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Active matter systems evade the constraints of thermal equilibrium, leading to the emergence of
intriguing collective behavior. A paradigmatic example is given by motor-filament mixtures, where the
motion of motor proteins drives alignment and sliding interactions between filaments and their self-
organization into macroscopic structures. After defining a microscopic model for these systems, we derive
continuum equations, exhibiting the formation of active supramolecular assemblies such as micelles,
bilayers, and foams. The transition between these structures is driven by a branching instability, which
destabilizes the orientational order within the micelles, leading to the growth of bilayers at high microtubule
densities. Additionally, we identify a fingering instability, modulating the shape of the micelle interface at
high motor densities. We study the role of various mechanisms in these two instabilities, such as
contractility, active splay, and anchoring, allowing for generalization beyond the system considered here.
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I. INTRODUCTION

Active matter exhibits complex collective behavior
absent in thermal equilibrium systems due to its constitu-
ents’ ability to consume energy locally, thereby breaking
detailed balance [1–8]. A fascinating class of paradigmatic
model systems for active matter are mixtures of cytoske-
letal filaments and molecular motors. These include motil-
ity assays, where filaments are self-propelled by motors
attached to a substrate [9–11]. In contrast, in bulk motor-
filament mixtures, the activity is manifested in the relative
motion rather than self-propulsion of the filaments. A prime
example for such a system are microtubule-motor mixtures.
Here, the relative motion is induced by molecular motors
such as kinesin or dynein, which cross-link microtubule
filaments, exerting forces as they walk along them. The
resulting motor-mediated interaction between microtubule
filaments drives the formation of a variety of large-scale
structures [12,13], including asters and vortices [14–18],
extensile bundles [18–20], and foamlike patterns [18].
Understanding the self-organization of microtubules,

driven by molecular motors, into complex large-scale

structures holds significant importance in a cell biology
context. For example, it sheds light on essential processes
such as the formation of the mitotic spindle [21–25] and of
cell-like structures observed in Xenopus egg extracts [26].
More generally, unraveling the mechanisms driving this
self-organization can offer profound insights into the
physics of systems operating far from thermal equilibrium,
transcending the fraction of phase space typically observed
in living systems [4].
The present theoretical study is motivated by recent exper-

imental work on mixtures of microtubules and kinesin-4
motors, revealing a novel nonequilibrium phase termed active
foam, which consists of a foamlike network of microtubule
bilayers [18]. Each bilayer within the active foam displays
microtubulespointing inoppositedirectionsoneither side,with
their plus ends directed toward the bilayer midplane, where
kinesin motors accumulate. The interconnected bilayer net-
work isobserved toundergosustained rearrangementsanddoes
not coarsen over time, highlighting the inherently nonequili-
brium nature of this active foam. Notably, in contrast to
equilibrium foams, the cells within the active foam exhibit
diverse shapes, including nonconvex ones, and present loose
bilayer edges extending into the cell bulk. While previous
theoretical studies have discussed active foam states in a
phenomenological, top-down approach [27,28], there is cur-
rently no comprehensive bottom-up theory for the emergence
of active foams frommicroscopic interactionswith reference to
a specific physical system.
In this study, we address this critical gap in under-

standing, introducing a novel nonequilibrium field theory
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for motor-filament mixtures. We derive this field theory
from a microscopic model for the motor-mediated inter-
action between microtubules, employing the Boltzmann-
Ginzburg-Landau (BGL) approach [29–31]. This approach
enables us to bridge the gap between the microscopic and
macroscopic scales, linking the properties of filament-
filament interactions with the collective states that emerge
macroscopically due to these interactions. It allows us to
gain critical insights into the mechanisms driving the self-
organization of active filament systems into complex
structures.
In modeling the microscopic scale, our primary focus

lies in the role of motor proteins as facilitators of alignment
and sliding interactions between microtubules. Although
the molecular interaction between filaments and motors is
complex in detail, it exhibits several generic features, which
are all crucial in the cell environment [25]: Molecular
motors drive the sliding of microtubules relative to each
other by applying forces on filament pairs [17,32–34], an
essential process in mitotic spindle formation. As a
consequence of these forces, they exert torques which
induce relative alignment of the microtubules [17,32,33], a
vital process for organizing microtubule arrays within cells.
Finally, microtubules serve as molecular tracks for motor
proteins as they walk from one end to the other, facilitating
intracellular transport processes [25]. In microtubule-motor
mixtures, the procession of molecular motors along micro-
tubules leads to a spatially and temporally inhomogeneous
motor density across the system. Previous work has focused
on various individual aspects, such as the significance of
parallel alignment in the presence and absence of
sliding [35,36], as well as the role of the interaction
kernel [37] or parallel versus antiparallel alignment [38].
However, to date, the interplay between the above general
features of motor-mediated filament interactions has not
been explored, which, as we show here, leads to the
formation of novel supramolecular structures.
Most importantly, earlier studies have neglected the

possibility of an asymmetry between parallel and antipar-
allel alignment. We refer to this essential property as parity
symmetry breaking of the alignment interaction. When
parity symmetry is not broken, the ensuing patterns can
exhibit only nematic order [38], excluding the polar
structures observed in experimental studies [18]. In our
microscopic model, we account for the parity symmetry
breaking by introducing a critical angle ωc ≠ 90° that
separates the ranges of crossing angles where parallel or
antiparallel alignment interactions occur. We show that the
broken parity symmetry in the alignment interaction plays a
pivotal role in the selection of the relevant orientational
order, which can be polar or nematic.
In the polar regime, we observe the emergence of a

diverse array of patterns, involving the self-organization of
microtubules into micelles, bilayers, and active foams (see
Fig. 1). The active micelles are characterized by a radially

symmetric arrangement of microtubules, reminiscent of
lipid molecules in passive micelles, with the microtubule
ends pointing toward the center of the assembled structure.
These structures are stable at small microtubule and motor
densities. However, as the densities are increased, they are
subject to two distinct instabilities that eventually break their
radial symmetry. The first instability, termed the fingering
instability, emerges at high motor concentrations. It leads to
the modulation of the micelle away from a circular shape,
bending its interface into lobes. The second instability,
referred to as the branching instability, emerges at high
microtubule concentrations and causes themicelle perimeter
to fragment into bilayerlike branches. Remarkably, for even
higher microtubule concentrations, we observe the forma-
tion of active networks of bilayers. These networks closely
resemble the active foams reported in recent experimental
studies [18], exhibiting nonconvex cells and loose ends.
Consistent with these experiments, we find that the

microtubule density is the control parameter that deter-
mines whether active micelles or foams are formed. Our
theory reveals three critical features of the microscopic
interaction required for the formation of polar bilayers and
the assembly of these bilayers into foams: First, the
breaking of parity symmetry in the alignment interaction
is crucial for the emergence of polar order. Intermediate
values of the critical angle ωc ensure that the opposing
polar order on the two sides of the bilayer is stable. Second,
antiparallel sliding provides polarity sorting, which is
essential for the formation of well-defined bilayers.
Third, the inhomogeneous motor field gives rise to spatial
modulation of the interaction strength across the system.
This leads to the emergence of regions where polar
order can form locally, enabling the assembly of bilayers
and micelles.

FIG. 1. Active supramolecular assemblies in active motor-
filament systems. The arrows indicate the local average polari-
zation of the filaments; as the motors walk along the filaments,
they accumulate in the regions shown in cyan. Active micelles are
radially symmetric arrangements of microtubules. In active
bilayers, the microtubules point in opposite directions on either
side, while the motors accumulate along the center plane.
Bilayers interconnect to form the unit cell of an active foam
network. The transition between these structures is discussed in
Fig. 4 below.
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These three features play a crucial role in forming and
maintaining the microtubule bilayers as the elementary
mesoscopic structure composing the active foam network.
Interestingly, the microtubule bilayers have a structure
reminiscent of lipid bilayers, just as the active micelles
parallel lipidmicelles. However, these active supramolecular
assemblies differ fundamentally in their formation and
maintenance mechanisms from their lipid counterparts. In
lipid bilayers, the amphiphilic nature of lipidmolecules is the
critical molecular feature driving their formation [39].
Conversely, the microtubule bilayers in our theory emerge
through active processes, namely, the motor-mediated inter-
actions described by our theory. This difference highlights
the intriguing role of molecular motors in the dynamic
behavior of microtubules, leading to the self-assembly of
these unique bilayer structures and of the active foams.
The paper is structured as follows. In Sec. II, we

formulate our microscopic model for microtubule-motor
mixtures and discuss the derivation of the continuum
equations, highlighting the mechanisms encoded into those
equations that will prove crucial for the phenomena we
observe. In Sec. III, we present numerical simulations of
the continuum model and describe the structure of its phase
diagram, involving micellar structures and active foams.
Then, in Sec. IV, we perform a phenomenological gener-
alization of our derived model, which we use to validate the
analytical predictions made in the following sections. In
Sec. V, we discuss the stationary profiles of the bilayer and
micelle solutions, discussing how they differ from their
equilibrium counterparts. The stability of the homogeneous
ordered state and the micelle solutions is studied in Sec. VI,
where we characterize the instabilities that drive micelle
branching and fingering and we connect these instabilities
with the phase diagram of the derived model. Finally,
Sec. VII contains a discussion of our results.

II. BOLTZMANN-GINZBURG-LANDAU THEORY

A. Microscopic interactions

Microtubules (MTs) are biopolymers consisting of
tubulin dimers. In a cell environment, they undergo con-
stant polymerization and depolymerization, while in vitro
they can be stabilized to ensure that their lengths stay
constant. The tubulin dimers are anisotropic, so that the
microtubule has an intrinsic polarity, with two distinct ends
which are conventionally referred to as plus ends and minus
ends [40]. Molecular motors are proteins that can walk
along microtubules in a directed fashion toward either of
the two ends of a filament. Furthermore, they can cross-link
pairs of filaments, thereby mediating interactions between
them [25]. Some motor proteins, like kinesin-5, have two
sets of motor domains that can walk along two filaments
simultaneously [32]; others, like kinesin-14, can passively
bind to one microtubule with their tail domain while their
head domain walks along a second one [34]. Regardless of

the motor-specific mechanism, the interconnection of
filaments combined with directed motion allows the motors
to exert forces on pairs of microtubules, leading to relative
sliding and alignment. In microtubule-motor mixtures, this
motor-mediated interaction drives the emergence of col-
lective dynamics, in which microphase separation and local
orientational order show complex interplay [18].
The goal of this section is to set up amicroscopicmodel for

microtubule-motor mixtures in two dimensions, which we
then proceed to coarse-grain to obtain continuum equations
that describe the dynamics of the concentrations and of the
orientational order. We treat the microtubules as perfectly
rigid polar rods of fixed length L. The state of each
microtubule can be described by the position of its center
of mass r and a unit vector n̂ indicating its orientation. We
choose this vector to point along the direction of motion of
the motors, i.e., from the minus end to the plus end for
most kinesins. In two dimensions, this unit vector can be
expressed in terms of a single orientation angle ϕ such that
n̂ðϕÞ ¼ ðcosϕ; sinϕÞ. Individual microtubules are subject
to thermal fluctuations leading to Brownian diffusion of their
center of mass and their orientation angle. Unlike the
filaments in motility assays, which can be modeled as
self-propelled rods [9,10,31,41–43], the microtubules in
microtubule-motor mixtures do not show persistent motion
along their body axis, so we do not incorporate self-
propulsion in our model.
We introduce two types of interactions into the model.

First, we consider steric repulsive interactions. This is a
passive effect resulting from the finite extension of the
microtubules. Following the treatment in Ref. [37], we take
into account the two-filament and three-filament contribu-
tions to the excluded volume. They result in a density-
dependent increase of the isotropic diffusivity (see
Appendix A). Second, we incorporate the active interaction
mediated by molecular motors. This interaction can be
modeled explicitly on a more microscopic scale, taking
into account the forces exerted by the motors on the
filaments [44–48]. Here, we take a simpler approach,
modeling the interaction as alignment and sliding events
between pairs of microtubules [see Fig. 2(a)]. This
approach reduces the number of parameters, allowing us
to identify the key qualitative features of the interaction that
lead to the emergent collective behavior. We assume that
the mixture is dilute enough so that binary interactions
constitute the dominant contribution to the dynamics.
Furthermore, we treat the interaction events as instanta-
neous, which is justified in the case of a separation of
timescales between the slow collective dynamics and the
fast interaction events. We incorporate the motors into the
model as a local and time-dependent concentration field
mðr; tÞ. This field enters the model via the rate of
interaction, which we take to be given by G ·m, where
G is a proportionality constant [49]. We measure m in units
of its (physical) mean value m̄ph ¼ M=V, absorbing it into
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G; here, M is the total number of motors and V the system
volume [50].
Experiments have shown that motors such as kinesin-4

and kinesin-5 can lead to both parallel and antiparallel
alignment of pairs of microtubules [32,33]. We incorporate
this feature into our model by allowing for both kinds of
alignment, depending on the initial intersection angle ω ¼
ϕ2 − ϕ1 between the two filaments. For small intersection
angles close to ω ¼ 0, parallel alignment (polar interaction)
is expected. On the other hand, for large initial intersection
angles close to ω ¼ π, the filaments align in an antiparallel
fashion (antipolar interaction). We connect these two
cases by introducing a tunable critical angle ωc that
determines the boundary between these two regimes:
Polar interactions occur for jωj < ωc and antipolar inter-
actions for jωj > ωc [see Fig. 2(a)]. Previous work con-
sidered either exclusively polar interactions [35,37],
i.e., ωc ¼ π, or perfectly symmetric admixtures of polar

and antipolar interactions [38], i.e., the case ωc ¼ π=2.
A general critical angle ωc introduces an asymmetry in the
alignment rules, breaking the parity symmetry between
polar and antipolar interactions. Such a parity symmetry
breaking emerged in recent numerical studies on the forces
involved in the motor-mediated interactions between two
filaments [47]. It is ultimately due to the directed motion of
the motors along the filaments; effects such as preferential
attachment of the motors to filament pairs with a particular
relative orientation and the dependence of the motor
procession velocity on the filament configuration can
further have an impact on the strength of the bias toward
polar alignment. The critical angle ωc is to be thought of as
an effective, mesoscopic parameter capturing all these
effects. We stress that the alignment interaction considered
here is fully reciprocal, unlike models where pairs of agents
experience torques that are not exactly opposite [51,52].
In addition to aligning filament pairs, it was observed

experimentally that the motors can drive relative sliding of
the filaments with respect to each other [32–34]. In our
model, a polar interaction slides the filaments together until
their tips coincide [Fig. 2(a)]. In an antipolar interaction, on
the other hand, the filaments are slid apart. Because of
stalling effects caused by the crowding of motors at the tips,
this separation can come to a halt for nonzero overlaps [33].
In our model, we allow for partial antiparallel sliding by
introducing a parameter η. For η ¼ 0 the microtubules fully
overlap after the interaction, while for η ¼ 1 they separate
completely until only their tips are touching. In both polar
and antipolar interactions, we enforce the conservation of
the center of mass of the microtubule pair. This means that
the only motion allowed in our interaction model is the
relative motion of the filaments in a pair. In Ref. [44], it was
shown that a filament pair can experience a net translation
due to the anisotropy of the viscous drag. Here, we neglect
this effect, focusing exclusively on relative motion.
In summary, our model for microtubule-motor mixtures

takes into account filament diffusion, steric interactions,
and a motor-mediated alignment and sliding interaction. By
introducing a critical angle ωc, we allow for an asymmetric
interaction rule with a tunable bias toward parallel align-
ment, breaking the parity symmetry of the interaction. We
also introduce the possibility of tuning the antiparallel
sliding strength via the parameter η. The motor-mediated
interaction defined above is the only active element in our
microscopic model. Thus, in contrast to systems such as
collections of active colloids or self-propelled rods, here,
activity manifests itself not in the self-propulsion but in
the relative motion of the microscopic constituents of
the system.

B. Coarse-graining

Having set up the microscopic model, we can now
proceed by coarse-graining it using the BGL approach.
The starting point of the BGL approach is the one-particle

(a) (b)

FIG. 2. Microscopic model and ordering transitions. (a) Micro-
scopic interaction rules. For intersection angles ω smaller than a
critical angle ωc, an interaction results in parallel alignment, as
well as relative sliding until the microtubule tips coincide. For
intersection angles larger than ωc, the interaction is antipolar and
the filaments are aligned in opposite directions. Here, relative
sliding results in the separation of the filaments’ centers of mass
by a distance ηL, with η∈ ½0; 1�. (b) Dependence of the polar

critical density ρðpÞc (in blue) and nematic critical density ρðnÞc (in
red) on the critical angle ωc, as indicated in Eqs. (4). Depending
on the choice of this angle, different kinds of order can emerge
above a critical density, determining the stability of the isotropic

state. The nematic critical density ρðnÞc is positive for ωc < ωðnÞ
c ¼

π=2þ arccosð1=3Þ ≈ 125.3° [red dotted line, where the denom-

inator in Eq. (4b) vanishes], while the polar critical density ρðpÞc is

positive for critical angles larger than ωðpÞ
c ≈ 101.9° [blue dotted

line, where the denominator in Eq. (4a) vanishes]. For ωc <

π − ωðnÞ
c (not shown), no order can form at all. For densities in the

hashed region, the isotropic state is unstable to the emergence of
both kinds of orders, and they are expected to coexist. In this
paper, we focus on the region where only polar order can emerge
and the nematic order is enslaved to it, i.e., ωc > ω�

c (dotted black

line) and mρ < ρðnÞc (see Sec. II B).
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probability density function (PDF) Pðr;ϕÞ giving the
number density of microtubules with center of mass
position r and orientation angle ϕ. Integrating this PDF
over all angles and positions yields the total number of
microtubules in the system. The Fourier modes of this PDF
in angular space read

PkðrÞ ¼
1

2π

Z
2π

0

dϕPðr;ϕÞe−ikϕ:

These modes have a clear physical interpretation. The
zeroth mode can be identified with a coarse-grained
filament density ρðrÞ ≔ 2πP0ðrÞ. The first mode is propor-
tional to the local mean orientation of the filaments, for
which we define a polarization field pðrÞ ≔ 2πhρn̂i; the
second mode corresponds to the nematic order, and so on.
Starting from Pðr;ϕÞ, the BGL procedure allows us to
obtain hydrodynamic equations for these coarse-grained
fields.
The full calculation, including spatial dependence, is

detailed in Appendix A. However, the emergence of global
order can already be captured by studying a spatially
homogeneous system. In this case, the PDF reduces to
Pðr;ϕÞ ¼ PðϕÞ. Its time evolution is described by a
Boltzmann-like kinetic equation, which reads

∂tPðϕÞ ¼ −Dr∂
2
ϕPðϕÞ þ

Z
ωc

−ωc

dωPðϕ−ÞPðϕþÞgðωÞ

þ
Z

2π−ωc

ωc

dωP

�
ϕ− þ π

2

�
P

�
ϕþ þ π

2

�
gðωÞ

−
Z

π

−π
dωPðϕþ ωÞPðϕÞgðωÞ: ð1Þ

Here, the first term describes rotational diffusion with a
rotational diffusion constant Dr [53]. The three integrals
(collision integrals) result from the motor-mediated inter-
actions: The first two represent gain terms, respectively, from
the polar and antipolar interactions (with ϕ� ¼ ϕ� ω=2),
while the third integral is a loss term. The integrands are
proportional to gðωÞ ¼ Gmj sinωjL2, which is the rate of
interaction of a given microtubule with filaments oriented at
an angle ω with respect to it. It results from the integration
over all possible relative positions of two interacting partners
(see Appendix A). Its dependence on ω reflects the fact that
collinear filaments need to be very close to intersect, whereas
perpendicular filaments intersect over a larger range of
positions.
In the following, we measure space in units of the

microtubule length L and time in units of D−1
r . Moreover,

we introduce the parameter α ¼ Dr=G, which can be read
as a passive-to-active ratio (Dr being the rate of thermal
diffusive rotation and G the rate of motor-mediated
interaction). This is a crucial dimensionless quantity in
our model. By comparing the timescales of passive and

active processes, it yields a measure of their relative
importance in the dynamics of the motor-filament mixture.
Since we absorbed the mean motor density m̄ph into the
interaction rate G, higher motor concentrations result in a
lower value of α, reflecting the increased activity of the
system. We use this parameter to rescale the probability
density as P → α−1L2P, making the resulting equations
dimensionless.
Using the above rescalings, we decompose PðϕÞ into its

Fourier components Pk and project Eq. (1) onto these
components. This gives their time evolution, which reads

∂tPk ¼ −k2Pk þm
X
q

fðk; qÞPqPk−q; ð2Þ

where the first term reflects rotational diffusion and the
second term results from the collision integrals in Eq. (1).
The full expression for the factor fðk; qÞ, depending on the
critical angle ωc, is given in Appendix A.
To identify ordering transitions, we study the stability of

the isotropic homogeneous state with P0 ¼ ρ̄=ð2πÞ, where
ρ̄ is the mean value of the microtubule density field ρ, and
Pk ¼ 0 for all jkj > 0 [54]. Linearizing Eq. (2) around this
state, we obtain for k ≠ 0

∂tPk ¼ k2½mρ̄=ρðkÞc − 1�Pk: ð3Þ

Here, we have introduced a critical density for every mode:

ρðkÞc ≔ 2πk2=½fðk; 0Þ þ fðk; kÞ�. For mρ̄ > ρðkÞc , the corre-
sponding mode experiences exponential growth, and the
isotropic state is unstable toward the emergence of orienta-

tional order. For our system, ρðkÞc can be positive only for
k ¼ �1 (corresponding to polar order) and k ¼ �2 (nem-
atic order). This limits the possible ordering transitions to
these two types of order. The corresponding critical
densities read

ρðpÞc ≔ ρð�1Þ
c ¼ 3π

2 − 6 cosðωc=2Þ − 2 cosð3ωc=2Þ
; ð4aÞ

ρðnÞc ≔ ρð�2Þ
c ¼ −

12π

1þ 3 cosð2ωcÞ
: ð4bÞ

Figure 2(b) shows the dependence of the two critical
densities on the critical angle ωc. Depending on this
parameter, different ordering transitions can take place,
with polar order emerging at large ωc and nematic order
emerging for a range of critical angles around ωc ¼ π=2. In
particular, the choice ωc ¼ π taken in Refs. [35,37] leads to
a motor-mediated polar ordering transition, while the parity
symmetric case ωc ¼ π=2 studied in Ref. [38] leads to a
nematic ordering transition. The existence of polar and
nematic order transitions in interacting filament mixtures
mirrors what has been found in Ref. [44] using a different
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coarse-graining approach, where the role of ωc is replaced
by the ratio of polar and nematic alignment rates g.
Intriguingly, there is a range of values of ωc for which the

isotropic state is unstable toward the emergence of both polar
and nematic order [Fig. 2(b)]. This can lead to the coexistence
of patterns involving both kinds of order, as has been
investigated for self-propelled spherical particles with align-
ing collisions [55]. In thiswork,we limit ourselves to the case
where the only kind of orientational order exhibiting an
ordering transition is polar order. This corresponds to critical

angles larger than ω�
c ≈ 107.7° (where ρðnÞc ¼ ρðpÞc ) and to

densities lower than the nematic critical density, mρ < ρðnÞc .
Thus, from now on, only the polar critical density is relevant

in our theory, and for brevity we write ρc instead of ρðpÞc .
Importantly, this assumes the parity symmetry of the inter-
action is broken.
To obtain a finite set of equations, the infinite sum over all

Fourier modes appearing in Eq. (2) has to be truncated. In
Appendix A, we do this using the Ginzburg-Landau closure,
which assumes that the system is close to the polar critical
density, so that ρ̄ − ρc ≕ ϵ2 is small. Then, it can be shown
that the Fourier modes scale as Pk ∼ ϵjkj, so that higher
Fourier modes of the PDF can be neglected. Furthermore,
reintroducing spatial dependence into the PDF, a gradient
expansion is performed, with gradients of the PDF scaling
as ∇ ∼ ϵ. Finally, in the regime described above, i.e., for

ωc > ω�
c and mρ < ρðnÞc , the nematic order can be adiabati-

cally eliminated. Truncating the equations at the lowest order
in ϵ, this procedure yields deterministic equations for theMT
density and the polarization field.

C. Motor field

The interaction rate in our model is proportional to the
local motor densitym, which can vary in space and time. In
solution, molecular motors are subject to Brownian motion,
which makes them diffuse. Additionally, they can bind and
unbind from microtubules. In their bound state, they walk
along filaments, experiencing directed transport in regions
where the microtubules show polar order. We assume that
only one population of motors is present, so that they all
walk in the same direction, i.e., along p. For weak spatial
dependence of the concentration profiles and rapid attach-
ment and detachment dynamics, the free and bound motor
populations are related linearly by a local reactive
balance [35]. Thus, they are both proportional to the (total)
local motor concentration m.
Under these conditions, the dynamics ofm is determined

by diffusion and advection along the mean orientation of
the microtubules. Introducing a diffusive constant Dm and
an effective advective velocity vm, it reads [56]

∂tm ¼ Dm∇2m − vm∇ðmpÞ: ð5Þ

For our choice of units,Dm is the ratio betweenD−1
r and the

diffusive timescale of the motors along one filament length,
and, thus, it is a large number. Therefore, the dynamics of
the motor field will relax relatively fast to its stationary
configuration. Assuming flux balance, we can estimate the
amplitude of the gradients of the motor field via
∇m ¼ γmp, with the motor Péclet number γ ≔ vm=Dm.
In the following, we focus on the case of small Péclet
number γ, implying that the gradients in m are negligible
compared to the other terms in the hydrodynamic equa-
tions, as we discuss below.

D. Derived continuum equations

The full BGL procedure, elaborated in Appendix A,
yields equations for the microtubule density field ρ and the
polarization field p:

∂tρ ¼ ∇2ðDρρþ νmρ2 þ α2ρ
2 þ α3ρ

3Þ
þ ∂i∂jðχ1pipjÞ þ∇2ðχ2p2Þ; ð6aÞ

∂tp ¼ ½ðmρ=ρc − 1Þ − βm2p2�pþ κ1∇2pþ κ2∇ð∇ · pÞ
− λ1ðp · ∇Þp − λ2ð∇ · pÞpþ ζ1∇ρþ ζ2∇p2: ð6bÞ

These two equations, together with Eq. (5), constitute our
continuum model for microtubule-motor mixtures. The
coefficients appearing in these equations are all functions
of the microscopic parametersωc and η, as well as the mean
microtubule density ρ̄ and the local motor density field m.
The dependence of the coefficients on the microscopic
parameters is detailed in Appendix A 6. Note that, due to
the rescaling of the PDF, both ρ and p are measured in units
of α=L2.
Throughout the BGL procedure, we keep m constant,

promoting it to a field in the final equations. This assumes
that the Péclet number γ is small, so that the gradients of m
are of the order ofOðγÞ and can be neglected in comparison
with the rest of the equations. In the density equation (6a),
we place m inside the innermost gradient to ensure MT
density conservation (see Appendix B 1). A different
choice would lead to a term of the order of OðγÞ, and,
hence, it does not affect the phenomenology of the
equations for small γ. An alternative approach to the one
proposed here, discussed in Ref. [35], is to take into
account the spatial dependence of m throughout the
BGL derivation and to evaluate the field at the center of
mass of a filament pair in the collision integrals to ensure
density conservation. This gives rise to terms involving
∇m, so the difference to our model is again of the order
of OðγÞ.
Equation (6a) is a continuity equation for the conserved

microtubule density ρ. The first line in that equation does
not involve the polarization field. It consists of (i) a
diffusion term with translational diffusion constant Dρ;
(ii) a term emerging from the motor-mediated interaction
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proportional to ν, which is typically (i.e., in most of
parameter space and, in particular, in the regions which
are relevant for this work) negative, thus resulting in an
antidiffusive isotropic contraction; (iii) two terms resulting
from excluded volume interactions, with α2 ¼ α=ð32πÞ and
α3 ¼ α2=ð192πÞ, which are proportional to the passive-to-
active ratio α ¼ Dr=G defined earlier. To maintain the
high-density effects that arise due to steric repulsion, we do
not linearize these terms in ρ. Overall, the first line in
Eq. (6a) gives rise to an effective isotropic diffusive flux,
whose strength depends on the local values of m and ρ.
The second line in Eq. (6a) consists of fluxes that arise

due to inhomogeneities in the polarization field. We write
the polarization vector p as p ¼ pn̂, with the polarization
amplitude (or order strength) p and the director n̂. Then, as
shown in Appendix B 1, the polarization-dependent fluxes
can be decomposed into four contributions [see Fig. 3(a)].
The first two contributions are due to gradients in the
amplitude p: (i) the contractile flux depending on χ ≔
χ1 þ χ2 (which is typically negative), resulting in the
accumulation of microtubule density longitudinally to
the polarization into regions of high polar order; (ii) the
transverse flux, depending on χ2 (which is typically
negative for sufficiently small critical angles ωc), accumu-
lating density into ordered regions perpendicularly to the
order axis. The other two contributions are due to gradients
in the director field n̂: (iii) the bend flux, controlled by χ1
(which is typically negative), moving density into the inside
of a bend (i.e., toward the center of its osculating circle),
transversally to the order; (iv) the splay flux, also controlled
by χ1, which advects density along the order for positive
splay (∇ · n̂ > 0) and against it for negative splay. These
fluxes are the polar equivalent of the active currents in an
active nematic, where χ ¼ χ1=2 ¼ −χ2 holds [3]. They
arise due to the motor-mediated relative sliding of fila-
ment pairs.
The polarization equation [Eq. (6b)] has a Toner-Tu-like

form [57]. Two important differences to the Toner-Tu
equations should be noted: The first is the dependence of
most coefficients on an additional fieldm, which introduces
a local modulation of their strength (see Appendix A 6). The
second difference lies in the coupling to the density field. In
theToner-Tumodel, the polarizationvector has a dual role: It
indicates the local mean orientation of the system’s con-
stituent particles but also the velocity of their self-propul-
sion. This results in an advective term of the form−∇ · p that
appears in the density part of the Toner-Tu equations. Here,
instead, the coupling of the density to the polarization is
realized exclusively through the χ1;2 terms discussed above.
The absence of an advective term in the density equation (6a)
reflects that the only motion introduced by activity in our
model is relative motion, as opposed to self-propulsion or
net sliding.
The various terms in the polarization equation (6b) are

discussed in depth in Appendix B 2. Here, we note that the

(a)

(b)

(d)

(c)

(f)

(e)

FIG. 3. Illustration of the behavior encoded in the terms inEq. (6).
(a) Polarization-induced fluxes in the ρ equation. The black arrows
indicate the polarization, and the density flux is shown in teal. The
contractile flux accumulates density in highly polar ordered regions
along the order axis for χ ¼ χ1 þ χ2 < 0. Conversely, χ2 < 0 leads
to a transverse flux into ordered regions perpendicular to the order
axis. Splay deformations in the polarizationvector cause a splay flux
along the vector ð∇ · n̂Þn̂, and bend deformations induce a flux
pointing into the inside of the bend, for χ1 < 0. (b) The self-
advection of the polarization amplitude and that of its direction are
controlled by two different coefficients. The former is advected
along p for λ ¼ λ1 þ λ2 − 2ζ2 > 0, while the latter is self-advected
according to λ1 alone, which is typically negative in our model.
(c) The active splay suppresses the order in regions of negative splay
∇ · n̂ < 0 and enhances it for positive splay, for λ2 < 0. (d) The
polarization tends to align along gradients in ρ for ζ1 > 0 (lighter
regions denote higher ρ) and against gradients of the order strength
for ζ2 < 0. (e) Definition of the interaction rhombus. For an
intersection to occur, given a filament at r1 and a second filament
at an angle ω ¼ ϕ2 − ϕ1 to the first one, the possible values of r2
define a rhombus centered at r1 of side length L and aperture ω
oriented along the bisector ϕ ¼ ϕ2 − ϕ1. For jωj < ωc, an inter-
actionwill align the filaments and slide them to their commoncenter
of mass at r1 þ r̄=2. The positions of the filaments after the
interaction define a smaller rhombus of side length L=2, shown
here in teal. (f) The emergence of a splay flux from the microscopic
interaction is explained using the interaction rhombus. For positive
splay (top row), there are more filaments withω > 0 to the left and
more filaments withω < 0 to the right of a given filament. Because
of this asymmetry, the rhombus of possible positions after the
interaction acquires moreweight on one side, shown in dark teal. In
both cases, this results in an effective flux in the forward direction,
since the area s2 in the front of the original position is larger than the
area s1 in its back. For negative splay (bottom row), the argument is
inverted, with s1 > s2, so that the net flux is backward. Overall, this
results in a splay flux along ð∇ · n̂Þn̂.
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first line can be read as terms emerging from a Ginzburg-
Landau free energy akin to model A dynamics [58]. The
first term leads to the emergence of a nonzero-order
parameter in regions where mρ > ρc holds, whose satu-
ration is controlled by the cubic β term. For a homo-
geneous system, this results in an equilibrium polarization
given by

p2
0 ¼

mρ − ρc
βm2ρc

: ð7Þ

On the other hand, the κ1;2 terms in the first line in Eq. (6b)
penalize gradients in the polarization field. The stiffness
κ ≔ κ1 þ κ2 controls the cost of splay deformations as
well as longitudinal variations of the order strength,
whereas bend deformations and transversal variations of
the order strength are penalized by κ1.
The rest of the terms in the polarization equation are all

proportional to the antiparallel sliding coefficient η (see
discussion in Appendix B 3). Two self-advection effects
must be distinguished [see Fig. 3(b)]: The self-advection of
the order strength controlled by λ ≔ λ1 þ λ2 − 2ζ2, which
is typically positive, moves patterns in the polarization
amplitude p along the direction of the polar order; on the
other hand, the self-advection of the orientation, controlled
by λ1 only, which is typically negative, advects patterns in
the order direction n̂ against the direction of the polari-
zation. These self-advection effects break time-reversal
symmetry, so that the polarization equation can be derived
from a free energy only when both of them van-
ish, λ ¼ 0 ¼ λ1 [3].
The term proportional to λ2, which is equal to λ1 in the

derived model and, thus, typically negative, gives rise to an
“active splay” effect [see Fig. 3(c)]. For λ2 < 0, this
enhances the polarization in regions of positive splay
(∇ · n̂ > 0) and inhibits the polar order in regions of
negative splay (∇ · n̂ < 0).
Finally, the ζ1;2 terms in Eq. (6b) lead to anchoring

effects, i.e., the alignment of the polarization field with
respect to gradients [see Fig. 3(d)]. The first term with
coefficient ζ1 > 0 leads to the alignment of p along
gradients of ρ (“density anchoring”), whereas the second
term with coefficient ζ2 < 0 leads to the rotation of p away
from regions of strong polar order (with high p2) and
toward isotropic regions (where p2 is small, “self-
anchoring”).
While the quantitative dependence of the hydrodynamic

coefficients in Eq. (6) on the parameters of the microscopic
model can be extracted only by performing the full
Boltzmann-Ginzburg-Landau derivation, it is instructive
to motivate why they show the signs they do by heuristic
microscopic arguments. Here, we explain the emergence of
the splay flux with χ1 < 0 as an example and refer the
reader to Appendix B 3 for a discussion of the other terms.
To understand the splay flux, it is useful to introduce the

interaction rhombus [see Fig. 3(e)]. This rhombus is
centered at the position r1 of the center of mass of a given
filament; it is defined by the possible positions r2 a second
filament can occupy such that the two filaments intersect,
with a given intersection angle ω ¼ ϕ2 − ϕ1. The resulting
rhombus has side length L and aperture ω. Before an
interaction, the two filament centers are separated by a
vector r̄ ¼ r2 − r1, whereas after the interaction they will
have moved relative to each other until they both lie at the
common center of mass ðr2 þ r1Þ=2, assuming jωj < ωc so
that no antiparallel sliding is involved. The possible
positions of the filaments after the interaction define a
smaller rhombus of side length L=2 centered within the
interaction rhombus [shown in teal in Fig. 3(e)]. Now, in a
situation with positive splay, given a filament at r1, on
average there will be more filaments at a positive angle
ω > 0 to the left of r1 than to its right and more filaments at
a negative angle ω < 0 to the right than to the left. For
geometric reasons, illustrated in Fig. 3(f), in both these
situations it is more probable that the filament at r1 slides
forward than backward when an interaction occurs, because
a larger portion of the side of the interaction rhombus that is
favored by splay (left or right) lies in the front compared to
the back. This results in an overall forward flux for positive
splay. In the case of negative splay, an analogous argument
leads to a backward flux, so that indeed we find that the
microscopic interaction model implies the emergence of a
flux along the splay vector ð∇ · n̂Þn̂, which entails χ1 < 0.
The bend flux can be explained analogously, exchanging
the roles of the left (right) directions with those of the
forward (backward) directions.

III. PHASE DIAGRAM OF THE DERIVED MODEL

In this section, we focus on the derived model [Eqs. (5)
and (6)] and inspect its behavior by performing numerical
simulations using finite element methods (see Appendix F
for details). To this goal, we initiate the system in the
homogeneous isotropic state (p ¼ 0 with constant ρ ¼ ρ̄
and m ¼ 1) and perturb it with small-amplitude noise.
Initiating the system above criticality, i.e., with ρ̄ > ρc, the
isotropic state rapidly develops nonzero orientational order
at early times. As time progresses, different patterns emerge
depending on the choice of the parameters.

A. Branching instability and active foams

For sufficiently small critical angles ωc and intermediate
antiparallel sliding strengths η, we observe a transition
between different inhomogeneous states as we increase the
initial microtubule density ρ̄. At low densities, radially
symmetric asterlike structures take shape [see the left
column in Fig. 4(a) and Video S1 [59] ]. At the center
of these structures, a defect is found, where the polarization
vanishes and the microtubule density has a minimum.
Around this defect, a ring of elevated microtubule density
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forms, in which the polarization field points inward. In
contrast, the motor density shows a peak in the middle of
the aster. In the following, we refer to these structures as
activemicelles, in analogy to lipid monolayer rings [39]. As
becomes clear below, this terminology accounts for the fact
that the microtubule-depleted zone in the center can be
quite large, in contrast to what is normally referred to as an
aster (e.g., in Ref. [35]).
For higher initial mean densities ρ̄, while micelles form

at early times, they become unstable and lose their rota-
tional symmetry. The high-density ring breaks apart, and
several branches form that extend radially outward. Along
the branches, the polarization field orients itself perpen-
dicularly to the branch on each side, in a bilayerlike
fashion. These branching micelles are well separated at
intermediate densities [see the middle column in Fig. 4(a)
and Video S2 [59] ].
At the highest densities, the branches emerging from

different unstable micelles connect, forming bilayers that
give rise to a foamlike network, extending throughout the
simulated system [see the right column in Fig. 4(a) and
Video S3 [59] ]. Each cell of the foam is, thus, encapsulated
by bilayer edges which join together at the vertices of the
foam. Each cell center is depleted of both microtubules and
motors, with the polarization field pointing outward. As
time progresses, the active foam undergoes constant recon-
figuration, with new bilayers branching out of its edges and
connecting to other parts of the network. This leads to the
formation of new vertices and new cells.
In Figs. 4(b) and 4(c), we show the phase diagram for

different initial densities ρ̄ and varying sliding strengths η
as well as critical angles ωc. We distinguish the phases as
follows [60]: In the micelle phase, a population of stable
micelles is formed. If at least one of these micelles exhibits
branching, we assign the parameter set to the branching
micelles phase. Finally, we define active foams as networks
of bilayers with at least one closed loop. To assemble the
phase diagrams, we identified these phases via visual
inspection and averaged our categorization over five
simulations. As a quantitative measure of the transition
between the various active supramolecular assemblies,
complementing visual inspection, we use the structure
factor SðqÞ ¼ jρ̂qj2, with ρ̂q being the Fourier transform
of the MT density. For branching micelles and foams, this
structure factor will have heavy tails for large jqj due to the
short-wavelength detail introduced by the bilayers. The
integral S̄ ¼ R

d2q log SðqÞ is a measure of the strength of
these heavy tails, which we plot in Fig. 4(c) to show the
correspondence with the micelle instability transition found
via visual inspection.
The phase diagrams in Figs. 4(b) and 4(c) show that both

the critical angle ωc and the antiparallel sliding strength η
are important parameters for the instability that drives the

(a)

(b) (c)

FIG. 4. Transition between active supramolecular assemblies.
(a) Snapshots (top, ρ; center, m; bottom, enlarged detail of ρ and
p) from numerical simulations run for t ¼ 500 at parameter
values ωc ¼ 2.18, η ¼ 0.58, α ¼ 0.7,Dm ¼ 0.2, and vm ¼ 0.004
in a system of size 60 × 60 for different mean microtubule
densities ρ̄ ¼ 1.2, 1.3, 1.9 (in units of ρc). See Videos S1–S3 for
the time evolution [59]. (b) Phase diagram as a function of the
critical angle ωc and the mean density ρ̄ for fixed η ¼ 0.58 at the
parameter values listed above. We measure the density in units of
the critical density ρc at ωc ¼ 2.18, denoted as ρ̃c. The phases are
determined by visual inspection, averaging over five initial
conditions. The branching micelle phase has at least one
micelle developing branches, and the active foam phase shows
at least one closed loop. (c) η and ρ phase diagram for fixed
ωc ¼ 2.18 at the parameter values listed above. The color in the
background gives the value of the parameter S̄ defined in the text,
which is a proxy for the emergence of structure on short length
scales.
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transition from micelles to branching micelles and further
on to active foams. Indeed, the transition is found only for
sufficiently small values of ωc: This highlights the rel-
evance of antiparallel aligning interactions for the insta-
bility. Antiparallel alignment alone is not sufficient,
however: For sufficiently small η, micelles are always
stable, hinting at the role antiparallel sliding plays in the
transition. These two ingredients, antiparallel alignment
and sliding, are, thus, crucial for the branching instability,
which leads to the formation of the bilayers that constitute
the elemental building block of the active foam networks.
On the microscopic level, this can be explained if we think
of the bilayer as two opposing ordered monolayers that
partially overlap. Parallel alignment stabilizes the polar
order within one monolayer, ensuring that all filaments
point in the same direction. Conversely, as pairs of
opposing filaments belonging to different monolayers
interact with each other, antiparallel alignment is essential
to guarantee that they stay aligned along the axis
perpendicular to the bilayer. Indeed, if they were to interact
exclusively via parallel alignment (ωc ¼ π), they would
rotate away from their initial configurations toward the
bisector, thus disrupting the antiparallel orientational order
of the two opposing monolayers. Thus, a sufficiently small
value of ωc preserves the orientational arrangement of the
bilayer. Antiparallel sliding, on the other hand, guarantees
that pairs of opposite filaments separate upon interaction,
sliding back to their original positions on either side of the
bilayer. This polarity sorting mechanism keeps the two
monolayers well defined, preserving the spatial arrange-
ment of the bilayer, i.e., its separation into opposing
monolayers.
While this argument explains why ωc should be suffi-

ciently smaller than π to ensure bilayer stability, the fact
that the bilayer is an intrinsically polar object (with the
polarization having opposite sign on either side) requires
that it should also be sufficiently large for polar order to
survive over the dominance of nematic order, as emerges
from the discussion in Sec. II B [see also Fig. 2(b)]. Indeed,
the parity symmetric case ωc ¼ π=2 studied in Ref. [38]
showed only the emergence of nematic patterns, precluding
the formation of polar bilayers. Hence, the parity symmetry
breaking in the interaction rules is essential: A sufficiently
large range of intersection angles leading to parallel align-
ment (ωc ≫ ω�

c) is needed for polar order to be dominant,
whereas a sufficiently large range of intersection angles
with antiparallel alignment (ωc ≪ π) ensures the preser-
vation of the bilayer structure, thus allowing for the
formation of active foams.
In the simulations presented in Fig. 4, we keepDm ¼ 0.2

and vm ¼ 0.004 fixed. While changing the overall magni-
tude of these parameters does not significantly affect the
phenomenology (determining the relative timescales of the
microtubule and motor dynamics), the ratio between them,
i.e., the motor Péclet number γ ¼ vm=Dm, does change the

observed patterns. In particular, for γ ¼ 0 (no motor
advection), instead of well-separated micelles, an aster
network emerges, similar to the ones observed in earlier
studies [35,37,56,61]. In these networks, the filament
density does not fall off outside of the aster. Instead, it
plateaus to a constant value until the boundary to a
neighboring aster is reached, forming an aster network.
At zero motor advection, no bilayers form and no active
foams are observed in the part of phase space probed here.
As γ is increased away from zero, the aster network splits
up into separated micelles. The width of the high-density
ring around the center of each micelle decreases as γ is
increased. Likewise, for the branching micelle and active
foam phase, increasing γ leads to a decrease in the total
width of the bilayer. Concurrently, the intermediate region
between the micelles, as well as between different bilayers,
is depleted of both microtubules and motors, with almost
no polar order. Thus, the inhomogeneity of the motor field
introduces a spatial organization of the system, with regions
of locally increased activity (high m) exhibiting the for-
mation of ordered supramolecular assemblies like micelles
and bilayers and regions of decreased activity (low m)
constituting the disordered background separating the
ordered structures.

B. Fingering instability

Finally, we investigate the role of the passive-to-active
ratio α in the micelle phase. Physically, decreasing α
corresponds to increasing the ratio between the motor-
mediated interaction rate G and the rotational diffusion rate
Dr. Recalling that G ∝ m̄ph and ρ ∝ m̄phρ̄ph, this implies
that decreasing α while keeping ρ constant amounts to
increasing the mean motor concentration m̄ph in the system
(thereby making the interaction rate G for a given pair of
intersecting filaments larger) while decreasing the micro-
tubule density ρ̄ph, such that the overall rate of interaction
events in the system (which is proportional to m̄phρ̄ph)
stays constant.
Figure 5 shows snapshots from numerical simulations

for different α. Decreasing α from the value α ¼ 0.7 used
for Fig. 4, we observe an enlargement of the central
depleted region, which is why we use the more general
term “micelle” rather than “aster.” Interestingly, similar
hollow micelles are observed for high motor densities
(corresponding to small α) in agent-based simulations [62].
For even lower values of α, the micelle loses its symmetric
shape, elongating along one axis. For the lowest values of
α, it shows a more pronounced modulation of curvature
along its perimeter, with the formation of protruding lobes
that extend out of the micelle. This shape instability, which
we refer to as fingering instability, is distinct from the
branching instability shown in Fig. 4, since the high-
density ring delimiting the micelle is not broken up into
bilayers. Instead, the ring itself is deformed, exhibiting a
higher number of lobes as α is decreased. The shapes
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keep evolving dynamically as time progresses (see
Video S4 [59]).
In summary, the numerical simulations we have per-

formed show two distinct micelle instabilities: The first one
is the branching instability, which leads to the formation of
bilayers around the perimeter of the micelle, which at
higher MT density connect together to form active foam
networks; the second one is the fingering instability, where
the high-density ring exhibits a shape modulation instead of
breaking up. While the branching instability crucially relies
on both antiparallel alignment (i.e., sufficiently small
values of ωc) and antiparallel sliding (high η), the fingering
instability appears at sufficiently small values of the
passive-to-active ratio α, corresponding to high motor
concentrations.

IV. THE PHENOMENOLOGICAL MODEL

In the model presented in Eq. (6), all the coefficients are
functions of the microscopic parameters, i.e., the critical
angle ωc and the sliding strength η, as well as the mean
microtubule density ρ̄ and the local motor densitym. As we
have seen, each model parameter (such as χ, λ2, etc.) is
associated to a certain emergent mechanism (contractile
flux, active splay, etc.). In the following, we see how the
interplay of these mechanisms controls the behavior of the
system, selecting length scales and driving instabilities. To
better understand the role of each mechanism involved, it is
useful to generalize the model we have derived, allowing
for independent variation of all the continuum model
parameters. This generalization allows us to validate the
analytical calculations we perform in the following sec-
tions, by varying the importance of the various terms

separately from each other. Furthermore, it allows the
exploration of a larger fraction of parameter space, beyond
the one defined by the functional relationship to the
microscopic parameters.
Physically, this abstraction beyond the derived model is

motivated by the fact that a different set of microscopic
interaction rules compared to the one proposed in this work
would lead to a set of equations that may have different
functional relationships of the coefficients but that share the
same structure regarding the terms appearing in the equa-
tion. This is true even for interaction rules that are too
complex to allow for a derivation of the corresponding
continuummodel coefficients by hand. The reason for this is
that the model includes all terms up to a certain order in the
Ginzburg-Landau expansion (i.e., in the gradients and
fields) that are allowed by symmetry for a system governed
by the fields ρ, p, andm, if we require that the center of mass
of the ρ field be conserved, reflecting a system involving
only relative motion of filament pairs. For example, an
advection term of the form −∇ · p in the ρ equation (6a) is
absent in our theory, because it would not conserve the
center of mass (see Appendix B 1; a similar argument
explains why splay and bend fluxes are controlled by a
single coefficient χ1). Studying the equations with indepen-
dent coefficients allows for a more complete exploration of
the physical behavior they can give rise to, extending the
analysis to a broader class of models and actual physical
systems. This bottom-down approach is phenomenological
in nature, as it acquires generality in exchange for the loss of
a connection to an interaction picture, thus complementing
bottom-up approaches as the one discussed so far.
In general, the parameters involved in such a model can

be arbitrary functions of m. For simplicity, we reduce that
dependence by rewriting all the parameters that have more
complicated functional relationships in the derived model
(χ1;2, κ1;2, λ1;2, and ζ1;2) as linear functions of the form
χ1 ¼ mχ̂1, where we denote the proportionality constants
with hats. Furthermore, by rescaling the fields we can set
ρc ¼ β ¼ 1. We refer to the resulting equations as the
phenomenological model, which is given in Appendix C.
Since the phenomenological model is a generalization of

the equations derived in Sec. II, all phases described in
Sec. III can be reproduced in the model, including
micelles and active foams. Furthermore, the freedom posed
by the phenomenological model allows us to reproduce the
experimental phases more closely. For example, in Fig. 6(a)
and Video S5 [59], we show numerical simulations of this
model in the active foam phase: These foams are less rough
and more active compared to the ones seen in the derived
model. The active foam cells evolve over time, showing cell
division and cell collapse events that drive the sustained
reconfiguration of the active foam for very long times [see
Fig. 6(b)], and have a very close resemblance to those seen
in experiment [18]. These active foams exist over large
regions of parameter space.

FIG. 5. Micellar shape instability. Snapshots (12 × 12) from
simulations at ωc ¼ 2.18, η ¼ 0.5, Dm ¼ 0.2, and vm ¼ 0.002
with initial mean density ρ̄ ¼ 1.1ρc, run for t ¼ 500 in a 60 × 60
geometry, for different values of α. As α is decreased, the micelles
seen in the simulations “open up,” leading to a larger depleted
region in the center (α ¼ 0.5). For even lower values of alpha, the
micelles lose their circular shape, elongating along one axis at
first (α ¼ 0.45) and developing more pronounced interface
modulations at the lowest values probed (α ¼ 0.4); see also
Video S4 [59]. Since α ¼ Dr=G, decreasing its value corresponds
to increasing the importance of active processes (motor-mediated
interaction with rate G) with respect to passive ones (rotational
diffusion with rate Dr), for example, by increasing the mean
motor concentration.
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In the remainder of this paper, we study the various
phases we present in Sec. III by means of analytical
methods, which enables us to explain their phenomenol-
ogy in terms of the interplay of different physical mech-
anisms. We do this in two steps: In Sec. V, we take a
static perspective of the elementary structures we have
observed—bilayers and micelles—and study what deter-
mines their concentration and polarization profiles and the
selection of length scales. In Sec. VI, on the other hand, we
turn to a dynamic standpoint, inspecting the mechanisms
that underlie the two micellar instabilities described above.
The phenomenological model is used as a tool to validate
the analytical derivations presented in those sections, by
performing numerical simulations of the model while
tuning the strength of the various mechanisms independ-
ently from one another.

V. STATIONARY PROFILES

In this section, we inspect the stationary concentration
and polarization profiles of the micelle and bilayer sol-
utions of the equations. This allows us to understand the

role of activity in selecting both the shape of these profiles
and their characteristic length scales. We proceed as
follows: In Sec. VA, we examine the profiles of the interior
of the bilayer. We explain how the microtubule density in
the interior is depleted due to the contractile flux and how
the interplay of the passive and active terms in the equations
determines the width of the depleted region. We also
inspect the micelle profile close to its center and show
that the density dip seen there emerges through a similar
mechanism as for the bilayer, up to the effect of splay.
Then, in Sec. V B, we turn to the region outside of the
assembled structures and investigate the role of motor
inhomogeneity. Throughout this section and the next, the
results apply to both the derived and the phenomenological
models.

A. Inner profiles

1. Bilayers

The bilayer is a solution of Eqs. (6) in which the fields
vary only in one direction (perpendicular to the bilayer) and
the polarization is oriented along this direction, which we
choose to coincide with the x axis. The bilayer is delimited
by maxima in the microtubule density ρ on either side, with
the polarization changing sign in the middle. We focus on
the region between these maxima, which we refer to as the
interior of the bilayer [see Fig. 7(a)]. For small motor Péclet
number γ, we can assume the value of the motor field to be
constant in the area within the bilayer, so that m ¼ m0.
Furthermore, assuming weak phase separation of the
microtubule density, we can linearize it around a reference
value ρ0 in Eq. (6a). With these simplifications, the sta-
tionary equations can be solved explicitly. Here, we present
the main results, directing the reader to Appendix D 1 for
the full calculation.
The density profile we obtain has the form

ρðxÞ ¼ ρ− þ Δρ tanh2ðx=lÞ; ð8Þ

where l is a characteristic length scale which is specified
below [see Eq. (11)]. The strength of phase separation Δρ
determines the depth of the density dip, with the minimum
value ρ− at the center of the bilayer and the maximum value
ρþ at its boundaries given by ρ� ¼ ρ0 � Δρ=2. For the
bilayer, it reads

ΔρBL ¼ −2χ̄
2þ χ̄

ðρ0 − ρc=m0Þ: ð9Þ

Here, we introduce the effective contractility
χ̄ ¼ χ=ðβm0ρcDeffÞ, giving the ratio between the contrac-
tile flux coefficient χ and the effective isotropic diffusivity
Deff ¼ Dρ þ 2ðνm0 þ α2Þρ0 þ 3α3ρ

2
0 resulting from the

various terms appearing in the first line in Eq. (6a).
When χ ¼ 0, the phase separation Δρ in Eq. (9) vanishes,
while it grows monotonically as χ increases in the negative

(a)

(b)

FIG. 6. (a) Snapshot from a simulation of the phenomenologi-
cal model where foams appear (parameters listed in Appendix F).
The parameters of the model can be varied such that the foam is
much smoother than those seen in the derived model and longer
lived (see Video S5 [59]). (b) Detailed snapshots of the motor
field, showing the activity of the foam. This activity manifests
itself in cell splitting events, where new bilayers form connecting
different parts of the network, as well as cell collapse events,
where bilayers collide with each other, leading to the annihilation
of existing cells.
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direction. Thus, we conclude that the dip in the ρ field at the
center of the bilayer is due to the contractile flux that
accumulates microtubules into the ordered regions on either
side of the bilayer. In Fig. 7(c), we plot the bilayer profiles
from numerical simulations. Shifting the ρ profile by ρ−
and rescaling it by Δρ, and rescaling space by l, the
microtubule density profiles all collapse on a tanh2 curve,
in accordance with Eq. (8).
As the bilayer is crossed from left to right, the polari-

zation changes sign from positive to negative. Because of
the continuity of the field, this means it has to cross zero at
the center of the bilayer. The positive and negative values
are connected by a kink profile:

pðxÞ ¼ −pþ tanh

�
x
l

�
: ð10Þ

This tanh profile is confirmed by numerical simulations;
see Fig. 7(c). In the equation above, pþ is the Ginzburg-
Landau equilibrium value imposed by Eq. (7) at the density
maximum ρþ, i.e., pþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0ρþ − ρcÞ=ðβm2

0ρcÞ
p

, and l is
the characteristic length scale of the kink, determining its
width and being the same as in Eq. (8). It reads

l ¼ Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 þ 2κ

m0ρ−=ρc − 1

s
: ð11Þ

Λ collects the contribution from the active terms. For the
bilayer, it is given by

ΛBL ¼ −λ̄pþ
2ðm0ρ−=ρc − 1Þ ; ð12Þ

FIG. 7. Analysis of the bilayer and micelle cross sections. (a),(b) Example for bilayer (a) and micelle (b) cross-section profiles. The
shaded yellow regionsmark the areas between the density and polarization peaks that delimit the interior of the bilayer andmicelle. (c),(d)
Simulating the phenomenological model for different values of anisotropic flux strengths χ̂1;2, stiffness κ̂1, active splay coefficient λ̂2,
anchoring coefficients ζ̂1;2, and motor advection vm (see Appendix F for the parameter values), cross-section profiles for bilayers (c) and
micelles (d) can be extracted. Fitting these profiles with the functions given in Eqs. (8), (10), and (13), one obtains the values for the fitting
parameters ρ−,Δρ, pþ, l, γ, andm−. Rescaling spacewith l and the fields as ρ̃ ¼ ðρ − ρ−Þ=Δρ, m̃ ¼ ðm=m−Þ1=γpþl, and p̃ ¼ p=pþ, the
profiles (colored dots) all collapse on the same curves predicted by theory (black dotted lines). (e),(f) Using pþ, ρ−, andm− from the fit in
theGinzburg-Landau term, aswell as themeanvalues ρ0 andm0 in the interior of the bilayers (e) andmicelles (f) for the dependencies in the
other coefficients, the values ofΛ can be calculated fromEqs. (12) and (15). Here, we plot the length scalel extracted from the polarization
fit against Λ. Rescaling the axes by el ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm−ρ−=ρc − 1Þ=ð2κÞp

l and Λ̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm−ρ−=ρc − 1Þ=ð2κÞp
Λ, the data from different

measurements collapse onto one curve, which theory predicts to be Λ̃þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ̃2 þ 1

p
for both bilayers (top) and micelles (bottom).

(g) Bilayer profiles for different values of γ. In the outer region (outside of the polarization and density maxima), the slopes of all three
fields increase with γ. The triangles indicate the slopes predicted by theory using Eq. (16) with the values of ρ0, p0, andm0 at x ¼ −3.2.
(h) Strength of density phase separation in the interior of themicelles versus χ̄ þ χ̄1=2. RescalingΔρ asΔρ̃ ¼ Δρ=ðρ0 − ρc=m0Þ, where ρ0
is the mean between the maximum and the minimum, the data collapse on a curve, as predicted by Eq. (14).

SUPRAMOLECULAR ASSEMBLIES IN ACTIVE MOTOR- … PHYS. REV. X 14, 031031 (2024)

031031-13



with λ̄ ¼ λþ 2ζ1χ=Deff an effective self-advection coef-
ficient, including the self-advection of the order strength
discussed in Sec. II D as well as the effect of the gradient in
the ρ field emerging due to the contractility χ, which the
polarization field couples to via the density anchoring
coefficient ζ1.
For Λ ¼ 0, Eq. (11) reduces to the well-known length

scale of the kink solution for domain walls in passive
systems [63], which emerges via the competition of the
Ginzburg-Landau term m0ρ−=ρc − 1, that strives to impose
a nonzero order parameter everywhere (and, in particular, at
the center of the bilayer, thus preferring a short interfacial
length scale) and the stiffness term κ, which evens out
gradients in the polarization and favors a wider interface. In
contrast, the purely active contributions giving rise to the
effective self-advection make Λ nonvanishing. They shift
the polarization pattern in the forward or backward direc-
tion depending on its sign, thus closing the bilayer further
for λ̄ > 0 while opening it up for λ̄ < 0, changing l
accordingly. In the derived model, λ̄ is typically negative,
so that the active terms lead to a widening of the bilayer.
Rescaling the p profiles by pþ and space by l, we find that
the polarization profiles from numerical simulations col-
lapse onto a tanh curve, confirming the validity Eq. (10);
see Fig. 7(c). Furthermore, in Fig. 7(e), we plot the value
for l extracted by fitting the p profiles against ΛBL.
Rescaling both axes by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm−ρ−=ρc − 1Þ=ð2κÞp
, with m−

the value of the motor field at the center of the bilayer, all
data points from the simulations collapse onto one curve,
confirming the behavior predicted by Eq. (11).
Finally, in the small γ approximation, we can investigate

how the motor profile deviates from a constant by integrat-
ing Eq. (13) and inserting the polarization profile (10)
obtained for γ ¼ 0. This yields

mðxÞ ¼ m− coshðx=lÞ−γpþl; ð13Þ

where m− is the motor density at the center of the bilayer
and l is given in Eq. (11). In Fig. 7(c), we confirm this
result with numerical simulations. One should expect this
profile to be valid only close to the bilayer center at x ¼ 0,
as the decay ofm for jxj → ∞ breaks the initial assumption
of constant motor density used in the polarization profile.
We investigate the effect of motor inhomogeneity in the
region outside of the bilayer below in Sec. V B.
In summary, we have found that, in the interior part of

the bilayer, the polarization follows a tanh profile inter-
polating between opposing orientations, similar to the kink
solution found in equilibrium systems. However, the
characteristic length scale of this solution is modified by
the contribution of the active terms, i.e., self-advection and
anchoring. As a result of the polarization gradient, the
microtubule density field ρ develops peaks on either side of
the bilayer. The strength of this phase separation is
controlled by the contractile flux, which accumulates

density in regions of stronger polar order. Finally, we have
seen that the motor density profile shows a peak at the
center of the bilayer, whose shape is given by Eq. (13). This
peak develops as a consequence of the advection of motors
along the polarization field, from the outside into the inside
of the bilayer.

2. Micelles

Micelles are radially symmetric stationary solutions of
Eqs. (6) with the polarization pointing in the inward radial
direction. As for the bilayer, the polarization vanishes and
the density shows a density dip at the micelle center. In this
section, we inspect this correspondence closer and identify
the effects that the splay in the polarization field has on the
profile. Again, we focus on the inner part of the micelle,
i.e., the region inside the ring of maximum density [see
Fig. 7(b)]. The calculation is analogous to the bilayer case
but requires a few additional approximations due to the
nonvanishing splay. We refer the reader to Appendix D 2
for the details, while discussing the main results here.
In the limit of weak phase separation, the profiles are

given by the same functions as for the bilayer, given in
Eqs. (8), (10), and (13), where the cross-section coordinate
x is substituted by the radial coordinate r. Figure 7(d)
shows micelle profiles extracted from numerical simula-
tions, which indeed collapse onto the curves predicted by
theory upon shifting and rescaling, like for the bilayer case.
However, the scaling parameters appearing in the pre-

vious section, such as the strength of the phase separation
Δρ and the length scale l, are modified as a consequence of
the splay of the micelle. The quantity Δρ appearing in
Eq. (8) obtains a new contribution due to the splay flux. For
χ1 < 0, this flux is directed outward, enhancing phase
separation by depleting the center of the micelle. Thus,
Eq. (9) is replaced by

ΔρM ¼ −2χ̄ − χ̄1
2þ χ̄ þ χ̄1=2

ðρ0 − ρc=m0Þ; ð14Þ

where χ̄1 ¼ χ1=ðβm0ρcDeffÞ is the ratio between the splay
flux strength and effective isotropic diffusivity. In Fig. 7(h),
the values for ΔρM obtained from fitting simulated micelle
profiles are plotted against χ̄M ¼ χ̄ þ χ̄1=2. Rescaling the
y axis by ρ0 − ρc=m0, they collapse onto a curve given by
−2χ̄M=ð2þ χ̄MÞ, as predicted by Eq. (14).
On the other hand, the characteristic length scale l is

modified as well. The active contribution Λ appearing in
Eq. (12) changes to

ΛM ¼ −ðλ̄þ ζ1χ1=Deff þ λ2Þpþ
2ðm0ρ−=ρc − 1Þ : ð15Þ

This reflects the coupling to the additional splay flux χ1 via
the density anchoring ζ1, as well as a contribution from the
active splay term controlled by λ2. For inward-pointing
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microtubules, the splay in the micelle is negative; for
λ2 < 0, this leads to a suppression of the order in the
inside of the micelle, which results in a larger length scale.
We check the prediction by plotting the values of l
extracted from the polarization profiles of simulated
micelles in Fig. 7(f), obtaining the same collapse as for
the bilayer using the modified expression for the active
contribution Λ.
In summary, we have found that the profile of the micelle

solution is the radial counterpart of the bilayer. Indeed, both
bilayers and the micelles have a defect at their center, where
the polarization vanishes and the density is depleted due to
the contractile flux. In both cases, the motor field shows a
maximum at the center due to its advection along the
polarization. However, in contrast to the bilayer, the
polarization field in the micelle solution is splayed. This
splay has two consequences: It enhances the phase sepa-
ration, depleting the center of the micelle more strongly,
due to the splay flux; it affects the characteristic length
scale of the solution, which is larger than that of the bilayer
due to the effect of the active splay.

B. Outer profiles

The ρ and p profiles of the interior of the bilayer
discussed above plateau away from the center. This con-
stant asymptotic behavior, however, relies on the
assumption of a constant motor field, which is no longer
fulfilled for γ > 0. Indeed, for finite values of γ, the motor
field is advected along the polarization, acquiring a non-
vanishing slope in ordered regions. Choosing a reference
point outside of the bilayer with microtubule and motor
densities ρ0 and m0, to lowest order in γ the motor field has
a slope δm ¼ γm0p0, where p0 is the equilibrium polari-
zation given by Eq. (7). In this section, we discuss how this
motor inhomogeneity gives rise to sloped microtubule and
polarization profiles in the outside region of the bilayer.
The m dependence in Eq. (7) implies that the slope in m

gives rise to a slope in p: Regions closer to the bilayer are
more ordered due to the higher motor concentration there.
The polarization gradient gives rise to contractile fluxes,
thus resulting in a gradient in the MT density ρ, with higher
concentrations close to the bilayer. This slope, in turn, feeds
back into the polarization equation due to the ρ dependence
in Eq. (7).
In Appendix D 1 b, we calculate the expressions for the

slopes in the three fields ρ, p, and m to first order in γ,
obtaining

δρ ¼ −
2χ

Deff
p0δp − γp0D̃þOðγ2Þ; ð16aÞ

δp ¼ γ
ð2 −m0ρ0=ρcÞ −m0D̃=ρc
2βm2

0 þ 2m0χ=ðρcDeffÞ
þOðγ2Þ; ð16bÞ

δm ¼ γm0p0 þOðγ2Þ: ð16cÞ

In addition to the effect from the contractile flux, con-
trolled by χ < 0, Eq. (16a) includes a second term
due to the gradient of m. The inhomogeneous motor
density introduces a spatial variation of the activity,
which affects the terms that arise from motor-mediated
interactions in the ρ equation (6a). We define D̃ ¼
m0½νρ20 þ ð∂χ=∂mÞp2

0�=Deff , which is negative for most
of parameter space in the derived model, resulting in a slope
δρ that follows δm due to contraction of the microtubules
into areas of increased activity. The slope in the polarization
amplitude given in Eq. (16b) encodes the effect of the
coupling to both densities m and ρ. In Fig. 7(g), we
compare these quantitative theoretical predictions with
bilayer profiles extracted from numerical simulations of
the phenomenological model.
In summary, we have shown that the introduction of

motor inhomogeneity due to a nonvanishing Péclet number
γ leads to the emergence of a slope in all three fields in the
outside region of the bilayer due to the coupling between
them. Overall, we find that introducing an inhomogeneous
motor field leads to a depletion of the microtubule density
and a lower polar order strength far from the bilayer,
segregating the bilayer from its isotropic background. We
expect a similar mechanism to control the outside profile of
the micelles as well, up to contributions from the splay.
This explains why a finite γ is required to obtain well-
separated micelles. We conclude that the motor advection
leads to the emergence of high-activity regions in the
system, allowing for the assembly of ordered supramo-
lecular structures such as bilayers and micelles.

VI. STABILITY ANALYSIS

The goal of this section is to understand the branching
and fingering instabilities of the micelle solutions observed
in Sec. III, explaining both their location in the phase
diagram and the mechanisms involved in their activation.
To achieve this, we proceed by first studying the stability of
the homogeneous ordered state, where we see that all the
relevant mechanisms are already at work. In the second half
of this section, we extend the insights we have gained for
those states to the more complicated micelle solutions.

A. Instabilities of the homogeneous ordered state

Equations (5) and (6) imply the existence of two
stationary states with homogeneous microtubule and motor
densities ρ ¼ ρ0 and m ¼ m0. One is the isotropic state
with p ¼ 0; the other, emerging for m0ρ0 > ρc, is the
homogeneous ordered state with a polarization amplitude
given by Eq. (7) and a polarization direction selected by
spontaneous symmetry breaking.
The stability of the isotropic state has already been

inspected analytically in previous works for similar
models [37,44,64,65]. In Appendix E, we extend the
analysis to our model. For m0ρ0 > ρc, the two polarization
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directions show a type-III instability [66], whose dispersion
relation has a maximum at zero wave vector k ¼ 0, which
corresponds to the emergence of global order. Additionally
to this ordering instability, for small passive-to-active ratio
α, the system exhibits a density (bundling) instability at
high ρ, which requires the introduction of a bi-Laplacian
term to the ρ equation to be regularized [35,37,67]. In this
work, we limit ourselves to sufficiently large α, so that the
density instability is not relevant.
In the remainder of this subsection, we study the linear

stability of the homogeneous ordered state. We choose the
coordinate system such that the initial polarization lies along
the x axis, p ¼ p0êx, with p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0ρ0=ρc − 1Þ=ðβm2

0Þ
p

.
Then, we apply a periodic perturbation to this state, which
has the form ρ ¼ ρ0 þ δρeik·r, p ¼ p0êx þ ðδpk; δp⊥Þeik·r.
It can be shown that δpk controls the perturbation of the order
strength, whereas δp⊥ leads to a variation of the order
direction [68].We keep themotor fieldm constant, as the role
of its perturbations should be negligible in the small γ limit.
In the long-wavelength limit, the linear stability analysis

for this state can be performed analytically. In this limit, the
perturbations in the order strength can be expressed in
terms of density and orientational perturbations, reducing
the linearized dynamics to a two-dimensional Jacobian of
the form

∂t

�
δρ

δp⊥

�
¼

�
J11 J12
J21 J22

��
δρ

δp⊥

�
; ð17Þ

where the entries Jij of the Jacobian are given in
Appendix E. Studying the eigenproblem of this Jacobian
in dependence of the choice of the wave vector k ¼
ðkk; k⊥Þ ¼ kðcosφ; sinφÞ allows us to characterize the
instabilities of the homogeneous state, which are all of
type II [66]. Different choices of k affect both the
eigenvalues of the Jacobian, determining whether the base
state is stable, and the eigenvectors, which specify the type
of perturbation involved in the instability. Indeed, the
eigenvectors of this matrix mix density perturbations
(δρ) and orientational perturbations (δp⊥) to different
degrees, resulting in distinct instabilities. We refer the
reader to Appendix E for the details of the analysis, while
we present the main results here.
For a fully longitudinal wave vector (k⊥ ¼ 0), the

density and orientational perturbations decouple. Then,
we find that an instability arises for sufficiently strong
effective contractility, χ̄ < −1 [see Fig. 8(a)]. To under-
stand this instability, we recall that the contractile flux
decreases diffusion in the direction of the polar order [see
Fig. 3(a)]. When this flux becomes strong enough to
overcome the effective isotropic diffusivity Deff, the total
flux in the direction of the order becomes antidiffusive,
resulting in accumulation of density along p [see Fig. 9(a)].
This results in the formation of ordered bands extending

transversally to the polarization. The corresponding eigen-
vector in Eq. (17) lies entirely in the direction of the density
perturbation δρ, since the direction of the order is not
modulated (δp⊥ ¼ 0). This contractile instability was
previously described for a similar model in Ref. [44],
where it was referred to as the bundling instability.
The other limiting choice of wave vector k is exactly

perpendicular to the order of the initial state (kk ¼ 0); see
Fig. 8(b). Then, an instability arises if any of the following
inequalities are fulfilled (see Appendix E):

βm2
0½κ þDeffð1þ χ̄2Þ� < λ2ζ2; ð18aÞ

βm2
0κ þ

ζ̄χ2λ2
Deffð1þ χ̄2Þ

< λ2ζ2: ð18bÞ

These conditions correspond to a positive trace and a
negative determinant of the Jacobian in Eq. (17), respec-
tively. Here, χ̄2 ¼ χ2=ðDeffβm0ρcÞ indicates the strength of
the transversal flux compared to the isotropic effective
diffusivity and we assume 1þ χ̄2 > 0. Furthermore, ζ̄ ¼
ζ1 þ ζ2=ðβm0ρcÞ is an effective anchoring to density
interfaces, reflecting that higher density correlates with
more polar order, which the self-anchoring (ζ2) couples to.
In the derived model, ζ̄ is negative in most of param-
eter space.
The product λ2ζ2 on the right-hand side of these

inequalities can be interpreted as a feedback mechanism
between active splay and self-anchoring [see Fig. 9(b)]. As
the order orientation is perturbed transversely, regions of

(a) (b) (c) (d)

FIG. 8. Dispersion relations for the instabilities of the homo-
geneous state. The thick lines show the real and imaginary parts
of the largest eigenvalue of the full Jacobian (see Appendix E),
while the thin lines show the analytical approximations up to
second order in k. For all plots, ρ0 ¼ 1.1, ρc ¼ β ¼ m0 ¼ 1,
Dρ ¼ 0.1, ν ¼ α2 ¼ α3 ¼ κ2 ¼ 0, and χ2 ¼ −χ1=2. (a) Contrac-
tile instability, arising for a wave vector along the direction of
polarization (φ ¼ 0) for χ̄ < −1. Here, we choose χ1 ¼ −0.24,
κ1 ¼ 0.2, λ1 ¼ 0.05, and λ2 ¼ ζ1 ¼ ζ2 ¼ 0. (b) Perpendicular
instability (φ ¼ π=2), arising when one of Eqs. (18) is fulfilled.
κ1 ¼ 0.2, λ2 ¼ −1.7, ζ2 ¼ −0.2, χ1 ¼ −0.1, λ1 ¼ −1, and
ζ1 ¼ 0. (c) Mixed orientational instability, arising for a mixed
wave vector (φ ¼ π=3) according to Eq. (20). κ1 ¼ 0.2, λ2 ¼ −2,
ζ2 ¼ −0.2, χ1 ¼ −0.04, λ1 ¼ −0.2, and ζ1 ¼ 0. (d) Mixed den-
sity instability, arising for a mixed wave vector (φ ¼ π=3) when
Eq. (19) is fulfilled. χ1 ¼ −0.1, λ1 ¼ −0.2, ζ1 ¼ −1, κ1 ¼ 0.15,
λ2 ¼ 0, and ζ2 ¼ 0.

DE LUCA, MARYSHEV, and FREY PHYS. REV. X 14, 031031 (2024)

031031-16



positive and negative splay form. For λ2 < 0, the active
splay enhances the polarization in regions of positive splay
and reduces it in regions of negative splay. As a conse-
quence, the self-anchoring rotates the polarization away
from the former regions toward the latter for ζ2 < 0,
resulting in an even stronger splay. For sufficiently strong
λ2 and ζ2, this mechanism overcomes the left-hand sides in
Eqs. (18), giving rise to a positive feedback loop, making
the homogeneous ordered state unstable. Crucially, this
perpendicular instability requires that the two coefficients
have the same sign, which is the case for most of the
parameter space of our derived model. The corresponding
eigenvector has jδp⊥j ≫ jδρj for small k, reflecting the
orientational character of this instability.
For general wave vectors mixing both longitudinal and

perpendicular components, two new instabilities emerge in
addition to the ones discussed above. These are strongest
for wave vectors that are almost perpendicular to the order,
with a small nonvanishing component in the longitudinal
direction, such that k2k ≫ k2⊥ > 0. The first such instability
arises for (see Appendix E)

κ − 2
ζ̄χ1
λ1

<
λ2ζ2
βm2

0

: ð19Þ

As for the perpendicular instability, the corresponding
eigenvector is predominantly orientational for k → 0. For
this reason, we refer to it as the mixed orientational
instability. The right-hand side shows the same feedback
between active splay (λ2) and self-anchoring (ζ2) discussed
above, which is counteracted by the stiffness κ on the left-
hand side. Thus, this instability is intimately related to the
perpendicular one. However, the skewed wave vector has
two consequences that make the mixed orientational
instability distinct from the latter. The first consequence
is a nonvanishing imaginary part of the eigenvalue, which is
linear in k for k → 0 and proportional to λ1, so that the
instability is associated with a propagation controlled by
the self-advection [it is a type-II-o instability in the
nomenclature of Ref. [66]; see Fig. 8(c)]. The second
consequence is the second term on the left-hand side, which
is stabilizing for the typical signs in the derived model (but
it can lead to positive feedback for the opposite signs; see
Appendix E).
The second instability with mixed wave vector arises for

(see Appendix E)

Deffð1þ χ̄2Þ < −2
ζ̄χ1
λ1

: ð20Þ

The eigenvector associated with this instability involves
both density and orientational components that are of the

(a)

(b)

(c)

FIG. 9. Feedback mechanisms underlying the instabilities of
the homogeneous ordered state. The small arrows indicate the
polarization field, whereas density fluxes are shown in teal.
(a) Contractile instability. Perturbing the density longitudinally,
regions of higher and lower density emerge, resulting in a
modulation of the polar order strength. The contractile flux
controlled by χ accumulates density into the region of stronger
polar order. The feedback is positive if this flux overcomes the
effective diffusivity, i.e., for χ̄ < −1. (b) Orientational instability.
Perturbing the initial state with an orientational perturbation in
the perpendicular direction, regions with splay of different signs
(given by ∇ · n̂) arise. For λ2 < 0, the active splay increases the
polarization in regions of positive splay and decreases it in
regions with negative splay. The self-anchoring couples to this
modulation, rotating the polarization away from regions of
stronger order for ζ2 < 0, amplifying the splay even more.
Now, the active splay can act anew, resulting in positive feedback
for λ2ζ2 positive and sufficiently large. This feedback drives the
perpendicular and mixed orientational instabilities. (c) Mixed
density instability. A mixed wave vector perturbation where the
density and orientational components are in (anti)phase gives rise
to a modulation in splay and bend, whose extrema (yellow and
purple lines) lie between the extrema of the density wave. The
combined action of splay and bend flux (χ1 < 0) accumulates
density between the two lines. As a consequence, the effective
anchoring (ζ̄ < 0) rotates the orientational field away from the
density maximum, thus moving the splay or bend maximum
forward. Counteracting this, the self-advection (λ1 > 0) shifts the
orientational pattern backward, so that we obtain the initial
configuration but with an amplified perturbation in both the
density and the polarization. The instability is activated if
−ζ̄χ1=λ1 is large enough to overcome the effective transversal
flux in Eq. (20).
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same order in k. The two components are in phase or
antiphase, depending on the choice of the wave vector. For
strong jλ1j, the density component dominates, so we refer to
the instability as the mixed density instability. In contrast to
the mixed orientational instability, here, the imaginary part
of the eigenvalue vanishes faster than k2 as k → 0 [see
Fig. 8(d)].
Similarly as before, we can interpret the factor ζ̄χ1

appearing on the right-hand side of the inequality (20) as a
feedback mechanism between the effective anchoring to
density interfaces, controlled by ζ̄, and the splay or bend
flux, controlled by χ1. Figure 9(c) illustrates this feedback.
For an initial perturbation involving both the density and
the order direction in (anti)phase, a maximum and a
minimum in the splay and bend arise on either side of
each density maximum. As a consequence, for χ1 < 0, the
splay flux and the bend flux advect the ρ field toward the
density maximum (along the x direction and y direction,
respectively). This leads to an increase of the density
perturbation, which the order orientation couples to via
the effective anchoring ζ̄ < 0. This further increases the
splay and bend while shifting the orientational pattern to
the front; the self-advection of the orientation, controlled by
λ1 < 0, brings it back in place. The increased orientational
perturbation leads to an even stronger splay and bend flux,
so that repeating the loop results in positive feedback,
where the density and orientational perturbations grow
together, for negative ζ̄χ1=λ1. On the left-hand side in
Eq. (20), the total transversal flux appears (as the sum of the
isotropic and transverse anisotropic contributions), which
tends to even out any gradients in density, thereby counter-
acting the feedback mechanism that drives the mixed
density instability.
In summary, we have identified four different instabilities

that arise for the homogeneous ordered state, each relying on
a feedback mechanism rooted in the interplay of different
terms in the dynamical equations (6), as is illustrated in
Fig. 9. The instabilities are (i) the contractile instability,
which arises for sufficiently strong contractility χ andmakes
the initial state unstable by accumulating density longitu-
dinally to the initial order; (ii) the perpendicular instability,
which relies on the feedback between the active splay,
controlled by λ2, and the self-anchoring, controlled by ζ2—
when the two coefficients have the same sign and are
sufficiently large, their interplay results in the growth of
orientational perturbations (i.e., splay) in the direction
perpendicular to the initial order; (iii) the mixed orienta-
tional instability, which relies on the samemechanism as the
perpendicular one but involves a wave vector that mixes
longitudinal and perpendicular components; and (iv) finally,
the mixed density instability emerges from a feedback
controlled by the effective anchoring ζ̄, the splay or bend
flux χ1, and the orientational self-advection λ1 and gives rise
to a simultaneous growth of density and orientational
perturbations for mixed wave vectors.

In the following subsection, we discuss the role these
instabilities play for micelle solutions, connecting them
with the micellar instabilities observed in Sec. III.

B. Micelle instabilities

The micelle solution is an inhomogeneous base
state with radial symmetry and radial inward-pointing
polarization [p ¼ p0ðrÞêr with p0ðrÞ < 0]. To study its
stability, we introduce a perturbation to this solution that is
periodic in the angular coordinate, with node number n, and
in the radial coordinate, with wave vector kr, so that
ρ ¼ ρ0ðrÞ þ δρeinϕeikrr, pr ¼ p0ðrÞ þ δpreinϕeikrr, and
pϕ ¼ δpϕeinϕeikrr. For the purposes of this analysis, r
can be assumed to be of the order of the micelle radius.
In the limit of large r (corresponding to weak curvature)

and small kr, we can express the perturbation δpr in terms
of the density perturbation δρ and the angular perturbation
δpϕ, obtaining a two-dimensional Jacobian similarly as in
Eq. (17), as we show in detail in Appendix E 3. To lowest
order in r and kr, it has the following eigenvalues:

Re σ1 ¼ −
λ1p0ðrÞ

r
−
�
κ − 2

χ1ζ̄

λ1
s −

λ2ζ2
βm2

0

�
n2

r2
; ð21aÞ

Re σ2 ¼ −Deffð1þ χ̄Þk2r
−
�
2
χ1ζ̄

λ1
sþDeffð1þ χ̄2Þ

�
n2

r2
: ð21bÞ

Here, we introduce the factor s ¼ ð1þ ðrkrÞ−2Þ−1 ∈ ½0; 1�,
which depends on the ratio of the micelle radius r and the
characteristic length scale of the radial perturbation k−1r .
Now, for r ≫ k−1r , we have that s → 1. We then find that

the square brackets in Eqs. (21) change sign when the
inequalities for the mixed orientational instability [Eq. (19)]
and the mixed density instability [Eq. (20)] from the
previous section are fulfilled, respectively, leading to a
positive quadratic coefficient of Re σ1;2 as a function of n.
This means that the relevance of the inequalities (19) and
(20), which strictly refer to the instability of the homo-
geneous state, extends to micelle solutions. The two
inequalities give an estimate for their stability for small
n, as long as r is sufficiently large and one can neglect the
effect of the first term in Eq. (21b) (which stabilizes the
micelle for λ1p0 > 0, as discussed in Appendix E 3).
Heuristically, this can be made plausible in light of the

underlying feedback mechanisms discussed in the previous
subsection. Indeed, these feedback mechanisms do not rely
on the initial order being homogeneous and can be
extended to situations with nonvanishing initial splay,
like the micelle solutions. An example is the feedback
between the active splay and the self-anchoring, which
drives the mixed orientational instability [recall Fig. 9(b)].
In Fig. 10(a), we show how it generalizes to the micelle.
While the initial splay is now negative, this does not affect
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the mechanism: An angular perturbation leads to a modu-
lation in the splay around the micelle. This gives rise to a
modulation of polarization amplitude due to the active splay.
The self-anchoring couples to this modulation, amplifying
the splay, so that we obtain the same feedback as before.
Similarly, the mechanism underlying the mixed density
instability also generalizes to splayed configurations [69].
To inspect the connection between the linear instabilities

and the phenomenology discussed in Sec. III, we resort to
numerical simulations of the phenomenological model.
There, we first prepare a stable micelle in a regime where
the instabilities do not arise. Then, we take this micelle as
an initial condition but change the phenomenological
model parameters, so as to activate either of the two mixed
instabilities and probe their time evolution in the nonlinear
regime.

1. Branching instability

First, we change the phenomenological model parame-
ters to activate the mixed orientational instability [which
makes the quadratic coefficient in Eq. (21a) positive], by
choosing the product λ2ζ2 large enough (see Appendix F).
Figure 10(b) shows a time series of snapshots from such a
simulation (see also Video S6 [59]). After some time, the
instability sets in, resulting first in a modulation of the
orientation (and, thus, the splay) around the micelle and
later in a redistribution of density. Indeed, as a consequence
of the contractile flux [see Fig. 3(a)], density is accumu-
lated into the regions of positive splay, corresponding to
stronger polar order, and depleted from the regions in
between. The result is the formation of bilayerlike
branches, with the order pointing in opposite directions
on either side.
In Fig. 10(c), we vary the stiffness κ̂1, which results in a

modulation of the number of branches that form. Increasing
κ̂1 makes the left-hand side of the inequality (19) larger,
reducing the quadratic term in Eq. (21a). This shifts the
maximum of Re σ1 to smaller node numbers n, decreasing
the number of branches.
The bilayerlike branches emerging in Fig. 10 are

reminiscent of the micellar branching instability we discuss
for the derived model in Sec. III. This correspondence is
confirmed by inspecting the location of the mixed orienta-
tional instability in the phase space of the derived model,
which gives an estimate of where Re σ1 in Eq. (21a) can
become positive at small n. In Figs. 10(d) and 10(e), we
plot the regions where inequality (19) holds in terms of the
critical angle ωc, the antiparallel sliding η, and the mean
microtubule density ρ̄. Indeed, the instability is activated for
large ρ̄ and η and sufficiently smallωc, corresponding to the
observations made in Figs. 4(b) and 4(c).
It is important to note that the analysis above was

performed for the homogeneous ordered state, where
m0 ¼ 1 by definition. When plotting the regime of validity
of Eq. (19) for this value ofm0, the resulting region [shown

(a)

(b)

(c)

(d) (e)

FIG. 10. Micellar branching instability. (a) The feedbackmecha-
nism between active splay and self-anchoring from Fig. 9(b)
extends to an initially splayed configuration. Adding an angular
perturbation results in the modulation of splay around the ring,
which leads to a modulation of the polar order strength due to the
active splay. The self-anchoring then rotates the polarization away
from regions with stronger order, thereby leading to a positive
feedback loop. (b) Simulations of the phenomenological model
(parameters in Appendix F; see Video S6 [59]) in a region where
λ2ζ2 > 0 show that an initially prepared micelle becomes unstable
via branching. At early times, the splay and polar order strength are
modulated around the ring, showing an initial dynamics governed
by the orientational feedback mechanism. At later times, the
variation of the polarization amplitude leads to contractile density
fluxes that accumulate density into ordered regions, thus forming
bilayerlike branches. (c) By increasing the strength of the stiffness
coefficient κ̂1, the number of branches could be decreased. (d),(e)
Plotting the regions of validity of the inequality (19) in terms of the
derived model parameters ρ̄, ωc, and η [which is an approximation
forwhere Re σ1 > 0 in Eq. (21a) for small n], we see that themixed
orientational instability arises in the same regions where micelle
branching is observed in Figs. 4(b) and 4(c). The dark purple region
shows the validity regime of the inequality for m0 ¼ 1. Higher
values ofm0 (light purple regime,m0 ¼ 1.4) lead to an increase of
the areawhere the instability arises, showing closer correspondence
to Figs. 4(b) and 4(c). This reflects the fact that the motor density is
locally increased inside micelles due to motor advection.
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in dark purple in Figs. 10(d) and 10(e)] is smaller compared
to the region of the phase diagram where branching
occurred in Figs. 4(b) and 4(c). For nonvanishing motor
Péclet numbers γ > 0, however, the local value of the motor
field might deviate from its mean: Inside the micelles, it is
increased due to motor advection. Since the instability is
activated locally, this local value should be taken for m0

instead. Indeed, for larger values of m0, we observe an
enlargement of the instability region [light purple area in
Figs. 10(d) and 10(e)], in closer agreement with the
observations of Figs. 4(b) and 4(c). Thus, we can identify
the mixed orientational instability as the mechanism driv-
ing micelle branching.

2. Fingering instability

Starting from the same stable micelle as the initial
condition, but choosing the parameters to activate the
mixed density instability so that the quadratic coefficient
in Eq. (21b) becomes positive (see Appendix F), we find a
different time evolution, shown in Fig. 11(a). After some
time, the density and polar order perturbations grow
simultaneously, in accordance to the eigenvector of the
mixed density instability. As time progresses, the interface
to the depleted center of the micelle is modulated in its
shape, resulting in the formation of fingers. This can be
understood in terms of the splay flux [see Fig. 3(a)], which
advects regions of more positive splay along the polar
order, invading the center of the micelle more than those
with more negative splay. This difference in the splay flux
in the angular direction results in the interface modulation.
In Fig. 11(b), we vary the self-anchoring strength ζ̂2,

whereby the number of fingers is changed. Again, this can
be explained in terms of the dispersion relation. As ζ̂2 is
increased, the right-hand side of Eq. (20) becomes larger,
increasing the quadratic coefficient of Re σ2 and shifting its
maximum to the right. This corresponds to higher modes n
being affected by the instability.
Just as the mixed orientational instability results in

micellar branching, we can now connect the mixed density
instability to the micellar fingering seen in Fig. 5. To this
end, we investigate the domain of validity of Eq. (20) in
terms of the parameters of the derived model, which gives
an estimate of where Re σ2 in Eq. (21b) can become
positive at small n. In Fig. 11(c), we plot this region in
dependence of the passive-to-active ratio α and the mean
microtubule density ρ̄. As before, we choose a higher value
for m0 to mimic the local increase of the motor field in the
micelle. Indeed, we find that the mixed density instability
emerges for small values of α, as in Fig. 5. Hence, we
identify the mixed density instability as the mechanism
driving micellar fingering in the derived model.
This insight allows us to interpret the instability as a

competition between passive and active mechanisms.
Indeed, the left-hand side of Eq. (20) is proportional to
the effective diffusivity Deff, which incorporates the effect

of diffusion and steric interactions. On the right-hand side,
instead, we find the factor ζ̄χ1, which encodes a feedback
between the splay flux and anchoring, two mechanisms that
arise due to the active motor-mediated interactions. When
decreasing the passive-to-active ratio α, Deff becomes
smaller, until eventually the active right-hand side prevails
and the instability sets in. Crucially, the dominating passive
mechanism here is the steric interaction (whose contribu-
tion in the equation is the only α-dependent term). As a
consequence, in contrast to the branching instability, the
fingering instability is suppressed at high microtubule
densities.
In conclusion, we have shown that the two micellar

instabilities we have seen in Sec. III in numerical simulations

(a)

(b)

(c)

FIG. 11. Micellar fingering instability. (a) Simulations of the
phenomenological model in a region where ζ̄χ1=λ1 < 0 show that
an initially prepared micelle becomes unstable via the mixed
density instability (parameters in Appendix F; see Video S7 [59]).
At early times, both the orientational order and the density are
modulated around the ring, reflecting the simultaneous growth of
the perturbations predicted for the mixed density instability. At
later times, the variation of splay around the ring leads to splay
fluxes, which lead to the protrusion of regions with positive splay
into the center of the micelle, whereby fingers are formed. (b) By
increasing the strength of the self-anchoring coefficient ζ̂2, the
number of fingers can be increased. (c) We plot the regions of
validity of the inequality (20) in terms of the microtubule density
ρ̄ and the passive-to-active ratio α from the derived model, which
gives an estimate for where Re σ2 > 0 in Eq. (21b) for small n.
The mixed orientational instability arises for small α, mirroring
the observation made in Fig. 5. The blue regions show the validity
regime of the inequality for m0 ¼ 1.0 (lighter) and m0 ¼ 1.4
(darker).
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of the derived model can be explained in terms of positive
feedback between different mechanisms appearing in the
continuum equations. The branching instability was shown
to arise as a consequence of the mixed orientational insta-
bility, which relies on the feedback between active splay and
self-anchoring to introduce splay along the micelle ring,
leading to the formation of bilayerlike branches. On the other
hand, the fingering instability is intimately related to the
mixed density instability of the homogeneous state, which
arises due to the interplay of anchoring, splay, and bend
fluxes as well as self-advection. It leads to the simultaneous
growth of density and orientational perturbations along the
ring, resulting in the formation of fingers.

VII. DISCUSSION

In this work, we have introduced a field theory for active
filament systems driven by relative filament motion,
resulting in the emergence of active micelles and active
foams. Our theory applies to microtubule-motor mixtures
and, more generally, to systems comprised of stiff cytos-
keletal filaments and molecular motors that are transported
along these filaments, inducing alignment and sliding
interactions. By constructing the field theory from the
bottom up, starting from the microscopic interactions
between filaments, we have established an explicit link
between processes at the microscopic level and the emer-
gent collective behavior at macroscopic scales.
At the microscopic level, our theory accounts for several

generic features for the interaction between microtubules
and molecular motors. First, the motors walk along indi-
vidual filaments in a directedmanner. On the coarse-grained
level, this results in collective advection of the motors in
regions of strong polar order, giving rise to an inhomo-
geneous motor concentration whose gradients are propor-
tional to themotors’Péclet number γ ¼ vm=Dm. Second, the
motors’movement induces relative alignment and sliding of
pairs of microtubules. The alignment can be parallel or
antiparallel based on the initial crossing angle of the
filaments. In the former case, the filaments slide together,
whereas in the latter case they slide apart. In our theory, we
break the parity symmetry between these two cases by
considering general critical angles ωc, determining the bias
toward parallel alignment. Furthermore, we take into
account stalling effects that impede antiparallel sliding,
controlling its strength via the parameter η. Our analysis
shows that the motor-induced alignment interaction induces
orientational order at high microtubule and motor densities,
while the relative sliding gives rise to nonequilibrium
polarization-dependent density fluxes as well as self-
advection, active splay, and anchoring effects.
Based on our field theory, we predict the formation of

various active supramolecular assemblies: First, radially
symmetric active micelles, which can undergo two distinct
instabilities, a fingering and a branching instability. The
latter leads to the formation of bilayers, where the polar

order switches signs from one side to the other.
Additionally, we have identified a new active phase
characterized by the formation of large-scale intercon-
nected microtubule bilayer networks, which we refer to
as active foams. Our bottom-up approach allows us to
determine the phase diagram of the derived continuum
model in terms of the microscopic parameters. In particular,
we find a transition between active micelles and active
foams controlled by the microtubule density and relying on
the branching instability. We determine the relevant fea-
tures of the interactions for this transition to occur.
Furthermore, through a comprehensive analysis of our

field theory, we identify the mechanisms that determine the
inhomogeneous stationary solutions and the instabilities of
the active filament system. We demonstrate our analytical
results using the phenomenological model, which keeps the
same structure of the dynamical equations as in the derived
model but allows for free variation of the coefficients of the
individual terms in the equations. This approach expands
the applicability of our results to a wide range of field
theories characterized by similar field equations. These
encompass theories pertaining to different underlying
microscopic processes or to theories derived through
different coarse-graining methods.

A. Active micelles and morphological transitions

Weexplored the phase diagram of our coarse-grained field
theory using numerical simulations. Over a wide region of
parameter space, radially symmetric structures form, which
we termed active micelles, in analogy to the micelles formed
by lipid molecules. The microtubules in active micelles
arrange themselves into a high-density ring around the
center, just as the lipids in their passive counterpart. In this
monolayer ring, the microtubule plus ends correspond to the
hydrophobic tails of lipids, pointing toward the micelle
center, while the minus ends extend outward, like the
hydrophilic heads in lipid micelles. As the motors move
along the microtubules toward the plus end, the motor
concentration accumulates inside the active micelles.
The key parameter determining the shape of the active

micelles in our model is the passive-to-active ratio
α ¼ Dr=G. This is the ratio between Dr, determining the
timescale of rotational filament diffusion, and the rate of
active filament-filament interaction G, which is propor-
tional to the mean motor concentration. Besides the motors’
Péclet number γ, this is a second important dimensionless
quantity characterizing the dynamics of the system. For
large values of α, the active micelles have a structure similar
to the asters found in previous studies [35,70,71], which
show a weak depletion of microtubule density at the center.
However, as α is lowered, corresponding to a prevalence of
active processes, the depleted region at the micelle center
expands.
Intriguingly, this result closely resembles the observa-

tions made in agent-based simulations of filaments and
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motors [62], which showed that spatially confined asters
become hollow at high motor concentrations, where the
active interaction dominates over passive processes. Similar
hollow structures formed by microtubules were also seen in
Xenopus egg extracts [72]. The connection between our
results and these experiments deserves the attention of
future research.
For very low passive-to-active ratios α, we observe that

the micelles undergo a fingering instability. In the course of
this instability, the micelles start deviating from their
circular shapes, as the microtubule monolayer ring starts
to bend, forming lobes (Fig. 5). The instability is charac-
terized by a simultaneous increase in both density and
orientational fluctuations, departing from the originally
radially symmetric base state. This is due to the interplay
between the splay flux, which advects the microtubule
density in the presence of splay, and the effective anchoring
of the polarization to density gradients. The coupling
between these two effects leads to the growth of the splay
of the microtubule polarization as well as the redistribution
of density around the monolayer ring. Once this modula-
tion is strong enough, the splay flux leads to the invasion of
regions of positive splay toward the inside of the micelle,
while regions of negative splay recede toward the outside of
the micelle, leading to the bending of the monolayer ring
and the formation of fingers (Fig. 11). The fact that both the
splay flux and the effective anchoring are active mecha-
nisms in our theory, resulting from the motor-mediated
interaction, explains why this instability arises at small
passive-to-active ratios α.
Interestingly, a phenomenologically similar fingering

instability has been observed in active nematic
droplets [73]. However, the underlying feedback mecha-
nism responsible for this instability is distinctly different
from the one proposed in the present work for active
micelles. The nature of our micellar fingering instability is
fundamentally polar, involving mechanisms such as
anchoring along density gradients and self-advection, that
cannot be captured by a nematic order parameter.
Moreover, the instability observed for active nematic
droplets is primarily interfacial in nature, driven by con-
tractile stresses in tandem with perpendicular anchoring at
the droplet’s boundary. In contrast, the fingering instability
in our active micellar structures originates within the
monolayer’s bulk, giving rise to a splay and density
modulation that subsequently leads to the emergence of
fingers from the interface. A common aspect of both
fingering instabilities is the fact that the growth of a finger
is driven by contractility, which manifests itself as a splay
flux in our active micelles and as active stress in active
nematic droplets [73]. The invasion of active interfaces due
to active stresses in nematic models was first described
in Ref. [74].
Phenomenologically similar morphological transitions

involving the growth of fingers at interfaces have been

observed in the spreading of bacterial colonies [75] and
epithelial tissue [76,77]. In the bacterial system, the finger-
ing instability is driven by the formation of −1=2 nematic
defects. Once these defects are formed, the growth of the
protrusions in the boundary is again driven by the active
stresses arising from the splay deformation. As the inter-
faces of the finger become unstable, the interface morphol-
ogy evolves into a branchlike structure. In contrast, the
instability of polar interfaces described in Ref. [77] relies
on self-propulsion. Leading regions of the advancing fronts
move faster than trailing regions, resulting in a modulation
of the interface. These examples demonstrate the ubiquity
of fingering instabilities at deformable boundaries in active
matter systems, resulting from different underlying mech-
anisms. While our work has active filament mixtures in
mind, we expect the new mechanism for fingering tran-
sitions proposed in our work to generalize to other systems
where the polar order does not manifest itself in self-
propulsion but instead drives the redistribution of density
via splay-dependent fluxes.

B. From micelles to bilayers:
The branching instability

Active micelles also exhibit a branching instability,
markedly different from the fingering instability, in terms
of both phenomenology and the underlying mechanism. It
is manifested by a breakup of the microtubule monolayer
ring surrounding the center of the micelle into layered
branches that extend radially outward. Each of these
branches consists of a bilayer, in which the microtubule
polarization points in opposite directions on either side, like
lipid molecules in lipid bilayers. At the center of each
bilayer, the microtubule density has a dip, which arises due
to contractile fluxes.
Differing from the fingering instability, this branching

instability primarily results from the amplification of
orientational perturbations. This arises from two factors
affecting how the orientational order changes over time:
active splay, which modulates the strength of the polar
order according to the sign of its splay, and self-anchoring,
which reorients the polarization according to the gradients
of its strength. The feedback between these two effects
results in the amplification of splay along the micelle ring,
ultimately causing it to split into bilayers (Fig. 10).
Since this instability involves only the feedback between

terms in the polarization equation, we anticipate its appli-
cability across a broad spectrum of active matter systems
involving polar order. Unlike the splay instability described
for collections of self-propelled agents [70,78], the insta-
bility presented here does not rely on self-propulsion. The
mechanism underlying our instability can, thus, also be
expected to play a role in systems where the polar align-
ment of the agents does not result in collective propagation,
for which microtubule-motor mixtures are but one
example [79].
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C. From bilayers to active foam networks

In the derived coarse-grained model, the branching
instability occurs for large antiparallel sliding strength η
and values of the critical angle ωc that are small compared
to the fully polar case ωc ¼ π but large enough to remain in
the range where polar order dominates. Within this param-
eter range, stable micelles form at small microtubule
densities. As the microtubule density ρ is increased, a
branching instability eventually occurs, causing bilayers to
grow from the micelles.
At even higher microtubule densities, we find that the

bilayers from different branching micelles interconnect,
resulting in the formation of an active foamlike network.
The bilayers reconfigure over time, leading to the splitting
andmerging of active foamcells (seeVideoS3 [59]). Similar
active foams have been experimentally observed inmixtures
of microtubules and kinesin-4 motors [18]. As in our theory,
asters formed at the lowest microtubule densities in those
experiments, while foams emerged at high microtubule
concentrations. In addition to replicating this experimentally
observed transition controlled by the microtubule density ρ,
our study underscores those features of the microscopic
interaction that are essential for the formation of bilayers and
active foams. First, the regime where the branching insta-
bility and the formation of large-scale foamlike bilayer
networks occur at large η and small ωc demonstrates the
importance of the antiparallel contribution to the alignment
interaction in these processes. Heuristically, antiparallel
alignment stabilizes the orientational order within the
bilayer, as it aligns the microtubules on either side along
the bilayer normal, while antiparallel sliding ensures the two
opposingmicrotubulemonolayers that constitute the bilayer
have only partial overlap so that the polar order is non-
vanishing. Second, the parity symmetry of the alignment
interaction has to be broken; i.e., the critical angle ωc has to
be larger than π=2 to promote the emergence of polar order
over nematic order. Finally, the inhomogeneity of the motor
concentration due to the procession of motors along the
filaments has to be taken into account, as foams cannot form
for vanishing motor Péclet numbers γ. Our work compre-
hensively addresses all of these properties and their inter-
play, a consideration that has been disregarded in studies
using the BGL approach [35–38].
It should be noted that the experiments on microtubule-

motor mixtures [18] were performed in a three-dimensional
setting. The emergence of the micelle-foam transition in our
two-dimensional model suggests that the mechanisms
responsible for active foam formation may not be inherently
reliant on the three-dimensional nature of the system. In
particular, the feedback mechanisms driving the instabilities
discussed in this work (see Fig. 9) generalize to higher
dimensions. Nevertheless, exploring extensions of our model
into three dimensions could offer valuable insights and
remains an intriguing direction for future investigations,
e.g., by using generalizations of the BGL approach to three

dimensions [80]. Furthermore, our model neglects hydro-
dynamic interactions, which could play an additional role in
the experimental system. To study the effect of these
interactions, coarse-graining methods that take them into
account explicitly, such as the one proposed in Ref. [81],
could be applied in future studies. Finally, we note that two
crucial assumptions in our coarse-graining procedure,
namely, the validity of a dilute approximation and of the
length scale separation between microscopic scales (the
filament length) and mesoscopic scales (the size of the
supramolecular assemblies) might not be justified in exper-
imental systems such as the one in Ref. [18]; while this could
pose a challenge for quantitative comparisons between theory
and experiments, we expect our qualitative statements to
maintain some degree of validity beyond these assumptions.

D. Dynamic control parameter fields

Our work highlights a fundamental principle shared by
many nonequilibrium systems far from equilibrium, includ-
ing models of active matter and pattern-forming systems:
Self-organization is governed by dynamic fields of order
(or bifurcation) parameters. This principle is essential in
mass-conserving reaction-diffusion systems, where the
dynamic bifurcation parameters of total protein densities
regulate local reactive equilibria [82–84]. It also applies to
active systems where conserved densities are coupled to
orientational order [55]. In these systems, the conserved
densities (here, the microtubule density ρ and the motor
density m) have a dual role as control parameters and
dynamic variables. On the one hand, they drive pattern
formation on a local scale by governing local reactive
equilibria or the emergence of orientational order. On the
other hand, the emerging pattern gives rise to fluxes that
redistribute the density fields throughout the system.
This dual role of the control parameters can organize the

system into well-separated spatial domains where phase
transitions occur locally. In our system, for example, the
motor density m accumulates inside bilayers and micelles.
These active supramolecular assemblies constitute islands
above criticality (mρ > ρc) where polar order develops,
lying in an isotropic background below criticality. A
general strategy to study these systems is to apply insights
from homogeneous states to the local scale, relating the
mean densities of the former to the local densities of the
latter. Here, this idea motivates applying the linear stability
analysis of homogeneous states to understand micelle
instabilities. Similarly, for mass-conserving reaction-
diffusion systems [85], it justifies the local equilibrium
theory [82,83] using regional dispersion relations, which
was recently applied to forecast complex patterns in
spatially varying geometries [84].

E. Toward a general theory of active foams

We believe that the present study takes an important step
toward formulating a general theory of active foams,
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encompassing distinct types of order. While previous
theoretical studies have explored foams governed by scalar
fields [28] and nematic fields [27], our work expands the
horizon by providing a comprehensive theory for active
foams with polar order, which connects for the first time the
continuum theory with an underlying physical system.
All these active foams exhibit sustained dynamics,

characterized by the continuous collapse of cells and the
concurrent formation of new edges within the foam net-
work. This leads to the existence of nonequilibrium steady
states with characteristic length and timescales. These
features are fundamentally distinct from passive foams,
whose dynamics are governed by a free energy, and rely
solely on interfacial forces, such as surface tension [86].
Importantly, passive foams are not maintained for indefinite
times but exhibit coarsening behavior, meaning smaller
cells tend to shrink over time while larger ones grow at their
expense [87].
Within the different classes of active foams, notable

qualitative distinctions emerge, particularly concerning
their sustaining mechanisms. In the scalar active foams
of active model B+, the active terms in the dynamical
equation of the density field make the capillary tension
negative, leading to an interfacial instability [28]. In
contrast, the dynamics of the nematic foams of active
model C [27] and the polar foams discussed here crucially
depends on the orientational order, which drives phase
separation and governs the instabilities in the system. In
addition, the various order parameters involved lead to
differences in the structure of the foam edges, which are
nematic bands in active model C [27] but polar bilayers in
the present work. Exploring and systematically under-
standing these essential differences, along with identifying
common underlying principles, necessitates the develop-
ment of a broader and unified framework—a promising
direction for future research.
Furthermore, the existence of active foams with these

three types of order opens up exciting possibilities for
investigating foams with higher (p-atic) symmetry [88] or
even coexisting multiple types of order [55]. Such a line of
research promises to unravel general principles in active
matter systems, highlighting the emergence of complex
nonequilibrium steady states from the dynamics of rela-
tively few interacting fields that break the requirements of
detailed balance.
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APPENDIX A: DERIVATION OF THE
HYDRODYNAMIC EQUATIONS

1. Kinetic equation

The starting point of the Boltzmann-Ginzburg-Landau
procedure is the one-particle probability density function
Pðr;ϕÞ. Pðr;ϕÞd2rdϕ indicates the probability of finding a
microtubule inside the infinitesimal surface element at
position r and at an orientation along the unit vector
n̂ðϕÞ ¼ ðcosϕ; sinϕÞ with an angle in the interval
½ϕ;ϕþ dϕÞ. The time evolution of the probability density
function follows a Boltzmann-like kinetic equation, includ-
ing diffusive terms (Idiff ), a term arising from excluded
volume interactions (Iexcl), as well as gain and loss terms
from motor-mediated alignment and sliding interactions
(“collisions,” Icoll):

∂tPðr;ϕÞ ¼ Idiff þ Iexcl þ Icoll: ðA1Þ

Normalizing the one-particle PDF such that integrating it
over all angles and positions yields the total number of
microtubules in the system, we can reinterpret Pðr;ϕÞ as a
local density of microtubules with a given orientation. In
this setting, the Fourier transform of Pðr;ϕÞ in angular
space yields modes with a clear physical interpretation.
Using the following convention:

Pðr;ϕÞ ¼
X∞
k¼−∞

PkðrÞ expðikϕÞ; ðA2Þ

we can identify the three lowest modes with the coarse-
grained density, mean polarization vector, and nematic
tensor fields (the definition of the latter two absorbs the
density):

ρðrÞ ¼
Z

2π

0

dϕPðr;ϕÞ ¼ 2πP0ðrÞ; ðA3aÞ

pðrÞ ¼
Z

2π

0

dϕn̂ðϕÞPðr;ϕÞ ¼ 2π

�
ReP−1

ImP−1

�
; ðA3bÞ

QijðrÞ ¼
Z

2π

0

dϕð2ninj − δijÞPðr;ϕÞ

¼ 2π

�
ReP−2 ImP−2

ImP−2 −ReP−2

�
: ðA3cÞ

Note that we choose to include a factor of 2π into the
definition of the polarization and nematic tensor, to make
the final equations more readable.
The diffusive term in Eq. (A1) includes both rotational

and translational diffusion. With the Einstein summation
convention, they read

Idiff ¼ Dr∂
2
ϕPðr;ϕÞ þ ∂i½Dij∂jPðr;ϕÞ�; ðA4Þ
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where Dr is the rotational diffusion constant and
the anisotropic diffusion tensor is Dij ¼ Dkninj þ
D⊥ðδij − ninjÞ. We follow Ref. [35] in using the values
for rigid rods so that Dk ¼ 2D⊥ ¼ Dr · L2=24 [53].
On the other hand, we write the excluded volume term as

a Smoluchowski-like advection term:

Iexcl ¼ ∂i½Pðr;ϕÞDij∂jUðrÞ�; ðA5Þ

where the potential UðrÞ arising from steric exclusion was
derived for rigid rods in Ref. [37] and reads (taking into
account two-filament and three-filament interactions)

UðrÞ ¼ 2

π
L2ρðrÞ þ 1

4π
L4ρðrÞ2: ðA6Þ

Thus, the excluded volume term yields a ρ-dependent
contribution to the isotropic diffusivity. In Ref. [44], the
effect of the steric interactions on the orientational order
was considered, which we neglect here for simplicity.

2. Interaction kernel

The collision term Icoll in Eq. (A1) depends on the
motor-mediated interaction rules we specify in Sec. II A.
These are encoded into the interaction kernel, which
determines how the interaction rate between two micro-
tubules depends on their positions and orientational con-
figurations. We model the microtubules as ideal rods of
length L which interact only if they intersect. For two
microtubules with center of mass positions r1;2 and angles
ϕ1;2, with distance vector r̄ ¼ r2 − r1, intersection angle
ω ¼ ϕ2 − ϕ1, and bisector angle ϕ ¼ ðϕ1 þ ϕ2Þ=2, this
intersection condition defines a rhombus centered at r1,
oriented along the bisector unit vector n̂ðϕÞ, of side length
L and aperture ω, as shown in Fig. 3(e). The center of the
second microtubule r2 has to reside within the rhombus in
order for an interaction to be possible.
To parametrize this rhombus, two sets of base vectors are

useful. The first one is the orthonormal basisfn̂⊥; n̂g defined
by the bisector unit vector and its clockwise perpendicular
unit vector n̂⊥ðϕÞ ¼ n̂ðϕ − π=2Þ; the second one is the
nonorthogonal basis fû; v̂g pointing along the sides of the
rhombus, defined by û ¼ sinðω=2Þn̂⊥ þ cosðω=2Þn̂ and
v̂ ¼ − sinðω=2Þn̂⊥ þ cosðω=2Þn̂. Using the latter basis,
we decompose the distance vector as r̄ ¼ ū ûþv̄ v̂ and
define the interaction kernel K ¼ Kðr1; r2;ϕ1;ϕ2Þ as

K ≔ Gm · ΘðL − 2jūjÞΘðL − 2jv̄jÞ: ðA7Þ

The Heaviside theta functions introduced here delimit the
interaction rhombus. They depend on ϕ1;2 via the base
vectors fû; v̂g. We use the following shorthand notation
for an arbitrary function Fðr̄Þ (which can also depend on
variables other than r̄):

Z
Kðϕ;ωÞ

d2r̄Fðr̄Þ ≔
Z

d2r̄Kðr1; r2;ϕ1;ϕ2ÞFðr̄Þ; ðA8Þ

with the positions and orientations given by r1;2 ¼
r ∓ ðr̄=2Þ and ϕ1;2 ¼ ϕ ∓ ðω=2Þ, respectively.
With the interaction kernel defined above, we can turn to

the collision term from Eq. (A1). It can be decomposed into
gain and loss parts, where the gain takes different forms for
polar (↑↑) and antipolar (↑↓) interactions:

Icoll ¼ J↑↑gain þ J↑↓gain − Jloss: ðA9Þ

The three terms read

J↑↑gain ¼
Zωc

−ωc

dω
Z

Kðϕ;ωÞ

d2r̄Pðr1;ϕ1ÞPðr2;ϕ2Þ; ðA10aÞ

J↑↓gain ¼
Z2π−ωc

ωc

dω
Z

Kðϕþπ=2;ωÞ

d2r̄Pðr01;ϕ0
1ÞPðr02;ϕ0

2Þ; ðA10bÞ

Jloss¼
Zπ
−π

dω
Z

Kðϕ−ω=2;ωÞ

d2r̄Pðr;ϕÞPðr− r̄;ϕ−ωÞ: ðA10cÞ

Note that the interaction rhombus is oriented along different
angles in the three cases: The bisector of themicrotubule pair
before the interaction corresponds to the final microtubule
angle ϕ for the polar gain, while it lies perpendicular to it for
the antipolar gain; in the loss term, the bisector is at an angle
ω=2 with the filament before the interaction. We use the
shorthand ϕ0

1;2¼ϕ1;2þðπ=2Þ and r01;2¼r1;2þðηL=2Þn̂ðϕÞ,
where the latter accounts for antiparallel sliding.

3. Homogeneous system and polar regime

As discussed in the main text, the emergence of global
order can be studied by inspecting the homogeneous state,
where Pðr;ϕÞ ¼ PðϕÞ. Under this assumption, the PDFs
can be taken out of the spatial part of the collision integrals
in Icoll, which then simply give the area of the interaction
rhombus: Z

Kðϕ;ωÞ

d2r̄ ¼ L2Gmj sinωj≕ gðωÞ: ðA11Þ

Using this relation in the kinetic equation (A1) yields Eq. (1).
Rescaling time, space, and the PDF as indicated in the main
text and Fourier transforming the PDF, we obtain Eq. (2),
with the coefficients fðk; qÞ given by the expression
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fðk; qÞ ≔
Z

ωc

−ωc

dωj sinωjeiðk=2−qÞω −
Z

π

−π
dωj sinωje−iqω

þ
Z

2π−ωc

ωc

dωj sinωjeikðωþπÞ=2−iqω: ðA12Þ

These integrals are analytically solvable. Using the proper-
ties of fðk; qÞ, one can show that the only modes that can
show exponential growth beyond a certain critical density are
those corresponding to the polar and nematic order, given in
Eqs. (4). The Pk with jkj ≥ 3, on the other hand, are always
stable.

4. Spatial integrals

To calculate the collision integrals in the general case,
including the spatial dependence of the PDF, we perform a
gradient expansion. This assumes that the probability
density function does not vary much on the scale of the
microtubule length L, and is justified in the Ginzburg-
Landau expansion. We expand the PDFs appearing in
Eqs. (A10) around r to second order in the gradients [89],
yielding

Pðrþ a;ϕÞ ≈ Pðr;ϕÞ þ ða · ∇ÞPþ 1

2
ða · ∇Þ2P; ðA13Þ

where the shift vector a always fulfills jaj ≤ 1 (i.e., ≤ L)
due to the Heaviside kernel (A7) appearing in the integrals.
With this expansion, the spatial integrals reduce to integrals
over the interaction rhombus involving polynomials of the
displacement vector r̄. Indeed, using the basis fn̂⊥; n̂g, the
gradients reduce to ω-independent directional derivatives,
and we are left with spatial integrals of the formZ

Kðϕ;ωÞ

d2r̄r̄j⊥r̄kk; ðA14Þ

where r̄⊥;k are the components of r̄ in the basis fn̂⊥; n̂g.
Changing coordinates to fû; v̂g, this integral turns into

cjkðωÞGm
Z

L=2

−L=2
dū

Z
L=2

−L=2
dv̄ðū − v̄Þjðūþ v̄Þk; ðA15Þ

where the prefactor resulting from the coordinate trans-
formation reads cjkðωÞ ¼ j sinωj sinjðω=2Þ coskðω=2Þ.
The integral is analytically solvable for all j and k. Note
that the case j ¼ k ¼ 0 reduces to Eq. (A11).
After substituting the Fourier transform (A2) and pro-

jecting the kinetic equation on the individual Fourier
modes, the only integrals left to calculate are trigonometric
integrals over ω, which are also analytically solvable. This
procedure allows us to circumvent the numerical approach
taken in Ref. [37] by making use of the basis fû; v̂g.

5. Ginzburg-Landau closure

The equations we are left with contain an infinite number
of Fourier modes [cf. the infinite sum in Eq. (2)]. A closure
must be chosen to truncate the equations. In the polar regime,
where ρðpÞc > 0 and all other Fourier modes decay [i.e.,

ρðkÞc < 0 in Eq. (3) in the main text], the Ginzburg-Landau
closure can be used for mean densities ρ̄ close to the critical

density ρc ¼ ρðpÞc . Under these conditions, the dynamics of
Fourier modes Pk with jkj ≥ 2 is much faster than the
dynamics of ρ, which is a conserved field, and of p, whose
growth rate ϵ2 ≔ ρ̄ − ρc is small. Then, we can adiabatically
eliminate the higher Fourier modes in favor of ρ and p by
requiring stationarity in the respective equations.
Neglecting gradient terms for the moment, the adiabatic

elimination of the nematic mode P2 in Eq. (2) yields a term
proportional to P2

1. Inserting this back into the equation for
P1, which contains a term proportional to P2P−1, this gives
rise to a cubic term P−1P2

1 ∼ p2P1, which leads to the
saturation of the polarization at small values. Indeed, as
emerges from Eq. (7), the equilibrium value of the
polarization p2 scales like ϵ2, which, in turn, implies
p ∼ ϵ. From Eq. (2), this allows us to obtain the scaling
behavior of all other Fourier modes as Pk ∼ ϵk.
Now we can reintroduce the gradient terms. Balancing

the terms arising via diffusion [i.e., the κ1;2 terms in Eq. (6)]
with the Ginzburg-Landau terms yields a scaling ∇ ∼ ϵ. In
other words, the typical length scales of patterns in the
system are expected to scale like ϵ−1. Finally, balancing the
terms arising in the density equation, one obtains that
deviations of the density field ρ from its mean value scale
like ρ − ρ̄ ∼ ϵ2. Having obtained the scaling of all fields, we
can truncate the density and polarization equations by
keeping terms up to Oðϵ3Þ.
Strictly, the BGL procedure is rigorously motivated only

for small values of ϵ. However, the equations obtained can
be extrapolated to finite ϵ values. While the predictions
made in this extrapolated regime should not be expected to
be quantitatively accurate, this leap of faith gives the
possibility of making qualitative statements formulated
in terms of the parameters of the microscopic interaction
model. This would be impossible to do in a fully top-down
approach, where the continuum equations are posited
using symmetry arguments, while the functional depend-
ence of the coefficients on microscopic parameters is left
undetermined.
In terms of the fields introduced in Eq. (A3), the

adiabatic elimination of P�2 yields the following expres-
sion for the nematic tensor:

Qij ¼ −12B cosωcmðpipjÞTS; ðA16Þ

with the traceless symmetric tensor ðpipjÞTS ¼
pipj − δijp2=2 and
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B−1 ¼ 12π þ ρ̄ð1þ 3 cos 2ωcÞ: ðA17Þ

6. Final equations

As we discuss above, the full calculation of the collision
term Icoll can be performed analytically. Since it is quite
lengthy, we perform it using Wolfram Mathematica,
providing the final results here. Using the adiabatic
elimination of the nematic order Qij given in Eq. (A16)
and introducing the shortcuts

χQ ¼ 1

96
þ
�
sin2 ωc

16π
η2 −

1

72π

�
mρ̄;

λQ ¼ sin2 ωc

4π
ηρ̄; ðA18Þ

the coefficients in Eq. (6) read

Dρ ¼
1

32
; α2 ¼

α

32π
; α3 ¼

α2

192π
;

ν ¼ cos2 ωc
2

8π
η2 −

1

48π
;

χ1 ¼ −
cos2 ωc

2

4π
η2m − 12B cosωcχQm;

χ2 ¼
cosωccos2

ωc
2

8π
η2mþ 6B cosωcχQm;

β ¼ 4 cosωcð7 − 15 cos ωc
2
þ 3 cos 5ωc

2
Þ

5π
B;

κ1 ¼
5

192
þ 24 − 20 cos ωc

2
− 5 cos 3ωc

2
þ cos 5ωc

2

960π
ρ̄m;

κ2 ¼
1

96
þ 8 − 5 cos 3ωc

2
− 3 cos 5ωc

2

1440π
ρ̄m;

λ1 ¼ λ2 ¼
cos2 ωc

2

π
ηmþ 12B cosωcλQm2;

ζ2 ¼
cosωccos2

ωc
2

2π
ηmþ 6B cosωcλQm2;

ζ1 ¼
cos2 ωc

2

π
ηmρ̄: ðA19Þ

APPENDIX B: INTERPRETING THE EQUATIONS

1. Terms in the density equation

The density equation (6a) is a continuity equation of the
form ∂tρþ ∇ · J ¼ 0, with the conserved flux

J ¼ −∇½Dρ þ ðmνþ α2Þρ2 þ α3ρ
3�

−ðp · ∇Þðχ11pÞ − ½∇ · ðχ12pÞ�p − ∇ðχ2p2Þ; ðB1Þ

where in our model χ11 ¼ χ12 ¼ χ1. The first line of this
flux represents an effective isotropic diffusive flux resulting

from diffusion, motor-mediated interactions, and steric
repulsion. The second line, on the other hand, is polariza-
tion dependent. To understand the different fluxes it
involves, we write p ¼ pn̂ with unit vector n̂ and define
a unit vector n̂⊥ which is clockwise perpendicular to the
latter. For simplicity, we assume a homogeneous motor
field here, such that χ1;2 are constant. Then, the polariza-
tion-dependent part of J reads

− χð∇kp2Þn̂ − χ2ð∇⊥p2Þn̂⊥;
−χ11p2∇kn̂ − χ12p2ð∇ · n̂Þn̂; ðB2Þ

where we define ∇k ¼ n̂ · ∇ and ∇⊥ ¼ n̂⊥ · ∇, as well as
χ ¼ ðχ11 þ χ12Þ=2þ χ2 ¼ χ1 þ χ2. These four terms cor-
respond to the four fluxes shown in Fig. 3(a): (i) the
contractile flux, advecting density along n̂ into regions of
high polar order for χ < 0; (ii) the transverse flux, advect-
ing density along n̂⊥ into regions of high polar order for
χ2 < 0; (iii) the bend flux, which is perpendicular to the
polarization and advects density to the inside of a bend for
χ11 < 0; and (iv) the splay flux, which is parallel to the
polarization and advects density along the splay vector ð∇ ·
n̂Þn̂ for χ12 < 0. In our model, the latter two fluxes are
controlled by the same coefficient χ1.
As a consequence of the conservation of the common

center of mass in the pairwise interactions at the microscopic
level, our continuum model conserves the center of mass of
the ρ field, defined as R ¼ V−1

R
d2xxρðx; tÞ. To see this,

note that, under no-flux boundary conditions, the center of
mass evolves according to ∂tR ¼ −V−1

R
d2xJðx; tÞ. Now,

if this flux can be written as a divergence of a local second-
rank tensor S, i.e., J ¼ −∇ · S, the center of mass R is
conserved up to a boundary contribution [90]. This is true for
the flux in Eq. (B1), with the tensor S given by

Sij ¼ ½Dρρþ ðmνþ α2Þρ2 þ α3ρ
3 þ χ2p2�δij

þ χ1pipj: ðB3Þ

The conservation of the center ofmass rules out the inclusion
of a “self-propulsion” term proportional to p in J, because it
cannot be written as −∇ · S. Similarly, the conservation law
imposes the equality of splay and bend flux coefficients
χ11 ¼ χ12. Finally, it justifies the choice of placing m in the
innermost gradients in the ρ equation, as wewould otherwise
not have J ¼ −∇ · S, thus breaking the conservation of R.

2. Terms in the polarization equation

The polarization equation (6b) can be divided into an
equation for its amplitude and one for its orientation. To
this goal, we write p ¼ pn̂ as before. By taking the scalar
product of Eq. (6b) with n̂ and n̂⊥, respectively, and using
that n̂ · ∂tn̂ ¼ 0 to preserve the unit vector length, we find
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∂tp ¼ ½ðmρ=ρc − 1Þ − λ2p∇ · n̂ − βm2p2�p
− λp∇kpþ ζ1∇kρ

þ κ1ðn̂ ·∇2pÞ þ κ2∇kð∇ · pÞ; ðB4aÞ

pn̂⊥ · ∂tn̂ ¼ −λ1p2n̂⊥ · ð∇kn̂Þ þ ζ1∇⊥ρþ ζ2∇⊥p2

þ κ1ðn̂⊥ · ∇2pÞ þ κ2∇⊥ð∇ · pÞ: ðB4bÞ

We can now read off the effect of the various terms. The
first line in Eq. (B4a) describes an ordering transition
taking place in regions with mρ > ρc, whose exponential
growth is saturated by the β term. The term proportional to
λ2 amplifies (reduces) the order in regions with positive
(negative) splay for λ2 < 0, and vice versa for λ2 > 0, an
effect which we term active splay. λ2 has no effect on the
orientational dynamics.
Both equations include a term advecting the pattern

along the polarization field. For the polarization strength
this self-advection is controlled by λ ¼ λ1 þ λ2 − 2ζ2,
while for the orientational field it is controlled by λ1 alone.
The other terms appearing in the equations represent

anchoring and stiffness contributions. These are best
understood as deriving from a free energy. Indeed, for
constant m, the polarization equation (6b) can be written as
a model A with additional active contributions that cannot
be written in terms of a free energy [3]:

∂tp ¼ −
δF
δp

− λ1ðp · ∇Þp − ðλ − λ1Þð∇ · pÞp: ðB5Þ

The two active terms arise due to self-advection, stemming
from the fact that the latter breaks time-reversal symmetry.
For vanishing self-advection, λ ¼ 0 ¼ λ1, these terms
disappear and the polarization equation reduces to pure
gradient dynamics. Since the density equation and the
motor equation cannot be written in terms of the same
free energy, however, the system is still active even in
this case.
The free energy F in Eq. (B5) reads

F ¼
Z

d2x

�
−
1

2

�
mρ

ρc
− 1

�
p2 þ βm2

4
p4

− ζ1ðp · ∇Þρ − ζ2ðp · ∇Þp2

þ κ1
2
ð∂ipjÞð∂ipjÞ þ

κ2
2
ð∇ · pÞ2

�
: ðB6Þ

The first line is responsible for the Ginzburg-Landau
transition, while the second line favors a certain alignment
of the order with respect to density and order strength
gradients. For ζ1;2 > 0, parallel alignment to these gra-
dients is favored, while ζ1;2 < 0 favors antiparallel align-
ment. For this reason, we refer to ζ1 as density anchoring
and ζ2 as self-anchoring.

The last line penalizes spatial variations of the polari-
zation field. For constantm, it can be written as follows, up
to boundary terms:

κ

2
½p2ð∇ · n̂Þ2 þ ð∇kpÞ2 þ ð∇ · n̂Þ∇kp2�

þ κ1
2
½p2ð∇kn̂Þ2 þ ð∇⊥pÞ2 − ð∇kn̂Þ · ð∇p2Þ�; ðB7Þ

where κ ¼ κ1 þ κ2. Thus, κ penalizes splay deformations of
the order as well as longitudinal variations of its strength; in
contrast, κ1 penalizes bend deformations as well as trans-
versal variations of the order strength. Finally, the third
term in each bracket denotes an additional anchoring effect
that couples gradients in the polarization to splay and bend
deformations.

3. Microscopic origin of the terms in the p equation

In the main text, we use a microscopic argument to
explain the sign of the splay flux [see Fig. 3(f)]. Here, we
use similar arguments to explain the signs of the coeffi-
cients λ1;2 and ζ1;2 in the polarization equation. Note that all
these coefficients are proportional to η (cf. Appendix A 6).
Indeed, we see that antiparallel sliding is responsible for the
breaking of symmetries underlying all the signs of these
coefficients.
We start by explaining the negative sign of the orienta-

tional self-advection coefficient λ1. Suppose we start with a
leftward bend, shown in Fig. 12(a) (the rightward bend is
analogous). It is useful to discretize space into blocks,
shown in the figure as A, B, and C. Each block corresponds
to one coarse-grained volume element. Taking block B as
our reference, A and C constitute its neighboring regions
above and below, respectively. Now, due to the bend, the
polarization in block A points more to the left than in block
B and in block B more to the left than in block C. In each
block, orientational fluctuations lead to the existence of a
small number of filaments pointing into directions other
than the average and, in particular, in the opposite direction.
Thus, there are pairs of antiparallel filaments (colored in the
figure) that can interact via antiparallel interactions. As they
are already antiparallel, the only effect of that interaction is
to slide the filaments apart, shifting them to the blocks
above and below, respectively. As shown in the figure, this
results in the rotation of the average polarization to the left
in all blocks. Analogously, for a rightward bend, the
average polarization would be rotated to the right. This
is equivalent to a backward propagation of the orientational
order direction (λ1 < 0). The crucial element is given by
antiparallel sliding, which slides filaments to the back with
respect to the common center of mass, thus breaking the
symmetry between the front and the back of a polarized
region and allowing for a nonvanishing λ1. Importantly, this
self-advection mechanism does not arise as a consequence
of a mass flux (in contrast to the self-advection term in the
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Navier-Stokes equations, for example), since microtubules
are slid in two opposite directions and the total flux is zero.
Instead, it should be seen as a purely orientational emergent
phenomenon.

The negative sign of the active splay coefficient λ2 can
be explained similarly [see Fig. 12(b)]. Here, we divide
space into blocks perpendicular to the order direction,
where B is our reference block, A lies to its left and C to its
right. In a situation with positive splay, filaments in A are
turned to the left and filaments in C to the right with
respect to those in B. As before, due to orientational
impurities, there are pairs of antiparallel filaments in each
block. Having such pairs interact in block B does not
affect the order, since they just slide along the order
direction and stay in block B. Because of the splay,
however, pairs of antiparallel filaments in blocks A and C
are slid into their neighboring blocks upon interaction
by means of the antiparallel sliding. In a situation
with positive splay, this leads to the accumulation of
filaments pointing almost in the right direction in
block B, thereby increasing the average polarization in
that block; on the other hand, in a situation with negative
splay, these interactions move filaments pointing in the
opposite direction into block B, thereby disrupting the
order there. This explains why λ2 < 0. Again, antiparallel
sliding is crucial.
Finally, we explain the anchoring coefficients ζ1;2 [see

Fig. 12(c)]. Again, we discretize space in three blocks. For
the density anchoring, we impose a density gradient from
right to left, so that A has many more filaments than C; for
the self-anchoring, we impose a gradient in order from left
to right, so that A is isotropic and C is ordered, while B is an
intermediate region. From the perspective of B, in both
these situations, it is more probable to interact by means of
an antiparallel interaction with filaments in A than with
filaments in C. Indeed, for a density gradient, there are
more filaments in A than in C regardless of the orientation,
so that interaction is most likely with the former; for an
order gradient, filaments in C are mostly parallel with those
in B, so that there are relatively more antiparallel filaments
in A. This imbalance results in a rotation of the filaments in
B toward A. Indeed, an interaction with antiparallel
filaments in A pointing to the right with respect to the
filament in B [case (i) in Fig. 12(c)] results in rotation of the
latter to the left and little sliding, so that the filament stays
in B and is rotated toward A; on the other hand, an
interaction with antiparallel filaments in A pointing to the
left with respect to the filament in B [case (ii) in Fig. 12(c)]
results in strong sliding, so that the latter is moved into
compartment A. Thus, overall, filaments at a density
interface are rotated toward high-density regions
(ζ1 > 0), whereas filaments at a disorder-order interface
are rotated toward the isotropic domain (ζ2 < 0). Both
mechanisms rely on antiparallel sliding.

APPENDIX C: PHENOMENOLOGICAL MODEL

As illustrated in the main text, in the generalization of
our derived model to a phenomenological model we make
the choice of keeping a linear dependence of the active

(a)

(c)

(b)

FIG. 12. Microscopic origin of one-gradient terms in the
polarization equation. (a) Discretizing space in the longitudinal
direction with respect to the polarization in region B, a bend
causes the mean orientation to rotate to the left as one goes from
C to B to A. In each compartment, there are pairs of antiparallel
filaments (shown in different colors). Upon interaction, antipar-
allel sliding separates the pairs, moving one filament up and one
down. Thus, for example, the red filaments from B are separated
into A and C; the blue filaments from C into B and a compartment
below C which is not shown here. This separation leads to the
rotation of the average polarization in each compartment to the
left, explaining λ1 < 0. (b) Splay causes variation of the average
polar orientation in the perpendicular direction. Upon interaction,
pairs of antiparallel filaments are slid to the left and right; e.g., the
green filaments from A separate into the compartment left of A
(not shown) and into B. Depending on the sign of the splay, the
order in B is amplified or reduced, explaining λ2 < 0. (c) A
density gradient from the right to the left and a polar order
gradient from the left to the right both cause the rate of antipolar
interactions to be higher to the left than to the right. When a blue
filament from the interface region (B) interacts with an almost
antiparallel red filament from A, two things can happen depend-
ing on the angle between the filaments. In a situation like (i), the
interaction rotates the blue filament in B to the left, where sliding
causes little displacement compared to the initial position. In (ii),
on the other hand, the interaction rotates the blue filament from B
to the right but slides it into A. Thus, overall, filaments at the
interface rotate to the left, explaining ζ1 > 0 and ζ2 < 0.
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coefficients on m and rescale the fields such that
β ¼ 1 ¼ ρc. Thus, the phenomenological equations read

∂tρ ¼ ∇2ðDρρþ νmρ2 þ α2ρ
2 þ α3ρ

3Þ
þ χ̂1∂i∂jðmpipjÞ þ χ̂2∇2ðmp2Þ; ðC1aÞ

∂tp ¼ ½ðmρ − 1Þ −m2p2�p
þ κ̂1m∇2pþ κ̂2m∇ð∇ · pÞ
− λ̂1mðp · ∇Þp − λ̂2mð∇ · pÞp
þ ζ̂1m∇ρþ ζ̂2m∇p2; ðC1bÞ

∂tm ¼ Dm∇2m − vm∇ · ðmpÞ: ðC1cÞ

The quantities with the hat, as well as the other parameters
Dρ, ν, and α2;3, are now no longer functions of microscopic
parameters but free parameters of the model that can be
varied independently.

APPENDIX D: STATIONARY PROFILES

1. One-dimensional (bilayer) profile

Assuming that the fields vary only in one direction and
that the polarization is oriented along this direction,
Eqs. (5) and (6) are reduced to the following one-dimen-
sional equations:

∂tρ ¼ ∂
2
xðDρρþmνρ2 þ α2ρ

2 þ α3ρ
3 þ χp2Þ; ðD1aÞ

∂tp ¼ ðmρ=ρc − 1Þp − βm2p3 þ κ∂2xp

þ ζ1∂xρ − λp∂xp; ðD1bÞ

∂tm ¼ Dm∂
2
xm − vm∂xðmpÞ: ðD1cÞ

a. Inner profile

In this section, we derive the stationary profile of the
interior of the bilayer. For small γ, in a first approximation,
we can take the motor field to be constant, m ¼ m0. Then,
we set the left-hand sides of the equations above to zero.
We integrate Eq. (D1a) twice, choosing the center of the
bilayer (where p ¼ 0 and ρ and m are extremal) as the
integration boundary. Assuming weak phase separation
(i.e., small values of χ, as we see below), we can linearize
the density around a reference value ρ0. Then, we find

ρðxÞ ¼ ρ− −
χ

Deff
p2ðxÞ; ðD2Þ

where ρ− is the density at the center of the bilayer and

Deff ¼ Dρ þ 2ðνm0 þ α2Þρ0 þ 3α3ρ
2
0 ðD3Þ

is the effective isotropic diffusivity resulting from diffusion
(Dρ), motor-mediated interactions (ν), and steric repulsion

(α2;3). Equation (D2) encodes the depletion of the center of
the bilayer as a consequence of contractile fluxes. Indeed,
the polar order is nonvanishing at either side of the bilayer,
while it must be zero at its center due to the sign change it
undergoes as one crosses the bilayer. As a consequence,
χ < 0 accumulates density into the two ordered fronts of
the bilayer, thereby depleting the center.
Assuming that at the density maximum of the bilayer the

polarization profile is sufficiently flat, we can neglect the
derivative terms in Eq. (D1b) at that point, such that the
polarization at the maximum reads

p2þ ¼ m0ρþ − ρc
βm2

0ρc
; ðD4Þ

where ρþ is the density at the maximum. Inserting this into
Eq. (D2), we find

m0ρ− − ρc
m0ρþ − ρc

¼ 1þ χ̄; ðD5Þ

where we define the effective contractility as the ratio
between the contractile flux in the ordered phase and the
isotropic diffusive fluxes:

χ̄ ¼ χ

βm0ρcDeff
: ðD6Þ

The ratio in Eq. (D5) is smaller than one (phase separation
takes place) when the system shows contractile behavior,
i.e., χ̄ < 0. When χ̄ reaches the critical value of −1, the
center of the bilayer drops below criticality. In the follow-
ing, we assume χ̄ > −1. By writing ρ� ¼ ρ0 � Δρ=2, we
can express the phase separation in terms of χ̄:

Δρ ¼ −2χ̄
2þ χ̄

ðρ0 − ρc=m0Þ: ðD7Þ

Inserting Eq. (D2) into Eq. (D1b) at stationarity, we find

0 ¼ ap − bp3 þ κ∂2xp − λ̄p∂xp; ðD8Þ

where a ¼ m0ρ−=ρc − 1, b ¼ βm2
0ð1þ χ̄Þ, and we define

the effective self-advection λ̄ ¼ λþ 2ζ1χ=Deff .
Inserting the ansatz (10) into the stationarity condition

(D8) yields the conditions

p2þ ¼ a
b
¼ m0ρþ − ρc

βm2
0ρc

; ðD9aÞ

0 ¼ al2 þ pþλ̄l − 2κ: ðD9bÞ

Here, the first equation is a consistency condition giving
back Eq. (D4), while the second equation defines the length
scale l.
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The effect of the active terms is summarized in the
coefficient Λ, which for the bilayer we define as follows:

ΛBL ¼ −λ̄pþ
2a

: ðD10Þ

This gives Eq. (12) in the main text. With this definition of
ΛBL, the second line in Eq. (D9) gives the solutions

lBL ¼ ΛBL �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2
BL þ

2κ

a

r
; ðD11Þ

where to obtain l > 0 we select the þ sign, giving the
relation (11) indicated in the main text.
Finally, the motor profile close to the center of the bilayer

results by requiring stationarity in Eq. (D1c) and integrating
the equation. This yields

∂x logm ¼ γp: ðD12Þ

Integrating this condition and using the polarization profile
from Eq. (10) gives an approximation for the m profile
which is valid for small γ, since we keep the motor field
constant while deriving pðxÞ:

mðxÞ ¼ m− exp

�
γ

Z
x

0

pðxÞ
�

¼ m− exp

�
−γpþ

Z
x

0

tanh
x
l

�
: ðD13Þ

Solving the integral yields Eq. (13).

b. Outer profiles

In this section, we study the impact of motor inhomo-
geneities on the bilayer profile far from its center. Thus, we
no longer assume constant motors. Then, requiring statio-
narity in the ρ equation (D1a) gives

Deff∂xρþ νρ2∂xmþ ∂χ

∂m
p2

∂xm ¼ −χ∂xp2: ðD14Þ

On the other hand, Eq. (D1c) yields ∂xm ¼ γmp. Inserting
this into the equation above, we find

∂xρ ¼ −γD̃p − χD−1
eff∂xp

2; ðD15Þ

with D̃ ¼ m½νρ2 þ ð∂χ=∂mÞp2�=Deff . Substituting this
result into the p equation (D1b), we find

0 ¼ ðmρ=ρc − 1Þp − βm2p3

− λ̄p∂xpþ κ∂2xp − γζ1D̃: ðD16Þ

Now, we make a linear ansatz for the densities ρ andm as
well as the polarization p:

ρ ¼ ρ0 þ δρðx − x0Þ; ðD17aÞ

p ¼ p0 þ δpðx − x0Þ; ðD17bÞ

m ¼ m0 þ δmðx − x0Þ; ðD17cÞ

where ρ0, p0, and m0 are the values of the fields at some
reference point x0. We expect δm, δρ, and δp to be of the
order ofOðγÞ, since they vanish for γ ¼ 0. Immediately, we
obtain

δm ¼ γm0p0 þOðγ2Þ ðD18Þ

and with this, from Eq. (D15),

δρ ¼ −
2χ

Deff
p0δp − γp0D̃þOðγ2Þ: ðD19Þ

Inserting the ansatz (D17) into Eq. (D16) and setting
x ¼ x0, we obtain

ðm0ρ0=ρc − 1Þp0 − βm2
0p

3
0 − λ̄p0δp − γζ1D̃ ¼ 0: ðD20Þ

Up to terms of the order of OðγÞ, we recover the
equilibrium polarization given by Eq. (7). Inserting
Eq. (D20) back into Eq. (D16), we derive that equation
with respect to x. Setting x ¼ x0 gives

0 ¼ p0m0δρ=ρc − 2βm2
0p

2
0δp

þ ðp0ρ0=ρc − 2βm0p3
0ÞδmþOðγ2Þ: ðD21Þ

Using Eqs. (D18) and (D19), we obtain

δp ¼ γ
m0p0ρ0=ρc −m0p0D̃=ρc − 2βm2

0p
3
0

2p0m0χD−1
eff=ρc þ 2βm2

0p0

þOðγ2Þ;

ðD22Þ
which, using Eq. (D20), yields the expression given in
Eq. (16b) in the main text.

2. Radial (micelle) profile

In this section, we turn to the micelle profile, which we
inspect close to its center. To this goal, we express Eqs. (5)
and (6) in polar coordinates, remove angular dependences,
and assume a radially oriented polarization p ¼ pêr. We
obtain

∂tρ ¼ r−1∂r½r∂rðDρρþmνρ2 þ α2ρ
2 þ α3ρ

3 þ χp2Þ�
þ r−1∂r½rχ1p2=r�; ðD23aÞ

∂tp ¼ ½ðmρ=ρc − 1Þ − λ2p=r − βm2p2�pþ ζ1∂rρ

þ κ½∂2rpþ ∂rp=r − p=r2� − λp∂rp; ðD23bÞ

∂tm ¼ r−1∂r½rðDm∂rm − vmmpÞ�: ðD23cÞ
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We proceed similarly to the analysis of the inner
bilayer profile. Thus, setting m ¼ m0 everywhere, linear-
izing the microtubule density around ρ0, and integrating
equation (D23a) twice, using r ¼ 0 as an integration
boundary, we find

ρðrÞ ¼ ρ− −
χ

Deff
p2ðrÞ − χ1

Deff

Z
r

0

dr0
p2ðr0Þ
r0

: ðD24Þ

The additional term proportional to χ1 enhances phase
separation due to the additional splay flux emerging as a
consequence of the radial symmetry. To deal with this
nonlocal term, we expand the integral in Eq. (D24) for
small r, using the Taylor expansion of p2 to second order:

p2ðrÞ ≈ ∂
2
rp2ðr ¼ 0Þ

2
r2 ≕ cr2: ðD25Þ

Using this relation, the integral can be rewritten as follows,
to second order in r:Z

r

0

dr0
p2ðr0Þ
r0

≈
p2ðrÞ
r

����
r¼0

rþ
�
∂rp2ðrÞ

2r
−
p2ðrÞ
2r2

�
r¼0

r2

¼ c
2
r2 ¼ p2ðrÞ

2
: ðD26Þ

Using this approximation, the effect of the new term in
Eq. (D24) is to shift χ → χ þ χ1=2. Thus, the phase
separation strength Δρ is modified to the expression given
in Eq. (14).
Inserting Eqs. (D24) and (D26) into Eq. (D23b) at

stationarity, we find

0 ¼ ðm0ρ−=ρc − 1Þp − βm2
0ð1þ χ̄ þ χ̄1=2Þp3 þ κ∂2rp

þ κ½∂rp=r − p=r2�
− λ2p2=r − ½λþ 2ζ1ðχ þ χ1=2Þ=Deff �p∂rp: ðD27Þ

To get this equation into a shape like Eq. (D8), we again use
a small r approximation, using the Taylor expansion
Eq. (D25), which gives pðrÞ ≈ −

ffiffiffi
c

p
r. Then, to the lowest

order in r, the second line in Eq. (D27) vanishes, and we
can approximate the active splay term as follows:

p2=r ≈ cr ≈ p∂rp: ðD28Þ

Using this, the term λ̄ arising for the bilayer in Eq. (D10) is
self-advection is shifted as λ̄ → λ̄þ ζ1χ1=Deff þ λ2, so that
the active contribution to the length scale Λ is modified to
the expression given in Eq. (15).
Finally, requiring stationarity in Eq. (D23c), the same

steps as for the bilayer can be applied to obtain the motor
profile given in Eq. (13).

APPENDIX E: LINEAR STABILITY ANALYSIS
(LSA)

1. LSA of the isotropic homogeneous state

To analyze the instabilities of the isotropic homogeneous
state with ρ ¼ ρ0, m ¼ m0, and p ¼ 0, we perform a linear
stability analysis of Eqs. (6) by introducing a periodic
perturbation of the form

ρðx; y; tÞ ¼ ρ0 þ δρðtÞeikx; ðE1aÞ

piðx; y; tÞ ¼ δpiðtÞeikx; ðE1bÞ

where we choose the coordinate system such that the x axis
is aligned with the periodic modulation, without loss of
generality. For small γ, the motor field does not contribute
significantly to the onset of the instability, and we can keep
it constant, m ¼ m0.
Inserting the ansatz (E1) into Eqs. (6) and keeping terms

up to linear order in the perturbations, we obtain the
equations

∂tδρ ¼ −k2Deffδρ; ðE2aÞ

∂tδpx ¼ ðm0ρ0=ρc − 1Þδpx − κk2δpx þ iζ1kδρ; ðE2bÞ

∂tδpy ¼ ðm0ρ0=ρc − 1Þδpy − κ1k2δpy; ðE2cÞ

where Deff is given by Eq. (D3). The resulting eigenval-
ues are

σ1 ¼ −k2Deff ; ðE3aÞ

σ2 ¼ ðm0ρ0=ρc − 1Þ − κk2; ðE3bÞ

σ3 ¼ ðm0ρ0=ρc − 1Þ − κ1k2: ðE3cÞ

For m0ρ0 > ρc, the two polarization directions show an
instability even at k ¼ 0, corresponding to the emergence
of global order. The instability takes place on long length
scales, with σ2 and σ3 negative for large k, since variations
of the order strength with short wavelengths are suppressed
by the longitudinal stiffness κ and the perpendicular stiff-
ness κ1, respectively.
In addition to this ordering instability, the system

exhibits an instability with respect to density variations
for Deff < 0, as discussed in Refs. [35,37]. This density or
“bundling” instability requires the introduction of a bi-
Laplacian term of the form −∇4ρ in the density equation to
be regularized at short wavelengths. In this work, we
circumvent this by requiring Deff > 0, which can be
achieved by choosing a sufficiently high value of α. We
postpone the analysis of the role of the density instability in
our model to future work.
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2. LSA of the ordered state

For m0ρ0 > ρc, the homogeneous state with nonzero
polarization p0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0ρ0 − ρcÞ=ðβm2

0ρcÞ
p

in a certain
direction is a stationary solution of Eqs. (6). Starting from
this base state, the instabilities that may arise are more
convoluted due to the coupling between density and order
perturbations. Again, we apply a periodic perturbation to
this state:

ρðx; y; tÞ ¼ ρ0 þ δρðtÞeiðkkxþk⊥yÞ; ðE4aÞ

piðx; y; tÞ ¼ p0δi;x þ δpiðtÞeiðkkxþk⊥yÞ; ðE4bÞ

where we choose the x axis to lie along the direction of
the global polarization and kept the motor field constant.
Thus, kk and k⊥ set the length scales of the perturbation
longitudinally and perpendicularly to the order, respec-
tively. Note that, to the lowest order in the perturbation,
the polarization strength is changed only by δpx ¼ δpk,
while δpy ¼ δp⊥ controls variations in the orientational
direction [68].
By inserting the ansatz (E4) into Eqs. (6) and keeping

terms to linear order in the perturbations, we obtain

∂tδρ¼−Deffk2δρ−2p0ðχ1kkkjδpjþχ2k2δpkÞ; ðE5aÞ

∂tδpk ¼ m0p0=ρcδρ − 2βm2
0p

2
0δpk − κ1k2δpk − κ2kkkjδpj

þ iζ1kkδρ − iλkkp0δpk − iλ2k⊥p0δp⊥; ðE5bÞ

∂tδp⊥ ¼ −κ1k2δp⊥ − κ2k⊥kjδpj þ iζ1k⊥δρ
þ 2iζ2k⊥p0δpk − iλ1kkp0δp⊥; ðE5cÞ

where summation over the index j is implicit.
In the k → 0 (long-wavelength) limit, only δpk decays

with a finite rate, as global variations in the amplitude of the
order are exponentially suppressed, while the density field
as a conserved quantity and the order direction as a
Goldstone mode have slow dynamics. Therefore, we can
adiabatically eliminate the perturbation in the order
strength by setting ∂tδpk ¼ 0 to obtain to the lowest order
in kk;⊥ we require:

2βp0δpk ¼
δρ

m0ρc
− i

λ2
m2

0

k⊥δp⊥: ðE6Þ

The terms on the right-hand side reflect the dependence of
the order strength on density variations due to the
Ginzburg-Landau term, as well as on the splay induced
by δp⊥, due to the active splay term controlled by λ2.
Substituting this expression into Eqs. (E5) yields the
following two-dimensional Jacobian [see Eq. (17)], to
the lowest order in kk;⊥ in each component which we
need for the calculation of the eigenvalues:

J11 ¼ −Deffð1þ χ̄2Þk2 −Deff χ̄1k2k; ðE7aÞ

J12 ¼ −2χ1p0kkk⊥ þ iλ2χ2=ðβm2
0Þk3⊥; ðE7bÞ

J21 ¼ iζ̄k⊥; ðE7cÞ

J22 ¼ −iλ1kkp0 þ λ2ζ2=ðβm2
0Þk2⊥ − κ1k2 − κ2k2⊥; ðE7dÞ

where we introduce ζ̄ ¼ ζ1 þ ζ2=ðβm0ρcÞ, the effec-
tive anchoring to density interfaces, as well as χ̄2 ¼
χ2=ðDeffβm0ρcÞ. The eigenvalues of this Jacobian are
given by

2σ1;2 ¼ Tr J�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTr JÞ2 − 4 det J

q
: ðE8Þ

In the following, we write k ¼ ðk cosφ; k sinφÞ.

a. Longitudinal and mixed instabilities

First, we study the case kk ≠ 0, corresponding to wave
vectors that are either fully longitudinal or that mix
longitudinal and perpendicular components. Assuming
λ1 ≠ 0, the expression in the square root appearing in
Eq. (E8) reads as follows, up to third order in k:

−λ21k2kp
2
0

�
1þ 2i

λ1kkp0

ðXk2k þ Yk2⊥Þ
�

ðE9Þ

with

X ¼ Deffð1þ χ̄Þ − κ1; ðE10aÞ

Y ¼ Deffð1þ χ̄2Þ þ 4
χ1ζ̄

λ1
þ λ2ζ2

βm2
0

− κ: ðE10bÞ

In the long-wavelength limit, the term k2⊥=kk ¼ k sinφ tanφ
is much smaller than 1 as long as j tanφj ≪ k−1, i.e., for
sufficiently strong longitudinal admixture in the choice of the
wave vector. If this condition is met, we can use the
expansion

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p ¼ 1þ ðx=2Þ þOðx2Þ to take the square
root of Eq. (E9), obtaining

ijλ1kkjp0 − sgnðλ1kkÞ½Xk2k þ Yk2⊥� þOðk3Þ: ðE11Þ

Inserting this result back into Eq. (E8) and absorbing
sgnðλ1kkÞ into�, we find the real parts of the two eigenvalues
(up to second order in k):

Re σ1 ¼ −Deffð1þ χ̄Þk2k
− ½Deffð1þ χ̄2Þ þ 2χ1ζ̄=λ1�k2⊥; ðE12aÞ

Re σ2 ¼ −κ1k2k −
�
κ −

λ2ζ2
βm2

0

− 2χ1ζ̄=λ1

�
k2⊥: ðE12bÞ

SUPRAMOLECULAR ASSEMBLIES IN ACTIVE MOTOR- … PHYS. REV. X 14, 031031 (2024)

031031-33



When at least one of these expressions is positive, the
homogeneous state is unstable. The imaginary parts of the
eigenvalues read

Im σ1 ¼ 0þOðk3Þ; ðE13aÞ

Im σ2 ¼ −λ1p0kk þOðk3Þ: ðE13bÞ

Thus, the instability corresponding toRe σ1 > 0 is stationary
in the long-wavelength limit, whereas the one corresponding
to Re σ2 > 0 is oscillatory, with a wave velocity proportional
to λ1.
For k⊥ ¼ 0, the perturbation is purely longitudinal. The

Jacobian (E7) becomes diagonal to the lowest order in k
and the expressions (E12) are simply its diagonal entries. In
this case, Re σ1 is positive for 1þ χ̄ < 0, i.e., when the
contractile flux overcomes effective diffusion, giving rise to
the contractile instability described in the main text [see
Fig. 9(a)]. Since the Jacobian is diagonal, this instability is
purely densitylike, not involving orientational perturbations
at all. On the other hand, a longitudinal orientational
instability would require κ1 < 0 and the introduction of
a regularizing term, a case which we exclude here.
Now we turn to the case of general wave vectors with

kk ≠ 0. Taking the limit φ → π=2 after the limit k → 0,
such that j tanφj ≪ k−1, the k2⊥ terms in Eqs. (E12)
dominate. This corresponds to a perpendicular perturbation
with a weak longitudinal component. In this limit, insta-
bilities arise when the square brackets in Eqs. (E12)
become negative. This condition yields the inequalities
(19) and (20) discussed in the main text.
The eigenvector corresponding to the eigenvalue σ1

reads

v1 ¼
�

J12
σ1 − J11

�
¼

�−2χ1p0kkk⊥ þOðk3Þ
−2χ1ζ̄=λ1k2⊥

�
: ðE14Þ

Here, the components of v1 are of the same order in k, their
ratio being ζ̄p0 cotφ=λ1. Thus, the perturbation corre-
sponding to this eigenvalue goes from predominantly
densitylike to predominantly orientational as φ is tuned
from 0 to �π=2. For sufficiently large λ1, the density
component prevails for most wave vectors, so we refer to
the instability corresponding to v1 as the mixed density
instability. Furthermore, to the lowest order in k, the two
components are real, which implies that the phase shift
between the orientational and density perturbations can be
only 0 or π. This means that the extrema in the splay and
bend are in between the density extrema [see Fig. 9(c)].
On the other hand, the eigenvector associated to σ2 reads

v2 ¼
�
σ2 − J22

J21

�
¼

�
Oðk2⊥Þ
iζ̄k⊥

�
: ðE15Þ

This eigenvector is predominantly orientational in the long-
wavelength limit, which is why we name the instability
mixed orientational instability. The density component is
real to the lowest order, while the orientational component
is purely imaginary, so the phase shift between the two
perturbations is �π=2. This implies that the extrema in the
density perturbation coincide with the extrema in the splay
and bend of the orientational field.
Note that the χζ̄=λ1 term in the eigenvalue (E12b) [or in

the condition (19)] has a different sign compared to the
mixed density instability, making it stabilizing for the signs
dictated by the derived model. However, in general, its sign
can switch, resulting in a destabilizing contribution by this
term. In Fig. 13, we illustrate the underlying feedback
mechanism. Starting from a perturbation in density and
orientation, with the phase shift discussed above, the
effective anchoring controlled by ζ̄ amplifies the perturba-
tion of the orientational field. The amplified splay and bend
advect the density into the region between their extrema,
shifting the density pattern into a direction that depends on
the sign of χ1ζ̄, like for the mixed density instability. In
contrast to the latter, however, here λ1 reinstates the initial
phase shift by advecting the pattern into the same direction
instead of bringing it back in place [see Fig. 9(c)]. This
explains the oscillatory character of the mixed orientational
instability, whose imaginary part is linear in k [see
Eq. (E13b) and Fig. 8(c)]. Thus, the mixed orientational
instability can emerge even in the absence of the feedback
between λ2 and ζ2, if χζ̄=λ1 has the proper sign.
In summary, in the long-wavelength limit the mixed

density instability is stationary and has density and orienta-
tional components of the same order in k in its eigenvector,
which are in phase or antiphase with respect to each other.

FIG. 13. χ1ζ̄=λ1 term in the mixed orientational instability. A
mixed wave vector perturbation where the density and orienta-
tional components have a phase shift of �π=2 gives rise to splay
and bend with the extrema (yellow and purple lines) coinciding
with the extrema of the density wave. The effective anchoring
rotates the orientational field along the density gradient, amplify-
ing the orientational perturbation further. The splay or bend flux
then accumulates density between the two lines, shifting the
density pattern to the back. On the other hand, the self-advection
λ1 < 0 shifts the orientational pattern backward, returning an
amplified initial perturbation, up to a backward propagation.
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In contrast, the mixed orientational instability is oscillatory
and has a dominating orientational component with a phase
shift of �π=2 with respect to the density component.
A special limit case is λ1 ¼ 0, since the second-order

term in k in Eq. (E9) vanishes. Then, the leading-order term
in Eq. (E8) is given by

2σ1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8iζ̄χ1p0kkk2⊥

q
; ðE16Þ

whose real and imaginary parts read, respectively,

Re σ1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jχ1ζ̄kkjp0k2⊥

q
; ðE17aÞ

Im σ1;2 ¼ ∓isgnðχ1ζ̄kkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jχ1ζ̄kkjp0k2⊥

q
: ðE17bÞ

Hence, there is always an eigenvalue with a positive
real part, making the homogeneous state always unstable
with respect to mixed perturbations for λ1 ¼ 0. The
mechanism responsible for this instability is the interplay
between splay or bend flux and effective anchoring shown
in Figs. 9(c) and 13.

b. Perpendicular instability

The calculation above breaks down for kk ¼ 0, so we
have to treat this case separately. For a purely perpendicular
wave vector, the trace and the determinant of the Jacobian
(E7) become real to the lowest order in k. Thus, Eq. (E8)
gives at least one positive eigenvalue if Tr J > 0 or
det J < 0, resulting in the inequalities (18), where we are
assuming that Deffð1þ χ̄2Þ > 0.
When any of those inequalities are fulfilled, at least one

of the eigenvalues of the Jacobian (E7) will have a positive
real part, resulting in an instability which we refer to as the
perpendicular instability. As emerges from the feedback
mechanism described in the main text [see Fig. 9(b)], the
perpendicular instability hinges on orientational perturba-
tions giving rise to splay, whereas density perturbations
have only a secondary role. This is also seen in the
eigenvectors that correspond to the eigenvalues given in
Eq. (E8), which read

v1;2 ¼
�

J12
σ1;2 − J11

�
: ðE18Þ

Since both the eigenvalues and J11 are of the order of
Oðk2⊥Þ, whereas J12 is of the order of Oðk3⊥Þ, in the long-
wavelength limit the perturbation is chiefly orientational.
When Deffð1þ χ̄2Þ becomes negative, the sign in the

inequality (18b) is reversed. For the case of no effective
anchoring ζ̄ ¼ 0, this always results in an instability, which
is densitylike in nature [since the orientational component
in Eq. (E18) vanishes in that case]. This is the perpendicular
analog of the contractile instability discussed above:
Indeed, for Deff > 0, Deffð1þ χ̄2Þ < 0 for sufficiently

strongly negative transversal flux coefficient χ2, which
overcomes the isotropic effective diffusion in the direction
perpendicular to the order. This results in an extensile
instability that breaks up the original homogeneous state in
bands that extend along the order direction. For nonzero ζ̄,
the instability becomes mainly orientational, as the self-
anchoring makes the order deviate from its original
direction. In our derived model, the extensile instability
does not play any role.

3. LSA of a radially symmetric solution

In this section,we investigate how the instabilities derived
above change when the initial state has nonvanishing splay,
i.e., for micelle solutions. We start from a homogeneous,
radially ordered solution of the equations in polar coordi-
nates and focus on a range of radii with r ≫ 1. We perturb
this solution as follows, again keeping m ¼ m0:

ρðr;ϕ; tÞ ¼ ρ0ðrÞ þ δρðtÞeinϕeikrr; ðE19aÞ
prðr;ϕ; tÞ ¼ p0ðrÞ þ δpϕðtÞeinϕeikrr; ðE19bÞ
pϕðr;ϕ; tÞ ¼ δpϕðtÞeinϕeikrr: ðE19cÞ

Here, n is the node number of the angular perturbation,
while kr controls the radial perturbation. We insert these
equations into Eq. (6) and use radial coordinates.
Neglecting radial derivatives and keeping terms up to
the order of Oðr−1Þ leads to the following condition on
the solution ρ0ðrÞ, p0ðrÞ:

0 ¼ m0ρ0=ρc − 1 −m2
0βp

2
0 − λ2p0=r: ðE20Þ

Differentiating this condition with respect to r shows that
∂r ∼ r−2, thus making it consistent to neglect the derivatives
to this order.
Using Eq. (E20) and keeping terms to lowest order in r−1

for each power of n, the time evolution of the perturbations
reads

∂tδρ ¼ −
n2

r2
Deffδρ − 2

n2χ2 − inχ1
r2

p0δpr

þ
�
ikr
r

− k2r

�
Deffδρþ 2χ

�
2ikr
r

− k2r

�
p0δpr

− 2χ1
p0nkr
r

δpϕ; ðE21aÞ

∂tδpr ¼
m0p0

ρc
δρ − 2βm2

0p
2
0δpr − in

λ2p0

r
δpϕ; ðE21bÞ

∂tδpϕ ¼ −
�
n2κ
r2

þ λ1p0

r

�
δpϕ þ inζ1rδρ

þ in
2ζ2p0

r
δpr − ikrλ1p0δpϕ: ðE21cÞ
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For n ¼ 0, the orientational perturbation δpϕ decouples. Its
behavior is controlled by the sign of λ1p0: For λ1p0 < 0,
the perturbation is amplified over time, whereas it is
suppressed for λ1p0 > 0. This is a consequence of splay,
as emerges from the following argumentation. The coef-
ficient λ1 controls the self-advection of the polar order
orientation. In a perfectly radial configuration, the order
orientation does not change along the polarization, and,
thus, the self-advection has no effect. In contrast, when
the orientation is perturbed with n ¼ 0, the polarization
acquires an angular component everywhere, and the non-
vanishing splay becomes of relevance for the self-advection.
For p0 < 0, a negative λ1 leads to a backward propagation
of the perturbation along the ring, bringing the system
back to its original state. In contrast, a positive λ1 leads to
a forward propagation of the perturbation, which conse-
quently self-amplifies. This means that, for λ1 > 0, no stable
micelles with inward-pointing polarization (p0 < 0) can
exist, since they are unstable to orientational perturbations
with n ¼ 0. Indeed, under these conditions, Re σ1 > 0 at
n ¼ 0 in Eq. (21a).
Adiabatically eliminating δpr as we do in the linear

stability analysis of the homogeneous ordered state, we
can reduce the dynamics of the perturbations to a two-
dimensional Jacobian, which, to the lowest order we need
in r−1 and kr, has the following entries:

J11 ¼ Deff

�
−n2ð1þ χ̄2Þ þ inχ̄1

r2
þ ikrð1þ 2χ̄Þ

r

− k2rð1þ χ̄Þ
�
; ðE22aÞ

J12 ¼ −
2p0χ1nkr

r
; J21 ¼ iζ̄

n
r
; ðE22bÞ

J22 ¼ −λ1ðikr þ r−1Þp0 − κ
n2

r2
þ λ2ζ2

βm2
0

n2

r2
: ðE22cÞ

To identify the unstable eigenvalues of this matrix, we use
Eq. (E8) again. The lowest-order term in r−1 inside the
square root of that equation reads

λ21p
2
0ðikr þ r−1Þ2: ðE23Þ

Note that, in contrast to the corresponding expression (E9)
in the linear stability analysis of the homogeneous state,
this does not vanish for kr ¼ 0. Thus, unlike for the
perpendicular instability, no separate treatment is needed
here. This is due to the finite splay of the base state and
results in the exclusive relevance of the mixed instabilities
for the micelle solutions. The next-order term is given by

−2λ1p0ðikrþ r−1Þ ·
��

λ2ζ2
βm2

0

− κþ 4ikrχ1ζ̄
λ1ðikrþ r−1Þ

�
n2

r2
−J11

�
:

ðE24Þ

Factoring out λ21p
2
0ðikrþr−1Þ2, we can use ffiffiffiffiffiffiffiffiffiffi

1þx
p

≈1þx=2,
which for the real parts of the eigenvalues finally
yields Eqs. (21).

APPENDIX F: NUMERICAL SIMULATIONS

All simulations are performed using the finite element
solver COMSOL Multiphysics, using square geometries
with periodic boundary conditions. As initial condition,
we start from the isotropic homogeneous state ρ ¼ ρ̄,
p ¼ 0, m ¼ 1 and apply a random perturbation at every
grid point, which is taken from a uniform distribution with
widths δρ, δp, and δm. In the simulations of the derived
model presented in Figs. 4 and 5, these are chosen as
δρ ¼ 0.1ρc, δp ¼ 0.001, and δm ¼ 0.1.
The simulation of the active foam shown in Fig. 6 is

performed in a120 × 120geometry,with ρ̄ ¼ 1.1,Dρ ¼ 0.1,
α2 ¼ α3 ¼ 0.05, χ̂1 ¼ −0.2, χ̂2 ¼ 0.1, κ̂1 ¼ 0.05, λ̂1 ¼ 0.4,
λ̂2 ¼ −0.7, ζ̂1 ¼ 0.1, κ̂2 ¼ ζ̂2 ¼ ν ¼ 0, Dm ¼ 0.2, and
vm ¼ 0.04. The snapshots in Fig. 6(b) are of size 30 × 30.
For the measurement of the bilayer profiles (top row in

Fig. 7), we run simulations in a geometry of size 80 × 80,
for run times t ¼ 2000. The initial perturbation amplitudes
are chosen as δρ ¼ 0.11, δpx;y ¼ 0.1, and δm ¼ 0. We vary
the parameters χ̂1 ∈ f−0.1;−0.15;−0.2g, χ̂2 ¼ −χ̂1=2,
κ̂1 ∈ f0.03; 0.05; 0.07g, ζ̂1∈f0;0.05g, ζ̂2 ∈ f0.1; 0.2; 0.3g,
and vm ∈ f0.01; 0.02; 0.03g while keeping ρ̄ ¼ 1.1,
Dρ ¼ 1=32, α2¼α3¼−ν¼0.05, κ̂2 ¼ 0, λ̂1 ¼ −λ̂2 ¼ 0.5,
and Dm ¼ 0.2 fixed. The bilayer profiles are extracted by
taking the perpendicular cross section of each edge of the
network for every parameter set. For Fig. 7(g), we extract
profiles for χ̂1 ¼ −0.15, χ̂ ¼ 0.075, κ̂1 ¼ 0.03, ζ̂1 ¼ 0,
and ζ̂2 ¼ 0.2.
For the measurement of the micelle profiles (bottom

row in Fig. 7), we run simulations of the phenomenologi-
cal model in a geometry of size 80 × 80, for run times
t ¼ 600. The initial perturbation amplitudes are chosen as
δρ ¼ 0.05, δpx;y ¼ 0.01, and δm ¼ 0.05. We vary the
parameters χ̂1 ∈ f−0.15;−0.125;−0.1;−0.075g, χ̂2 ∈
f0; 0.025; 0.05g, κ̂1 ∈ f0.05; 0.075; 0.1g, and λ̂2 ∈ f−0.2;
−0.4;−0.6g while keeping ρ̄ ¼ 1.2, Dρ ¼ 1=32, α2 ¼
α3 ¼ −ν ¼ 0.05, κ̂2 ¼ ζ̂1 ¼ 0, λ̂1 ¼ −1.0, vm ¼ 0.02,
and Dm ¼ 0.2 fixed. The micelle profiles are extracted
by taking cross sections passing through the center of every
micelle that appears at the end of the simulations.
For the inspection of the micelle instabilities in

Sec. VI B, we prepare a stable micelle in a 40 × 40
geometry at the parameter values ρ̄ ¼ 1.1, Dρ ¼ 1=32,
α2 ¼ α3 ¼ −ν ¼ 0.05, χ̂1 ¼ −0.15, χ̂2 ¼ κ̂2 ¼ ζ̂1 ¼ 0,
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κ̂1 ¼ 0.03, λ̂1 ¼ −1.0, λ̂2 ¼ 0, ζ̂2 ¼ −0.1, vm ¼ 0.02, and
Dm ¼ 0.2, waiting for it to reach steady state. Then, to
activate the branching instability, we start from that micelle
as the initial condition and set λ̂1 ¼ −0.5, ζ̂2 ¼ −0.8,
λ̂2 ¼ −1.1, and κ̂1 to the values indicated in Fig. 10,
resuming the simulation. For the fingering instability, we
start from the stable micelle as the initial condition, set
λ̂1 ¼ −0.7 and ζ̂2 to the values indicated in Fig. 11, and
resume the simulation.
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to the unit vector condition), and comparing with the
expression for p in the main text, we obtain δp ¼ δpkeik·r

and êy · δn̂ ¼ δp⊥eik·r=p0.
[69] Note that, in contrast, the perpendicular instability of the

homogeneous state does not extend to micelles.
[70] A. Gopinath, M. F. Hagan, M. C. Marchetti, and A.

Baskaran, Dynamical self-regulation in self-propelled par-
ticle flows, Phys. Rev. E 85, 061903 (2012).

[71] K. Husain and M. Rao, Emergent structures in an active
polar fluid: Dynamics of shape, scattering, and merger,
Phys. Rev. Lett. 118, 078104 (2017).

[72] T. J. Mitchison, P. Nguyen, M. Coughlin, and A. C. Groen,
Self-organization of stabilized microtubules by both spindle
and midzone mechanisms in Xenopus egg cytosol, Mol.
Biol. Cell 24, 1559 (2013).

[73] R. Alert, Fingering instability of active nematic droplets, J.
Phys. A 55, 234009 (2022).

DE LUCA, MARYSHEV, and FREY PHYS. REV. X 14, 031031 (2024)

031031-38

https://doi.org/10.1088/1367-2630/9/11/421
https://doi.org/10.1088/1367-2630/9/11/421
https://doi.org/10.1103/PhysRevE.97.022412
https://doi.org/10.1103/PhysRevE.97.022412
https://doi.org/10.1039/C9SM00558G
https://doi.org/10.1146/annurev.cellbio.13.1.83
https://doi.org/10.1103/PhysRevLett.101.268101
https://doi.org/10.1103/PhysRevLett.101.268101
https://doi.org/10.1103/PhysRevLett.109.268701
https://doi.org/10.1038/nphys3423
https://doi.org/10.1038/nphys3423
https://doi.org/10.1103/PhysRevE.74.061913
https://doi.org/10.1103/PhysRevE.92.062709
https://doi.org/10.1103/PhysRevE.92.062709
https://doi.org/10.1016/j.bpj.2019.11.3387
https://doi.org/10.1140/epje/s10189-021-00042-9
https://doi.org/10.1088/1367-2630/abd2e4
https://doi.org/10.1088/1367-2630/abd2e4
https://doi.org/10.1103/PhysRevE.101.052601
https://doi.org/10.1103/PhysRevLett.130.198301
https://doi.org/10.1103/PhysRevLett.130.198301
https://doi.org/10.1073/pnas.2010302117
https://doi.org/10.1073/pnas.2010302117
https://doi.org/10.1103/PhysRevE.64.056113
https://doi.org/10.1103/PhysRevE.58.4828
https://doi.org/10.1103/RevModPhys.49.435
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031031
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031031
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031031
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031031
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031031
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031031
http://link.aps.org/supplemental/10.1103/PhysRevX.14.031031
https://doi.org/10.1103/PhysRevLett.129.268003
https://doi.org/10.3389/fphy.2022.897255
https://doi.org/10.3389/fphy.2022.897255
https://doi.org/10.1063/1.1744102
https://doi.org/10.1063/1.1744102
https://doi.org/10.1103/PhysRevLett.90.138102
https://doi.org/10.1103/PhysRevLett.90.138102
https://doi.org/10.1209/epl/i2004-10414-0
https://doi.org/10.1103/RevModPhys.65.851
https://doi.org/10.1140/epje/i2005-10029-3
https://doi.org/10.1140/epje/i2005-10029-3
https://doi.org/10.1103/PhysRevE.85.061903
https://doi.org/10.1103/PhysRevLett.118.078104
https://doi.org/10.1091/mbc.e12-12-0850
https://doi.org/10.1091/mbc.e12-12-0850
https://doi.org/10.1088/1751-8121/ac6c61
https://doi.org/10.1088/1751-8121/ac6c61


[74] F. Kempf, R. Mueller, E. Frey, J. M. Yeomans, and A.
Doostmohammadi, Active matter invasion, Soft Matter 15,
7538 (2019).

[75] H. Xu, M. R. Nejad, J. M. Yeomans, and Y. Wu, Geomet-
rical control of interface patterning underlies active matter
invasion, Proc. Natl. Acad. Sci. U.S.A. 120, e2219708120
(2023).

[76] M. Poujade, E. Grasland-Mongrain, A. Hertzog, J.
Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, and P.
Silberzan, Collective migration of an epithelial monolayer
in response to a model wound, Proc. Natl. Acad. Sci. U.S.A.
104, 15988 (2007).

[77] R. Alert, C. Blanch-Mercader, and J. Casademunt, Active
fingering instability in tissue spreading, Phys. Rev. Lett.
122, 088104 (2019).

[78] S. Mishra, A. Baskaran, and M. C. Marchetti, Fluctuations
and pattern formation in self-propelled particles, Phys. Rev.
E 81, 061916 (2010).

[79] The branching instability does not require the system to be
active, since for λ2 ¼ 2ζ2 and λ1 ¼ 0 the polarization
equation obeys gradient dynamics, and for sufficiently large
λ2 Eq. (19) holds true.

[80] B. Mahault, A. Patelli, and H. Chaté, Deriving hydro-
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