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We consider the statistical properties of eigenstates of the time-evolution operator in chaotic many-body
quantum systems. Our focus is on correlations between eigenstates that are specific to spatially extended
systems and that characterize entanglement dynamics and operator spreading. In order to isolate these
aspects of dynamics from those arising as a result of local conservation laws, we consider Floquet systems
in which there are no conserved densities. The correlations associated with scrambling of quantum
information lie outside the standard framework established by the eigenstate thermalization hypothesis
(ETH). In particular, ETH provides a statistical description of matrix elements of local operators between
pairs of eigenstates, whereas the aspects of dynamics we are concerned with arise from correlations among
sets of four or more eigenstates. We establish the simplest correlation function that captures these
correlations and discuss features of its behavior that are expected to be universal at long distances and low
energies. We also propose a maximum-entropy ansatz for the joint distribution of a small number n of
eigenstates. In the case n ¼ 2, this ansatz reproduces ETH. For n ¼ 4 it captures both the growth with time
of entanglement between subsystems, as characterized by the purity of the time-evolution operator, and also
operator spreading, as characterized by the behavior of the out-of-time-order correlator. We test these ideas
by comparing results from Monte Carlo sampling of our ansatz with exact diagonalization studies of
Floquet quantum circuits.
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I. INTRODUCTION

Although textbook approaches to the thermodynamic
equilibrium of quantum systems rely on invoking a weak
coupling to a heat bath, it was understood over the course of
the past four decades that this is not strictly necessary. In a
large class of many-body quantum systems, the interactions
between its constituents enable an isolated system to act as
its own heat bath and to reach a thermal equilibrium state at
long times when starting from most nonequilibrium initial
states. While the late-time state remains a pure state, it
approaches a typical state, representative of the Gibbs
ensemble with small fluctuations away from this state for
large system size [1]. This phenomenon emerges from the

pseudo-random nature of physical observables in the
energy eigenbasis, which was suggested as a criterion
for quantum chaos [1] and demonstrated numerically early
on [2], with diagonal matrix elements clustering around
equilibrium expectation values [3]. Integrable systems can
evade this behavior but are not robust in the sense that very
weak perturbations suffice to recover thermalization [4].
These observations were subsequently formalized and

now constitute the eigenstate thermalization hypothesis
(ETH) [1,2,4–13], which can be derived from the assump-
tion that the behavior of the quantum system within a
narrow energy window is essentially captured by random
matrix theory. This generically leads to Gaussian distribu-
tions of the matrix elements of local operators in the energy
eigenbasis [8–10,14], with possible exceptions in tails of
the distribution for systems with slow particle transport
[15–18]. In these Gaussian distributions, the mean values of
diagonal matrix elements are fixed to reproduce statistical
mechanical averages of observables, while off-diagonal
matrix elements have zero mean and an energy structure in
their variance that governs the dynamics of autocorrelation
functions of the local operators [12,19].
It was pointed out recently on general grounds that this

picture cannot be complete [20,21]. If matrix elements of
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local operators in the eigenbasis were independent
Gaussian random variables, then their mean and variance
would determine not only autocorrelation functions but
also all higher-order correlators. In particular, the impli-
cations for the out-of-time-order correlators (OTOC)
[22,23] are in stark contrast to the known behavior of
chaotic many-body quantum systems. This leads to the
conclusion that there are necessarily correlations between
matrix elements, which contain information characterized
by higher-order cumulants [20,21,24,25].
More specifically, in quantum systems with local inter-

actions, there are strong bounds on how fast correlations
can spread [26], and this limits, for instance, the rate of
growth of the entanglement entropy [27,28]. This behavior
is reflected in the typically linear growth of the operator
entanglement entropy of the time evolution operator of
local systems [29,30], and is captured by light-cone
structures of out-of-time-order correlators [31]. Our focus
here is on the resulting correlations between matrix
elements of observables, and related correlations between
eigenstates of the time-evolution operator.
A separate potential source of correlations between

matrix elements is provided by locally conserved densities.
Such correlations were considered early on [32], have been
investigated via transport timescales [33], and subsequently
observed in larger systems [34,35]. To isolate features
arising because of the dynamics of quantum information
from those due to locally conserved densities, we focus in
the following on Floquet systems, for which time depend-
ence of the Hamiltonian eliminates energy conservation,
and in which there are no other local conservation laws.
Recent work has presented a generalized formulation of

ETH using free probability theory and numerical tests for
higher-order correlations between matrix elements [36,37].
That perspective considers matrix elements of local
operators as fundamental objects, revealing the frequency
structure of the higher-order free cumulants, particularly
the fourth-order free cumulant, which encodes the leading
correlations of matrix elements beyond standard ETH.
An alternative perspective, which we adopt here and

which was considered, for example, in Ref. [38], is to treat
eigenstates of the time-evolution operator, rather than
matrix elements of observables, as the relevant set of
variables. In particular, the typical time evolution of
Renyi entropy in local systems implies nontrivial correla-
tions between eigenstates. Separately, in Ref. [39] a
derivation is given of ETH via a study of eigenstates in
random Floquet quantum circuits using a field-theoretic
approach.
In the present paper, we discuss correlations in chaotic

many-body quantum systems that are associated with the
dynamics of quantum information scrambling and that can
be expected to be universal in spatially extended systems
with local interactions. Here we use the term chaotic to
refer to generic systems whose dynamics is unconstrained

by (for example) integrability, many-body localization, or
Hilbert space fragmentation. While ETH is formulated as
a statement about the statistical properties of matrix
elements of operators, we find that it is more transparent
to consider instead eigenstates and correlators constructed
from them, without reference to particular operators. The
first main contribution of our work is to identify the
leading-order eigenstate correlator that contains informa-
tion about this scrambling dynamics, and to discuss its
behavior at long distances and low energy differences.
The second main contribution is to introduce an ansatz for
the joint probability distribution of a small number n of
eigenstates of the time-evolution operator. In the case of a
pair of eigenstates, this reproduces the Gaussian distri-
bution for matrix elements of local observables that
constitutes ETH. Extending this ansatz, we show that a
constraint on the joint distribution of four eigenstates is
sufficient to capture the essential features of the OTOC
and of the operator entanglement entropy of the time-
evolution operator. As a third main contribution, we test
these ideas by comparing results from exact diagonaliza-
tion (ED) of the time-evolution operator with those from
Monte Carlo (MC) sampling of our ansatz for the joint
eigenstate distribution.
The approach that we develop here builds on previous

work by one of the present authors and others [21], which
argued for the existence of eigenstate correlations on the
basis of known behavior of the OTOC and demonstrated
their presence using numerical studies of Floquet quantum
circuits. Our aim in the following is to establish a general
framework for the discussion of these phenomena via the
three contributions summarized in the preceding paragraph,
none of which were anticipated in Ref. [21].
The ideas and results that we set out in this paper are

consistent with, but broadly complementary to, the recent
discussion of a generalized version of ETH, formulated to
describe the average of products of arbitrary numbers of
matrix elements of observables using the language of free
probability [36,37]. In particular, our emphasis is different
from that of Ref. [37] in two ways. First, we focus on
correlations at large distances and small energy separations
that we expect to be a universal consequence of the
dynamics of quantum information. Second, we find that
it is advantageous to consider correlations between eigen-
states in place of matrix elements.
The remainder of this paper is organized as follows. In

Sec. II we provide a compact overview of our main results.
In Sec. III we give details of our calculations, including the
microscopic models we use for numerical studies, the
determination of parameters in our ansatz for the joint
probability distribution of eigenstates, and a summary of
the numerical methods used. We develop a treatment of our
ansatz based on a perturbative expansion in Sec. IV, and we
present numerical results for additional models in Sec. V.
We conclude with a summary and outlook in Sec. VI.
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II. OVERVIEW

In this section we provide an overview of our results. We
introduce the class of model studied and the eigenstate
correlators of interest in Sec. II A. We set out the relation-
ship between these correlators and the OTOC in Sec. II B,
and indicate generalizations in Sec. II C. We review the
sense in which the original form of ETH fails to capture
these correlators in Sec. II D, and we propose a represen-
tation for them in terms of the joint distribution function for
sets of four eigenstates in Sec. II E. We present results for
the correlators from exact diagonalization and from
Monte Carlo sampling of this distribution in Sec. II F.

A. Models and correlation functions

We start by setting out some essential notation. We
consider a one-dimensional Floquet system consisting of L
sites, each with a local Hilbert space dimension q, coupled
by local interactions. We use W to denote the Floquet
operator for the system, which is then a unitary qL × qL

matrix that generates evolution through one time period.
Defining eigenstates jai and quasienergies θa satisfying
Wjai ¼ e−iθa jai, the evolution operatorWðtÞ for an integer
number of time steps t has the spectral decomposition

WðtÞ ¼
X
a

e−iθatjaihaj: ð1Þ

The dynamics can be characterized in terms of correlators
of local operators Xα; Yβ;…. Here we use upper case letters
X; Y;… as labels for subsystems on which local operators
act, with subscripts α; β;… to distinguish different oper-
ators acting on a given subsystem. Later we will use X̄,
Ȳ;… to denote the complements of these subsystems. The
time evolution in the Heisenberg picture is XαðtÞ ¼
W†ðtÞXαWðtÞ, and for a Floquet system it is natural to
evaluate correlators using the infinite-temperature density
matrix. As we describe in more detail in Sec. III A, the
models analyzed in this work consist of local gates drawn
from the Haar ensemble. In this case, it is useful to consider
an ensemble of realizations of W and to average physical
quantities over the ensemble. We indicate this average by
½� � ��av. An alternative average is over a Haar distribution of
vectors, which we indicate by ½� � ��0.
The simplest correlator is the autocorrelation function of

a single operator, which has the spectral decomposition

q−LTr½XαðtÞXα� ¼ q−L
X
ab

jhajXαjbij2eiðθa−θbÞt: ð2Þ

In a chaotic many-body quantum system this is expected
to decay on a timescale that is microscopic in the sense
that it is of order a few Floquet periods [40]. Evidently, its
behavior reflects statistical properties of pairs jai; jbi of
eigenstates, which are therefore expected to show features
as a function of the quasienergy difference θa − θb that vary

on a scale only a few times smaller than the spectral width
2π [40].
The OTOC has the definition and spectral decomposition

q−LTr½XαðtÞYβXαðtÞYβ�
¼ q−L

X
abcd

hajXαjbihbjYβjci

× hcjXαjdihdjYβjaieiðθa−θbþθc−θdÞt: ð3Þ

If the subsystems X and Y are separated by a large distance,
the main features of the OTOC appear on a large timescale.
More specifically, the support of the operator XαðtÞ is
expected [26] to grow with a butterfly velocity vB; the
OTOC is constant and nonzero if this support is disjoint
from that of Yβ, but falls toward zero when the support of
XαðtÞ expands to contain that of Yβ. Clearly, behavior of the
OTOC reflects statistical properties of sets of four eigen-
states, jai, jbi, jci, and jdi, which must show features on a
quasienergy scale 2πvB=s, with s being the spatial sepa-
ration of the operators, that is much smaller for large s than
the spectral width.
Besides the OTOC, a second way to characterize

quantum information dynamics is via the spread of entan-
glement. Consider an initial state jψi with low entangle-
ment in the site basis. Although the corresponding density
matrix ρðtÞ ¼ WðtÞjψihψ jW†ðtÞ remains pure at all t, for a
subsystem X that is much smaller than its complement X̄,
the reduced density matrix ρXðtÞ ¼ TrX̄ρðtÞ is expected to
evolve toward an equilibrium density matrix. This is probed
at the simplest level by considering the purity TrX½ρXðtÞ�2.
Since the definition of the purity involves two powers of
WðtÞ and two ofW†ðtÞ, its behavior, like that of the OTOC,
reflects correlations among sets of four eigenstates. These
are characterized by the correlation function defined below
in Eq. (7).
Both the OTOC and the purity require choices in their

definitions—of the operators denoted by Xα and Yβ in
Eq. (3) for the former, and of the initial wave function jψi
for the latter. This arbitrariness can be eliminated by
averaging the OTOC over two complete sets of operators
fXαg and fYβg with given supports X and Y, and by
considering the operator entanglement entropy of WðtÞ
[29,30,41] in place of the purity of ρXðtÞ. Both routes lead
to an identical correlator which is defined solely in terms of
sets of four eigenstates and the choice of X and Y. We defer
discussion of details and present first an alternative argu-
ment that singles out the same correlator.
As a starting point, consider the Schmidt decomposition

of an eigenstate in terms of tensor products of orthonormal
basis states jiXi and jiX̄i for subsystem X and its comple-
ment X̄, which we write as

jai ¼
X
iXiX̄

½CXðaÞ�iXiX̄ jiXi ⊗ jiX̄i: ð4Þ
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Here CXðaÞ is the matrix version of the eigenstate jai,
separating states on subsystem X into row indices and states
on X̄ into column indices. It hence has dimensions
qLðXÞ × qLðX̄Þ, where LðXÞ ¼ jXj, the number of sites in
X, and similarly for LðX̄Þ.
The problem of constructing correlators from sets of

eigenstates is equivalent to one of forming scalars from sets
of matrices CXðaÞ. This can be done by taking the trace of
products of an even number of terms, in which the matrices
alternatewith theirHermitian conjugates.Thematriceswithin
such a tracemust all refer to a given choice of subsystemX but
may refer to multiple eigenstates jai; jbi;…. At lowest order
this recipe simply yields the quantity

Tr½CXðaÞC†
XðbÞ� ¼ δab; ð5Þ

which has a value fixed by orthonomality of the eigenstates.
At next order it gives

MXðabcdÞ ¼ Tr½CXðaÞC†
XðbÞCXðcÞC†

XðdÞ�: ð6Þ
Such quantities can be represented diagrammatically as
shown in Fig. 1.
We now invoke two guiding ideas. One follows from the

fact that we want to characterize dynamics in space and
time, which suggests that we should consider more than
one way of subdividing the system into subsystems, with
different alternatives labeled X; Y;…. The other follows
from the fact that the overall phases of individual eigen-
states can be chosen arbitrarily, but physical quantities
should be invariant under the transformation jai → eiϕa jai.
To eliminate the phases ϕa, each CXðaÞ appearing in a
correlator must be accompanied by a Hermitian conjugate
C†
YðaÞ, referring to the same eigenstate but possibly with a

different division into subsystems. Employing both these
ideas, we are led to one of the two main quantities of
interest in this paper, MXðabcdÞM�

YðabcdÞ and its appro-
priately normalized ensemble average,

F4ðX; Y; θÞ ¼ q−LðX;YÞ
�X
abcd

MXðabcdÞM�
YðabcdÞ

× δðθ − θa þ θb − θc þ θdÞ
�
av
: ð7Þ

Here and in the following, the argument of the δ function on
quasienergy differences is taken modulo 2π. The length
LðX; YÞ appearing in the normalization is defined by

LðX; YÞ ¼ 2L − jX̄nȲj − jXnYj
¼ 2L − jȲnX̄j − jYnXj ¼ LðY; XÞ; ð8Þ

where notation of the form jAnBj indicates the number of
sites that are in subsystem A but not in B. The choice of
subscript on F4ðX; Y; θÞ indicates that this quantity char-
acterizes correlations within sets of four eigenstates. The
normalization in Eq. (7) is chosen such that the Fourier
transform of Eq. (7) with respect to the relative phase θ is
unity at t ¼ 0, as will be explained below Eq. (11).
Somewhat surprisingly, at this order in powers of the

eigenstates, Eq. (7) is the unique outcome of interest from
the approach we have sketched for constructing correlators.
To see this, consider potential alternatives. Any such
alternative should involve two factors, each consisting of
a trace over products of Schmidt matrices CXðaÞ, since
each trace carries a subsystem label and we are interested in
correlations between a pair of subsystems. Moreover, at this
order the two factors together involve four such matrices
and four Hermitian conjugates. If these matrices are equally
distributed between the two traces, then alternatives to
Eq. (7) must all be generated by replacingM�

YðabcdÞwith a
similar factor that preserves invariance under changes of
eigenstate phases. These can all be obtained from Eq. (7)
using the equalitiesMYðabcdÞ¼MYðcdabÞ¼MȲðadcbÞ¼
M�

YðbadcÞ and so are equal to F4ðX; Y; θÞ or F4ðX; Ȳ; θÞ.
Finally, one might regroup matrices under the trace, so that
one trace involves six matrices and the other trace involves
only two. Then, however, the value of the second trace is
fixed via Eq. (5) and is independent of subsystem label,
eliminating the spatial dependence of interest.
Among correlators involving only a single X, the lowest-

order quantity that is independent of eigenstate phases is
MXðabbaÞ [equal to MX̄ðaabbÞ]. From this we define

F2ðX; θÞ ¼ q−½LþLðXÞ�
�X

ab

MXðabbaÞδðθ − θa þ θbÞ
�
av
:

ð9Þ
The subscript on F2ðX; θÞ indicates that this correlator
characterizes correlations between pairs of eigenstates.
The two correlators F2ðX; θÞ and F4ðX; Y; θÞ are the

central quantities of interest in the following, together with
their counterparts in the time domain, defined by

f2ðX; tÞ ¼
Z

π

−π
dθF2ðX; θÞeiθt ð10Þ

and

f4ðX; Y; tÞ ¼
Z

π

−π
dθF4ðX; Y; θÞeiθt: ð11Þ

The initial values f2ðX; 0Þ ¼ f4ðX; Y; 0Þ ¼ 1 follow
from completeness of the set of eigenstates and the choices
of normalization in Eqs. (7) and (9) [see Eqs. (25) and (26)

b
_

X
bX

_
X

a

X

X

� X
_

X
_

c

d a

b

X

X

X
_

�

X

X
a

X

FIG. 1. Ingredients for a diagrammatic representation. Fom left
to right: CXðaÞ, CXðbÞ†, Xα, hajXαjbi, and MXðabcdÞ.
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for a discussion]. The late-time limits are also system
independent. For f4ðX; Y; tÞ this limit comes (assuming no
degeneracies) from terms in Eq. (7) with pairwise equal
labels a ¼ b, c ¼ d or a ¼ d, b ¼ c. For f2ðX; tÞ it comes
from terms in Eq. (9) with a ¼ b. All these terms can be
simplified by noting that CXðaÞC†

XðaÞ≡ TrX̄jaihaj is the
reduced density matrix on subsystem X formed from
the eigenstate jai. If LðXÞ ≪ L, one expects from ETH that
to an excellent approximation CXðaÞC†

XðaÞ ¼ q−LðXÞ1X,
where 1X is the identity on X. This implies that
limjtj→∞ f2ðX; tÞ ¼ q−2LðXÞ and that limt→∞ f4ðX; Y; tÞ ¼
q2L−LðX;YÞ−LðXÞ−LðYÞ for LðXÞ; LðYÞ ≪ L.

B. Relation to autocorrelation functions
of observables and OTOC

As we now discuss, these correlators are related respec-
tively to the autocorrelation function [Eq. (2)] and the
OTOC [Eq. (3)] via averages over the operators appearing
in the latter two quantities. We begin by stating a key
relation between MXðabcdÞ and an operator average of
matrix elements. Given a subsystem X, choose a complete
basis of q2LðXÞ Hermitian operators fXαg that act on the
subsystem and obey the orthonormality condition:

q−LðXÞTrX½XαXβ� ¼ δαβ: ð12Þ

Using the resolution of the identity in the vector space of
operators, one finds

q−LðXÞ
X
α

hajXαjbihcjXαjdi ¼ MXðabcdÞ: ð13Þ

The operator resolution of the identity and the relation given
in Eq. (13) are represented diagrammatically in Fig. 2.
We first apply this to the simpler case of the autocorre-

lation function. The autocorrelation function averaged over
all choices of operator (and over the ensemble of systems) is

q−2LðXÞ
X
α

h
q−LTr½XαðtÞXα�

i
av
¼ f2ðX; tÞ: ð14Þ

The special case Xα ¼ 1X is the only contribution to this
average that survives at late times, giving a value of
limjtj→∞ f2ðX; tÞ consistent with the discussion above.
Similar arguments apply to the OTOC. In this case we

choose two complete sets of operators. Operators in one set
act on the subsystem labeled X and are denoted by Xα.
Operators in the other set act on the subsystem labeled Y
and are denoted by Yβ. Then

q−½LðXÞþLðYÞ�X
αβ

hajXαjbihbjYβjcihcjXαjdihdjYβjai

¼ MXðabcdÞMYðbcdaÞ: ð15Þ

This can be rewritten using MYðbcdaÞ ¼ M�̄
YðabcdÞ, and

so the average of the OTOC over both sets of operators is

q−2½LðXÞþLðYÞ�X
αβ

�
q−LTr½XαðtÞYβXαðtÞYβ�

�
av

¼ q−SðX;YÞf4ðX; Ȳ; tÞ; ð16Þ

with SðX; YÞ ¼ LðXÞ þ LðYÞ þ L − LðX; ȲÞ ¼ jXnȲj þ
jYnX̄j. Contributions to this average from the special cases
Xα ¼ 1X and/or Yβ ¼ 1Y survive at long times and are
responsible for the limiting value given above.
The correlator f4ðX; Y; tÞ also arises from a discussion

of the operator entanglement entropy of the evolution
operator. This quantity stems from considering the operator
WðtÞ as a state on a doubled Hilbert space, with compo-
nents given by the matrix elements ½WðtÞ�iXiX̄ ;jYjȲ . The
corresponding reduced operator density matrix, obtained
by tracing out the degrees of freedom in the subsystems X̄
and Ȳ, is

½ρ(X; Y;WðtÞ)�iXjY ;lXmY
¼

X
ab

½CXðaÞC†
XðbÞ�iXlX

× ½CYðbÞC†
YðaÞ�mYjY e

iðθb−θaÞt:

ð17Þ

The ensemble-averaged operator purity arising from this
reduced density matrix is simply

½Tr½ρ(X; Y;WðtÞÞ2��av ¼ qLðX;YÞf4ðX; Y; tÞ: ð18Þ

The proportionality between f4ðX; Y; tÞ and the operator
purity of the evolution operator implies a straightforward
link to the idea of an entanglement membrane, which has
been proposed as a coarse-grained description of entangle-
ment dynamics in chaotic many-body quantum systems
[42,43]. For the one-dimensional models we are consider-
ing, the entanglement membrane is a curve in space-time,
and to discuss the link to operator purity we build on the
exposition of Ref. [43]. In outline, coarse-grained features
of entanglement dynamics are determined by the line

X

_
X
_

X
_

X
_

c b

X

X

�
�

�
�

�� �

a

b

�

X

X

X

X

�

d

c

�
d a

X X

X X X X

X

X

FIG. 2. Diagrammatic representation of (top) the operator
resolution of the identity and (bottom) Eq. (13).
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tension EðvÞ of this membrane, which is a function of a
velocity v. In our notation, v ¼ s=t, where s is the dis-
tance between the ends of subsystems X and Y, defined in
Fig. 3(d). For a fixed choice of X and Y with s large, the
operator purity of the evolution operator is proportional to
the line tension, and so traces out the function EðvÞ as t
varies. Hence, the correlators f4ðX; Y; tÞ and F4ðX; Y; θÞ
can be seen as representations of the line tension EðvÞ.

C. Multitime and multiquasienergy correlators

Anobvious generalization [40] of theOTOC [Eq. (3)] is to
introduce three time arguments, by considering the quantity
q−LTr½Xαðtþ t2ÞYβðt1ÞXαðtÞYβ�. Correspondingly, in the
quasienergy domain we have a generalization of the corre-
lator F4ðX; Y; θÞ, defined by

F4ðX; Y; θ; θ1; θ2Þ ¼ q−LðX;YÞ
�X
abcd

MXðabcdÞM�
YðabcdÞ

× δðθ − θa þ θb − θc þ θdÞ
× δðθ2 − θa þ θbÞ

× δðθ1 − θb þ θcÞ
�
av
; ð19Þ

with the Fourier transform

f4ðX;Y; t; t1; t2Þ ¼
Z

π

−π
dθ

Z
π

−π
dθ1

Z
π

−π
dθ2F4ðX;Y;θ;θ1;θ2Þ

× eiðθtþθ1t1þθ2t2Þ; ð20Þ

which is related to the generalized OTOC by

FIG. 3. Overview of main results, calculated for the brickwork circuit model defined in Sec. III A with L ¼ 12, q ¼ 2 and open
boundary conditions. Behavior from ED in (a) and (b), comparison of ED and MC sampling in (c), and geometries of subsystems X and
Y in (d). (a) The correlator f4ðX; Y; tÞ [Eq. (9)] versus t, obtained using ED. Recall [Eq. (16)] that this correlator is proportional to the
OTOC q−LTr½XαðtÞȲβXαðtÞȲβ� averaged over operators Xα and Ȳβ with support on subsystems X and Ȳ, respectively. Decay of the
correlator reflects operator spreading, and the onset time for decay increases with s. (b) The correlator F4ðX; Y; θÞ [Fourier transform of
f4ðX; Y; tÞ; see Eq. (7)] versus quasienergy difference θ, obtained using ED [contributions to Eq. (7) in which any of the state labels a, b,
c, and d are equal have been omitted; they are atypical and carry vanishing weight in the thermodynamic limit]. It has a peak centered on
θ ¼ 0 which grows narrower and higher with increasing s, reflecting the short-time plateau in (a). Black dashed line: behavior when the
Floquet operator W is modeled using a qL × qL Haar unitary, showing for this structureless case that F4ðX; Y; θÞ is nonzero but θ
independent. (c) Comparison of ED results with MC results from the ansatz for the JDF of Eq. (29) fitted to behavior in the geometries of
(d), showing excellent agreement between FMC

4 ðX; Y; θÞ (open circles from MC sampling) and F4ðX; Y; θÞ (lines from ED) versus θ for
various s. (d) Illustration of two ways of dividing the 12-site system with open boundary conditions into subsystems by means of a single
spatial cut. In one case the subsystems are labeled X and X̄; in the other the labels are Y and Ȳ. The distance between the spatial cuts in
the two cases is denoted by s.
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f4ðX; Ȳ; t; t1; t2Þ ¼ qSðX;YÞ−2LðXÞ−2LðYÞ

×
X
αβ

q−LTr½Xαðtþ t2ÞYβðt1ÞXαðtÞYβ�:

ð21Þ

The single-quasienergy correlator can be recovered from the
multiquasienergy version using

F4ðX; Y; θÞ ¼
Z

π

−π
dθ1

Z
π

−π
dθ2F4ðX; Y; θ; θ1; θ2Þ: ð22Þ

For large separation s between the ends of X and Ȳ these
correlation functions factorize as follows (see Ref. [40]).
Consider behavior in the time domain. Let vB be the
butterfly velocity and D the diffusion constant for the
spread of an operator front. Then we expect

q−LTr½Xαðtþ t2ÞȲβðt1ÞXαðtÞȲβ�

≈

8>><
>>:

q−LTr½Xαðtþ t2ÞXαðtÞ�×
× q−LTr½Ȳβðt1ÞȲβ� s − vBjtj ≫

ffiffiffiffiffiffi
Dt

p

0 vBjtj − s ≫
ffiffiffiffiffiffi
Dt

p

This motivates the approximation,

f4ðX; Y; t; t1; t2Þ≊f4ðX; Y; tÞf2ðX; t2Þf2ðY; t1Þ; ð23Þ

which in the quasienergy domain is

F4ðX; Y; θ; θ1; θ2Þ≊F4ðX; Y; θÞF2ðX; θ2ÞF2ðY; θ1Þ: ð24Þ

For the models we study in this paper, F2ðX; θ2Þ is only
weakly dependent on θ, and so the multiquasienergy
correlator carries only limited extra information compared
to the single-quasienergy version. For this reason we leave
study of F4ðX; Y; θ; θ1; θ2Þ for future work.

D. Existence of correlations beyond ETH

Our objective in the remainder of this work is to find a
form for the joint distribution function (JDF) of a small
number of eigenstates that reproduces these correlations.
We do this using a maximum entropy ansatz with a final
form that we build up by considering first individual
vectors, then pairs of vectors, and finally sets of four
vectors.
To place our approach in context, it is useful to recall

(following Refs. [20,40]) the limitations of ETH in its
standard formulation when applied to the OTOC. As a
starting point, consider the spectral decomposition of the
OTOC in terms of operator matrix elements, as displayed
in Eq. (3). ETH asserts that matrix elements of the form
ha1jXαja2i and ha3jYβja4i appearing in this expression
are Gaussian random variables, and are independent apart

from the constraint implied by Hermiticity of the oper-
ators Xα and Yβ. The mean values of off-diagonal matrix
elements are automatically zero, and those of diagonal
matrix elements are zero for traceless operators in the
Floquet setting of interest. Finally, the variance of these
matrix elements is set by the Hilbert space size and
is Oðq−LÞ.
Applying these ideas to Eq. (3), the OTOC is given by

q−L times a sum of q4L random Oðq−2LÞ terms. Of these,
only the qL terms with a ¼ b ¼ c ¼ d are expected from
ETH to have a nonzero average. This would imply an
average value for the OTOC of Oðq−2LÞ. Treating the
remaining terms as independent random variables, one
expects Oðq−LÞ fluctuations around this average. In con-
trast, the true value is Oð1Þ at short times. To resolve this
discrepancy it is necessary that a product of four matrix
elements of the form hajXαjbihbjYβjcihcjXαjdihdjYβjai
has a nonzero average that is Oðq−3LÞ in addition to the
Oðq−2LÞ fluctuations captured by the standard version of
ETH [40]. These additional correlations are the central
concern in this paper and in the generalization of ETH
discussed in Refs. [36,37].
A simple demonstration that such correlations must

be present, regardless of details of the dynamics, is
provided by a sum rule related to the value of the
OTOC at t ¼ 0. From the left-hand side of Eq. (3),
assuming for simplicity that the subsystems X and Y do
not overlap and using the operator normalization of
Eq. (12), we have

q−LTr½XαðtÞYβXαðtÞYβ�jt¼0 ¼ 1: ð25Þ

Using this in Eq. (16) with Eq. (11) we have

Z
π

−π
dθF4ðX; Ȳ; θÞ ¼ 1: ð26Þ

This sum rule for F4ðX; Ȳ; θÞ is automatically satisfied
if eigenstates are Haar-distributed vectors, and in that
case F4ðX; Ȳ; θÞ is independent of θ. The eigenstate
correlations that we are concerned with generate a
dependence of F4ðX; Ȳ; θÞ on θ but do not alter the
fact that, with the normalization of Eq. (7), it has an
order of magnitude that is independent of the Hilbert
space dimension qL.

E. Describing correlations beyond ETH

Some constraints on the eigenstate JDF are implied
by ETH, which we now consider. ETH specifies
statistical properties of both diagonal and off-diagonal
matrix elements of local observables between eigenstates,
and we discuss the two classes of matrix elements
separately.
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For a system with a time-independent Hamiltonian, a
key part of ETH is that diagonal matrix elements of
observables vary smoothly with energy, taking average
values compatible with a thermal ensemble at the same
energy density, and with fluctuations of a characteristic size
that vanishes rapidly as the thermodynamic limit is
approached. By contrast, for Floquet systems, statistical
properties of diagonal matrix elements of observables are
independent of quasienergy. We capture this property of
diagonal matrix elements in a Floquet system by taking
individual eigenstates to be isotropically distributed vectors
in the Hilbert space for the model. We outline in Sec. VI
the alternative choice required to model the energy
dependence of diagonal matrix elements in Hamiltonian
systems within our approach. We denote the isotropic
(Haar) distribution for one, two, or four orthonormal

vectors by Pð0Þ
1 ðaÞ, Pð0Þ

2 ða; bÞ, and Pð0Þ
4 ða; b; c; dÞ, respec-

tively, and set out to modify these distributions in a way that
introduces the correlations of interest.
Statistical properties of off-diagonal matrix elements

determine the approach to equilibrium and the autocorre-
lation functions of observables. ETH applied to Floquet
systems asserts that these matrix elements are independent
Gaussian random variables with a variance that depends
only on quasienergy separation. A central idea in our
work is that strict independence is incompatible with the
correlations implied by the dynamics of quantum informa-
tion. Instead there are correlations (albeit weak) and these
are better handled by considering distributions for eigen-
states rather than matrix elements. We take the joint
distribution of a pair of eigenstates to have the maximum
entropy form

P2ða1; a2Þ ¼ Z−1
2 Pð0Þ

2 ða1; a2Þe−S2ða1;a2Þ; ð27Þ

with Z2 a normalization constant and

S2ða; bÞ ¼
X
X

G2ðX; θa − θbÞMXðabbaÞ; ð28Þ

where the coefficients G2ðX; θÞ act as a Lagrange multi-
pliers and should be chosen to reproduce the behavior of
F2ðX; θÞ as determined for a particular system.
Extending this pattern, we take the joint distribution of

four eigenstates to have the form

P4ða1; a2; a3; a4Þ ¼ Z−1
4 Pð0Þ

4 ða1; a2; a3; a4Þ
× e−

P
j<k

S2ðaj;akÞ−S4ða1;a2;a3;a4Þ; ð29Þ

with Z4 a normalization constant and

S4ða; b; c; dÞ ¼
X
XY

G4ðX; Y; θa − θb þ θc − θdÞ

×MXðabcdÞM�
YðabcdÞ: ð30Þ

Here the Lagrange multipliers G4ðX; Y; θÞ should be
chosen to reproduce the behavior of F4ðX; Y; θÞ.
Two further ingredients are required. One is to establish a

practical method for deducing the values of the Lagrange
multipliers from information on the correlators. The other is
to test the approach by sampling P2ða; bÞ or P4ða; b; c; dÞ
and comparing the results with correlators calculated from
exact diagonalisation of W. In this work we focus on the
correlator F4ðX; Y; θÞ since it contains the long-distance,
low-energy information related to the dynamics of quantum
information. Moreover, in the models we study, the
lower-order correlator f2ðX; tÞ decays rapidly in time.
This implies that F2ðX; θÞ is approximately independent
of quasienergy and so we simply set G2ðX; θÞ to zero in
our initial treatment. We return to consideration of a
θ-dependent F2ðX; θÞ and nonzero G2ðX; θÞ immediately
after our discussion of F4ðX; Y; θÞ.
The determination of the Lagrange multipliers from ED

data for eigenstate correlator can be seen simply as a
fitting problem, but since this involves a high-dimensional
parameter space, alternative approaches are desirable.
Fortunately, as we describe in Sec. III B, we have
been able to find direct and straightforward methods to
derive G4ðX; Y; θÞ from F4ðX; Y; θÞ and G2ðX; Y; θÞ from
F2ðX; Y; θÞ.

F. Results

We implement and test these ideas using an open
chain with the Floquet operator defined by a brickwork
circuit (see Sec. III A). If nonzero Lagrange multipliers
G4ðX; Y; θÞ were included for all choices of subsystem X
and Y, their number would be unreasonably large, both as a
matter of principle and in practice (there are 2L different
subsystems in total). Since our models have nearest-
neighbor interactions, it seems natural to organize sub-
systems according to the number of cuts necessary to
separate them from the full system. For the majority of our
work we include nonzero Lagrange multipliers only for
subsystems that can be obtained from a full system under
open boundary conditions by means of a single spatial cut.
We discuss alternative choices of the sets of subsystems X
and Y for which the Lagrange multipliers G4ðX; Y; θÞ are
nonzero in Sec. III B and Appendix D. As an additional
restriction on the choice of nonzero Lagrange multipliers,
our fastest method (see Sec. III B 1) for determining
their values is effective if the probability distribution of
MXðabcdÞ is well approximated by a Gaussian, which is
the case for the model studied provided the subsystem sizes
LðXÞ and LðX̄Þ are not too small. In order to satisfy this
requirement, and in order to limit the total number of
Lagrange multipliers under consideration, we include
G4ðX; Y; θÞ for all L − 5 subsystems X with LðXÞ > 2
that can be obtained from the full system by means of a
single spatial cut, and similarly for Y. Taking account
of symmetry under interchange of X and Y, this gives
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ðL − 5ÞðL − 4Þ=2 (i.e., 28 for the example studied of
L ¼ 12) independent Lagrange multipliers. Using as input
the values of F4ðX; Y; θÞ for these subsystem choices from
ED, we arrive at a final form for the JDF.
We use Monte Carlo sampling of this distribution to

compute the correlator [denoted by FMC
4 ðX; Y; θÞ] with two

objectives. First, for the simplest choices of X involving
single spatial cuts (and similarly for Y), comparison with
ED is a test of our ansatz for the JDF and of our procedure
to determine the Lagrange multipliers. Second, it is
interesting to see whether this input alone is sufficient to
capture correlations more generally. To probe this we
compare ED and MC results for the correlator, making
choices of X (and also Y) that are defined by more than one
spatial cut. This is a test of the extent to which the proposed
JDF captures long-distance, low-energy correlations in
general. In particular, taking X and Y each to consist of
a small number of sites acting as the support for a local
observable, we test the implications of the JDF for the
(operator-averaged) OTOC.
Some of our principal results are shown in Fig. 3 and

discussed in the figure caption. The main conclusions are as
follows. (i) As expected from its relation to the OTOC, the
correlator f4ðX; Y; tÞ is time independent at short times and
falls off at a timescale that is long if the spatial separation s
between subsystems X and Ȳ is large. All aspects of this
behavior are apparent in Fig. 3(a). (ii) In turn, this implies
structure in F4ðX; Y; θÞ at small quasienergies θ, as is
visible in Fig. 3(b); the width in quasienergy of this
structure decreases with increasing s. (iii) Monte Carlo

sampling of the JDF of Eq. (29), with Lagrange multipliers
determined as described in Sec. III B, generates results for
F4ðX; Y; θÞ that are in excellent agreement with those from
ED, as demonstrated in Fig. 3(c).
Further important results are shown in Fig. 4. Here we

examine how well the JDF constructed using correlators for
single-cut subsystems can capture correlators for two-cut
subsystems. It is apparent from Fig. 4(a) that MC sampling
of the JDF generates a moderately good representation of
F4ðX; Y; θÞ for the two-site choices of X and Y shown in
Fig. 4(c). Equivalently, the JDF determined using informa-
tion from the geometries of Fig. 3(d) reproduces the main
features of the OTOC, as a function of time and spatial
separation, for two operators, each supported on two sites
in the geometry of Fig. 4(c). A similar picture holds even
when the support of the operators is reduced to a single site,
as is shown in Fig. 4(b). In this case, statistical errors are
enhanced, since in each subsystem there are only one
quarter as many operators to average over.
As a final indication of the effectiveness of our approach,

we return to the behavior of F2ðX; θÞ, which characterizes
the correlations that are incorporated by ETH. For sim-
plicity, we consider only the joint distribution of pair of
eigenstates, in this way treating F2ðX; θÞ separately from
F4ðX; Y; θÞ. By determining the Lagrange multiplier
G2ðX; θÞ from ED data as described in Sec. III B, we
generate and sample from this joint distribution, with
results that are shown in Fig. Figure 5. As is evident,
our MC data are in excellent agreement with ED results for
all values of quasienergy difference θ and all subsystem
choices X.

FIG. 4. Test of JDF fitted to behavior in the geometries of Fig. 3(d) but applied to geometries of (c) and (d), respectively. (a),(b)
Comparison of data from MC sampling (open circles) and ED (solid lines). (c) Partition used for (a), in which the 12-site system is
divided by two spatial cuts into a two-site subsystem X and its complement X̄, or a two-site subsystem Ȳ and its complement Y.
(d) Partition used for (b), in which the 12-site system is divided by two spatial cuts into a single-site subsystem X and its complement X̄,
or a single-site subsystem Ȳ and its complement Y. Calculations are for the brickwork circuit model defined in Sec. III Awith L ¼ 12,
q ¼ 2 and open boundary conditions.
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The fact that deviations are small from the value
F2ðX; θÞ ¼ ð2πÞ−1≊0.159 for a pair of Haar-distributed
orthogonal unit vectors is justification for our omission
of F2ðX; θÞ in our discussion of F4ðX; Y; θÞ. A more
complete treatment would require the simultaneous inclu-
sion of both G2ðX; θÞ and G4ðX; Y; θÞ, following Eq. (29).
Some consequences have been discussed previously in
Ref. [40] and we do not consider them further here.
The overall aim of MC sampling from our maximum

entropy ansatz for the JDF of a small number of eigenstates
is to test whether, with a suitable choice of Lagrange
multipliers, the JDF reproduces the correlations F4ðX; Y; θÞ
measured from ED. This test of our approach is a crucial
one, and we believe Fig. 3(c) offers excellent evidence that
the JDF can indeed reproduce the required correlations for
the model and parameter range investigated there. Further
discussion of the determination of Lagrange multipliers,
including a treatment of other models, is presented in
Sec. V and the Appendixes B and D.

III. MODELS, LAGRANGE MULTIPLIERS, AND
NUMERICAL METHODS

In Sec. III Awe describe the microscopic models we use
to generate the numerical results shown in this paper. In
Sec. III B we set out efficient methods to determine the
Lagrange multipliers G2ðX; θÞ and G4ðX; Y; θÞ that appear
in the JDF for eigenstates. In Sec. III C we give details of
the numerical methods used in this paper.

A. Models

We use the brick-wall circuit depicted in Fig. 6 as a
simple model of a periodically driven many-body quantum

system with local interactions in one dimension. Such
Floquet models have been studied extensively in past work;
see, for example, Refs. [40,44,45]. This circuit is defined in
terms of two-site gates wi ∈Cq2×q2 , and the driving period
is decomposed into two parts: In the first half of the period,
couplings are active only on even bonds of the system,
while in the second half the couplings are active only on
odd bonds. Thus, the time evolution operator for the first
half period is W1 ¼ w0 ⊗ w2 ⊗ w4 � � � and for the second
half period is W2 ¼ 1 ⊗ w1 ⊗ w3 ⊗ � � �. The evolution
operator over one full period is W ¼ W2W1, and for t
periods we write WðtÞ≡Wt.
In order to define an ensemble of systems, a natural

choice would be to draw each unitary matrix wi independ-
ently from the Haar distribution. We find, however, that in
this case determination of the Lagrange multipliers
G4ðX; Y; θÞ is complicated by effects that we attribute to
realizations containing weak links i on which the gate wi is
close to the identity (especially in small systems or with
small subsystems). To avoid such weak links, we draw the
wi from a truncated version of the Haar distribution in
which all gates with an operator purity above a cutoff are
discarded. With operator purity defined as in Eq. (18) (so
that the two-site identity operator has a purity of q4) we
take the cutoff to be 0.3 × q4 for local Hilbert space
dimension q ¼ 2. The consequences of changing or omit-
ting this cutoff are discussed in Sec. VA and Appendix A 2,
and results for q ¼ 3 are given in Sec. V B.

B. Determining Lagrange multipliers in the JDF

We now discuss the problem of determining the
Lagrange multipliers that appear in Eqs. (28) and (30),
and that define the JDFs, Eqs. (27) and (29), of a small
number of eigenstates. We present a method specific to
G4ðX; Y; θÞ in Sec. III B 1 and one specific to G2ðX; θÞ in
Sec. III B 2. These are both single-shot methods that make
explicit use of information about the probability distribu-
tions of MXðabcdÞ and MXðabbaÞ, respectively, and for
this reason they are particularly efficient. In Sec. III B 3 we
outline a third, more generally applicable iterative
approach, that is agnostic to the probability distributions
involved.

1. Determination of G4ðX;Y;θÞ
As noted above, pairwise correlations between eigen-

states encoding the decay of autocorrelation functions are

FIG. 6. Unitary time-evolution operator W of the Floquet
circuit written as a tensor network.

FIG. 5. Numerical results for F2ðX; θÞ in a system with L ¼ 12
and q ¼ 2 as a function of the left cut position k: ED results (solid
lines) versus Monte Carlo sampling (circles). [Delta-function
contributions at θ ¼ 0 have been omitted; they are responsible for
ensuring that the sum rule

R
π
−π dθF2ðX; θÞ ¼ 1 is satisfied for all

X.] The almost perfect agreement between both sets of data
indicates that the correlations between pairs of eigenstates
F2ðX; θÞ, as captured by ETH, may also be represented accu-
rately within our approach.
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very weak in the Floquet model we consider, in the sense
that the correlator F2ðX; θÞ is only weakly dependent on θ,
taking values close to that for a Haar-distributed pair of
orthogonal vectors. As a simplifying approximation, we
therefore set to zero the Lagrange multipliers G2ðX; θÞ [see
Eq. (28)] that control these pairwise correlations. We make
further choices concerning the set of subsystems X and Y
for which Lagrange multipliers G4ðX; Y; θÞ are included
in the JDF. Without restrictions there are 2L − 1 distinct
subsystems: To reduce this number we include only
Lagrange multipliers for connected subsystems—those that
can be obtained from the full system (which has open
boundary conditions) by means of a single cut—and we
omit them for all subsystems obtained using multiple cuts.
This choice gives a minimal set of partitions, which turns

out to be sufficient to reproduce the main correlations
arising from spatial structure and local interactions. As is
shown in Fig. 4, it also captures the eigenstate correlations
F4ðX; Y; θÞ even for some subsystems pairs X and Y not
included in the set. The reason is probably that the most
important parameter characterizing the dynamics of infor-
mation spreading is simply the distance s separating the
closest points on the two partitions, and that further
possible structure in the partitions is unimportant.
A more general choice is to include Lagrange multipliers

for subsystems that can be obtained from the full system by
means of either one or two cuts, and we examine this
in Appendix D. We find that adding more partitions
increases the complexity of calculations without signifi-
cantly improving the accuracy ofMC results forF4ðX; Y; θÞ.
Systems with periodic rather than open boundary conditions
present a new problem, since in this case a minimum of two
cuts is required to define a subsystem. We treat this instance
in Sec. V C.
Our objective is to find the values of the Lagrange

multipliers G4ðX; Y; θÞ for which the JDF reproduces the
eigenstate correlator F4ðX; Y; θÞ (known from ED) as
accurately as possible. We are able to simplify this task
and avoid attacking directly a high-dimensional fitting pro-
blem if the quantities MXðabcdÞ [Eq. (6)] are Gaussian
distributed. Our motivation for treating a model with a
truncated Haar distribution of gate unitaries is that in this
system MXðabcdÞ is well approximated by a Gaussian.
Evidence for this is presented in Fig. 7. Here we consider

only the magnitude jMXðabcdÞj since the phase of
MXðabcdÞ is dependent on the phase convention used
for the eigenstates, and we compare the distribution of
jMXðabcdÞj with one in which the real and imaginary parts
of MXðabcdÞ are assumed to be uncorrelated Gaussian
variables with equal variances and zero means. An analysis
of the dependence of these distributions on the system size
L and subsystem size LðXÞ (see Appendix A) suggests that
deviations from a Gaussian vanish in the limit of large L
and LðXÞ. Since deviations are significant for small sub-
system size, we omit Lagrange multipliers G4ðX; Y; θÞ for

subsystems X with LðXÞ or LðX̄Þ ≤ 2. This leaves ðL − 5Þ2
Lagrange multipliers, or ðL − 5ÞðL − 4Þ=2 independent
quantities after taking account of symmetry relations.
Similarly, a Gaussian distribution for MXðabcdÞ also

arises from the Haar distribution for four orthogonal vectors

[Pð0Þ
4 ða; b; c; dÞ in the notation of Eq. (29)] in the large

qL; qLðXÞ limit. In this case, and in contrast to the Floquet
model, the covariance is independent of the quasienergy
difference θ. In the limit of large qL and qLðXÞ it has the
simple form

½MXðabcdÞM�
YðabcdÞ�0 ≃ qLðX;YÞ−4L: ð31Þ

A full expression for Eq. (31), applicable for general qL and
qLðXÞ, can also be obtained in terms of Weingarten
functions, but turns out to be unnecessary for the work
in this paper, except as noted in Sec. V C.
In order to represent these Gaussian distributions in a

compact way, it is convenient to introduce notation in
which the L − 1 single-cut subsystems X used to define our
Lagrange multipliers are labels for basis states in a (L − 1)-
dimensional vector space. Then the values ofMXðabcdÞ for
different X are components of an (L − 1)-component
column vector M, so that ½M�X ¼ MXðabcdÞ, while the
Lagrange multipliers are entries in the ðL − 1Þ × ðL − 1Þ
matrix G4 with rows and columns labeled by X and Y,
respectively, so that ½G4�X;Y ¼ G4ðX; Y; θÞ. Similarly, the
eigenstate correlators F4ðX; Y; θÞ are elements of a matrix
F4. Then Eq. (30) can be rewritten in the compact form:

S4 ¼ MTG4M�: ð32Þ

The fact that the distributions P4ða; b; c; dÞ and

Pð0Þ
4 ða; b; c; dÞ are [at large L and LðXÞ] Gaussian for M

suggests that a convenient coordinate system consists of the

FIG. 7. Probability distribution of qLjMXðabcdÞj in the Floquet
model of Sec. III A (colored data) compared with fitted Gaussian
distributions (black dashed lines). Data are for L ¼ 12, q ¼ 2 and
a subsystem X consisting of the four sites closest to the end of an
open system, and are shown for the four indicated values of the
relative phase θ ¼ θa − θb þ θc − θd. Results for other q and X
are shown in Appendix A.
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components of M together with additional variables Ω that
we do not specify explicitly. We indicate this by writing

P4ðM;ΩÞ and Pð0Þ
4 ðM;ΩÞ. The result given in Eq. (31) for

the covariance within the Haar distribution implies that

Z
dΩPð0Þ

4 ðM;ΩÞ ¼ ½Zð0Þ
4 �−1e−MTGð0Þ

4
M�
;

with ½ðGð0Þ
4 Þ−1�X;Y ¼ ½½M�X½M��Y �0 ≃ qLðX;YÞ−4L; ð33Þ

and Zð0Þ
4 ¼ πL−1= detGð0Þ

4 . This in turn implies that

Z
dΩP4ðM;ΩÞ ¼ ½Z4�−1e−MT½G4þGð0Þ

4
�M�

; ð34Þ

and hence that

½½M�X½M��Y �av ¼ ½ðG4 þG0
4Þ−1�X;Y: ð35Þ

In addition, we have from Eq. (7)

½F4�X;Y ¼ ð2πÞ−1q4L−LðX;YÞ½½M�X½M��Y �av: ð36Þ

Equation (35) allows the determination of the Lagrange
multipliers in Eq. (29) in terms of the matrix F4, which is
obtained using ED. This method was used to generate
Fig. 3(c).

2. Determination of G2ðX;θÞ
Next we describe the method we use to determine the

Lagrange multipliers G2ðX; θÞ, treating explicitly the case
of L − 1 subsystems X generated by single cuts. A different
approach is required to that for G4ðX; Y; θÞ because the
probability distribution of MXðabbaÞ is quite different to
that of MXðabcdÞ for a ≠ b ≠ c ≠ d. Indeed, while (as
discussed) MXðabcdÞ has a complex Gaussian distribution
with zero mean, MXðabbaÞ is from its definition real and
non-negative.
To understand the distribution of MXðabbaÞ it is useful

to start from Eq. (13), which specializes here to

MXðabbaÞ ¼ q−LðXÞ
X
α

jhajXαjbij2: ð37Þ

With a ≠ b we expect from ETH that hajXαjbi for each α
is an independent complex Gaussian random variable.
From this we can conclude, first, that the two quantities
MXðabbaÞ and MX0 ðabbaÞ are correlated if the sets fXαg
and fX0

αg have operators in common, and second, that
statistically independent quantities can be constructed
using a transformation that organizes the operators into
disjoint sets.
In detail, this transformation is defined recursively by

considering the L − 1 subsystems in order of increasing
size. Again we introduce an (L − 1)-dimensional vector

space, and define the vector M to have components
½M�X ¼ MXðabbaÞ. Similarly, we introduce the notation
T for our target vector with statistically independent
components ½T�X, and G with ½G�X ¼ G2ðX; θÞ for the
vector of Lagrange multipliers. To write the transformation
we abuse notation and substitute in place of the component
label X the value l ¼ LðXÞ. Then using Eq. (37) we write

T1 ¼ M1

and Tl ¼ Ml − q−1Ml−1; ð38Þ

for l ¼ 2 to L − 1. This can be recast in the matrix form

T ¼ VM; ð39Þ

where

V ¼

0
BBBBB@

1 0 0 … 0

−q−1 1 0 … 0

..

. . .
.

0 0 … −q−1 1

1
CCCCCA
: ð40Þ

The effect of this transformation is that Eq. (37) is replaced by
Tl ¼ q−l

P0
α jhajXαjbij2, where the sum runs over the sub-

set of nl ≡ ðq2 − 1Þq2ðl−1Þ operatorsXα that act nontrivially
at the rightmost site in X [see illustration in Fig. 3(d)]. Since
hajXαjbi is Gaussian with mean zero, the variable sα ≡
jhajXαjbij2 has the distribution pαðsαÞ ¼ σαe−σαsα , where
σα ≡ ½jhajXαjbij2�av�−1. We make the approximation that σα
takes the same value σl for all Xα that contribute to a given
Tl. This framework applies not only to the true eigenstate
distribution under consideration, but also to vectors with a
Haar distribution, and in the latter casewe denote thevalue of

σα by σð0Þl . Then

½Tl�av ¼
nl
σl

and ½Tl�0 ¼
nl

σð0Þl

: ð41Þ

With these ingredients in hand, Eq. (28) can be written in
the form

S2 ¼ GTV−1T; so that σl ¼ σð0Þl þ ½GTV−1�l: ð42Þ

Substituting Eq. (41) into Eq. (42) and rearranging, we
obtain

Gl ¼
X
l0

�
nl0

½ðVMÞl0 �av
−

nl0

½ðVMÞl0 �0

�
Vl0l: ð43Þ

We employ Eq. (43) to determine the Lagrange multiplier
G2ðX; θÞ in terms of ½M�av obtained from ED and the Haar
average
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½Ml�0 ¼ q−Lðql − q−lÞ: ð44Þ

This approach is used to obtain the data shown in Fig. 5.
Note [from the definition of Tl below Eq. (40) and the

discussion following Eq. (41)] that the probability distri-
bution of Tl is consistent with a Gaussian distribution for
the matrix elements hajXαjbi, as expected from ETH, with
a variance controlled by the Lagrange multipliers G2ðX; θÞ.

3. Iterative method for determining Lagrange multipliers

We next describe a straightforward method for determin-
ing the Lagrange multipliers without making use of infor-
mation about the probability distributions of MXðabcdÞ
and MXðabbaÞ. We treat the case of G4ðX; Y; θÞ; the
necessary modifications for G2ðX; θÞ are obvious.
Our starting point is a perturbative expansion of Eq. (29)

to first order in GðX; Y; θÞ, which yields

½MXM�
Y �av ¼ ½MXM�

Y �0 −
X
X0Y 0

½K4�XY;X0Y 0GðX0; Y 0; θÞ; ð45Þ

where ½K4�XY;X0Y 0 is the connected correlator:

½K4�XY;X0Y 0 ¼ ½MXM�
YMX0M�

Y 0 �0 − ½MXM�
Y �0½MX0M�

Y 0 �0:
ð46Þ

Introducing the abbreviations

½V4�XY ¼ ½MXM�
Y �0 − ½MXM�

Y �av
and ½G4�XY ¼ G4ðX; Y; θÞ; ð47Þ

this gives at first order in perturbation theory

G4 ¼ K−1
4 V4: ð48Þ

To go beyond first-order perturbation theory, we define

an iterative procedure based on Eq. (48). Let ½MXM�
Y �ðnÞMC

denote the MC result obtained with the nth approximant

GðnÞ
4 ðX; Y; θÞ as Lagrange multiplier, and let ½MXM�

Y �ED be
the value from ED. Then iterate for n ¼ 1; 2;…,

½Vðnþ1Þ
4 �XY ¼ ½MXM�

Y �ðnÞMC − ½MXM�
Y �ED; ð49Þ

with

½Vð1Þ
4 �XY ¼ ½MXM�

Y �0 − ½MXM�
Y �ED; ð50Þ

and

GðnÞ
4 ¼ Gðn−1Þ

4 þ K−1
4 VðnÞ

4 ; ð51Þ

with

Gð0Þ
4 ¼ 0: ð52Þ

A possible refinement is to replace Eq. (51) with

GðnÞ
4 ¼ Gðn−1Þ

4 þ αK−1
4 VðnÞ

4 ; ð53Þ

where 0 < α ≤ 1 is a real parameter. Small α reduces the
risk of overshooting the solution at the expense of a slower
convergence rate.
This method is used to produce the data shown

in Fig. 14.

C. Numerical methods

In this section, we give details of the ED, MC, and
ensemble-averaging procedures used to obtain the data
presented in this paper.

1. Exact diagonalization

In order to study eigenstate correlations, we use ED of
the Floquet operator W to compute exact eigenvectors and
hence averages of MXðabcdÞM�

YðabcdÞ for all choices of
our selected subsystems X and Y. We obtain phase-resolved
averages by dividing the phase interval ½−π; π� into 64 bins.
Each realization ofW with L spins generates approximately
q4L=4! different quadruples of eigenvectors, and from these
we randomly choose up to 106 quadruples. We average
over between 150 (for L ¼ 12) and 1000 (for L ¼ 10 and
L ¼ 8) realizations of W to obtain the ED data in Fig. 3,
and over 25 000 realizations for the results shown in Fig. 4.
The symmetry relation F4ðX; Y; θÞ ¼ F4ðX; Y;−θÞ allows
us to restrict calculations to θ ≥ 0. Similarly, in the case of
MXðabbaÞ we take 106 tuples out of the approximately
q2L=2 possibilities for each realization of W and L ¼ 12.
We average over 1000 realizations for L ¼ 12 to obtain the
data in Fig. 5.
From these ED results we compute the Lagrange multi-

pliers G4ðX; Y; θÞ and G2ðX; θÞ using the procedures
described in Sec. III B. We find that a further symmetriza-
tion of the data, using the spatial symmetry under the
interchange of X, Y with X̄; Ȳ, improves stability.
As discussed in Sec. II D, the coherent contribution of the

four-point correlator hajXαjbihbjYβjci × hcjXαjdihdjYβjai
is suppressed by a factor q−L in comparison to fluctuations of
this quantity. To average out the latter, it is thus necessary to
average overOðq2LÞ samples. In practice, averaging over the
operatorsXα andYβ reduces fluctuations, but for large spatial
separation s and system size L, the number of required
samples scales exponentially with the system size for a fixed
support of X and Ȳ.

2. Monte Carlo sampling

In order to determine the eigenstate correlator
F4ðX; Y; θÞ from the JDF [Eq. (29)] for four eigenstates
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jai, jbi, jci, and jdi, we use Monte Carlo sampling with
e−S4ða;b;c;dÞ [Eq. (30)] as the weighting term. Similarly, to
determine the correlator F2ðX; θÞ from the JDF [Eq. (27)]
for two eigenstates jai and jbi, we use Monte Carlo
sampling with e−S2ða;bÞ [Eq. (28)] as the weighting term.
We follow the Metropolis-Hastings algorithm to obtain a

Markov chain of vector quadruples ða; b; c; dÞ distributed
according to P4. To generate the next quadruple
ða0; b0; c0; d0Þ, we randomly select one of the four vectors
a, b, c, d and add a vector

ffiffiffi
ϵ

p
v to the chosen state, where v

is a Haar-random vector orthogonal to a, b, c, d.
We set ϵ ¼ 0.1 for L ¼ 12 and q ¼ 2, and ϵ ¼ 0.8 for

L ¼ 8 and q ¼ 2. Since V is unitary, orthonormal vectors
retain this property after the transformation.
This choice of update rule with tuning parameter ϵ allows

us to perform effective importance sampling, since we
propose only relatively small changes to the sample. The
new sample is then accepted in the Markov chain with
probability

Paccept ¼ minð1; e−S4ða;b;c;dÞþS4ða0;b0;c0;d0ÞÞ: ð54Þ

For each θ we perform 2000 Monte Carlo runs in parallel
with up to 106 samples per run. The results are obtained by
averaging over all runs. In the case of small θ, we find in rare
cases (one out of 1000 runs) instabilities toward localmaxima
of theweighting function during the sampling process. This is
visible by tracking S4ða; b; c; dÞ or the acceptance rate. This
problem can be circumvented by decreasing the size of the
update steps, but only at the expense of longer autocorrelation
times.As a compromise,we discard runswhereS4 falls below
a threshold value of −50.
To provide an overall test of our form [Eq. (29)] for the

JDF, we show in Fig. 8 a comparison of the distributions of
S4ða; b; c; dÞ obtained respectively from ED and from MC
sampling of the JDF. The excellent agreement between the
two distributions over a range of values for θ is evidence of
the internal consistency of our approach.

IV. PERTURBATIVE TREATMENT
OF LAGRANGE MULTIPLIERS

An obvious approach to calculations based on the joint
eigenstates distributions of Eqs. (27) and (29) is a pertur-
bative expansion in powers of the Lagrange multipliers
G2ðX; θÞ and G4ðX; Y; θÞ. In this section we set out a
general framework for such an expansion and apply it in
several ways. While the expansion does not generate
fundamentally new results, it provides a useful perspective
that is complementary to the one set out in Secs. II and III.
Weuse the expansion to provide an alternative justification

of the fitting procedure for G4ðX; Y; θÞ to the one described
in Sec. III B 1.We also use it to consider Eq. (29) without the
simplification employed in Sec. II F of settingG2ðX; θÞ ¼ 0.
We show that for large qL and qLðXÞ that if F2ðX; θÞ is
calculated from the JDF for four eigenstates rather than two,
the influence ofG4ðX; Y; θÞ on the result is small. Thismeans
that the predictions ofETH formatrixelements between pairs
of eigenstates are only weakly affected by the correlations
between sets of four eigenstates F4ðX; Y; θÞ that are intro-
duced with our ansatz for the JDF. Finally, we show that the
effect of the Lagrange multipliers G2ðX; θÞ and G4ðX; Y; θÞ
on the normalization of eigenstates drawn from the joint
distributions is small in large systems.
An exact perturbative expansion requires the evaluation of

averages over a Haar distribution of vectors, denoted by

P0Þ
1 ðaÞ,Pð0Þ

2 ða; bÞ, andPð0Þ
4 ða; b; c; dÞ in Sec. II E.While the

formalism required for this is well developed (see, e.g.,
Ref. [46]), it is quite cumbersome. Moreover, we require
results only at leading order for qL large. These can be
obtained by substituting another distribution in place of the
Haar distribution in which each vector component is an
independentGaussian randomvariable. Specifically, consider
a computational basis fjkcig and denote the overlap of the
eigenstate jai with the basis state jkci by aðkÞ ¼ jkcjai.
Define S1ðaÞ by

S1ðaÞ ¼ qL
X
k

jaðkÞj2: ð55Þ

We replace Pð0Þ
4 ða1; a2; a3; a4Þ by

PðGÞ
4 ða1; a2; a3; a4Þ ¼

�
qL

π

�
4qL

e−
P

i
S1ðaiÞ: ð56Þ

Although different vectors drawn from this distribution are
not in general exactly orthonormal, orthonormality is recov-
ered in the limit qL → ∞. We denote averages with respect to
this Gaussian distribution by ½� � ��G.

A. Diagrammatic notation

It is useful to employ diagrammatic notation for these
Gaussian averages. As in Fig. 1, eigenstates are represented
by circles and index contractions following from the defi-
nition of MXðabcdÞ are indicated by solid lines carrying

FIG. 8. Probability distribution of S4ða; b; c; dÞ [Eq. (30)] for
quasienergy differences θ as indicated. Comparison between ED
results (black dashed lines) and MC results (solid colored lines).
Parameters as in Fig. 3.
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arrows that run from states jai toward conjugate states hbj;
these lines carry labels to indicate the subsystem within
which the contraction is done. The combinationof circles and
full lines,with labels for states and subsystems, is fixedby the
choice of quantity we average, and diagrams are generated
by making all possible Wick pairing of circles. These pair-
ings are represented by dashed lines. The contribution of a
diagram is a product of two factors. One factor stems from
Eq. (56) and consists of q−L for every dashed line. The other
factor arises from sums over the Hilbert space at each site. To
evaluate this factor we form closed loops in the diagram
consisting alternately of dashed lines and full lines traversed
in the direction of the arrows. These full lines must carry the
label that corresponds to a subsystem in which the site lies.
For each sitewe have a factor of q for every such closed loop.

For example, the evaluation of ½MXðabbaÞ�G is shown in
Fig. 9. It yields

½MXðabbaÞ�G ¼ q−2Lq2LðXÞqLðX̄Þ ¼ qLðXÞ−L: ð57Þ

B. Relating F4ðX;Y;θÞ and G4ðX;Y;θÞ
Our first objective is to obtain a relationship between

F4ðX; Y; θÞ and G4ðX; Y; θÞ by expanding e−S4ða;b;c;dÞ in a
power series, averaging with respect to the Gaussian
distribution, and then resumming the terms at each order
in the expansion that are leading for qL and qLðXÞ large. By
this means we will recover Eq. (35).
Using the notation of Eq. (32) we require the connected

contributions to ½½M�X½M�Y ½MTG4M��n�G at each order n in
perturbation theory that are leading for large system and
subsystem sizes. These come from theWick contractions that
generate the largest number of loops in a decomposition of
the type illustrated inFig. 9. These contractions are illustrated
for n ¼ 0, 1, and 2 in Fig. 10, establishing an obvious pattern
for general n. Retaining only these terms we have

½½M�X½M��Y �av ≈
X∞
n¼0

ð−1Þn½ðGð0Þ
4 Þ−1(G4ðGð0Þ

4 Þ−1Þn�X;Y

¼ ½ðGð0Þ
4 Þ−1½1þG4ðGð0Þ

4 Þ−1�−1�X;Y
¼ ½ðG4 þGð0Þ

4 Þ−1�X;Y; ð58Þ

a

X
_

X
_

X

X

a a

X
_

X
_

a aX

X

a

b b b b b b

FIG. 9. Diagrammatic representation and evaluation of
½MXðabbaÞ�G. (a) Full diagram, (b) decomposition into loops
for a site in subsystem X, (c) decomposition into loops for a site in
subsystem X̄.
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FIG. 10. Leading connected contributions to ½½M�X½M�Y ½MTG4M��n�G for (a) n ¼ 0, (b) n ¼ 1, and (c) n ¼ 2. The pair of squares in (a)
and the leftmost pairs of squares in (b) and (c) represent ½M�X½M�Y ; other pairs of squares representMTG4M�. The dashed lines in (b) and
(c) that leave the diagrams on the left are joined to the dashed lines that leave on the right.
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where Gð0Þ
4 is as defined following Eq. (33) by the relation

½ðGð0Þ
4 Þ−1�X;Y ¼ ½½M�X½M��Y �G ¼ qLðX;YÞ−4L. For averaging

over a Gaussian ensemble, the last relation is exact. [Note
that for these terms the factor of ðn!Þ−1 arising from thepower
series expansionofe−S4ða;b;c;dÞ is canceledby a combinatorial
factor arising in the pairing of terms in Fig. 10.] Comparing
Eqs. (35) and (58) we see that this diagrammatic resumma-
tion provides an alternative derivation of the main results of
Sec. III B 1.

C. Cross-correlations

In our MC studies of the eigenstate JDF [Eq. (29)] we
have made two simplifications: one is to omit G4ðX; Y; θÞ
when studying F2ðX; θÞ, and the other is to omit G2ðX; θÞ
when studying F4ðX; Y; θÞ. The magnitudes of the result-
ing errors can be assessed using perturbation theory, as we
now discuss.
We begin by considering the effect of G4ðX; Y; θÞ on the

value of F2ðX; θÞ, or equivalently on the value of
½MXðabbaÞ�av, as follows. To first order in perturbation
theory in G4ðX; Y; θÞ we have

½MXðabbaÞ�av ¼ ½MXðabbaÞ�G
−
X
X0Y 0

G4ðX0; Y 0; θÞ½MXðabbaÞMX0 ðabcdÞM�
Y 0 ðabcdÞ�G;c

þOð½G4ðX0; Y 0; θ�2Þ; ð59Þ

where ½� � ��G;c denotes the connected average, defined by

½MXðabbaÞMX0 ðabcdÞM�
Y 0 ðabcdÞ�G;c

¼ ½MXðabbaÞMX0 ðabcdÞM�
Y 0 ðabcdÞ�G

− ½MXðabbaÞ�G½MX0 ðabcdÞM�
Y 0 ðabcdÞ�G: ð60Þ

The diagrams that contribute to this connected average
are shown in Fig. 11. Evaluating these diagrams for the
representative case X ¼ X0 ¼ Y 0, we obtain

½MXðabbaÞMXðabcdÞM�
XðabcdÞ�G;c

¼ q−3Lðq−LðXÞ þ 2q−LðX̄ÞÞ: ð61Þ

We compare the zeroth-order term, which is

½MXðabbaÞ�G ¼ qLðXÞ−L; ð62Þ

from Eq. (57), with the first-order term, using Eq. (61) and
G4ðX;X; θÞ ∼ q2L from Eq. (33), which gives

X
X0Y 0

G4ðX0; Y 0; θÞ½MXðabbaÞMX0 ðabcdÞM�
Y 0 ðabcdÞ�G;c

∼ q−Lðq−LðXÞ þ 2q−LðX̄ÞÞ: ð63Þ

Hence we see that the effect of G4ðX0; Y 0; θÞ on F2ðX; θÞ is
small provided that qLðXÞ and qLðX̄Þ are large.
We have not systematically investigated higher-order

terms in Eq. (59), but we expect them individually to be
small: Note that although G4ðX0; Y 0; θÞ ∼ q2L, each such
contribution is accompanied by a factor of q−4L from extra
dashed lines, as well as diagram-dependent factors from
sums over the Hilbert space at each site.
A similar study of the effect of G2ðX; θÞ at first order in

perturbation theory on F4ðX; Y; θÞ, or equivalently on
½MX0 ðabcdÞM�

Y 0 ðabcdÞ�av, reaches a different conclusion:
The influence is not small in qL or qLðXÞ, but only in powers
of G2ðX; θÞ. This is not unexpected: The functional form
for a correlator involving four eigenstates and depending on
three quasienergy differences has been discussed previ-
ously [21] and in Sec. II C; it involves factors of both
F2ðX; θÞ and F4ðX; Y; θÞ [see Eq. (24)]. We do not pursue
this further since we have chosen here to study models in
which F2ðX; θÞ lies close to its value for Haar-distributed
pairs of eigenstates, and G2ðX; θÞ is therefore small.
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FIG. 11. Contributions to the connected average defined in
Eq. (60).
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D. Renormalization of propagators and vertices

An alternative perspective is provided by considering the
perturbative renormalization of the propagators and verti-
ces appearing in the JDF. We begin with the former: The
bare propagator in the theory, represented using dashed
lines in the figures, is generated by Eqs. (55) and (56) and
carries a factor of q−L. More generally, it acquires a self-
energy Σ, and the factor becomes ðqL þ ΣÞ−1. Our aim is to
evaluate Σ at leading order in G2ðX; θÞ and G4ðX; Y; θÞ and
compare it to the bare inverse propagator qL: If it is small
under this comparison, then the effects of the vertices on the
normalization of eigenstates can be neglected. The dia-
grams contributing to Σ at this order are shown in Fig. 12.
They are diagonal matrices in the site basis, and the
magnitudes of their largest entries are, respectively,

ΣðiÞ
kk ¼ q−L

X
X

G2ðX; θÞqLðXÞ ∼ q2LðXÞ ð64Þ

[where we have used Eqs. (43) and (44) to estimate
G2ðX; θÞ ∼ qLþLðXÞ] and

ΣðiiÞ
kk ¼ q−4L

X
X;Y

qLðX;YÞG4ðX; Y; θÞ ∼Oð1Þ ð65Þ

[where we have used an estimate of G4ðX; Y; θÞ given
above Eq. (63)]. From this we see that the renormalization
of the propagator is indeed small if qL is large and if
q2LðXÞ ≪ qL. In the opposite regime (q2LðXÞ > qL) we
believe that G2ðX; θÞ is small since F2ðX; θÞ approaches
the value it takes for Haar-distributed eigenstates, and that

ΣðiÞ
kk ≪ qL notwithstanding the estimate of Eq. (64).
A similar discussion can be developed of renormalized

vertices generated by combining contributions from
S2ða; bÞ and S4ða; b; c; dÞ in Eq. (29) and forming suffi-
cient internal contractions to generate a new effective
contribution to either S2ða; bÞ or S4ða; b; c; dÞ. For exam-
ple, one (out of three possible terms) contributing in this
way to S2ða; bÞ at first order in both G2ðX; θÞ and
G4ðX; Y; θÞ is shown in Fig. 13. We do not pursue this
further because this is exactly the same phenomenon as has
been discussed from a different perspective in Sec. IV C.

Note that it is not necessary to consider renormalization of
S2ða; bÞ in powers of G2ðX; θÞ alone, or of S4ða; b; c; dÞ in
powers of G4ðX; Y; θÞ alone, since these effects (which are
not generally small) are covered in full by the approaches
described in Secs. IV B and III B.

V. RESULTS FOR FURTHER MODELS

In this section we provide numerical results for brick-
work models additional to the one treated in Sec. II.
In Sec. VA we omit the cutoff in the operator purity of
gates introduced in Sec. III A and present results for
gates drawn from a Haar distribution. In Sec. V B we
give results with local Hilbert space dimension q ¼ 3 and
Haar-distributed gates.

A. Results for q= 2 with Haar gates

As discussed in Sec. III, the determination of the
Lagrange multipliers G4ðX; Y; θÞ in the brickwork model
with Haar-distributed gates is complicated by the presence
of weak links. Specifically, we find that the simplifying
assumption used in Sec. III B 1, namely that the probability
distribution of MXðabcdÞ is approximately Gaussian, does
not hold for Haar-distributed gates. Instead, this distribu-
tion exhibits long tails, as we demonstrate in Appendix A 2.
To determine G4ðX; Y; θÞ under these circumstances, we

use the iterative fitting procedure introduced in Sec. III B 3,
which is not predicated on a particular form for the
probability distribution of MXðabcdÞ. We take all sub-
systems X and Y that can be obtained using a single cut
from a system with open boundary conditions. In contrast
to Sec. II, where the requirement of an approximately
Gaussian distribution for MXðabcdÞ led to the restriction
2 < LðXÞ < L − 2, here we include all subsystem sizes
1 ≤ LðXÞ ≤ L − 1. A disadvantage of the iterative fitting
procedure is that it requires multiple MC evaluations of
FMC
4 ðX; Y; θÞ, which is slow if the total number of degrees

of freedom qL involved is large; this restricts us to L ¼ 8

with q ¼ 2. In this case, estimates FMC
4 ðX; Y; θÞ are

obtained using between 60 and 300 iterations and a step
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FIG. 12. Contributions to the self-energy Σ at first order.
(a) From G2ðX; θÞ and (b) from G4ðX; Y; θÞ.
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FIG. 13. One of three contributions to the renormalization at
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appears in S2ða; bÞ.
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size α ¼ 0.2. The MC results shown in Fig. 14 display very
good agreement with ED data.

B. Results for q= 3 brickwork model

In our study of the brickworkmodel with q ¼ 3 and Haar-
distributed gates, we use system size L ¼ 8 so that ED
calculations are straightforward. The effect of weak links
becomes less pronouncedwith increasing bond dimension q,
and as a consequence the single-shot approach to obtain
G4ðX; Y; θÞ of Sec. III B 1 becomes more accurate. Con-
versely, for a given system size the iterative method of
Sec. III B 3 is more difficult to apply with increasing q,
because a large number of samples is required to obtain
accurate estimates for FMC

4 ðX; Y; θÞ when the Hilbert space
dimension qL of the system is large (see the discussion of

Sec. II D and Ref. [40]). We therefore determine Lagrange
multipliers for this model using the single-shot approach,
taking subsystems X obtained from a system with open
boundary conditions by making a single cut, and with
LðXÞ ≥ 2, LðX̄Þ ≥ 2. The MC results shown in Fig. 15
display excellent agreement with ED data.
Furthermore, we test how well the JDF fitted to the

geometries of Fig. 14(b) can reproduce the behavior of the
OTOC in the geometries of Fig. 16(b). The results shown
in Fig. 16(a) display excellent agreement between ED and
MC data.

C. Results for q = 2 brickwork model with periodic
boundary conditions

Finally, we show results for the brickwork model for
q ¼ 2, L ¼ 12 using periodic boundary conditions. This
leads to a second possible direction for the growth of
correlations and two separations between the partitions
denoted by s and s0, with the most important separation
being the minimum of the two. To simplify the presentation
we set s ¼ s0.
The results are shown in Fig. 17. In this case, we have

used the exact Haar average Gð0Þ
4 instead of the leading

approximation given in Eq. (31). The solid triangles
indicate FMC

4 ðX; Y; θÞ calculated Monte Carlo sampling
from a JDF that includes Lagrange multipliers G4ðX; Y; θÞ
for all connected partitions X, Y generated by two cuts with
LðXÞ; LðYÞ > 1. The results in this case (open circles)

FIG. 14. FMC
4 ðX; Y; θÞ (open circles from MC sampling) and

F4ðX; Y; θÞ (lines from ED) versus θ for various s, for a
brickwork model with Haar-distributed gates, q ¼ 2 and L ¼ 8.

FIG. 15. FMC
4 ðX; Y; θÞ (open circles from MC sampling) and

F4ðX; Y; θÞ (lines from ED) versuss θ for various s, for a
brickwork model with Haar-distributed gates, q ¼ 3 and L ¼ 8.

FIG. 16. Test of JDF fitted to behavior in the geometries of
Fig. 15(b) but applied to geometries of (b), for the brickwork
model with q ¼ 3 and L ¼ 8. (a) Comparison of data from MC
sampling (open circles) and ED (solid lines). (b) Partition used for
(a), in which the eight-site system is divided by two spatial cuts
into a two-site subsystem X and its complement X̄, or a two-site
subsystem Ȳ and its complement Y.
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show very good agreement with F4ðX; Y; θÞ calculated
using ED.

VI. SUMMARY AND OUTLOOK

In this work we have analyzed the interplay between
the statistical properties of the time-evolution operator
for chaotic many-body quantum systems and the quan-
tum information dynamics that these systems display.
The eigenstate thermalization hypothesis provides an
accurate description of some key aspects, in terms of the
probability distribution of matrix elements of observ-
ables between eigenstates of the time-evolution operator.
In its original form, however, it does not capture the
consequences of a finite speed for quantum information
spreading. To remedy this, we advocate a change of
viewpoint. In place of the matrix elements considered
within ETH, we construct correlators from eigenstates.
We show that the simplest such correlator capturing
signatures of quantum information dynamics at long
times and large distances is unique and involves a set of
four eigenstates. We also propose an ansatz for the joint
probability distribution function of small numbers of
eigenstates, in which the values of correlators are

controlled by Lagrange multipliers. We support these
general ideas using numerical studies of Floquet quan-
tum circuits, showing firstly that correlators have the
expected features, and secondly that it is possible to
choose values for the Lagrange multipliers so that our
ansatz reproduces these features accurately. We believe
our approach is complementary to recent work [36,37]
that generalizes ETH using the language of free prob-
ability theory.
An advantage of viewing this problem in terms of

correlations between eigenstates rather than matrix ele-
ments is that even the simplest assumption, of a Haar
distribution for eigenstates, yields correlations with the
correct order of magnitude. In this instance, however, the
correlations are independent of eigenvalues. By contrast, a
microscopic model for local quantum dynamics yields a
characteristic dependence of correlators on differences in
quasienergies, as we have summarized in Fig. 3. We have
shown that our ansatz for the joint distribution of eigen-
states, together with a suitable choice for the Lagrange
multipliers, captures this dependence on eigenvalues
differences.
The quantity that characterizes correlations between

sets of four eigenstates, denoted F4ðX; Y; θÞ in this paper,
is a function not only of the eigenphase difference θ, but
also of subsystem choices X and Y. This constitutes a
large set of possibilities if there are no restrictions on the
way the subsystems are selected. We have focused on the
simple set of subsystems that can be obtained from an
overall system with open (rather than periodic) boundary
conditions by making a single spatial cut, choosing
Lagrange multipliers in our ansatz for the JDF so that
F4ðX; Y; θÞ is reproduced accurately for these subsys-
tems. In addition, we have shown that the eigenstate
correlations imposed in this way are sufficient to repro-
duce to a good approximation the correlators for some
other choices of X and Y. In particular, we have
demonstrated that the behavior of the OTOC for oper-
ators supported on a few sites of the system (requiring
choices of X and Y each involving two cuts) is well
approximated by our JDF.
Several obvious directions remain open for future work.

Perhaps most importantly, while our discussion in this
paper has been restricted to Floquet systems, it would be
desirable to extend the approach to systems with a time-
independent Hamiltonian. In our context, the significance
of such an extension is that diagonal matrix elements of
local observables in the basis of Hamiltonian eigenstates
are generically functions of energy, a feature absent from
Floquet systems. Indeed, ETH is formulated in part to
describe this energy dependence. A natural modification of
our JDF to impose such an energy dependence is to
supplement Eqs. (27) and (29) with an extra factor

e−
P

k
S1ðakÞ chosen to bias selected eigenstates toward a

prespecified energy shell. An obvious choice is to take

FIG. 17. FMC
4 ðX; Y; θÞ (open circles and solid triangles from

MC sampling) and F4ðX; Y; θÞ (lines from ED) versus θ for
various s, for a brickwork model with Haar-distributed gates and
periodic boundary conditions, q ¼ 2 and L ¼ 12 for the geom-
etries displayed in (b). Partitions in the Lagrange multipliers are
generated using two cuts (solid triangles). The results generated
from Monte Carlo sampling show very good agreement with the
data obtained from exact diagonalization. (b) Partition used for
(a). Because of the periodic boundary conditions, two separations
s and s0 between the partitions exist. We choose s ¼ s0.
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S1ðaÞ ¼ βhajHjai, where H is the Hamiltonian and β is a
Lagrange multiplier.
It is worth emphasizing that the correlations induced

respectively by S1ðaÞ, S2ða; bÞ, and S4ða; b; c; dÞ are
associated with widely separated energy scales. Taking
the characteristic strength of local interactions as the unit of
energy, S1ðaÞ selects vectors from a broad energy window,
which has a width that increases with system size. In turn,
S2ða; bÞ generates correlations between pairs of vectors
within an energy window with width of order unity. Finally,
S4ða; b; c; dÞ generates correlations between groups of four
vectors with energy or quasienergy differences lying in a
narrow energy window, whose width decreases indefinitely
with increasing separation between the subsystems X and Y
in F4ðX; Y; θÞ.
A further direction for future work is to examine

correlations between sets of n eigenstates with n > 4.
This opens up many possibilities, since generalizations
of the correlators F2ðX; θÞ and F4ðX; Y; θÞ may involve
multiple subsystems in their definition. Restricting to a pair
of subsystems X and Y, these higher-order correlators are
required, for example, to describe the higher-order Rényi
entropies of the operator entanglement for the time-
evolution operator. Beyond this, one can ask whether there
are physical phenomena exposed only by higher-order
correlators.
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APPENDIX A: DISTRIBUTION OF MXðabcdÞ
In this appendix we examine the probability distribu-

tion of MXðabcdÞ, providing further details beyond the
information given in Fig. 7. This information is important
because one of the two methods that we use for
determining the Lagrange multipliers G4ðX; Y; θÞ relies
on this distribution having a Gaussian form. In
Appendix A 1 we show how the form of the distribution
varies with the value of LðXÞ. In Appendix A 2 we
investigate the effect on the distribution of the cutoff in
the operator entanglement purity of two-qubit gates
introduced in Sec. III A.

1. Effect of the subsystem size LðXÞ
The distribution of MXðabcdÞ for different partitions X

is shown in Figs. 18(a) and 18(b). With increasing parti-
tion size LðXÞ, the distribution approaches a Gaussian.
This supports our observation that the method we use
to determine G4ðX; Y; θ becomes more accurate with
increasing LðXÞ.

2. Effect of the cutoff in the operator
entanglement purity

In Sec. III we presented results for a model (see
Sec. III A) that is well adapted to our procedure for finding
G4ðX; Y; θ). This model is designed to have a probability
distribution for MXðabcdÞ that is close to Gaussian, and
has gates drawn from a truncated version of the Haar
distribution, with a cutoff on the operator entanglement
purity of c × q4.
In Fig. 19 we examine the effect of the value of this

cutoff on the probability distribution of MXðabcdÞ,
considering the range from c ¼ 0.3 (the value used in
Sec. III) to c ¼ 1 (an unrestricted Haar distribution).

FIG. 18. Probability distribution of jMXðabcdÞj for different
subsystems X with LðXÞ ¼ k and L ¼ 12, q ¼ 2, and fitted
complex Gaussian distributions (dashed black line) as guide
for the eye. (a) θ ¼ 0.1 and (b) θ ¼ 1.7. Brickwork model
with gates sampled from the distribution defined in Sec. III A
and a cutoff 0.3 × q4 for the operator purity. With decreasing
partition size LðXÞ, the distribution of MXðabcdÞ exhibits
non-Gaussian tails.
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The distribution shows non-Gaussian tails for small
relative phase θ and a Haar-random Floquet model.
The tails are suppressed with decreasing cutoff in the
operator entanglement purity. We attribute this effect to
weak links i on which the gate wi is close to the identity
(especially in small systems or with small subsystems).
The effect of such weakly entangling gates on the
dynamics of quantum information was studied in more
detail in Ref. [47].

APPENDIX B: ACCURACY OF OUR APPROACH
WITH INCREASING SYSTEM SIZE

Here we provide complete information on deviations
between FMC

4 ðX; Y; θÞ and F4ðX; Y; θÞ with Lagrange
multipliers G4ðX; Y; θÞ determined using the single-
shot procedure described in Sec. III B 1. We compare
the results for system sizes L ¼ 8, 10, 12 and all
possible partitions defined by one cut that have
LðXÞ; LðX̄Þ > 2.
The relative deviations are shown in Fig. 20. In all

cases the relative deviation is less than 10%, showing
the accuracy of our approach. Furthermore, the accuracy
improves with increasing system size. We see the
largest deviations for small partition sizes LðXÞ and
LðYÞ. This is expected, as we discuss in Sec. IV:
Correction terms in the perturbation theory and con-
tributions from G2ðX; θÞ are most significant when LðXÞ
and LðX̄Þ are small.

FIG. 19. Probability distribution of jMXðabcdÞj at partition
k ¼ 2 and L ¼ 12, q ¼ 2, and a complex Gaussian distribution
(dashed black line) as guide for the eye. (a) θ ¼ 0.1 and
(b) θ ¼ 1.7. Brickwork model with unitary gates sampled from
the distribution defined in Sec. III A and values of the cutoff c as
indicated. With increasing cutoff, the distributions show non-
Gaussian tails for small relative phases θ.

FIG. 20. Relative deviation between FMC
4 ðX; Y; θÞ and F4ðX; Y; θÞ for q ¼ 2 and L ¼ 8 (left-hand column), L ¼ 10 (center column),

and L ¼ 12 (right-hand column), and for θ ¼ 0.1 (top row) and θ ¼ 2.03 (bottom row).
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APPENDIX C: RESULTS FOR SINGLE
REALIZATIONS

In the main text, the eigenstate correlations obtained by
exact diagonalization were averaged over multiple realiza-
tions of the Floquet circuit to suppress sample-to-sample
fluctuations. This is especially important for the q ¼ 2
model with Haar gates studied in Sec. VA, where the
presence of weak links can dominate the overall dynamics.
As we show in this appendix, this is not the case for the
Haar model with additional cutoff studied in Sec. II.
In Fig. 21, the averaged result for the eigenstate

correlations F4ðX; Y; θÞ together with the results for three
different single realizations are shown. The deviations
between different realizations of the Floquet circuits are
marginal, so we expect that our analysis holds even without
ensemble averaging for the circuit analyzed in Sec. II.

APPENDIX D: RESULTS WITH ADDITIONAL
LAGRANGE MULTIPLIERS

In the main text, we included Lagrange multipliers
G4ðX; Y; θÞ only for partitions X, Y that can be generated
by a single cut (apart from a discussion in Sec. V C
of connected partitions generated by two cuts in a system
with periodic boundary conditions). The purpose of this
appendix is to examine the effect of including addi-
tional partitions. As an illustration, we include all partitions
that can be generated in a system with open boundary
conditions using either one or two cuts with LðXÞ;
LðYÞ; LðX̄Þ; LðȲÞ > 2.
In Fig. 22 we compare the outcome in this case

with results using only partitions generated by means of
a single cut. FMC

4 ðX; Y; θÞ agrees well in both cases with
F4ðX; Y; θÞ obtained from exact diagonalization. However,
including more partitions does not reduce the small
discrepancies between MC and ED results.
Finally, we investigate how the Lagrange multipliers

G4ðX; Y; θÞ are modified after adding additional partitions.

To present the results it is useful to view G4ðX; Y; θÞ as a
matrix, as done in Sec. III B 1, and specify an order for the
rows and columns of the matrix. We do this using the index
x ¼ iðL − 5Þ þ ðj − 3Þ for a partition with support on the
sites fi; iþ 1;…; ðiþ jÞ mod L�g. If only partitions gen-
erated by a single cut are included, i ¼ 0 and j ≥ 3, leading
to a ðL − 5Þ × ðL − 5Þ matrix. If, on the other hand,
partitions generated by two cuts are included, both i and
j may be positive, which leads to a LðL − 5Þ × LðL − 5Þ
matrix. Restricting to the first L − 5 indices allows a direct
comparison of the two cases.
In the following, we analyze the componentwise Haar-

averaged version of Eq. (32):

S4ðX; YÞ ¼ ½½MT �X½G4�X;Y ½MT �Y �0: ðD1Þ

As a first test, we directly compare in Fig. 23 the values of
S4ðX; YÞ corresponding to the first L − 5 indices. In this
case, including more partitions only leads to small mod-
ifications of these Lagrange multipliers.
Going further, in Fig. 24 we examine the extra con-

tributions to S4ðX; YÞ that arise after incorporating parti-
tions generated by two cuts. In this figure the Lagrange
multipliers related to single-cut generated partitions con-
tribute to the small turquoise square at the lower left-hand
corner, and so we are concerned with the remainder of the
figure. As is apparent, the values of S4ðX; YÞ arising from
most additional partitions are very small in comparison to

FIG. 21. F4ðX; Y; θÞ (lines from ED) versus θ for various s, and
results for single Floquet realizations (squares, stars, and circles)
for the circuit model with an additional cutoff in the operator
purity, studied in Sec. II. The results of single Floquet realizations
are close to the ensemble averages.

FIG. 22. FMC
4 ðX; Y; θÞ including all partitions generated by two

cuts with LðXÞ > 2 (solid triangles from MC), FMC
4 ðX; Y; θÞ

including all partitions generated by a single cut with LðXÞ > 2
(open circles), and F4ðX; Y; θÞ (lines from ED) versus θ for
various s. Calculations are for the brickwork circuit model
defined in Sec. III A with L ¼ 12, q ¼ 2 and open boundary
conditions.
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those from single-cut partitions. A few exceptions are
also visible: They appear to arise from partitions in
which there are two scales for spatial separations, such as
(in obvious notation) the partitions XXXIIIIIIXXX
and IIIIYYYYIIII.
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