diagonal
hybridization s ¼ 1=2. This case can be solved using exact
diagonalization, and it provides a nontrivial test. The rapid
order-by-order convergence of the orbitally resolved
Green’s function Gλκðτ − τ0Þ ¼ −hcλðτÞc†κðτ0Þi computed
by our strong-coupling solver is shown in Fig. 2 at β ¼ 2,
16, 128, and 1024. We use the DLR parameters Λ ¼ 12.5β
and ε ¼ 10−8, yielding 17, 32, 46, and 61 basis functions,
respectively. The pseudoparticle self-consistency is iterated
until the maximum absolute change in GðτÞ is less than
10−6, requiring fewer than 12 iterations for the temper-
atures and expansion orders considered. At second order,
there are 256 pseudoparticle self-energy and 64 single-
particle Green’s function diagrams. At third order, there are
16,384 pseudoparticle self-energy diagrams (of which
14,080 are nonzero), and 4096 single-particle Green’s
function diagrams (of which 3520 are nonzero).
As in the fermion dimer example, the error decreases

with the temperature. Interestingly, the results show that the
off-diagonal component G01ðτÞ becomes substantially
enhanced at lower temperatures, with sharp features
emerging around τ ¼ 0 and τ ¼ β. Physically, these fea-
tures correspond to short-time quantum fluctuations
between orbitals and should be important for the stabiliza-
tion of orbital orders. The DLR discretization of the

Green’s function is able to capture such features signifi-
cantly more efficiently than a standard equispaced grid
discretization.
We next present results for the metallic semicircular

hybridization function given by G̃ðωÞ¼ð2=πD2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2−ω2

p
,

with s ¼ 1 and D ¼ 2t, at inverse temperature β ¼ 8=t. We
use theDLR parameters λ ¼ 10β and ε ¼ 10−10, yielding 25
basis functions. The pseudoparticle self-consistency con-
verges below 10−6 in fewer than 30 iterations. In Fig. 3, we
compare our approach with the inchworm Monte Carlo
[42,45,97] and CT-HYB [2,29–31] methods, using the

FIG. 2. Single-particle Green’s function for the two-band eg
model with a discrete bath. The left column shows the diagonal
Green’s function G00ðτÞ, and the right column shows the off-
diagonal component G01ðτÞ, with decreasing temperatures
βt ¼ 2, 16, 128, and 1024 along the rows. The strong-coupling
results converge to the ED solution as the expansion order
increases.

FIG. 3. Single-particle Green’s function for the two-band eg
model with a metallic bath at inverse temperature βt ¼ 8. The
diagonal part G00 is shown in panel (a), and the off-diagonal part
G01 in panel (b). The strong-coupling expansion converges
towards the result produced by the CT-HYB method and the
inchworm quantum Monte Carlo (IW) results from Ref. [42], but
in this case, diagrams beyond third order contribute significantly.

DECOMPOSING IMAGINARY-TIME FEYNMAN DIAGRAMS USING … PHYS. REV. X 14, 031034 (2024)

031034-11



TRIQS [98] implementation [99] for the latter. For CT-HYB,
the average sign is approximately 0.25, and reducing the
variance is costly, though techniques such as improved
estimators [100–102] and worm sampling [103,104] could,
in principle, mitigate this difficulty. However, the exponen-
tial decay of the sign with temperature severely restricts this
method. The inchworm algorithm does not suffer the same
kind of sign problem [42,45], and inchworm Monte Carlo
results down to tβ ¼ 64 have been reported [42].
While our strong-coupling solver still converges with the

order, the third-order solution differs significantly from the
exact solution. This system lies outside the reach of a third-
order strong-coupling expansion, as is expected since the
model is far from the strong-coupling limit and would
require the inclusion of higher-order diagrams. We note,
however, that our result was obtained at a significantly
lower cost than the corresponding inchworm calculation
(154 core hours vs 1500 core hours at tβ ¼ 8), so including
higher-order diagrams within our framework should be
tested for comparison.

C. Minimal model for Ca2RuO4

Our previous results suggest that the strong-coupling
expansion converges rapidly in the insulating regime. For
many insulating systems, like Mott insulators with tetrago-
nal symmetry and strong spin-orbit coupling, off-diagonal
hybridization plays an important role. This case represents
a substantial challenge for Monte Carlo-based solvers, due
to the sign problem. The most promising work-around was
introduced in Ref. [44], which used the interaction expan-
sion in combination with a basis rotation to reduce the sign
problem and enable an analysis of a spin-orbit coupled
system at elevated temperatures. We have seen that the
strong-coupling expansion proposed in this work is easily
extendable to spin-orbit coupled systems as long as the
system is deep within the Mott insulating phase. Here, we
provide a proof-of-principle calculation for a minimal
model of Ca2RuO4 [43,49,105].
The electronic configuration of Ca2RuO4 includes four

electrons in the three t2g orbitals, which, at low temper-
atures, undergo an isosymmetric structural transition
accompanied by a Mott metal-insulator transition. This
structural distortion reduces the energy of the dxy orbital,
making it doubly occupied. The remaining orbitals with
two electrons undergo a Mott metal-insulator transition,
leading to the S ¼ 1 state [49,51,105]. In the t2g space, the
matrix representation of the orbital moment operators is (up
to a sign) equal to the L ¼ 1 operator in the cubic basis, an
observation that is often called TP correspondence [106].
An open question is the nature of the magnetic moments
due to strong spin-orbit coupling. Two scenarios were
proposed in the literature: (i) The spin-orbit coupling leads
to a correction of the S ¼ 1 picture and induces a single-ion
anisotropy [43], and (ii) the spin-orbit coupling changes the
moment of the ground state to jeff ¼ 0 [107,108]. It is

difficult to distinguish these two scenarios a priori from the
value of the spin-orbit coupling, as its effect can be
substantially enhanced due to a dynamical increase of
the spin-orbit effect. Answering these questions therefore
requires unbiased simulations. Our goal is not to solve the
question of Ca2RuO4 but rather to show that, on the level of
the minimal model, we can capture the competition
between all relevant interactions. We leave the extension
of our approach to full ab initio models, and the resolution
of the question of magnetism in Ca2RuO4 as an important
future problem.
We consider a three-orbital Hubbard model spanned

by dxy, dxz, and dyz orbitals within the DMFT approxima-
tion, which maps the lattice problem to an impurity
problem. The local part of the impurity problem is
given by

Hloc ¼ HLS þ
X
κσ

½ϵκ − μ�c†κσcκσ þU
X
κ

nκ↑nκ↓

þ
X
κ<λ

X
σ;σ0

ðU0 − JHδσσ0 Þnκσnλσ0

þ JH
X
κ≠λ

�
c†κ↑c

†
κ↓cλ↓cλ↑ þ c†κ↑c

†
λ↓cκ↓cλ↑

�
; ð38Þ

where κ; λ∈ fdxy; dxz; dyzg, and the on-site energies ϵxz ¼
ϵyz ¼ 0 are split with respect to the doubly occupied dxy
orbital by the crystal field ϵxy ¼ Δcf ¼ −0.5 eV. We
choose the chemical potential μ such that the system is
occupied by four electrons on average. The interacting part
of the Hamiltonian is given by the Slater-Kanamori
interaction parametrized by the Hubbard interaction U
and the Hund’s coupling JH. We use the established values
U ¼ 2.3 eV and JH ¼ 0.4 eV obtained from the con-
strained random phase approximation [43,49,109]. The
spin-orbit coupling introduces a complex coupling between
the t2g orbitals. By employing the TP correspondence, we
obtain

HLS ¼ λSOCL⃗ · S⃗ ¼ iλSOC
2

X
κλμ;σσ0

ϵκλμτ
μ
σσ0c

†
κσcλσ0 ; ð39Þ

where λSOC ¼ 0.1 eV is the size of the spin-orbit coupling,
ϵ is the Levi-Civita matrix element, and τν is the νth Pauli
matrix.
We solve the problem on the Bethe lattice, for which the

DMFT self-consistency condition is particularly simple.
The hybridization function Δλκ is obtained from the local
Green’s function Gλκðτ − τ0Þ ¼ −hT cλðτÞc†κðτ0Þi as Δλκ ¼
tλGλκtκ. We restrict to intra-orbital transitions given by
tλ ¼ ftdxy ; tdxz ; tdyzg, and the hopping integrals are esti-
mated as tdyz ¼ tdxz ¼0.25eV and tdxy ¼ 0.5 eV to match the
bandwidth measured by ARPES and previous theoretical
studies [49]. All calculations are performed at inverse
temperature β ¼ 10 eV−1.
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To our knowledge, ours is the first self-consistent third-
order strong-coupling DMFT calculation for a three-band
model. We use the DLR parameters Λ ¼ 100 and
ε ¼ 10−8, yielding 26 basis functions. We perform the
pseudoparticle self-energy and DMFT lattice self-consist-
encies in tandem, with a tolerance threshold of 10−6 for
changes in the respective propagators, requiring 11
iterations for the first-order calculation, nine iterations
for the second-order calculation, and seven iterations for
the third-order calculation. At each order, we use the
solution from the previous order for the initial iterate. The
calculation took approximately 90,000 core hours
(11 hours on 8192 cores) using our preliminary code,
with the independent evaluation of 186,624 third-order
diagrams performed in parallel. Although the use of the
DLR enables efficient diagram evaluation at very low
temperatures, we find that the convergence of the DMFT
and pseudoparticle self-consistency exhibits a critical
slow-down as the temperature is lowered. We attribute
this finding to the presence of the antiferromagnetic
instability of the two half-filled orbitals, as observed in
Ca2RuO4, which becomes antiferromagnetic at the Néel
temperature TN ≈ 110 K [110].
We plot the diagonal part of the single-particle propa-

gator Gαα for α∈ fdxy; dxz; dyzg in Fig. 4(a). We observe
that the dxy orbital is almost fully occupied, and the dxz and
dyz orbitals are half filled due to the strong Coulomb
interaction. In agreement with the previous examples, we
observe rapid convergence with increasing diagram order.
We observe a maximum absolute difference between the
second- and third-order calculations of less than 6 × 10−3,
which gives a reasonable estimate of the error in the
second-order calculation. Thus, the third-order calculation
not only gives us a more accurate result, but it also allows
us to estimate the error of the second-order calculation. The
main effect of the higher-order diagrams is to enhance the
value of the propagators away from the edges of the interval
½0; β�, which we interpret as an increase in charge fluctua-
tions with the increasing order of the expansion. These
results allow us to estimate the orbital polarization
p ¼ nxy − ðnxz þ nyzÞ=2, which, in the system with finite
spin-orbit coupling, is given by p ¼ 0.84 and is similar to
the result without the spin-orbit coupling, pλ¼0 ¼ 0.87.
This finding is consistent with the conclusion of Ref. [43],
in which the persistence of strong orbital polarization upon
inclusion of the spin-orbit coupling was used as a signature
of the S ¼ 1 picture. While the spin-flip and pair-hopping
terms were neglected in Ref. [43], our results confirm that
at the level of the minimal model, their effect would not
produce a significant qualitative change.
Because of the spin-orbit coupling, the single-particle

propagators Gλκ obtain complex off-diagonal components,
as shown in Fig. 4(b) for Im Gxzσ;yzσðτÞ and in Fig. 4(c) for
Re Gxzσ;xyσ̄ðτÞ. Hence, the spin-orbit coupling also gen-
erates a dynamic mixing of spin and orbitals, coupling the

out-of-plane orbitals xz and yz for equal spin and the in-
plane orbital xywith the spin-flipped component of the out-
of-plane orbitals. This result can be understood from the
structure of the spin-orbit coupling in the t2g subspace of
the d-orbital cubic harmonics [111]. It is the sign change in
these off-diagonal components as a function of τ that
generates a dynamical sign problem in the hybridization
determinant of the CT-HYB algorithm [2,29–31].
Application of our method to realistic materials beyond

our simplified proof-of-principle model would require
an extension to a given lattice structure and combination
with first-principles calculations, both well-established
techniques. This application will be explored in our future
work.

VII. CONCLUSION

We have proposed and implemented a new algorithm for
the fast evaluation of imaginary-time Feynman diagrams.
By taking advantage of a separability property of imagi-
nary-time objects, the algorithm obtains a decomposition
which can be evaluated efficiently within the DLR basis.
We have developed the method in detail for the bold strong-
coupling expansion of the Anderson impurity model, and
we showcased an implementation up to third order. Its
application to the weak coupling expansion is described in
Appendix C. The extension to higher-order diagrams is
straightforward and will be pursued in future work. A

FIG. 4. (a) Diagonal component of the single-particle Green’s
function, with increasing expansion orders, for the three-band
effective model of Ca2RuO4. Here, Gxzσ;xzσðτÞ and Gyzσ;yzσðτÞ are
degenerate and close to half filling (solid lines), whileGxyσ;xyσðτÞ is
close to unity filling (dashed lines). (b) Imaginary part of the off-
diagonal component Gxzσ;yzσðτÞ. (c) Real part of the off-diagonal
component Gxzσ;xyσ̄ðτÞ generated by the local spin-orbit coupling.
Calculations were performed at inverse temperature β ¼ 10 eV−1.

DECOMPOSING IMAGINARY-TIME FEYNMAN DIAGRAMS USING … PHYS. REV. X 14, 031034 (2024)

031034-13



parallel implementation of our algorithm provides a path
towards robust and high-order accurate evaluation of
diagrams at least up to intermediate orders at very low
temperature, with no Monte Carlo integration and no sign
problem. The combination of our approach with methods
for diagrammatic expansions of very high order, including
Monte Carlo [2,15] and TCI [46,47], is a topic of our
current research. In particular, TCI might be used to exploit
compressibility across imaginary-time and orbital degrees
of freedom while maintaining the robustness, high-order
accuracy, and favorable scaling at low temperatures of our
scheme. In general, we expect the ideas presented here to
serve as useful tools for future algorithmic development.
We envision that the ideal short-term applications of the

proposed method are multiorbital systems within the
Mott insulating regime involving strong off-diagonal
hybridization terms induced by either spin-orbit coupling
or symmetry-broken phases. Examples include Ca2RuO4

[43,49,105], Sr2IrO4 [112–115], and Nb3Cl8 [116]. In this
limit, a reliable description is obtained by a relatively low-
order expansion, but these systems are still challenging for
current state-of-the-art Monte Carlo techniques due to the
sign problem. A particularly appealing direction is to enter
the symmetry-broken phase and study dynamical properties
of exotic magnetic phases such as canted (anti)ferromag-
netism [115]. The robustness, speed, and low memory
footprint of our algorithm should allow it to couple well
with ab initio descriptions based on DFTþ DMFT in Mott
insulators, as implemented in existing numerical libraries,
e.g., TRIQS/DFTTools [117].
An efficient automated implementation of our algorithm,

allowing for the evaluation of diagrams of arbitrary order and
topology, is under development. Improvements to the algo-
rithm, involving further decomposition of diagrams as well
as more efficient representations of the hybridization func-
tion, are also being explored and are expected to yield
significant further reductions in computational cost. Beyond
imaginary-time diagrams, we believe the idea of fast diagram
evaluation through compression of the integrand, either
through separation of variables or otherwise, represents a
promising research frontier with the potential to circumvent
many of the limitations of traditional schemes.

ACKNOWLEDGMENTS

We thank O. Parcollet, A. Georges, R. Rossi, and G.
Cohen for helpful discussions. Z. H. is supported by the
Simons Investigator Award, which is a grant from the
Simons Foundation (825053, Lin Lin). H. U. R. S.
acknowledges funding from the European Research

Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant
Agreement No. 854843-FASTCORR). Computations were
enabled by resources provided by the National Academic
Infrastructure for Supercomputing in Sweden (NAISS) and
the Swedish National Infrastructure for Computing (SNIC)
through Projects No. SNIC 2022/21-15, No. SNIC 2022/
13-9, No. SNIC 2022/6-113, and No. SNIC 2022/1-18, at
PDC, NSC, and CSC, partially funded by the Swedish
Research Council through Grant Agreements No. 2022-
06725 and No. 2018-05973. D. G. is supported by the
Slovenian Research Agency (ARRS) under Programs
No. J1-2455, No. MN-0016-106, and No. P1-0044. The
Flatiron Institute is a division of the Simons Foundation.

APPENDIX A: FAST CONVOLUTION
OF DLR EXPANSIONS

In Ref. [48], the imaginary-time convolution

HðτÞ ¼
Z

β

0

dτ0Fðτ − τ0ÞGðτ0Þ ðA1Þ

is expressed in terms of the contraction of the vectors of
values of F and G at the DLR nodes τk with a rank-three
tensor: HðτiÞ ¼

P
r
j;k¼1 CijkFðτjÞGðτkÞ. One can similarly

write the time-ordered convolution

HðτÞ ¼
Z

τ

0

dτ0Fðτ − τ0ÞGðτ0Þ ðA2Þ

as a tensor contraction. The cost of this approach scales as
Oðr3Þ. We demonstrate that these convolutions can be
computed in onlyOðr2Þ operations by writing the action of
the convolution tensor on the DLR coefficients directly.
We focus on Eq. (A2), but the method for Eq. (A1) is
analogous.
Using the explicit formula (20), we first compute the

time-ordered convolution (A2) of Kðτ;ωÞ and Kðτ;ω0Þ:Z
τ

0

dτ0Kðτ − τ0;ωÞKðτ0;ω0Þ

¼
(

Kð0;ωÞKðτ;ω0Þ−Kðτ;ωÞKð0;ω0Þ
ω−ω0 ω ≠ ω0

τKð0;ωÞKðτ;ωÞ ω ¼ ω0:
ðA3Þ

Given the DLR expansions FðτÞ ¼ P
r
j¼1Kðτ;ωjÞ bfj and

GðτÞ ¼ P
r
k¼1Kðτ;ωkÞbgk, with possibly matrix-valued bfj

and bgk, this yields
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HðτÞ ¼
Xr
j;k¼1

bfj bgk Z τ

0

dτ0Kðτ − τ0;ωjÞKðτ0;ωkÞ

¼ τ
Xr

j¼1

Kðτ;ωjÞKð0;ωjÞ bfj bgjþXr
j¼1

Kðτ;ωjÞ
��Xr

k¼1
k≠j

Kð0;ωkÞ
ωk − ωj

bfk�bgj þ bfj Xr
k¼1
k≠j

Kð0;ωkÞ
ωk − ωj

bgk�
≡ τH1ðτÞ þH2ðτÞ: ðA4Þ

Here, we recognize H1 and H2 as DLR expansions
themselves. Thus, H can be obtained at the DLR nodes τk
by computing the DLR coefficients of H1 and H2 directly
from those of F and G, at an Oðr2Þ cost, and then
evaluating their DLR expansions to obtain the values
HðτkÞ ¼ τkH1ðτkÞ þH2ðτkÞ. We note that if one wishes
to obtain the DLR coefficients of H directly, then it is
slightly more efficient to precompute the matrix of multi-
plication by τ in its DLR coefficient representation and
apply this directly to the computed vector of DLR coef-
ficients of H1. Adding the result to the vector of DLR
coefficients of H2 yields that of H.
Since

Z
β

τ
dτ0Fðβ − τ0ÞGðτ0 − τÞ

¼
Z

β−τ

0

dτ0Fðβ − τ − τ0ÞGðτ0Þ ¼ Hðβ − τÞ ðA5Þ

for HðτÞ≡ R
τ
0 dτ

0Fðτ − τ0ÞGðτ0Þ, convolutions of this form
appearing in the single-particle Green’s function diagrams
can be reduced to the form (A2). One can therefore
compute HðτÞ by the method described above and a
reflection HðτÞ ↦ Hðβ − τÞ, a linear map which can be
represented in the DLR basis.
We lastly mention that Eq. (A1) is given by

HðτÞ ¼
Xr
j¼1

Kðτ;ωjÞ(τ − Kð1;ωjÞ) bfj bgj þXr

j¼1

Kðτ;ωjÞ

×

��Xr

k¼1
k≠j

bfk
ωk − ωj

�bgj þ bfj Xr
k¼1
k≠j

bgk
ωk − ωj

�
: ðA6Þ

APPENDIX B: DECOMPOSITION
OF THIRD-ORDER PSEUDOPARTICLE

SELF-ENERGY DIAGRAM

We illustrate the decomposition procedure described in
Sec. IVA for a third-order self-energy diagram:

ΣðτÞ ¼
Z

τ

0

dτ4

Z
τ4

0

dτ3

Z
τ3

0

dτ2

Z
τ2

0

dτ1Δ3ðτ − τ1ÞΔ2ðτ4 − τ2ÞΔ1ðτ3ÞG5ðτ − τ4ÞG4ðτ4 − τ3ÞG3ðτ3 − τ2ÞG2ðτ2 − τ1ÞG1ðτ1Þ

¼
X

ωk;ωl≤0

Δ̂3kΔ̂2l

K−
k ð0ÞK−

l ð0Þ
Kþ

k ðτÞ
Z

τ

0

dτ4G5ðτ − τ4ÞKþ
l ðτ4Þ

Z
τ4

0

dτ3G4ðτ4 − τ3ÞΔ1ðτ3Þ

×
Z

τ3

0

dτ2G3ðτ3 − τ2ÞK−
l ðτ2Þ

Z
τ2

0

dτ1G2ðτ2 − τ1ÞðG1K−
k Þðτ1Þ

þ
X

ωk≤0;ωl>0

Δ̂3kΔ̂2l

K−
k ð0ÞKþ

l ð0Þ
Kþ

k ðτÞ
Z

τ

0

dτ4G5ðτ − τ4Þ
Z

τ4

0

dτ3ðG4K
þ
l Þðτ4 − τ3ÞΔ1ðτ3Þ

×
Z

τ3

0

dτ2ðG3K
þ
l Þðτ3 − τ2Þ

Z
τ2

0

dτ1G2ðτ2 − τ1ÞðG1K−
k Þðτ1Þ

þ
X

ωk>0;ωl≤0

Δ̂3kΔ̂2l

ðKþ
k ð0ÞÞ3K−

l ð0Þ
Z

τ

0

dτ4ðG5K
þ
k Þðτ − τ4ÞKþ

l ðτ4Þ
Z

τ4

0

dτ3ðG4K
þ
k Þðτ4 − τ3ÞΔ1ðτ3Þ

×
Z

τ3

0

dτ2ðG3K
þ
k Þðτ3 − τ2ÞK−

l ðτ2Þ
Z

τ2

0

dτ1ðG2K
þ
k Þðτ2 − τ1ÞG1ðτ1Þ

þ
X

ωk;ωl>0

Δ̂3kΔ̂2l

ðKþ
k ð0ÞÞ3Kþ

l ð0Þ
Z

τ

0

dτ4ðG5K
þ
k Þðτ − τ4Þ

Z
τ4

0

dτ3ðG4K
þ
k K

þ
l Þðτ4 − τ3ÞΔ1ðτ3Þ

×
Z

τ3

0

dτ2ðG3K
þ
k K

þ
l Þðτ3 − τ2Þ

Z
τ2

0

dτ1ðG2K
þ
k Þðτ2 − τ1ÞG1ðτ1Þ: ðB1Þ
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Here, we have introduced the notation ðGiK�
k K

�
l ÞðτÞ≡ GiðτÞKðτ;�ωkÞKðτ;�ωlÞ. To obtain this result diagrammati-

cally using the procedure described in Sec. V, we proceed step by step. We first decompose Δ3ðτ − τ1Þ:

ðB2Þ

Then, decomposing Δ2ðτ4 − τ2Þ in both of the resulting diagrams reproduces Eq. (B1):

ðB3Þ

APPENDIX C: WEAK COUPLING
INTERACTION EXPANSION

In this appendix, we describe the application of our
algorithm to the interaction expansion. We write the non-
interacting part of the action using the quadratic term in
Eq. (2) and the hybridization function in Eq. (3):

S0 ¼
Xn
κ;λ¼1

Z
β

0

dτc†λðτÞ½∂τ − ϵκλ − Δλκðτ − τ0Þ�cκðτ0Þ: ðC1Þ

We then carry out an expansion in the interacting part of the
action, given by

Sint ¼
Z

β

0

dτHint

¼
Z

β

0

dτ
Xn

κ;λ;μ;ν¼1

Uκλμνc
†
κðτÞc†λðτÞcνðτÞcμðτÞ; ðC2Þ

which yields an expression for the interacting propagator,

GκλðτÞ ¼
1

Z

X∞
m¼0

Z
β

0

dτ1 � � � dτm

× hT Hintðτ1Þ � � �HintðτmÞc†κðτÞcλð0ÞiS0
; ðC3Þ

for λ; κ ¼ 1;…; n. Here, T is the time-ordering operator,
and the expectation value is evaluated with respect to
the noninteracting part of the action: h·iS0

¼ Tr½e−S0 ·�. By
the linked cluster theorem, all disconnected diagrams in the
expansion cancel with the partition function Z, and we need
only consider connected diagrams. The expectation value in
Eq. (C3) can be evaluated using Wick’s theorem, and
the noninteracting propagator is given by the Weiss
Green’s function G0, which satisfies the Dyson equation
G0 ¼ g0 þ g0○⋆ Δ○⋆ G0. Here, the convolution is defined as

ða○⋆ bÞjkðτÞ ¼
Xn
l¼1

Z
β

0
dτ0ajlðτ − τ0Þblkðτ0Þ;

and the noninteracting propagator is given by g0ðτÞ ¼
Kðτ; ϵ − μÞ, with ϵ the single-particle Hamiltonian
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(quadratic part of Hloc), K defined by Eq. (20), and μ the
chemical potential.
The propagator GðτÞ is obtained by first evaluating the

self-energy ΣðτÞ and then solving the Dyson equation
G ¼ G0 þ G0○⋆ Σ○⋆ G. One can represent the self-energy
either using a bare expansion, in which diagrams depend on
the bare propagator G0, or a bold expansion, in which
diagrams depend on the full propagator G. For concrete-
ness, we focus on the case of the bare expansion, but the
procedure described below is consistent with both schemes.
We note, however, that the bold scheme requires solving
the Dyson equation self-consistently.
The first-order terms of the bare expansion are given by

the Hartree and Fock diagrams, which depend only on the
single-particle density matrix. The first retarded diagrams
appear at second order, with a representative example
given by

ΣαβðτÞ ¼ −Uβ0γβγ0Uαδα0δ0G0;α0β0 ðτÞG0;γ0δð−τÞG0;δ0γðτÞ: ðC4Þ

Here, we use the Einstein notation that all repeated indices
are summed over. In general, the second-order diagrams for
the weak coupling expansion are similar to the NCA
diagrams for the strong-coupling expansion, in that they
involve only multiplications in imaginary-time.
The first diagrams involving imaginary-time integration

appear at third order. A representative example is

ΣαβðτÞ ¼ −Uβ0δβδ0Uγϵγ0ϵ0Uαωα0ω0G0;δ0ωð−τÞ

×
Z

β

0

dτ1G0;α0γðτ − τ1ÞG0;ω0ϵðτ − τ1Þ

× G0;γ0β0 ðτ1ÞG0;ϵ0δðτ1Þ: ðC5Þ

We see that the third-order weak coupling diagrams have a
simple convolutional structure, precisely of the form (A1),
and the DLR-based method described in Appendix A can
be directly used to evaluate them. We refer the reader to
Ref. [74] for the expressions for the other third-order
diagrams, which have a similar structure.
Remark 4. We pause to consider the summation over

orbital indices, which we have thus far assumed is carried
out explicitly. For multiorbital systems, this leads to a large
number of terms, growing exponentially with the diagram
order. Methods based on sparsity or decomposability of
tensors can, in some cases, be used to handle this issue, and
one must verify their compatibility with our approach to
imaginary-time integration. If the interaction tensor is
sparse, the orbital index sums can be taken over a subset
of terms, which is evidently compatible with our approach.
This is the case in many physically interesting settings: For
example, in cubic crystals in which d orbitals are split into
eg and t2g manifolds, the Coulomb integral is given by the
Slater-Kanamori interaction, and for the t2g subspace, the
interaction tensor has only 21 out of 81 nonzero

entries [94,118]. More sophisticated schemes, such as
Cholesky decomposition [119], density fitting [120,121],
tensor hypercontraction [122,123], and the canonical pol-
yadic decomposition [124–126], aim to decompose the
interaction tensor using a low-rank structure, but these are
typically applied in quantum chemistry or real materials
calculations in which the orbital index dimension is
significantly larger than that considered here. Although
schemes of this type would likely also be compatible with
our approach, further research is needed to determine
which, if any, would be appropriate, and this question is
outside the scope of the present work. Thus, in the
remainder of this appendix, we consider explicit summa-
tion over orbital indices (or, in the sparse case, a subset of
them) and, for simplicity, focus on each term separately.
Reverting to the notation used in the description of our
scheme for strong-coupling diagrams, we refer to different
components of the bare electron propagator G0 as G1, G2,
etc., in lieu of orbital indices, notating that, unlike in the
strong-coupling case, each Gk is a scalar-valued function.
The first nonconvolutional diagrams appear at fourth

order. In total, there are 12 topologically distinct fourth-
order diagrams, shown in Fig. 5. As for the third-order
diagrams, the diagrams in the first two rows can be written
as nested sequences of products and convolutions [74] and
evaluated using our efficient convolution scheme. For
example, each orbital index combination of the first
diagram in the first row of Fig. 5 takes the form

FIG. 5. Fourth-order self-energy diagrams for the weak cou-
pling expansion of the Anderson impurity problem assuming a
paramagnetic phase at half filling. Lines represent the electronic
propagator G0ðGÞ for the bare (bold) expansion, and dots
correspond to the interaction vertices U.
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ΣðτÞ ¼ G7ðτÞ
Z

β

0

dτ2

Z
β

0

dτ1G6ðτ − τ1ÞG5ðτ − τ1Þ

× G4ðτ1 − τ2ÞG3ðτ1 − τ2ÞG2ðτ2ÞG1ðτ2Þ: ðC6Þ

We note that the diagrams in the second row are not
irreducible, and in the case of the bold expansion, they
would be omitted.
On the other hand, the diagrams in the third and fourth

rows of Fig. 5 cannot be expressed in terms of nested
convolutions, and we must apply our decomposition
scheme. For example, for the first diagram in the third
row, we obtain expressions of the form

ΣðτÞ ¼
Z

β

0

dτ2

Z
β

0

dτ1G7ðτ − τ2Þ

× G6ðτ2ÞG5ð−τ2ÞG4ðτ2 − τ1ÞG3ðτ1Þ
× G2ðτ − τ1ÞG1ðτ1 − τÞ: ðC7Þ

Structurally, this diagram somewhat resembles the strong-
coupling OCA diagrams, but here the integral is taken over
the full square ½0; β�2 rather than a time-ordered subset. To
avoid discontinuities, we divide the integral into six parts,
each corresponding to an ordering of the variables τ, τ1,
and τ2:Z

β

0

dτ2

Z
β

0

dτ1 ¼
Z

τ

0

dτ2

Z
τ2

0

dτ1 þ
Z

τ

0

dτ1

Z
τ1

0

dτ2

þ
Z

β

τ
dτ2

Z
τ

0

dτ1 þ
Z

β

τ
dτ1

Z
τ

0

dτ2

þ
Z

β

τ
dτ2

Z
β

τ2

dτ1 þ
Z

β

τ
dτ1

Z
β

τ1

dτ2:

The first two terms are structurally equivalent to the strong-
coupling OCA self-energy diagrams, the third and fourth to
the OCA single-particle Green’s function diagrams, and, up
to a simple change of variables, the fifth and sixth also to
the OCA self-energy diagrams. We can therefore apply the
same methodology with only minor modifications, in each
case expanding a single function in the DLR basis in order
to decompose the diagram. The computational complexity
of each such diagram evaluation is therefore the same as for
the strong-coupling OCA diagrams, with two important
differences: (1) six terms must be computed instead of
one, and (2) the functions Gk are n × nmatrix valued, rather
than 2n × 2n matrix valued.
It is straightforward to verify that the other fourth-order

diagrams in the third and fourth rows of Fig. 5 have a
similar structure: Each has a backbone of propagators
whose convolutional structure is broken by propagators
coupling nonadjacent time variables. At fourth order, the
convolutional structure can be reinstated by separating
variables in at most two functions, as in the third-order
strong-coupling diagrams. All higher-order self-energy

diagrams share an analogous pattern, as in the strong-
coupling case, though as the number of integration vari-
ables grows, the integrals must be split into a factorially
growing number of time-ordered terms.
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